Colorless Tasks: Solvability in Different Models

MITRO207, P4, 2019

Administrivia

• Exam June 25, B310

- Written, 1h30 (13h30-15h00)
- Annals: check the exercises (and the solutions)
- Closed books: you can bring two doubleside A4 pages with handwritten notes

Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Road Map

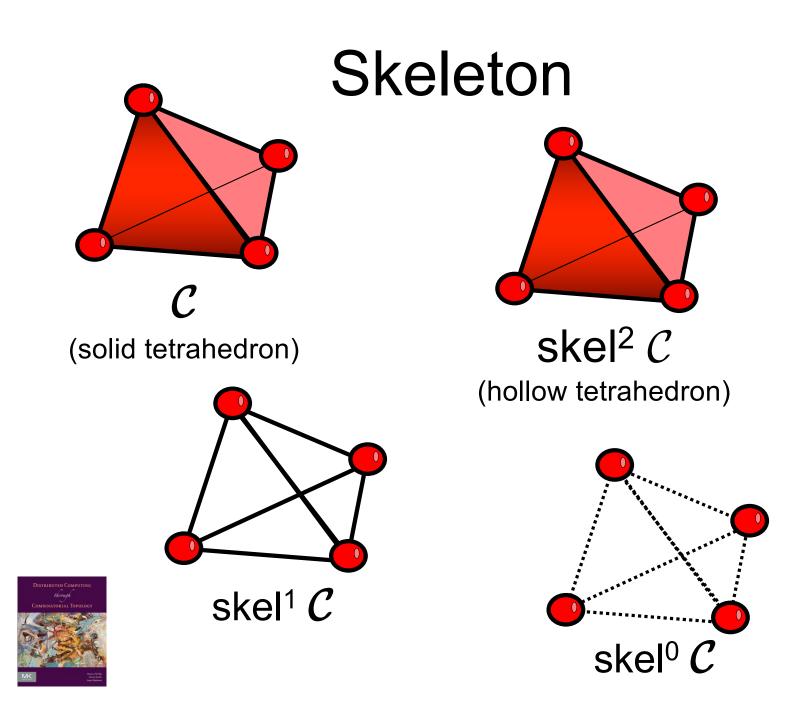
Overview of Models

t-resilient layered snapshot models

Layered Snapshots with *k*-set agreement

Adversaries

Message-Passing Systems



Parameter *p*

Model characterized by some parameter p, $0 \le p \le n$

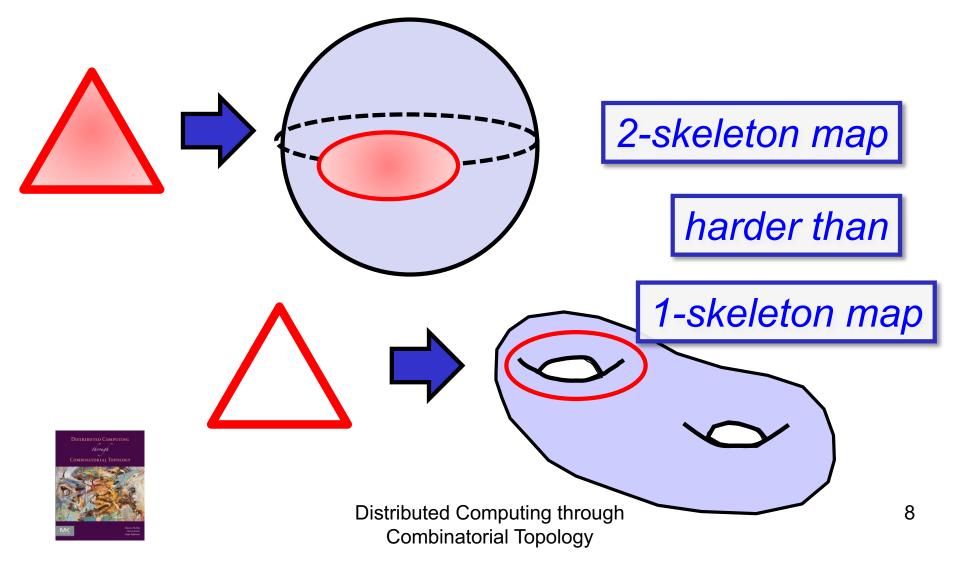
 $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free protocol iff

there is a continuous map

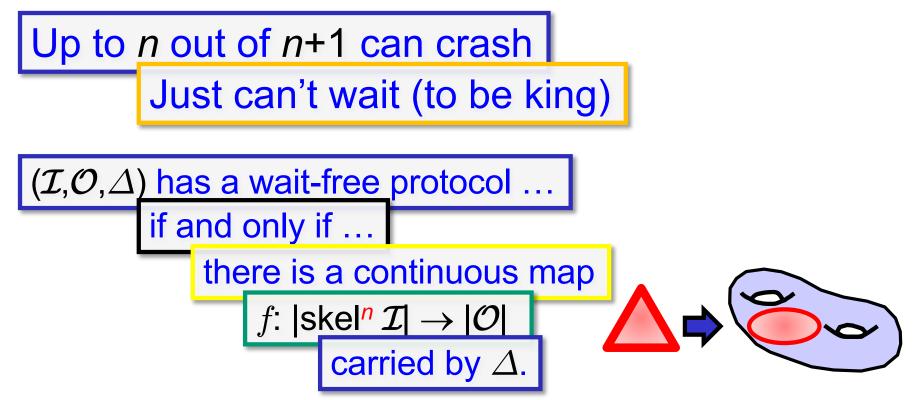
$$f: |\mathsf{skel}^{p} \mathcal{I}| \to |\mathcal{O}|$$

carried by Δ .

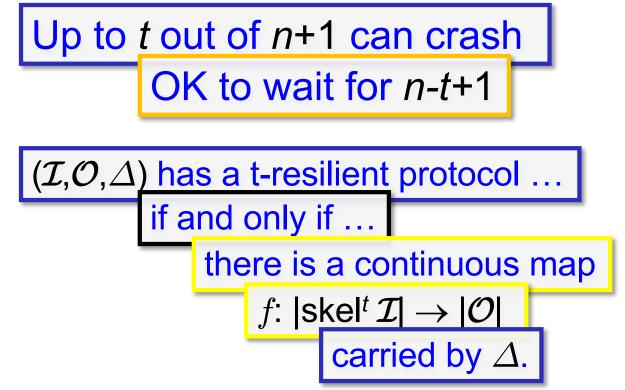
Dimension of Skeleton map vs Computational Power



Wait-Free Layered Immediate Snapshots

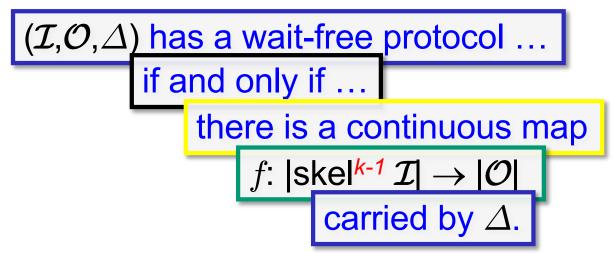


t-resilient Layered Immediate Snapshots

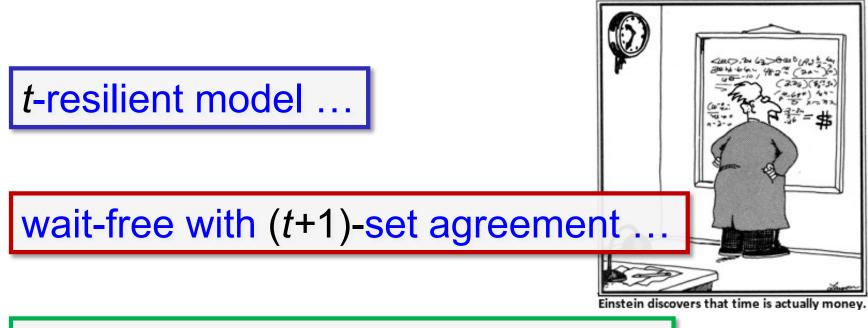


Wait-Free Layered Immediate Snapshot with *k*-set Agreement

shared black boxes that solve k-set agreement



Equivalent Models



have identical computational power!

