
Colorless Tasks: Solvability in
Different Models

MITRO207, P4, 2019

Administrivia

• Exam June 25, B310
– Written, 1h30 (13h30-15h00)
– Annals: check the exercises (and the

solutions)
– Closed books: you can bring two double-

side A4 pages with handwritten notes

Distributed Computing through
Combinatorial Topology

3

Road Map
Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Distributed Computing through
Combinatorial Topology

Decidability
4

Road Map
Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Distributed Computing through
Combinatorial Topology

Decidability
5

Skeleton

6

C
(solid tetrahedron)

skel1 C
skel0 C

skel2 C
(hollow tetrahedron)

(I,O,¢) has a wait-free protocol iff

Parameter p

Distributed Computing through
Combinatorial Topology

7

Model characterized by some parameter p, 0 · p · n

there is a continuous map
f: |skelp I| ® |O|

carried by ¢.

Dimension of Skeleton map vs
Computational Power

Distributed Computing through
Combinatorial Topology

8

2-skeleton map

harder than

1-skeleton map

(I,O,¢) has a wait-free protocol …

Wait-Free Layered Immediate
Snapshots

Distributed Computing through
Combinatorial Topology

9

Up to n out of n+1 can crash
Just can’t wait (to be king)

if and only if …
there is a continuous map

f: |skeln I| ® |O|
carried by ¢.

(I,O,¢) has a t-resilient protocol …

t-resilient Layered Immediate
Snapshots

Distributed Computing through
Combinatorial Topology

10

Up to t out of n+1 can crash
OK to wait for n-t+1

if and only if …
there is a continuous map

f: |skelt I| ® |O|
carried by ¢.

(I,O,¢) has a wait-free protocol …

Wait-Free Layered Immediate
Snapshot with k-set

Agreement

Distributed Computing through
Combinatorial Topology

11

shared black boxes that solve k-set agreement

if and only if …
there is a continuous map

f: |skelk-1 I| ® |O|
carried by ¢.

Equivalent Models

Distributed Computing through
Combinatorial Topology

12

t-resilient model …

wait-free with (t+1)-set agreement …

have identical computational power!

Decidability

Distributed Computing through
Combinatorial Topology

13

Is it decidable whether a task has a protocol in
a model characterized by:

f: |skelp I| ® |O| ?

decidable if and only if p · 1!

Road Map
Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Distributed Computing through
Combinatorial Topology

Decidability
14

t-Resilient Layered Immediate
Snapshot Protocol

Distributed Computing through
Combinatorial Topology

15

shared mem array 0..N-1,0..n of Value
view := input
for l:= 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view := values(snap)

return δ(view)

t-Resilient Layered Immediate
Snapshot Protocol

Distributed Computing through
Combinatorial Topology

16

shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view := values(snap)

return δ(view)

P0 P1 … Pn

Layer 0
Layer 1
…
Layer N-1

t-Resilient Layered Immediate
Snapshot Protocol

Distributed Computing through
Combinatorial Topology

17

shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view := values(snap)

return δ(view)

initial view is input value

t-Resilient Layered Immediate
Snapshot Protocol

Distributed Computing through
Combinatorial Topology

18

shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view := values(snap)

return δ(view)

run for N layers

t-Resilient Layered Immediate
Snapshot Protocol

Distributed Computing through
Combinatorial Topology

19

shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view := values(snap)

return δ(view)

layer l : immediate write & snapshot of row l

t-Resilient Layered Immediate
Snapshot Protocol

Distributed Computing through
Combinatorial Topology

20

shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view := values(snap)

return δ(view)

wait to hear from n+1-t processes

why is this live?

