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Administrivia

• Exam June 25, B310
– Written, 1h30 (13h30-15h00)
– Annals: check the exercises (and the 

solutions)
– Closed books: you can bring two double-

side A4 pages with handwritten notes 
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Skeleton
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C
(solid tetrahedron)

skel1 C
skel0 C

skel2 C
(hollow tetrahedron)



(I,O,¢) has a wait-free protocol iff

Parameter p
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Model characterized by some parameter p, 0 · p · n

there is a continuous map
f: |skelp I| ® |O|

carried by ¢.



Dimension of Skeleton map vs
Computational Power
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2-skeleton map

harder than

1-skeleton map



(I,O,¢) has a wait-free protocol …

Wait-Free Layered Immediate 
Snapshots
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Up to n out of n+1 can crash
Just can’t wait (to be king)

if and only if …
there is a continuous map

f: |skeln I| ® |O|
carried by ¢.



(I,O,¢) has a t-resilient protocol …

t-resilient Layered Immediate 
Snapshots
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Up to t out of n+1 can crash
OK to wait for n-t+1

if and only if …
there is a continuous map

f: |skelt I| ® |O|
carried by ¢.



(I,O,¢) has a wait-free protocol …

Wait-Free Layered Immediate 
Snapshot with k-set 

Agreement
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shared black boxes that solve k-set agreement

if and only if …
there is a continuous map

f: |skelk-1 I| ® |O|
carried by ¢.



Equivalent Models

Distributed Computing through 
Combinatorial Topology

12

t-resilient model …

wait-free with (t+1)-set agreement …

have identical computational power!



Decidability
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Is it decidable whether a task has a protocol in
a model characterized by:

f: |skelp I| ® |O| ?

decidable if and only if p · 1!
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t-Resilient Layered Immediate 
Snapshot Protocol
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shared mem array 0..N-1,0..n of Value
view := input
for l:= 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view := values(snap)

return δ(view)



t-Resilient Layered Immediate 
Snapshot Protocol
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shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view := values(snap)

return δ(view)

P0 P1 … Pn

Layer 0
Layer 1
…
Layer N-1



t-Resilient Layered Immediate 
Snapshot Protocol

Distributed Computing through 
Combinatorial Topology

17

shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view := values(snap)

return δ(view)

initial view is input value



t-Resilient Layered Immediate 
Snapshot Protocol
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shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view := values(snap)

return δ(view)

run for N layers



t-Resilient Layered Immediate 
Snapshot Protocol
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shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view := values(snap)

return δ(view)

layer l : immediate write & snapshot of row l



t-Resilient Layered Immediate 
Snapshot Protocol
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shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view := values(snap)

return δ(view)

wait to hear from n+1-t processes 

why is this live?



t-Resilient Layered Immediate 
Snapshot Protocol
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shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view := values(snap)

return δ(view)

new view is set of values seen



t-Resilient Layered Immediate 
Snapshot Protocol
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shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view = values(snap)

return δ(view)

finally apply decision map δ to final view
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k-set Agreement
k = 2



(t+1)-Set Agreement
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view := input
snap: array of Value = ;
do

immediate
mem[0][i] := view;
snap := snapshot(mem[0][*])

until |names(snap)| >= n+1-t
view := values(snap)
return min(values(view))



(t+1)-Set Agreement
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view := input
snap: array of Value = ;
do
immediate
mem[0][i] := view;
snap := snapshot(mem[0][*])

until |names(snap)| >= n+1-t
view := values(snap)
return min(values(view))

write input and take snapshot



(t+1)-Set Agreement
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view := input
snap: array of Value = ;
do
immediate
mem[0][i] := view;
snap := snapshot(mem[0][*])

until |names(snap)| >= n+1-t
view := values(snap)
return min(values(view))

wait to hear from n+1-t processes 



(t+1)-Set Agreement
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view := input
snap: array of Value = ;
do
immediate
mem[0][i] := view;
snap := snapshot(mem[0][*])

until |names(snap)| >= n+1-t
view := values(snap)
return min(values(view))

return least value in view

can miss at most t lesser values
most t+1 values returned



Informal Skeleton Lemma
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If

And

We have a protocol for a task ...

Then
WLOG, we can “pre-process” with k-set agreement. 

A protocol for k-set agreement …



Skeleton Lemma
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If

And

protocol (I, P, ¥) solves task (I,O,¢)

Then
The composition of
k-set agreement with (I,P,¥)
also solves (I,O,¢).