Decidability

Is it *decidable* whether a task has a protocol in a model characterized by:

$$f: |\mathsf{skel}^p \mathcal{I}| \to |\mathcal{O}| ?$$

decidable if and only if $p \leq 1!$

Road Map

Overview of Models

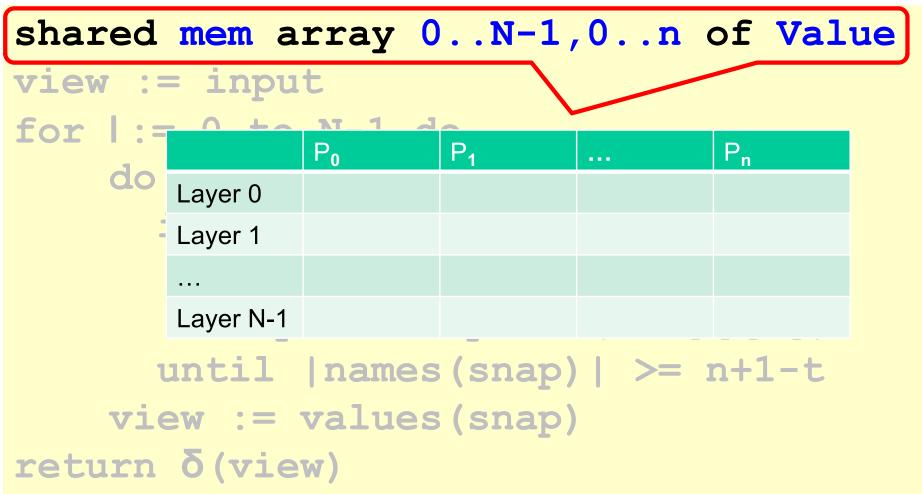
t-resilient layered snapshot models

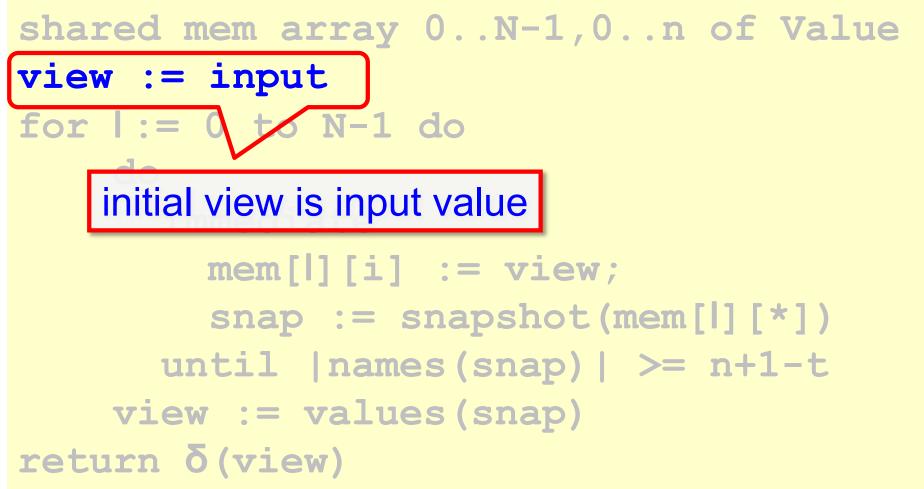
Layered Snapshots with k-set agreement

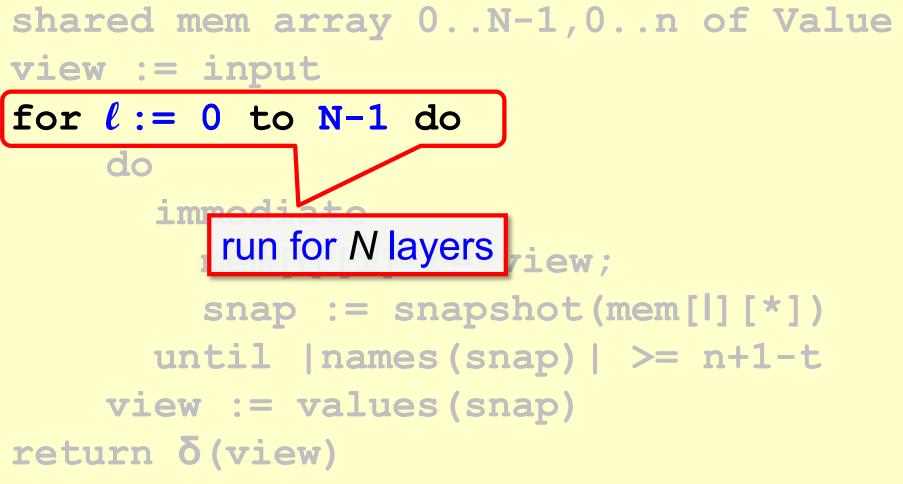
Adversaries

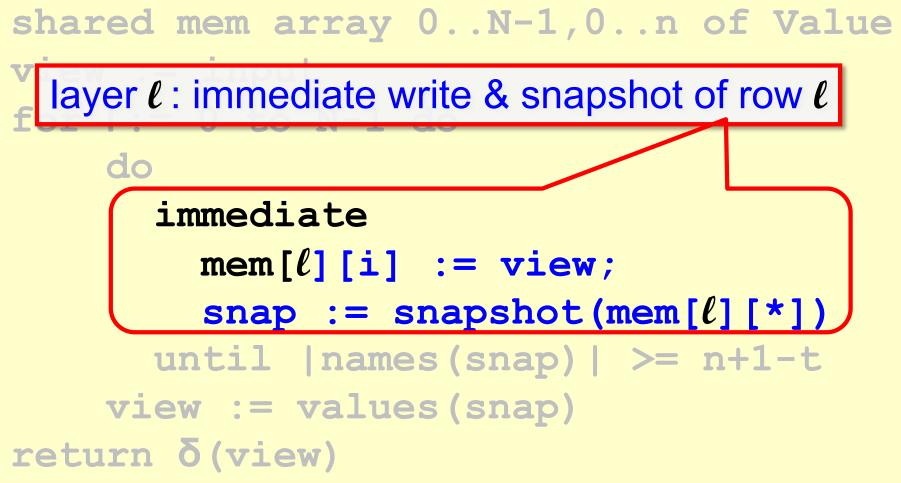
Message-Passing Systems

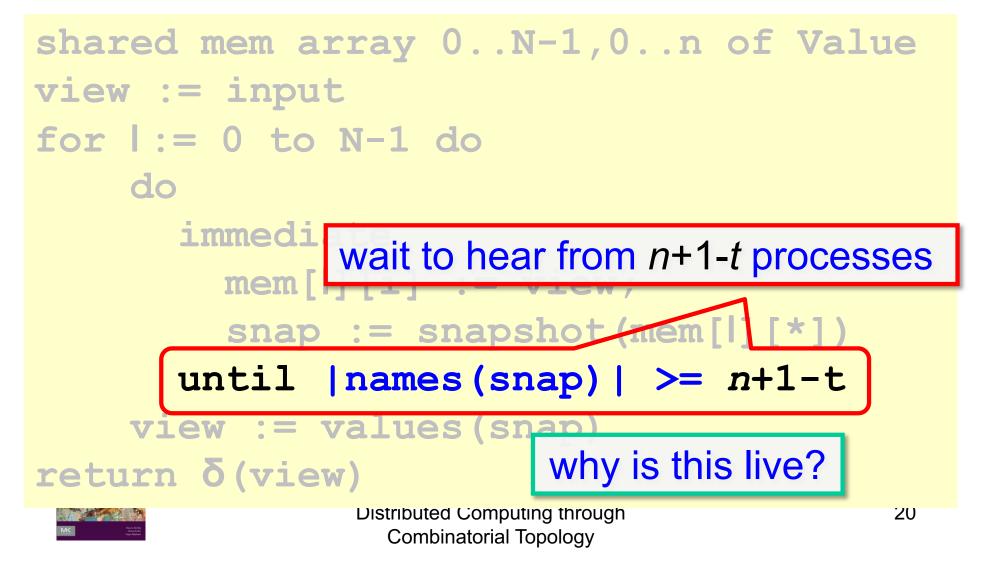
shared mem array 0...N-1,0...n of Value view := input for l := 0 to N-1 do do immediate $mem[\ell][i] := view;$ snap := snapshot(mem[ℓ][*]) until |names(snap)| >= n+1-t view := values(snap) return δ (view)