t-Resilient Layered Immediate
Snapshot Protocol

Distributed Computing through
Combinatorial Topology

21

shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view := values(snap)

return δ(view)

new view is set of values seen

t-Resilient Layered Immediate
Snapshot Protocol

Distributed Computing through
Combinatorial Topology

22

shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do

do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until |names(snap)| >= n+1-t
view = values(snap)

return δ(view)

finally apply decision map δ to final view

19 19

21

23

k-set Agreement
k = 2

(t+1)-Set Agreement

Distributed Computing through
Combinatorial Topology

24

view := input
snap: array of Value = ;
do

immediate
mem[0][i] := view;
snap := snapshot(mem[0][*])

until |names(snap)| >= n+1-t
view := values(snap)
return min(values(view))

(t+1)-Set Agreement

Distributed Computing through
Combinatorial Topology

25

view := input
snap: array of Value = ;
do
immediate
mem[0][i] := view;
snap := snapshot(mem[0][*])

until |names(snap)| >= n+1-t
view := values(snap)
return min(values(view))

write input and take snapshot

(t+1)-Set Agreement

Distributed Computing through
Combinatorial Topology

26

view := input
snap: array of Value = ;
do
immediate
mem[0][i] := view;
snap := snapshot(mem[0][*])

until |names(snap)| >= n+1-t
view := values(snap)
return min(values(view))

wait to hear from n+1-t processes

(t+1)-Set Agreement

Distributed Computing through
Combinatorial Topology

27

view := input
snap: array of Value = ;
do
immediate
mem[0][i] := view;
snap := snapshot(mem[0][*])

until |names(snap)| >= n+1-t
view := values(snap)
return min(values(view))

return least value in view

can miss at most t lesser values
most t+1 values returned

Informal Skeleton Lemma

Distributed Computing through
Combinatorial Topology

28

If

And

We have a protocol for a task ...

Then
WLOG, we can “pre-process” with k-set agreement.

A protocol for k-set agreement …

Skeleton Lemma

Distributed Computing through
Combinatorial Topology

29

If

And

protocol (I, P, ¥) solves task (I,O,¢)

Then
The composition of
k-set agreement with (I,P,¥)
also solves (I,O,¢).

There is a k-set agreement protocol for I

Informal Protocol Complex
Lemma

Distributed Computing through
Combinatorial Topology

30

WLOG
We can assume that any protocol complex is a
barycentric subdivision of (the skeleton of) the input
complex.

Protocol Complex Lemma

Distributed Computing through
Combinatorial Topology

31

If
There is a t-resilient layered protocol for (I,O,¢) ...

Then
Then there is a protocol (I,P,¥) for (I,O,¢) such that …

P = BaryN(skelt I)
¥(¾) = BaryN • skelt(¾).

Theorem

Distributed Computing through
Combinatorial Topology

32

The colorless task (I,O,¢) has a t-resilient layered
snapshot protocol …

if and only if …
there is a continuous map

f: |skelt I| ® |O|
carried by ¢. I

skel1(I)

No map

map

Protocol Implies Map

Distributed Computing through
Combinatorial Topology

33

May assume protocol complex is P = BaryN skelt I.

decision map
d: BaryN skelt I ® O

carried by ¢.|d|: |BaryN skelt I| ® |O|

|d|: |skelt I| ® |O|

Simplicial Approximation
Theorem

• Given a continuous map

• there is an N such that f has a simplicial
approximation

34

Á: BaryN A ® B

f: |A| ® |B|

Map Implies Protocol

Distributed Computing through
Combinatorial Topology

35

f: |skelt I| ® |O|

Á: BaryN skelt I ® O

Solve using …

barycentric agreement

(t+1)-set agreement

carried by ¢.

Road Map
Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Distributed Computing through
Combinatorial Topology

Decidability
36

Motivation

Distributed Computing through
Combinatorial Topology

37

Today …
Practically all modern multiprocessors provide
synchronization more powerful than read-write …

Like …
test-and-set, compare-and-swap, ….

Here …
we consider protocols constructed by composing layered
snapshot protocols with k-set agreement protocols.