There is a k-set agreement protocol for I



Informal Protocol Complex 
Lemma
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WLOG
We can assume that any protocol complex is a 
barycentric subdivision of (the skeleton of) the input 
complex.



Protocol Complex Lemma
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If
There is a t-resilient layered protocol for (I,O,¢) ...

Then
Then there is a protocol (I,P,¥) for (I,O,¢) such that …

P = BaryN(skelt I)
¥(¾) = BaryN • skelt(¾).



Theorem
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The colorless task (I,O,¢) has a t-resilient layered
snapshot protocol …

if and only if …
there is a continuous map

f: |skelt I| ® |O|
carried by ¢. I

skel1(I)

No map

map



Protocol Implies Map
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May assume protocol complex is P = BaryN skelt I.

decision map
d: BaryN skelt I ® O

carried by ¢.|d|: |BaryN skelt I| ® |O|

|d|: |skelt I| ® |O|



Simplicial Approximation 
Theorem

• Given a continuous map

• there is an N such that f has a simplicial 
approximation

34

Á: BaryN A ® B

f: |A| ® |B|



Map Implies Protocol
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f: |skelt I| ® |O|

Á: BaryN skelt I ® O

Solve using …

barycentric agreement

(t+1)-set agreement

carried by ¢.
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Motivation
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Today …
Practically all modern multiprocessors provide 
synchronization more powerful than read-write …

Like …
test-and-set, compare-and-swap, ….

Here …
we consider protocols constructed by composing layered
snapshot protocols with k-set agreement protocols.



Wait-Free Layered Set 
Agreement Protocol
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shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of SetAgreement
view := input
for l:= 0 to N-1 do
view := SA[l].decide(view)
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

view := values(snap)
return δ(view)



Wait-Free Layered Set 
Agreement Protocol
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shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of SetAgree
view := input
for l := 0 to N-1 do
view := SA[l].decide(view)
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

view := values(snap)
return δ(view)

P0 P1 … Pn

Layer 0
Layer 1
…
Layer N-1



Wait-Free Layered Set 
Agreement Protocol
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shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of k-SetAgree
view := input
for l := 0 to N-1 do
view := SA[l].decide(view)
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

view := values(snap)
return δ(view)

per-level k-set agreement object

Layer 0 agreementObject0
Layer 1 agreementObject1
… …
Layer N-1 agreementObjectN-1



Wait-Free Layered Set 
Agreement Protocol
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shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of k-SetAgree
view := input
for l := 0 to N-1 do
view: View := SA[l].decide(view)
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

view := values(snap)
return δ(view)

initial view is input value



Wait-Free Layered Set 
Agreement Protocol
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shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of k-SetAgree
view := input
for l := 0 to N-1 do
view:= SA[l].decide(view)
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

view := values(snap)
return δ(view)

do k-set agreement with others at this level



Wait-Free Layered Set 
Agreement Protocol
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shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of k-SetAgree
view := input
for l := 0 to N-1 do
view:= SA[l].decide(view)
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

view := values(snap)
return δ(view)

then do immediate snapshot



Wait-Free Layered Set 
Agreement Protocol
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shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of k-SetAgree
view := input
for l := 0 to N-1 do
view: View := SA[l].decide(view)
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

view := values(snap)
return δ(view)

new view is set of values seen



Protocol Complex Lemma
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If (I,P,¥) is a k-set layered snapshot protocol …

then P is equal to BaryN skelk-1 I, …

for some N ¸ 0.



Theorem
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The colorless task (I,O,¢) has a wait-free k-set layered
snapshot protocol …

if and only if …
there is a continuous map

f: |skelk-1 I| ® |O|
carried by ¢.



Theorem
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The colorless task (I,O,¢) has a wait-free k-set layered
snapshot protocol …

if and only if …
there is a continuous map

f: |skelk-1 I| ® |O|
carried by ¢.

k-1 skeleton, not t-skeleton!
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Wait-Free

All but one can fail
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t-resilient

· t can fail
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Irregular Failures
Same server 

Different servers 
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http://pixabay.com/en/chess-figures-game-play-strategy-145184/

Adversaries

19-Jun-19 Distributed Computing through 
Combinatorial Topology

Walt Disney



Faulty Sets
These can fail

Or this …
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Faulty Sets Closed under 
Containment

If both can fail …

So can only one

Never require failures
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Failure Complex
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Vertex per process
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Failure Complex
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Vertex per process
Simplex = faulty set
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Irregular Failure Complex
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Wait-Free Failure Complex
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(n-1)-skeleton
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t-resilient Failure Complex
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(t-1)-skeleton
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Cores