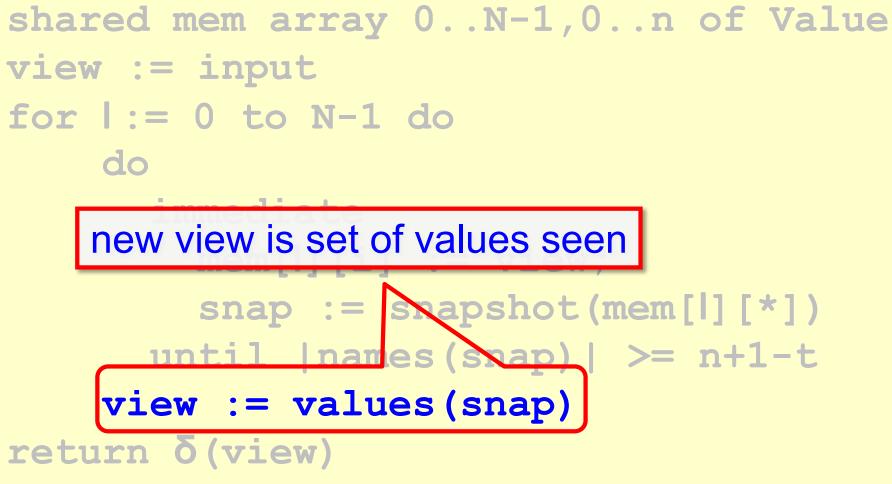


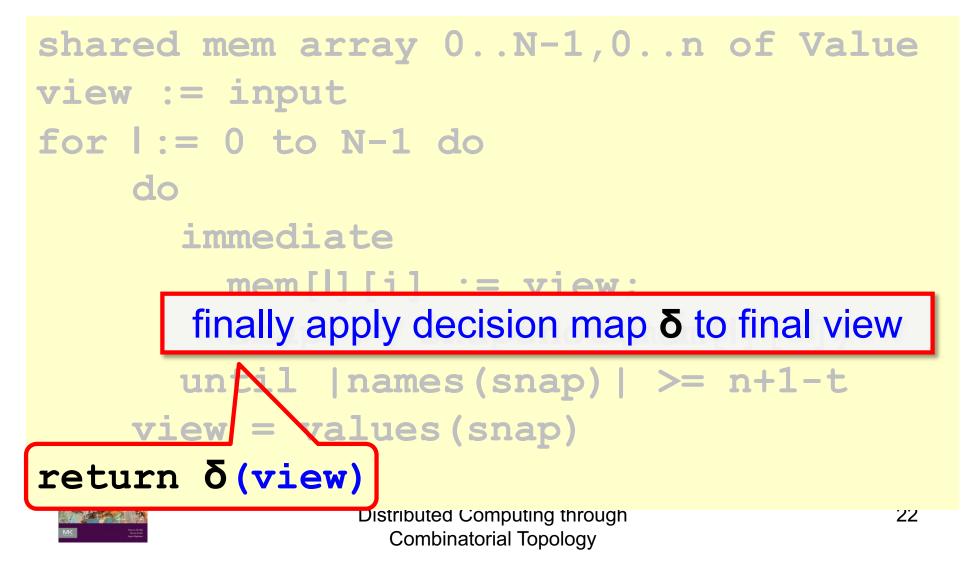


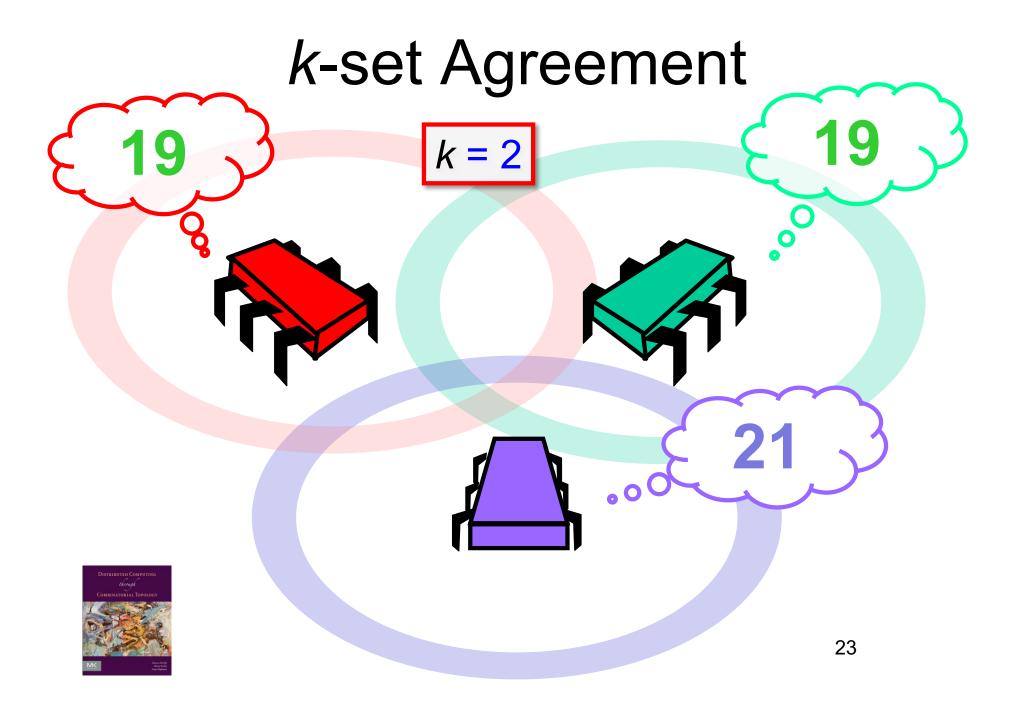




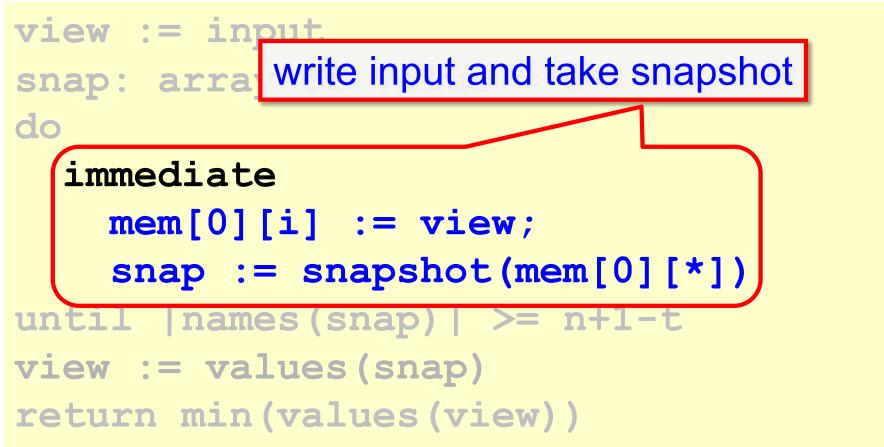


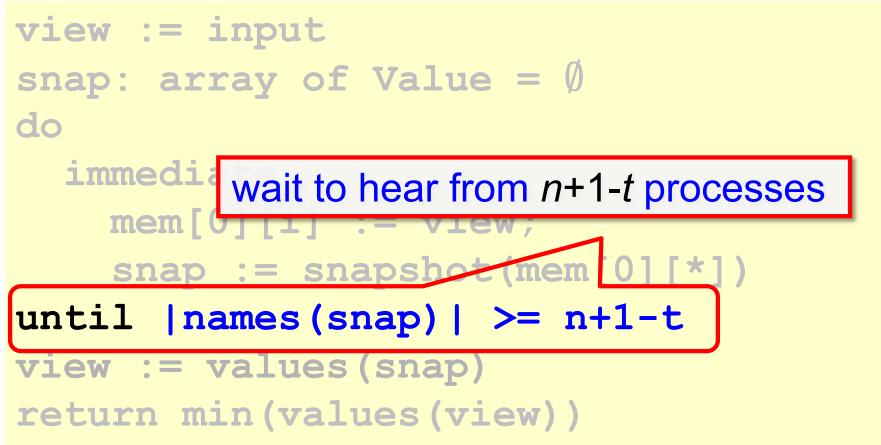


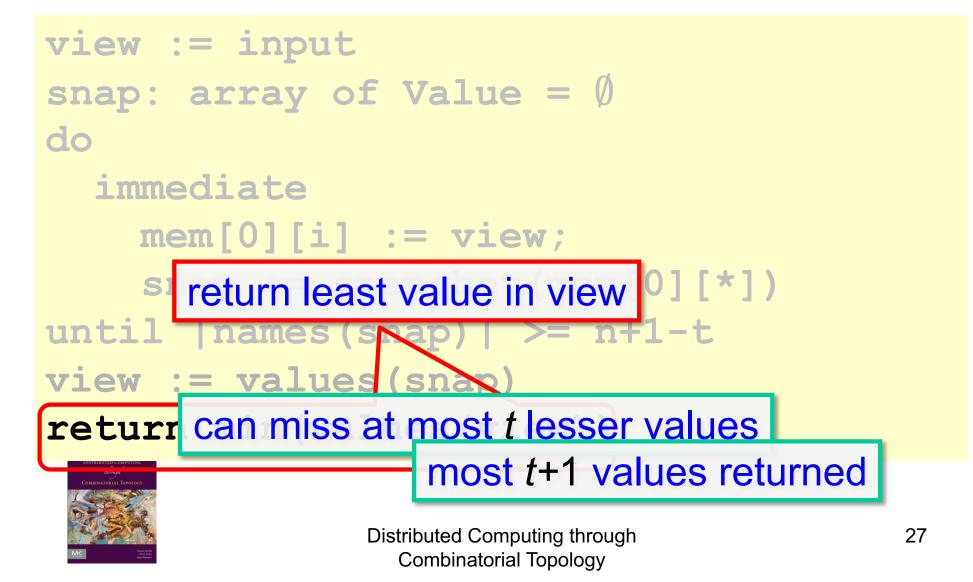




```
view := input
snap: array of Value = Ø
do
   immediate
    mem[0][i] := view;
    snap := snapshot(mem[0][*])
until |names(snap)| >= n+1-t
view := values(snap)
return min(values(view))
```



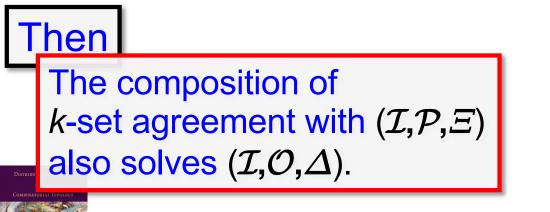


Informal Skeleton Lemma

We have a protocol for a task ...