Wait-Free Layered Set
Agreement Protocol

Distributed Computing through
Combinatorial Topology

38

shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of SetAgreement
view := input
for l:= 0 to N-1 do
view := SA[l].decide(view)
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

view := values(snap)
return δ(view)

Wait-Free Layered Set
Agreement Protocol

Distributed Computing through
Combinatorial Topology

39

shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of SetAgree
view := input
for l := 0 to N-1 do
view := SA[l].decide(view)
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

view := values(snap)
return δ(view)

P0 P1 … Pn

Layer 0
Layer 1
…
Layer N-1

Wait-Free Layered Set
Agreement Protocol

Distributed Computing through
Combinatorial Topology

40

shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of k-SetAgree
view := input
for l := 0 to N-1 do
view := SA[l].decide(view)
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

view := values(snap)
return δ(view)

per-level k-set agreement object

Layer 0 agreementObject0
Layer 1 agreementObject1
… …
Layer N-1 agreementObjectN-1

Wait-Free Layered Set
Agreement Protocol

Distributed Computing through
Combinatorial Topology

41

shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of k-SetAgree
view := input
for l := 0 to N-1 do
view: View := SA[l].decide(view)
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

view := values(snap)
return δ(view)

initial view is input value

Wait-Free Layered Set
Agreement Protocol

Distributed Computing through
Combinatorial Topology

42

shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of k-SetAgree
view := input
for l := 0 to N-1 do
view:= SA[l].decide(view)
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

view := values(snap)
return δ(view)

do k-set agreement with others at this level

Wait-Free Layered Set
Agreement Protocol

Distributed Computing through
Combinatorial Topology

43

shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of k-SetAgree
view := input
for l := 0 to N-1 do
view:= SA[l].decide(view)
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

view := values(snap)
return δ(view)

then do immediate snapshot

Wait-Free Layered Set
Agreement Protocol

Distributed Computing through
Combinatorial Topology

44

shared mem array 0..N-1,0..n of Value
shared SA array 0..N-1 of k-SetAgree
view := input
for l := 0 to N-1 do
view: View := SA[l].decide(view)
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

view := values(snap)
return δ(view)

new view is set of values seen

Protocol Complex Lemma

Distributed Computing through
Combinatorial Topology

45

If (I,P,¥) is a k-set layered snapshot protocol …

then P is equal to BaryN skelk-1 I, …

for some N ¸ 0.

Theorem

Distributed Computing through
Combinatorial Topology

46

The colorless task (I,O,¢) has a wait-free k-set layered
snapshot protocol …

if and only if …
there is a continuous map

f: |skelk-1 I| ® |O|
carried by ¢.

Theorem

Distributed Computing through
Combinatorial Topology

47

The colorless task (I,O,¢) has a wait-free k-set layered
snapshot protocol …

if and only if …
there is a continuous map

f: |skelk-1 I| ® |O|
carried by ¢.

k-1 skeleton, not t-skeleton!

Road Map
Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Distributed Computing through
Combinatorial Topology