19-Jun-19
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Minimal set of processes 
that cannot all fail

Safe to wait for at least one member of 
a particular core to show up

Distributed Computing through 
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Cores & Failure Complex

19-Jun-19
61

Minimal simplex 
not in failure 

complex
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Irregular Failure Complex
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Wait-Free Failure Complex
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All n+1 processes 
only core
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t-resilient Failure Complex
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Any t-simplex is a 
core

Any set of t+1 
processes is a core

Distributed Computing through 
Combinatorial Topology



Cores

19-Jun-19
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For many models,

Completely determines adversary’s 
power to solve any colorless task!

minimum core size…

So adversaries with same min core 
size solve the same colorless tasks

Distributed Computing through 
Combinatorial Topology



Survivor Sets

19-Jun-19
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Minimal set of processes 
that might all survive

Safe to wait for all members of 
some survivor set to show up

Dual to cores: each one 
determines the other

Distributed Computing through 
Combinatorial Topology



Survivor Sets in Failure 
Complex

19-Jun-19
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Complementary 
simplex in failure 

complex

Distributed Computing through 
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Irregular Failure Complex

19-Jun-19
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Survivor Sets

Distributed Computing through 
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Wait-Free Failure Complex

19-Jun-19
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Any vertex
Any individual 
process is a 
survivor set

Distributed Computing through 
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t-resilient Failure Complex

19-Jun-19
70

Any (n-t)-simplex

Any  set of n-t+1 
processes is a 

survivor set

Distributed Computing through 
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A-Resilient Layered Immediate 
Snapshot Protocol
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shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do
do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until survivor set µ names(snap)
view := values(snap)

return δ(view)



A-Resilient Layered Immediate 
Snapshot Protocol
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shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do
do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until survivor setµ names(snap)
view := values(snap)
return δ(view)

wait to hear from a survivor set

why is this live?
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Message Passing
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that send and receive messages …

There are n+1 asynchronous processes …

via a fully-connected communication network. 

Message delivery is reliable and FIFO



Message-Passing Protocols
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decide after finite # steps

but protocol
forwards messages …

forever!



Communication Syntax
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send(P, v0, …, vl) to Q

send(P, v0, …, vl) to all

upon receive(P, v0, …, vl) do
... // handle message



Forwarding
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background // forward messages forever
upon receive(Pj,v) do

send(Pi,v) to all



Get Values from n+1-t Processes
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getQuorum(): Set of Value
V: Set of Value := ;
q: int := 0
do
upon receive(Q,v) do
V := V [ {v}
q := q + 1 

until q = n+1-t 
return V



Get Values from n+1-t Processes
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getQuorum(): Set of Value
V: Set of Value := ;
q: int := 0
do
upon receive(Q,v) do
V := V [ {v}
q := q + 1 

until q = n+1-t 
return V

Initially, nothing.



Get Values from n+1-t Processes
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getQuorum(): Set of Value
V: Set of Value := ;
q: int := 0
do
upon receive(Q,v) do
V := V [ {v}
q := q + 1 

until q = n+1-t 
return V

remember values and count
(only the first value per sender counts)



Get Values from n+1-t Processes
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getQuorum(): Set of Value
V: Set of Value := ;
q: int := 0
do
upon receive(Q,v) do
V := V [ {v}
q := q + 1 

until q = n+1-t 
return V

safe to wait for n+1-t values



Get Values from n+1-t Processes
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getQuorum(): Set of Value
V: Set of Value := ;
q: int := 0
do
upon receive(Q,v) do
V := V [ {v}
q := q + 1 

until q = n+1-t 
return V

return values when enough received



Protocol for (t+1)-Set Agreement
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SetAgree(vi): value
send(P, vi) to all
V: Set of Value := getQuorum()
return min(V) 