Then WLOG, we can "pre-process" with *k*-set agreement.

Skeleton Lemma



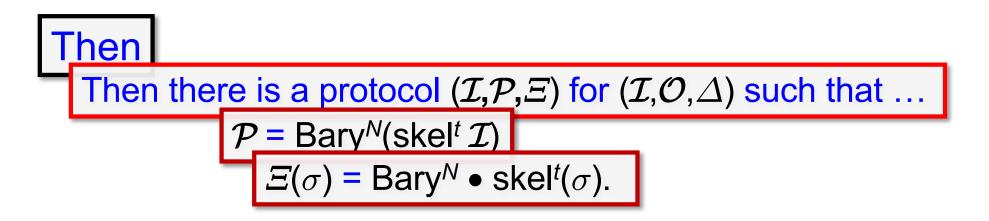
Informal Protocol Complex Lemma

We can assume that any protocol complex is a barycentric subdivision of (the skeleton of) the input complex.

/|OG|

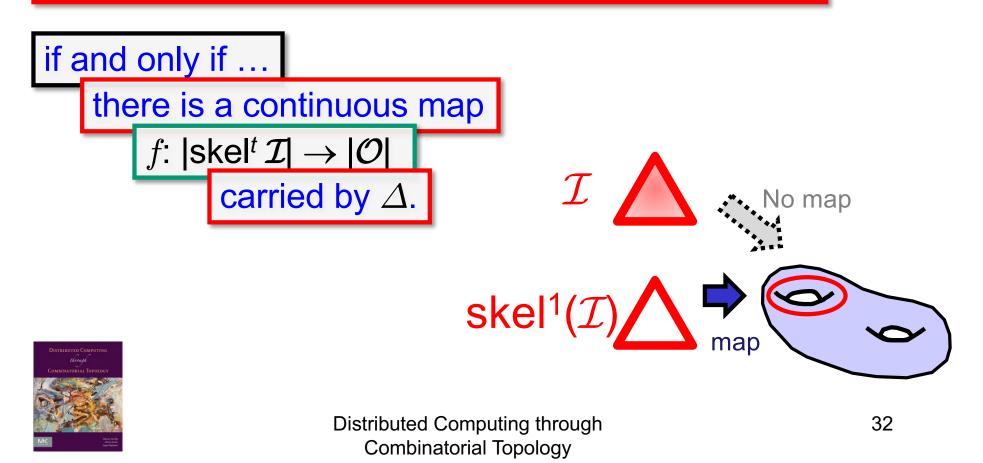
Protocol Complex Lemma

There is a *t*-resilient layered protocol for $(\mathcal{I}, \mathcal{O}, \Delta)$...



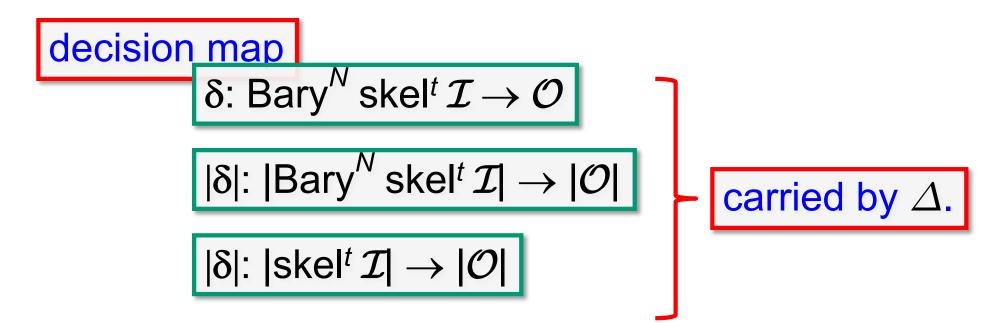
Theorem

The colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a *t*-resilient layered snapshot protocol ...



Protocol Implies Map

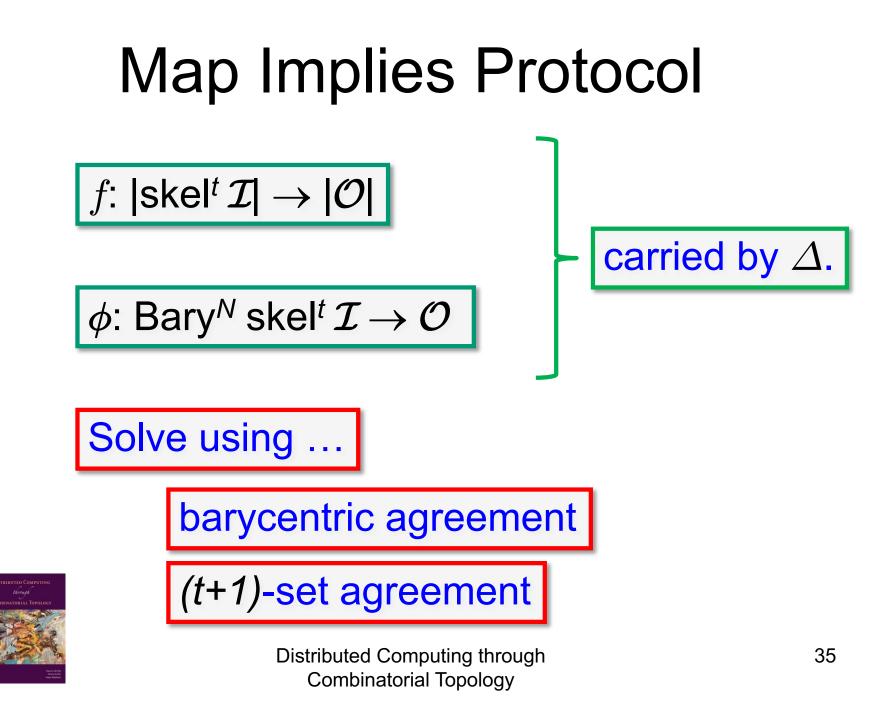
May assume protocol complex is $\mathcal{P} = \text{Bary}^N \text{ skel}^t \mathcal{I}$.



Simplicial Approximation Theorem

- Given a continuous map $f: |\mathcal{A}| \to |\mathcal{B}|$
- there is an N such that f has a simplicial approximation

 ϕ : Bary^N $\mathcal{A} \to \mathcal{B}$



Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Motivation

Today ... Practically all modern multiprocessors provide synchronization more powerful than read-write ...

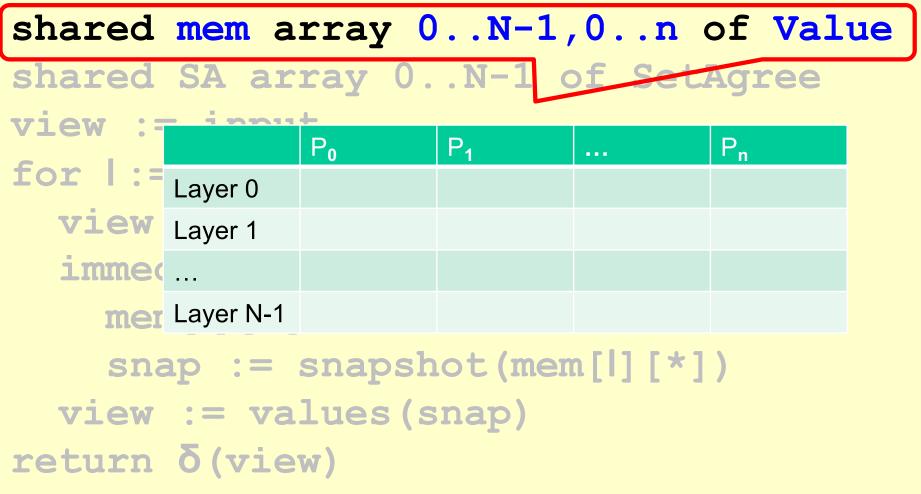
Like ...