Decidability
48

Wait-Free

All but one can fail

Distributed Computing through
Combinatorial Topology

t-resilient

· t can fail

Distributed Computing through
Combinatorial Topology

Irregular Failures
Same server

Different servers

Distributed Computing through
Combinatorial Topology

http://pixabay.com/en/chess-figures-game-play-strategy-145184/

Adversaries

19-Jun-19 Distributed Computing through
Combinatorial Topology

Walt Disney

Faulty Sets
These can fail

Or this …

Distributed Computing through
Combinatorial Topology

Faulty Sets Closed under
Containment

If both can fail …

So can only one

Never require failures

Distributed Computing through
Combinatorial Topology

Failure Complex

19-Jun-19
55

Vertex per process

Distributed Computing through
Combinatorial Topology

Failure Complex

19-Jun-19
56

Vertex per process
Simplex = faulty set

Distributed Computing through
Combinatorial Topology

Irregular Failure Complex

19-Jun-19
57Distributed Computing through

Combinatorial Topology

Wait-Free Failure Complex

19-Jun-19
58

(n-1)-skeleton

Distributed Computing through
Combinatorial Topology

t-resilient Failure Complex

19-Jun-19
59

(t-1)-skeleton

Distributed Computing through
Combinatorial Topology

Cores

19-Jun-19
60

Minimal set of processes
that cannot all fail

Safe to wait for at least one member of
a particular core to show up

Distributed Computing through
Combinatorial Topology

Cores & Failure Complex

19-Jun-19
61

Minimal simplex
not in failure

complex

Distributed Computing through
Combinatorial Topology

Irregular Failure Complex

19-Jun-19
62Distributed Computing through

Combinatorial Topology

Wait-Free Failure Complex

19-Jun-19
63

All n+1 processes
only core

Distributed Computing through
Combinatorial Topology

t-resilient Failure Complex

19-Jun-19
64

Any t-simplex is a
core

Any set of t+1
processes is a core

Distributed Computing through
Combinatorial Topology

Cores

19-Jun-19
65

For many models,

Completely determines adversary’s
power to solve any colorless task!

minimum core size…

So adversaries with same min core
size solve the same colorless tasks

Distributed Computing through
Combinatorial Topology

Survivor Sets

19-Jun-19
66

Minimal set of processes
that might all survive

Safe to wait for all members of
some survivor set to show up

Dual to cores: each one
determines the other

Distributed Computing through
Combinatorial Topology

Survivor Sets in Failure
Complex

19-Jun-19
67

Complementary
simplex in failure

complex

Distributed Computing through
Combinatorial Topology

Irregular Failure Complex

19-Jun-19
68

Survivor Sets

Distributed Computing through
Combinatorial Topology

Wait-Free Failure Complex

19-Jun-19
69

Any vertex
Any individual
process is a
survivor set

Distributed Computing through
Combinatorial Topology

t-resilient Failure Complex

19-Jun-19
70

Any (n-t)-simplex

Any set of n-t+1
processes is a

survivor set

Distributed Computing through
Combinatorial Topology

A-Resilient Layered Immediate
Snapshot Protocol

Distributed Computing through
Combinatorial Topology

71

shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do
do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until survivor set µ names(snap)
view := values(snap)

return δ(view)

A-Resilient Layered Immediate
Snapshot Protocol

Distributed Computing through
Combinatorial Topology

72

shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do
do
immediate
mem[l][i] := view;
snap := snapshot(mem[l][*])

until survivor setµ names(snap)
view := values(snap)
return δ(view)

wait to hear from a survivor set

why is this live?

Road Map
Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Distributed Computing through
Combinatorial Topology

Decidability
73

Message Passing

Distributed Computing through
Combinatorial Topology

74

that send and receive messages …

There are n+1 asynchronous processes …

via a fully-connected communication network.

Message delivery is reliable and FIFO

Message-Passing Protocols

Distributed Computing through
Combinatorial Topology

75

decide after finite # steps

but protocol
forwards messages …

forever!

Communication Syntax

Distributed Computing through
Combinatorial Topology

76

send(P, v0, …, vl) to Q

send(P, v0, …, vl) to all

upon receive(P, v0, …, vl) do
... // handle message

Forwarding

Distributed Computing through
Combinatorial Topology

77

background // forward messages forever
upon receive(Pj,v) do

send(Pi,v) to all

Get Values from n+1-t Processes

Distributed Computing through
Combinatorial Topology

78

getQuorum(): Set of Value
V: Set of Value := ;
q: int := 0
do
upon receive(Q,v) do
V := V [{v}
q := q + 1

until q = n+1-t
return V

Get Values from n+1-t Processes

Distributed Computing through
Combinatorial Topology

79

getQuorum(): Set of Value
V: Set of Value := ;
q: int := 0
do
upon receive(Q,v) do
V := V [{v}
q := q + 1

until q = n+1-t
return V

Initially, nothing.

