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Homework 3: Solutions

Problem 1: carrier maps

Prove that a map Φ : A → 2B is carrier if and only if ∀σ, τ ∈ A : Φ(σ ∩ τ) ⊆
Φ(σ) ∩ Φ(τ).

Suppose that ∀σ, τ ∈ A : Φ(σ ∩ τ) ⊆ Φ(σ) ∩ Φ(τ). In the special case when
τ ⊆ σ, we get Φ(τ) = Φ(σ∩ τ) ⊆ Φ(σ)∩Φ(τ) ⊆ Φ(σ), i.e., Φ(τ) ⊆ Φ(σ). Hence,
Φ is carrier.

Now suppose that Φ is carrier and consider τ, σ ∈ A. Since σ ∩ τ ⊆ σ and
σ ∩ τ ⊆ τ , we have Φ(σ ∩ τ) ⊆ Φ(σ) ∩ Φ(τ).

Problem 2: rigid carrier maps

Give an example of a rigid carrier map that is not strict. Give an example of a
strict carrier map that is not rigid.

A rigid carrier map Φ ensures that for all σ, Φ(σ) is a pure complex of
dimension dim(σ). A carrier map Φ is strict if it guarantees that for all σ, τ ,
Φ(σ ∩ τ) = Φ(σ) ∩ Φ(τ).

Recall our famous example of consensus: the carrier map ∆ of the consensus
task sends vertex {P0} to complex {{P0}}, vertex {P1} to complex {{P1}},
vertex {Q0} to complex {{Q0}}, simplex σ = {P0, Q0} to complex {{P0, Q0}}
(plus all subsets), and simplex τ = {P0, Q1} to complex {{P0, Q0}, {P1, Q1}}
(plus all subsets). The map is obviously rigid: no simplex gets a complex of
smaller dimension as an image.

We have ∆(σ ∩ τ) = {{P0}} and ∆(σ) ∩ ∆(τ) = {{P0, Q0}} (plus all
subsets), i.e., ∆ is not strict.

Similarly, not any strict carrier map must be rigid: a trivial map that sends
all simplices to a single vertex is strict, but, obviously, not rigid.

Problem 3: mesh-shrinking subdivision

The mesh of a geometric simplicial complex K is the length of its longest edge.
Let ∆ be the simplicial complex consisting of a simplex together with all it faces,
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BaryN∆ be the iterated barycentric subdivision of ∆, and cN be the mesh of
BaryN∆ (see Chapter 3.6.5 in the textbook).

Prove that barycentric subdivision is mesh-shrinking, i.e., limN→∞ cN = 0.

Recall that any point in a geometric simplex ∆n = [v0, . . . , vn] has a unique
representation

∑
i tivi, where each ti ∈ [0, 1] and

∑
i ti = 1. For example, for a

vertex vi, we have ti = 1, and for all j 6= i, tj = 0.
The barycenter of a face [w0, . . . , wm] of ∆n is then defined as 1

m+1

∑
i wi.

In particular, the barycenter of ∆n = [v0, . . . , vn] is 1
n+1

∑
i vi.

Observe now that, for any point v ∈ |∆n|, the most distant from v point
of |∆n| is necessarily a vertex vi. Indeed, for any other point v′ =

∑
i tivi, we

have:

(∗) |v−
∑
i

tivi| = |
∑
i

ti(v−vi)| ≤
∑
i

ti|v−vi| ≤
∑
i

ti max
j
|v−vj | = max

j
|v−vj |

We are going to show that the mesh of Bary∆n is at most n
n+1d, where d

is the mesh of ∆n. As a result, we get cN ≤ ( n
n+1 )Nmesh(∆n) →N→∞ 0, i.e.,

Bary is a mesh-shrinking subdivision.
To proceed by induction on n, consider n = 1 as a base case. The mesh of

Bary∆1 is 1
2 of the length of the longest edge of |∆1| and we are done.

Now suppose the claim is true for all m < n and consider any edge u,w of
Bary∆n. Note that the only vertex of Bary∆n that lies in the interior of |∆n|
is the barycenter b = 1

n+1

∑
i vi.

If neither u nor w is the barycenter, then both vertices belong to a proper face
of Bary∆n of dimension m < n. By the induction hypothesis, |u−w| ≤ m

m+1dm,
where dm is the mesh of the m-dimensional face. Since dm ≤ d and m

m+1 <
n

n+1 ,
we have |u− w| < n

n+1d.
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Figure 1: The distance between bi and vi in Bary∆2.

Now suppose that, say, u is the barycenter of ∆n. By inequality (∗) above,
|u−w| ≤ maxi |u−vi|. For each vertex vi, u can be represented as n

n+1bi+
1

n+1vi,
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where bi = 1
n

∑
j 6=i vj is the barycenter of the face [v0, . . . , vi−1, vi+1, . . . , vn].

Thus, |vi − u| = n
n+1 |vi − bi| (see the example for ∆2 in Figure 1).

Thus, using again inequality (∗), we obtain |u − w| ≤ maxi |u − vi| =
n

n+1 maxi |vi − bi| ≤ n
n+1 maxi,j |vi − vj | = n

n+1d.
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