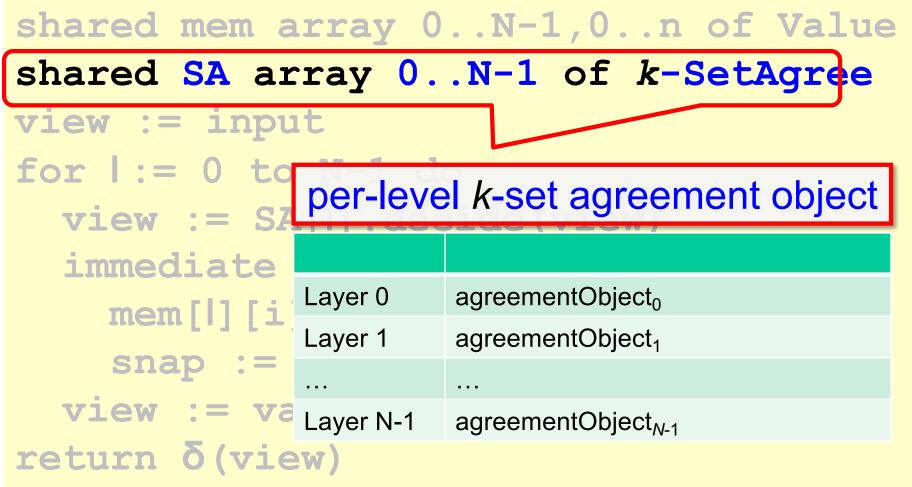
test-and-set, compare-and-swap,

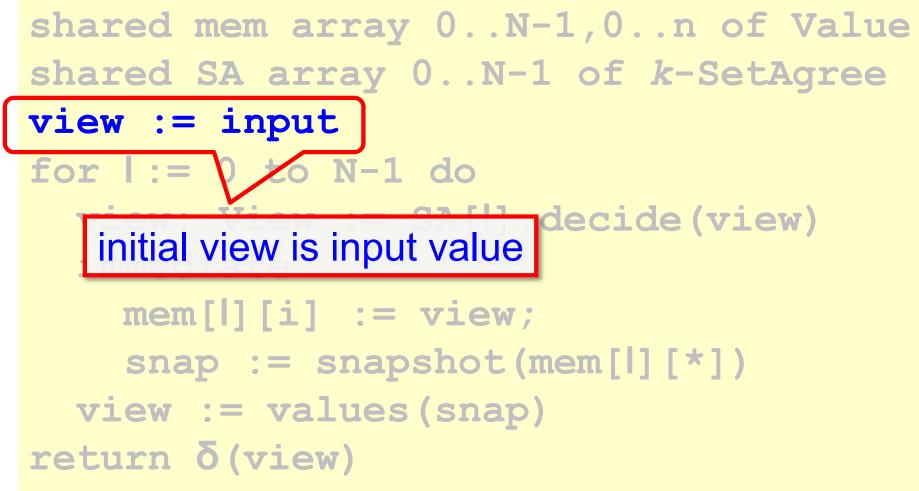
Here ...

we consider protocols constructed by *composing* layered snapshot protocols with *k*-set agreement protocols.

shared mem array 0...N-1,0...n of Value shared SA array 0...N-1 of SetAgreement view := input for l := 0 to N-1 do view := $SA[\ell]$.decide(view) immediate $mem[\ell][i] := view;$ snap := snapshot(mem[ℓ][*]) view := values(snap) return δ (view)







shared mem array 0...N-1,0...n of Value
shared SA array 0...N-1 of k-SetAgree
view := input

for I := 0 to N-1 do

view:= SA[l].decide(view)

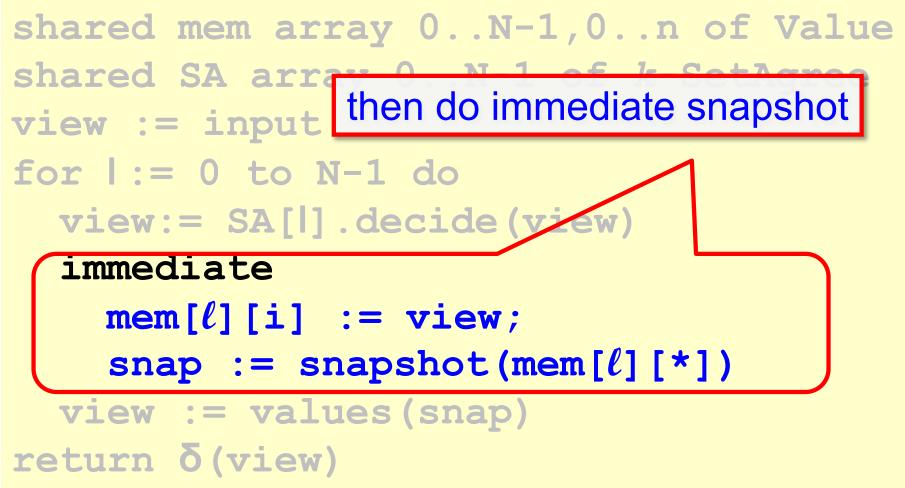
immediate

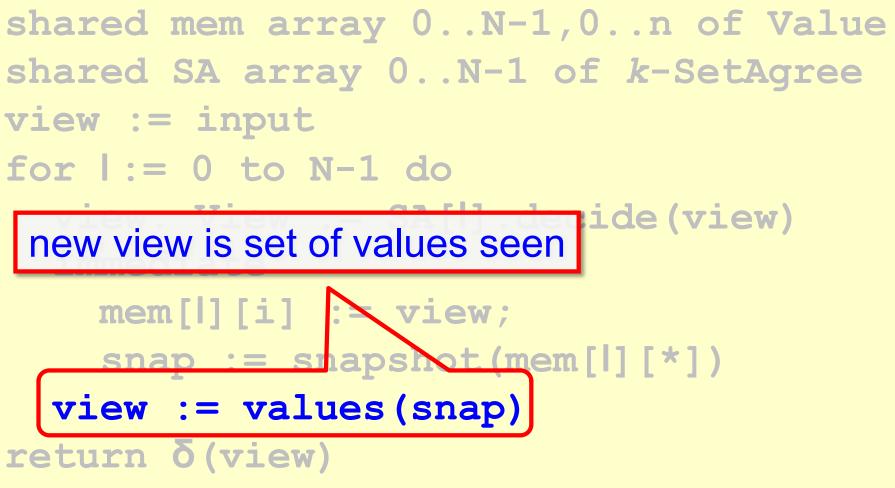
do *k*-set agreement with others at this level

view := values(snap)

return δ (view)

snapsnot (mem [





Protocol Complex Lemma

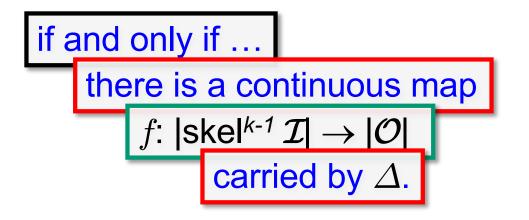
If $(\mathcal{I}, \mathcal{P}, \Xi)$ is a k-set layered snapshot protocol ...

then \mathcal{P} is equal to Bary^N skel^{k-1} \mathcal{I} , ...

for some $N \ge 0$.

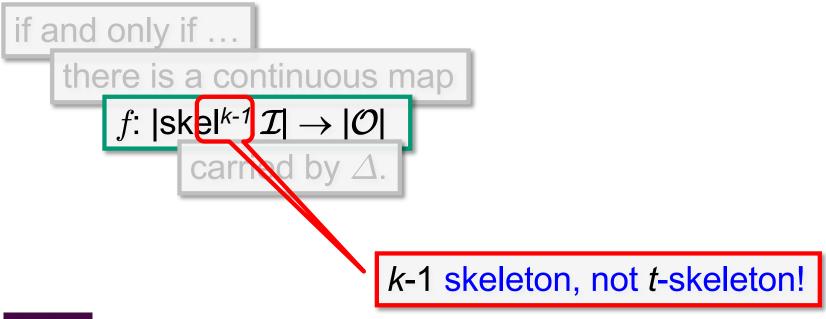
Theorem

The colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free *k*-set layered snapshot protocol ...



Theorem

The colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free *k*-set layered snapshot protocol ...