Get Values from n+1-t Processes

Distributed Computing through
Combinatorial Topology

80

getQuorum(): Set of Value
V: Set of Value := ;
q: int := 0
do
upon receive(Q,v) do
V := V [{v}
q := q + 1

until q = n+1-t
return V

remember values and count
(only the first value per sender counts)

Get Values from n+1-t Processes

Distributed Computing through
Combinatorial Topology

81

getQuorum(): Set of Value
V: Set of Value := ;
q: int := 0
do
upon receive(Q,v) do
V := V [{v}
q := q + 1

until q = n+1-t
return V

safe to wait for n+1-t values

Get Values from n+1-t Processes

Distributed Computing through
Combinatorial Topology

82

getQuorum(): Set of Value
V: Set of Value := ;
q: int := 0
do
upon receive(Q,v) do
V := V [{v}
q := q + 1

until q = n+1-t
return V

return values when enough received

Protocol for (t+1)-Set Agreement

Distributed Computing through
Combinatorial Topology

83

SetAgree(vi): value
send(P, vi) to all
V: Set of Value := getQuorum()
return min(V)

Protocol for (t+1)-Set Agreement

Distributed Computing through
Combinatorial Topology

84

SetAgree(v): value
send(P, v) to all
V: Set of Value := getQuorum()
return min(V)

broadcast my value

Protocol for (t+1)-Set Agreement

Distributed Computing through
Combinatorial Topology

85

SetAgree(v): value
send(P, v) to all
V: Set of Value := getQuorum()
return min(V)

get values from all but t

Protocol for (t+1)-Set Agreement

Distributed Computing through
Combinatorial Topology

86

SetAgree(v): value
send(P, v) to all
V: Set of Value := getQuorum()
return min(V)

return min value received

possible to “miss” only t lesser values

87

Barycentric Agreement

Distributed Computing through
Combinatorial Topology

I Bary I

Assuming n+1>2t

Barycentric Agreement Protocol

Distributed Computing through
Combinatorial Topology

88

BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [Vj
count := 0

return Vi

Barycentric Agreement Protocol

Distributed Computing through
Combinatorial Topology

89

BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [Vj
count := 0

return Vi

Set of messages Pi has received

Barycentric Agreement Protocol

Distributed Computing through
Combinatorial Topology

90

BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [Vj
count := 0

return Vi

keep track of confirmations received so far

Barycentric Agreement Protocol

Distributed Computing through
Combinatorial Topology

91

BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [Vj
count := 0

return Vi

get confirmation from each non-faulty process

Barycentric Agreement Protocol

Distributed Computing through
Combinatorial Topology

92

BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [Vj
count := 0

return Vi

broadcast message set received

Barycentric Agreement Protocol

Distributed Computing through
Combinatorial Topology

93

BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [Vj
count := 0

return Vi

collect responses

Barycentric Agreement Protocol

Distributed Computing through
Combinatorial Topology

94

BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [Vj
count := 0

return Vi

remember if message confirms my view

Barycentric Agreement Protocol

Distributed Computing through
Combinatorial Topology

95

BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [Vj
count := 0

return Vi

otherwise learned something new, start over

Barycentric Agreement Protocol

Distributed Computing through
Combinatorial Topology

96

BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [Vj
count := 0

return Vi

return when enough agree

Wait, There’s More!

Distributed Computing through
Combinatorial Topology

97

background
upon receive(Pj, Vj) do

Vi := Vi [Vj
send(Pi, Vi) to all

the operating system runs forever …

Wait, There’s More!