Protocol for (t+1)-Set Agreement
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SetAgree(v): value
send(P, v) to all
V: Set of Value := getQuorum()
return min(V) 

broadcast my value



Protocol for (t+1)-Set Agreement
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SetAgree(v): value
send(P, v) to all
V: Set of Value := getQuorum()
return min(V) 

get values from all but t



Protocol for (t+1)-Set Agreement
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SetAgree(v): value
send(P, v) to all
V: Set of Value := getQuorum()
return min(V) 

return min value received

possible to “miss” only t lesser values



87

Barycentric Agreement

Distributed Computing through 
Combinatorial Topology

I Bary I

Assuming n+1>2t



Barycentric Agreement Protocol
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BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [ Vj
count := 0         

return Vi



Barycentric Agreement Protocol

Distributed Computing through 
Combinatorial Topology

89

BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [ Vj
count := 0         

return Vi

Set of messages Pi has received



Barycentric Agreement Protocol
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BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [ Vj
count := 0         

return Vi

keep track of confirmations received so far



Barycentric Agreement Protocol
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BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [ Vj
count := 0         

return Vi

get confirmation from each non-faulty process



Barycentric Agreement Protocol
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BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [ Vj
count := 0         

return Vi

broadcast message set received



Barycentric Agreement Protocol
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BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [ Vj
count := 0         

return Vi

collect responses



Barycentric Agreement Protocol
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BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [ Vj
count := 0         

return Vi

remember if message confirms my view



Barycentric Agreement Protocol
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BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [ Vj
count := 0         

return Vi

otherwise learned something new, start over



Barycentric Agreement Protocol
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BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [ Vj
count := 0         

return Vi

return when enough agree



Wait, There’s More!
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background
upon receive(Pj, Vj) do

Vi := Vi [ Vj
send(Pi, Vi) to all

the operating system runs forever …



Wait, There’s More!
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background 
upon receive(Pj, Vj) do

Vi := Vi [ Vj
send(Pi, Vi) to all

keep forwarding new values



Lemma: Protocol Terminates
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BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [ Vj
count := 0         

return Vi

Suppose Pi runs forever …

Eventually Vi assumes final value V …

Non-faulty Pj, where Vj = V’, receives V

Pj must have sent Vj to Pi

Vj ½ V Vj = VOR

Pj will sent V to Pi Pj has sent V to Pi



All Vi, Vj Totally Ordered
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BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [ Vj
count := 0         

return Vi

If Pi broadcasts V(0), …, V(k), then V(i) µ V(i+1)

To decide …
Pi received Vi from X, |X| ¸ n+1-t
Pj received Vj from Y, |Y| ¸ n+1-t

some Pk 2 X Å Y sent both Vi, Vj

so Vi, Vj are ordered.
Recall that n+1>2t



Theorem
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For 2t < n+1, colorless task (I,O,¢) has a t-resilient 
message-passing protocol …

if and only if …
there is a continuous map

f: |skelt I| ® |O|
carried by ¢.



Theorem
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For 2t < n+1, colorless task (I,O,¢) has a t-resilient 
message-passing protocol …

if and only if …
there is a continuous map

f: |skelt I| ® |O|
carried by ¢.

same as snapshot when 2t < n+1!



Protocol implies map
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§ Any t-resilient message passing protocol 
implies a t-resilient layered snapshot protocol
• Snapshots are “stronger” than message-

passing (even when 2t≥ (𝑛 + 1))
§ A t-resilient layered snapshot protocol 

implies a map 
f: |skelt I| ® |O|



Map implies protocol
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§ There exists a simplicial approximation
Á: BaryN I ® O carried by ¢

§ Run t-set agreement for simplex agreement 
on skelt I (works even when 2t≥ (𝑛 + 1))

§ Run N iteration on Barycentric agreement 
(for 2t< (𝑛 + 1)) and use Á



Road Map
Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems
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Automatic Proofs?
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What if we could program a Turing machine
to tell whether a task has a protocol?

In wait-free read-write memory?

Or other models?

We could …

automatically generate conference papers

No need for grad students



Alas no
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Whether a protocol exists for a task in …

Read-write memory for 3+ processes …

Read-write memory & k-set agreement …

Is undecidable.

for k > 2



Loop Agreement
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Complex
Loop

Three rendez-vous points
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One Rendez-Vous Point

Input

Output
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Two Rendez-Vous Points

Input

Output

Any simplex on 
path between
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Three Rendez-Vous Points

Input

Output

Any simplex



Contractibility
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not contractible

contractible



Solvable Iff Loop Contractible
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InputComplex
Output Complex



Undecidability
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But Contractiblity is undecidable …
even for finite complexes!

(reduces to the word problem for 
finitely-presented groups)

Undecidable whether a task has a 
protocol in wait-free read-write memory



Other Models
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Wait-free read-write memory 
plus k-set agreement , for k > 2

Implies contractible, for k > 2

Undecidable whether a task has a 
protocol in wait-free read-write memory 

plus k-set agreement , for k > 2

Solvable iff f : skelk-1 I ® O exists …
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