Road Map

Overview of Models

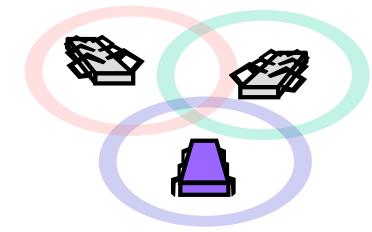
t-resilient layered snapshot models

Layered Snapshots with k-set agreement

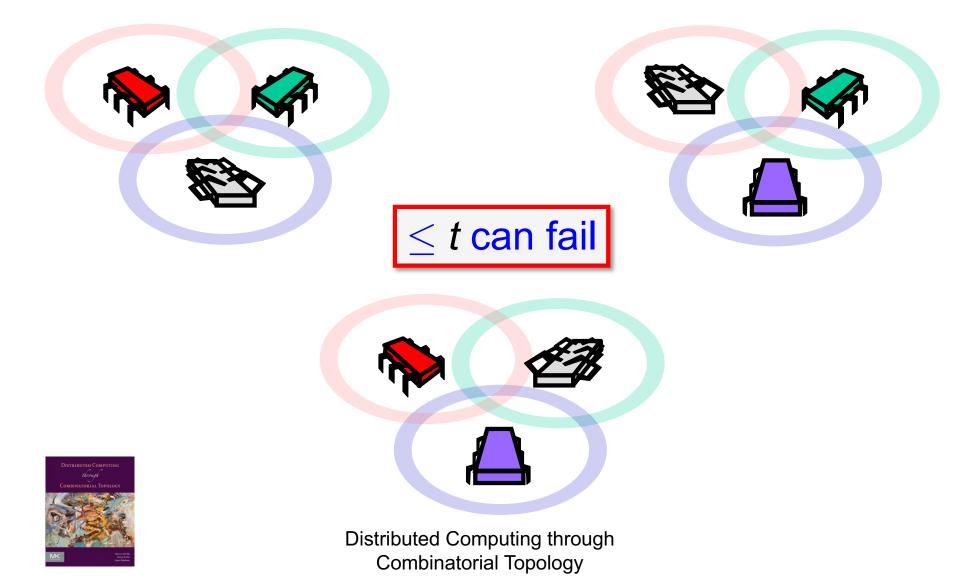
Adversaries

Message-Passing Systems

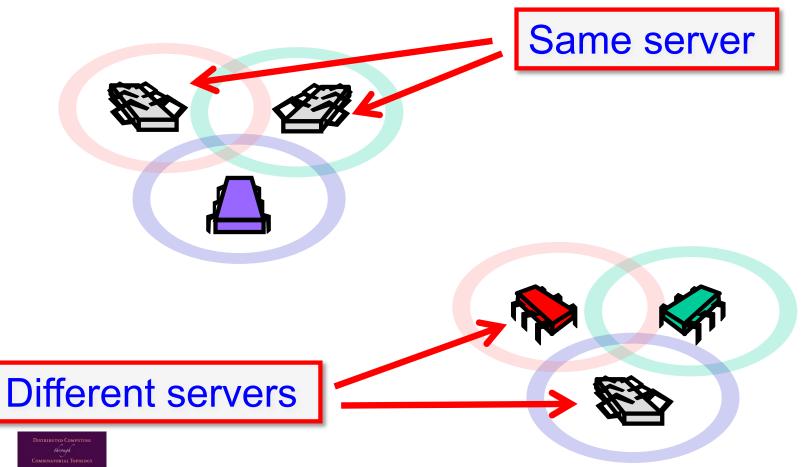
Wait-Free



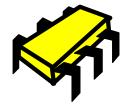
t-resilient

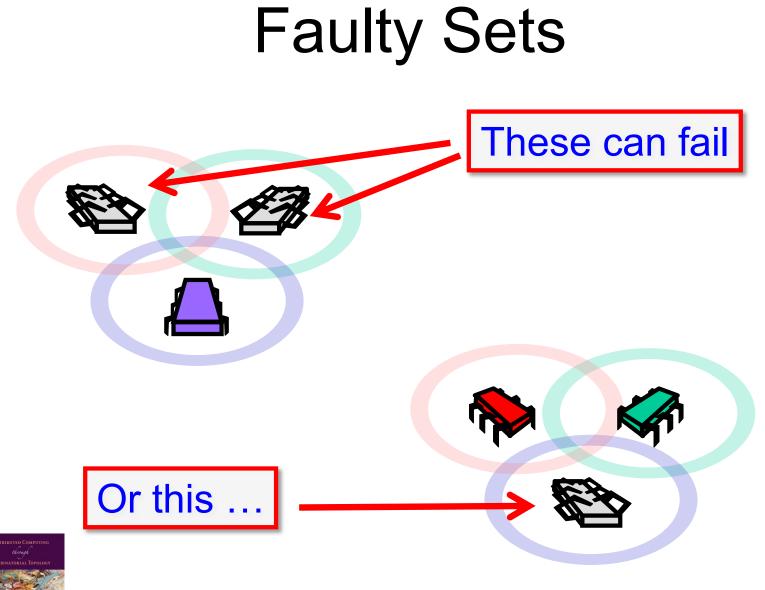


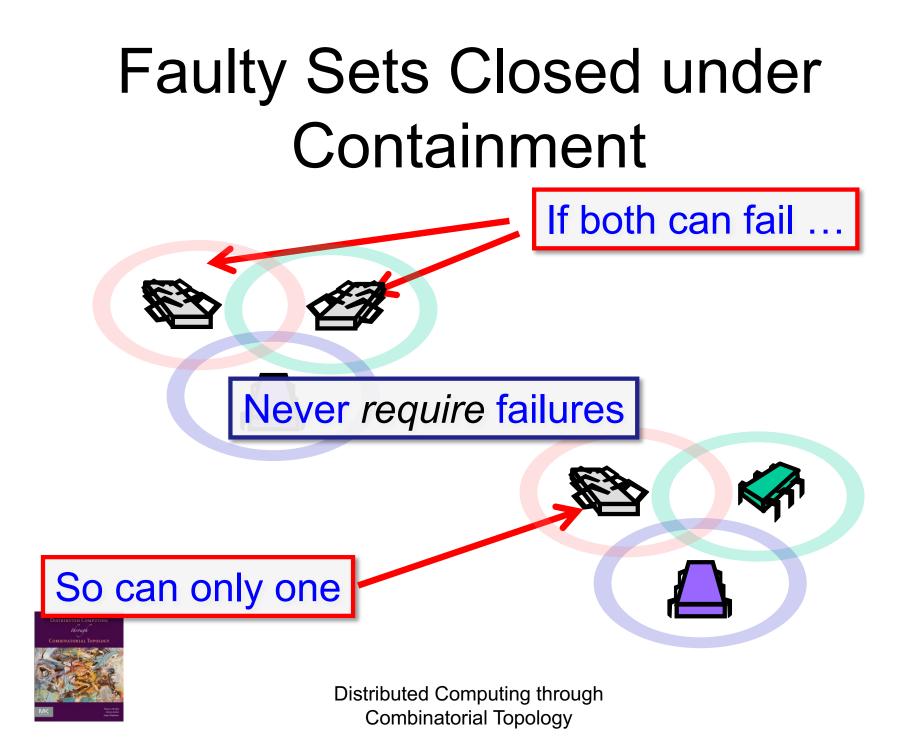
Irregular Failures



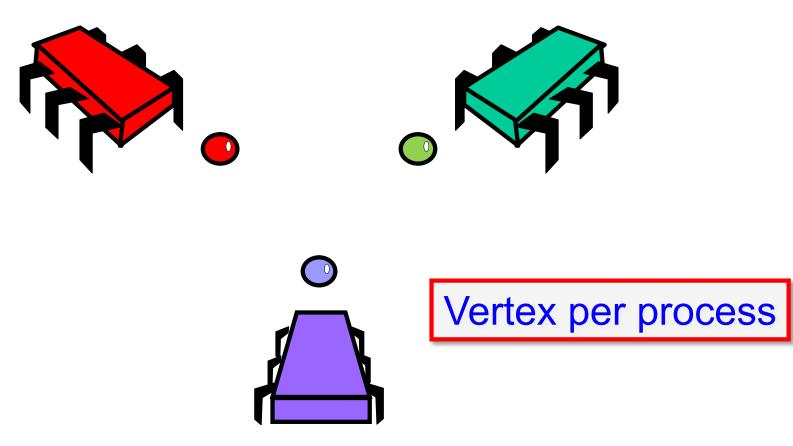
Adversaries



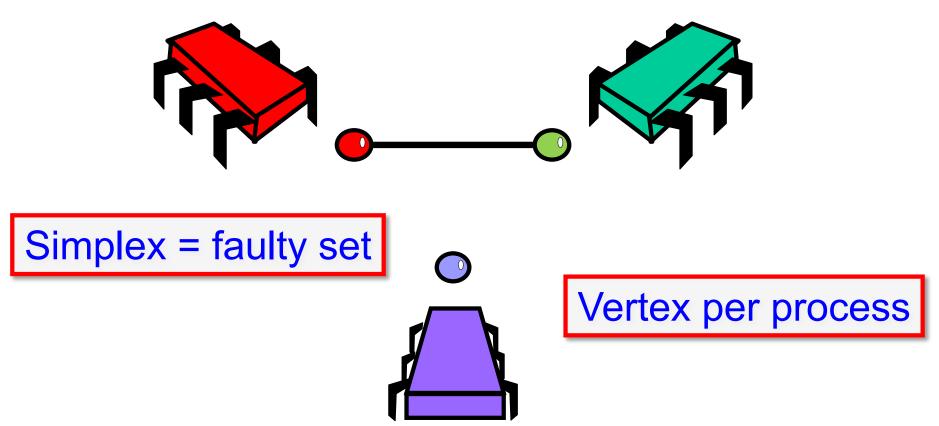




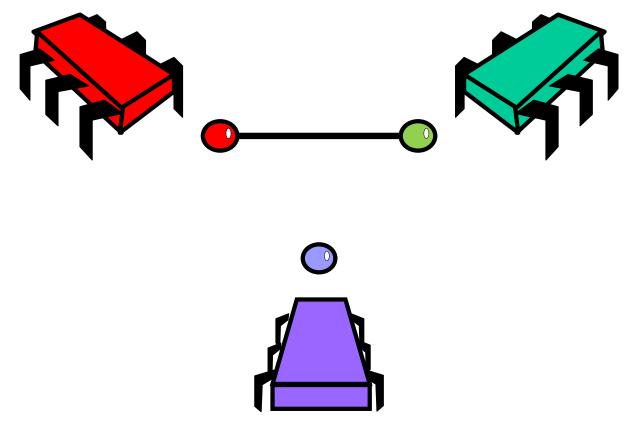
Failure Complex



