MITRO207

Homework 1: Solutions

Problem 1: muddy children

How would the state evolution depicted in slides 88-91 (F'ig. 4.1 in the textbook)
change if the father announces at noon:

e Child 1 is dirty.
e There are an odd number of dirty children.

e There are an even number of dirty children.

e By declaring child 1 to be dirty, the father excludes all configurations in
which the first position (blue node) is set to 0. As a result, at 1:01pm, only
three possible configurations remain: precisely those in which at least one
of the remaining processes is dirty. The complex is, however, connected,
and the children 2 and 3 may still have to wait until 3pm to announce
themselves (when everyone is dirty). As before, at 2:01pm, the only pos-
sible configuration is the one in which everybody is dirty. See Figure 1.

Remark: Note that here we assume that child 1 cooperates by running
the original protocol (“only announce your self when you know exactly
who is dirty”). If the child leaves the yard immediately after the father’s
announcement, the remaning kids won’t be able to decide on their own
(the complex is connected and no new information can be gained). In
the distributed computing literature, there is a similar distinction between
“departing after obtaining an output” and “helping the others to output.”

e For an odd number of dirty children, we have only four disconnected 2-
dimensional simplices at 12:01 (just after the news has arrived). Thus, all
dirty children can announce themselves at 1pm (Figure 2).

e For an even number of dirty children, we have only four disconnected 2-
dimensional simplices at 12:01, and the children will announce themselves
at 1pm (Figure 3).
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Figure 1: Possible simplices assuming that child 1 is dirty.

Problem 2: distinct input complex

Three processes, P, Q, and R, are assigned distinct inputs from the set {0,1,2}.
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Figure 2: Possible simplices assuming that an odd number of children are dirty.
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Figure 3: Possible simplices assuming that an even number of children are dirty.

Draw the complex of all possible assignments. Draw the complex with the values
set {0,1,2,3}.

Figure 4: States of P, Q, and R with inputs {0,1,2,3}. Note that vertices in the top
and bottom rows are repeated.

We begin with the value set {0,1,2,3}. Each of the three processes can take
each of the four values. Thus there are 3 * 4 = 12 vertices in the simplex. In a
simplex of our complex, the three processes are assigned distinct values in one
of the 4 subsets of three values of {0,1,2,3}, and there are 3! = 6 assignments



Figure 5: Complex of P, @, and R with inputs {0, 1,2, 3}.

for each such subset. Thus, there are 4 x 6 = 24 2-dimensional simplices in the
complex.

The 24 simplicies (with some vertices repeated) are drawn in Figure 4. Notice
that the three vertices on the left are identified with the tree vertices on the
right, and the seven vertices at the top are identified with the seven vertices
at the bottom (“distorted” by three simplices to the right). By “glueing” the
identified faces of the boundaries, we obtain a torus (Figure 5, apologies for the

quality of the drawing).
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Figure 6: States of P, @, and R with inputs {0, 1, 2}.

Figure 7: Complex of P, @, and R with inputs {0, 1,2}.

To obtain the complex corresponding to the value set {0,1,2}, we simply
remove from the complex in Figure 4 all simplices containing value 3. The



resulting complex of 6 2-dimensional simplices (with repeated vertices) is drawn
in Figure 6. By “glueing” the identified vertices, we obtain the “spiral” complex
that winds around the torus surface (Figure 7).

Problem 3: exact message losses

Draw the complex of states corresponding to one round of the 2-process system
in slide 52, assuming that exactly one message is lost in each round.

The complex is like the one in slide 63 (the right side of Figure 1.3 in the
textbook), except that the middle interval of the subdivision of each edge is
removed: this interval corresponds to the execution in which both messages are
delivered, which is excluded by our model.

Problem 4: Peterson’s lock

Consider the following simplified variant of Peterson’s 2-process mutual exclu-
sion algorithm:

Shared atomic variables:
flag[0], flag[i]: boolean atomic registers
turn: atomic register

Code for process p_i (i=0,1):
flagl[i] := true
turn := 1-i
if (flagl[1-i]) and (turn=1-i) then
return false // failure
else
return true // critical section

Draw the complex of states reachable by the two processes after they complete
the algorithm.

Possible vertices of the resulting protocol complex are (po, CS), (p1, CS),
(po, F), (p1, F). Here CS means that the process returns true, and F means
that the process returns false.

We are going to show that only two configurations presented in Figure 8 are
possible.

Suppose, without loss of generality, that p; (¢ = 0,1) was the first to write
1 — ¢ to variable turn. By the algorithm, the other process p;_; will overwrite
turn with ¢, and then read true in flag[i] and ¢ in turn. Thus, p;_; will have
to return false. Thus, (pg, CS), (p1, CS) cannot be an edge in the resulting
complex.



Now if p; reads turn before the write of p;_;, then it also returns false,
which will result in the middle interval in Figure 8. Otherwise it returns true,
which will result in one of the side intervals in Figure 8.

p0: CS p1:F p0: F p1: CS

Figure 8: The reachable states of (simplified) Peterson’s lock.