Distributed Computing through
Combinatorial Topology

98

background
upon receive(Pj, Vj) do

Vi := Vi [Vj
send(Pi, Vi) to all

keep forwarding new values

Lemma: Protocol Terminates

Distributed Computing through
Combinatorial Topology

99

BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [Vj
count := 0

return Vi

Suppose Pi runs forever …

Eventually Vi assumes final value V …

Non-faulty Pj, where Vj = V’, receives V

Pj must have sent Vj to Pi

Vj ½ V Vj = VOR

Pj will sent V to Pi Pj has sent V to Pi

All Vi, Vj Totally Ordered

Distributed Computing through
Combinatorial Topology

100

BaryAgree(vi: Vertex): set of Vertex
Vi: set of Vertex := {vi}
count: int := 0
while count < n+1-t do
send(Pi, Vi) to all
on receive(Pj, Vj) do
if Vi = Vj then count := count + 1

else if Vj \ Vi ¹ ; then
Vi := Vi [Vj
count := 0

return Vi

If Pi broadcasts V(0), …, V(k), then V(i) µ V(i+1)

To decide …
Pi received Vi from X, |X| ¸ n+1-t
Pj received Vj from Y, |Y| ¸ n+1-t

some Pk 2 X Å Y sent both Vi, Vj

so Vi, Vj are ordered.
Recall that n+1>2t

Theorem

Distributed Computing through
Combinatorial Topology

101

For 2t < n+1, colorless task (I,O,¢) has a t-resilient
message-passing protocol …

if and only if …
there is a continuous map

f: |skelt I| ® |O|
carried by ¢.

Theorem

Distributed Computing through
Combinatorial Topology

102

For 2t < n+1, colorless task (I,O,¢) has a t-resilient
message-passing protocol …

if and only if …
there is a continuous map

f: |skelt I| ® |O|
carried by ¢.

same as snapshot when 2t < n+1!

Protocol implies map

Distributed Computing through
Combinatorial Topology

103

§ Any t-resilient message passing protocol
implies a t-resilient layered snapshot protocol
• Snapshots are “stronger” than message-

passing (even when 2t≥ (𝑛 + 1))
§ A t-resilient layered snapshot protocol

implies a map
f: |skelt I| ® |O|

Map implies protocol

Distributed Computing through
Combinatorial Topology

104

§ There exists a simplicial approximation
Á: BaryN I ® O carried by ¢

§ Run t-set agreement for simplex agreement
on skelt I (works even when 2t≥ (𝑛 + 1))

§ Run N iteration on Barycentric agreement
(for 2t< (𝑛 + 1)) and use Á

Road Map
Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Distributed Computing through
Combinatorial Topology

Decidability
105

Automatic Proofs?

19-Jun-19 106

What if we could program a Turing machine
to tell whether a task has a protocol?

In wait-free read-write memory?

Or other models?

We could …

automatically generate conference papers

No need for grad students

Alas no

19-Jun-19 107

Whether a protocol exists for a task in …

Read-write memory for 3+ processes …

Read-write memory & k-set agreement …

Is undecidable.

for k > 2

Loop Agreement

19-Jun-19 108

Complex
Loop

Three rendez-vous points

19-Jun-19 109

One Rendez-Vous Point

Input

Output

19-Jun-19 110

Two Rendez-Vous Points

Input

Output

Any simplex on
path between

19-Jun-19 111

Three Rendez-Vous Points

Input

Output

Any simplex

Contractibility

19-Jun-19 112

not contractible

contractible

Solvable Iff Loop Contractible

19-Jun-19 113

InputComplex
Output Complex

Undecidability

19-Jun-19 114

But Contractiblity is undecidable …
even for finite complexes!

(reduces to the word problem for
finitely-presented groups)

Undecidable whether a task has a
protocol in wait-free read-write memory

Other Models

19-Jun-19 115

Wait-free read-write memory
plus k-set agreement , for k > 2

Implies contractible, for k > 2

Undecidable whether a task has a
protocol in wait-free read-write memory

plus k-set agreement , for k > 2

Solvable iff f : skelk-1 I ® O exists …

116

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “Distributed Computing through

Combinatorial Topology” (but not in any way that suggests that the authors
endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.
• Any of the above conditions can be waived if you get permission from

the copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

Distributed Computing through
Combinatorial Topology

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