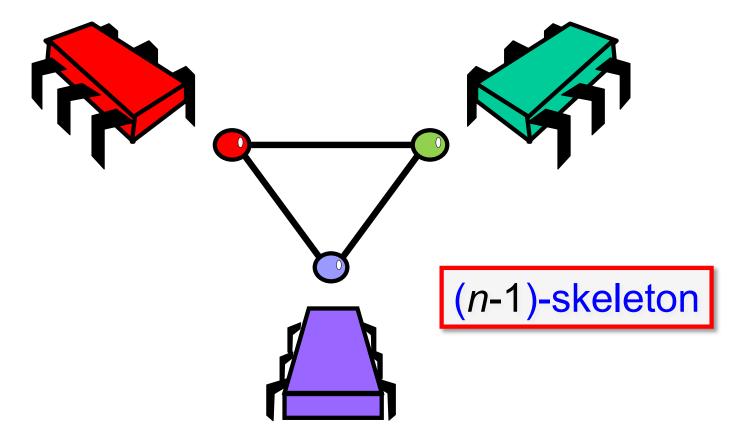
Failure Complex



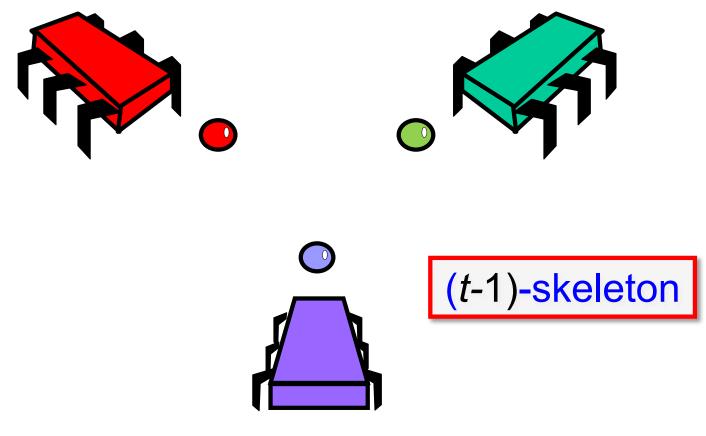
Irregular Failure Complex



Wait-Free Failure Complex



t-resilient Failure Complex

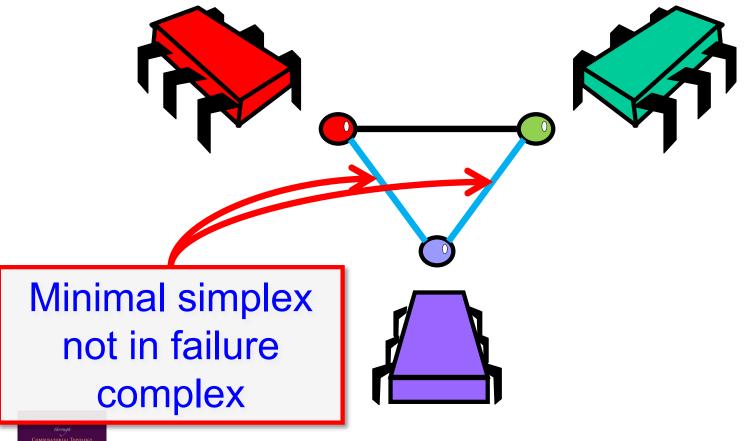


Cores

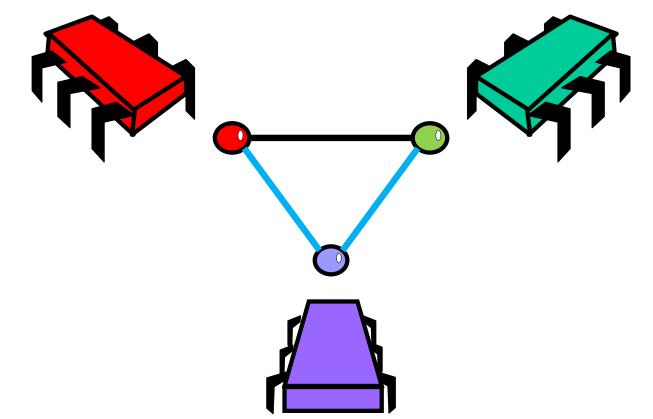
Minimal set of processes that cannot all fail

Safe to wait for at least one member of a particular core to show up

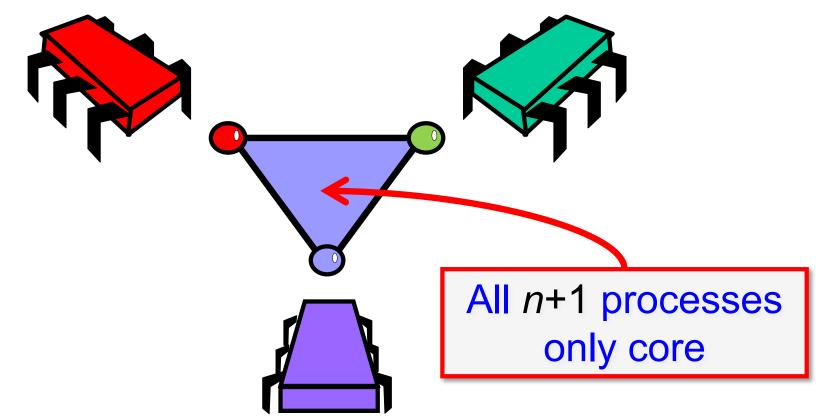
Cores & Failure Complex



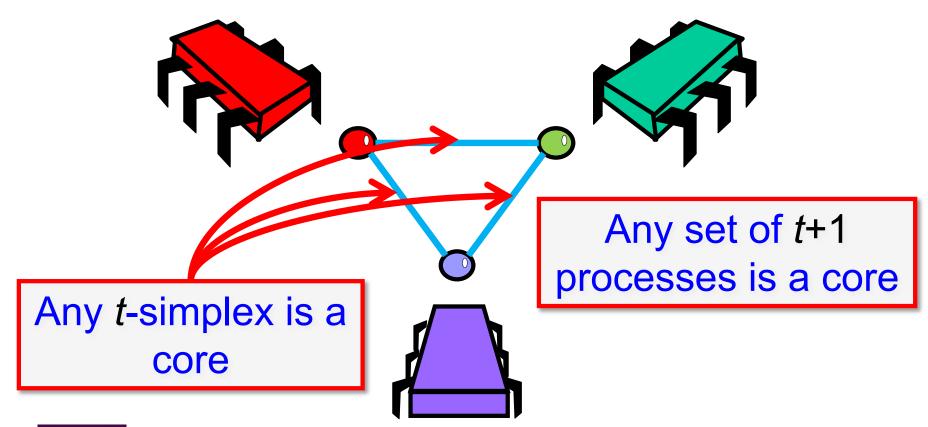
Irregular Failure Complex



Wait-Free Failure Complex



t-resilient Failure Complex



Cores

For many models,

minimum core size...

Completely determines adversary's power to solve *any* colorless task!

So adversaries with same min core size solve the same colorless tasks

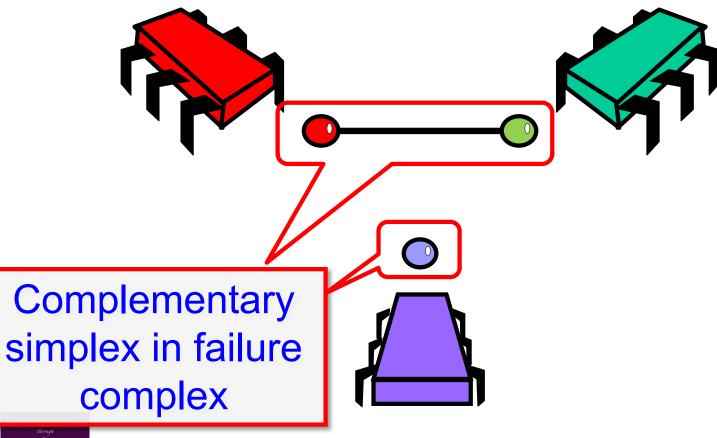
Survivor Sets

Minimal set of processes that might all survive

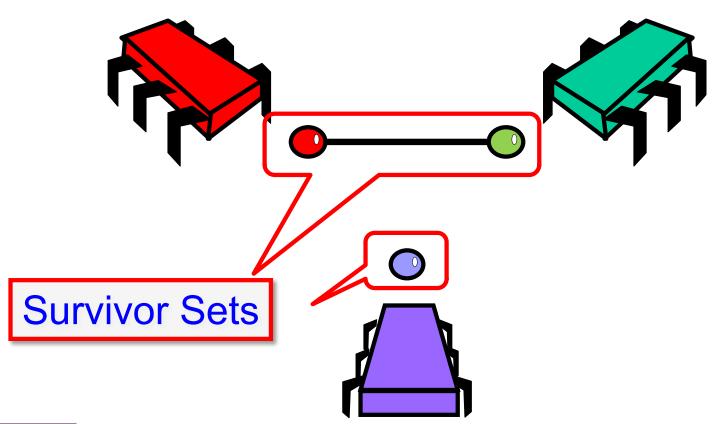
Safe to wait for all members of some survivor set to show up

Dual to cores: each one determines the other

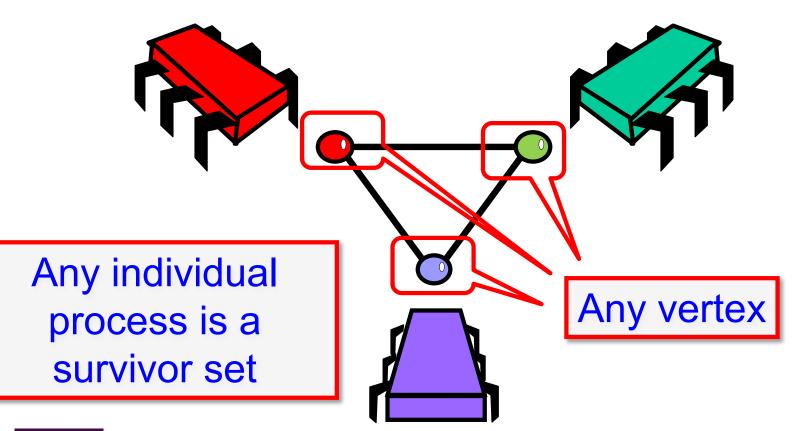
Survivor Sets in Failure Complex



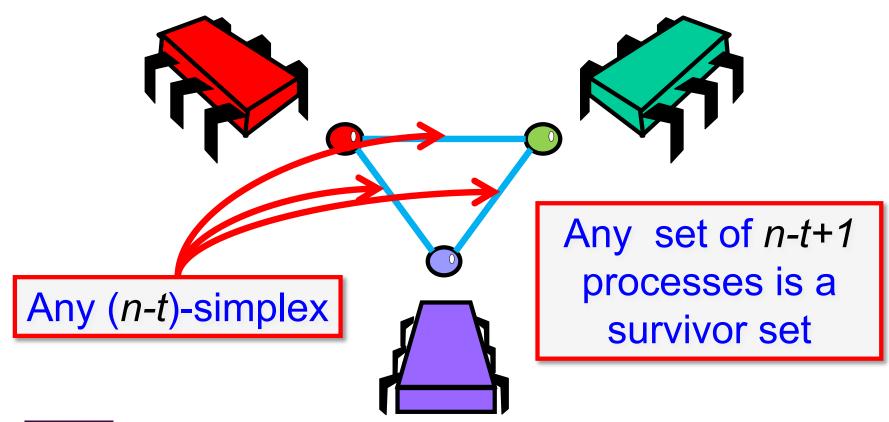
Irregular Failure Complex



Wait-Free Failure Complex



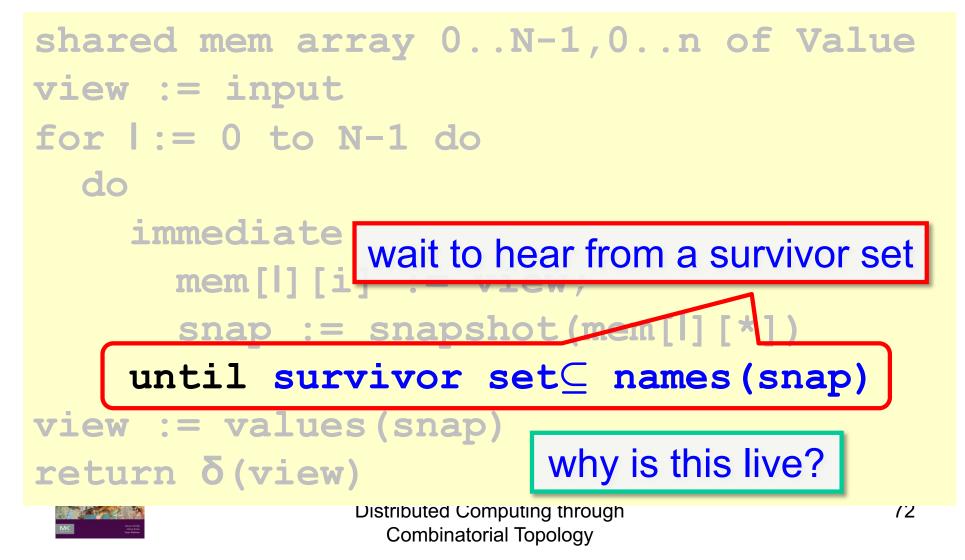
t-resilient Failure Complex



A-Resilient Layered Immediate Snapshot Protocol

```
shared mem array 0...N-1,0...n of Value
view := input
for l := 0 to N-1 do
  do
    immediate
      mem[\ell][i] := view;
       snap := snapshot(mem[\ell][*])
    until survivor set \subseteq names(snap)
  view := values(snap)
return \delta(view)
```


A-Resilient Layered Immediate Snapshot Protocol



Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Message Passing

There are *n*+1 asynchronous processes ...

that send and receive messages ...

via a fully-connected communication network.

Message delivery is reliable and FIFO

Message-Passing Protocols

forever!

decide after finite # steps

but protocol forwards messages ...

Communication Syntax

send(P,
$$V_0$$
, ..., V_ℓ) to Q

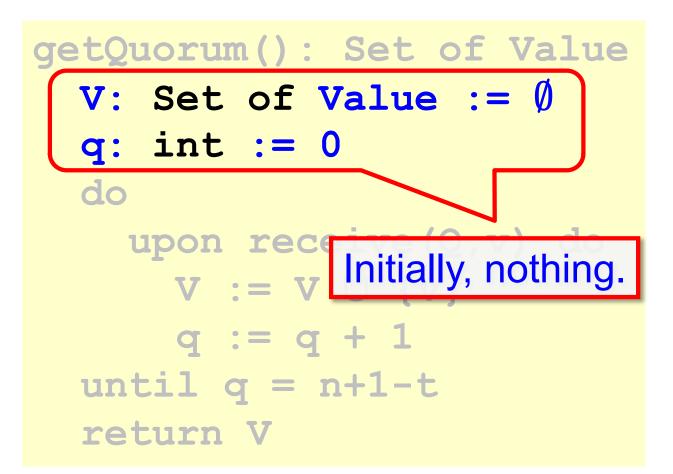
send(P,
$$V_0$$
, ..., V_ℓ) to all

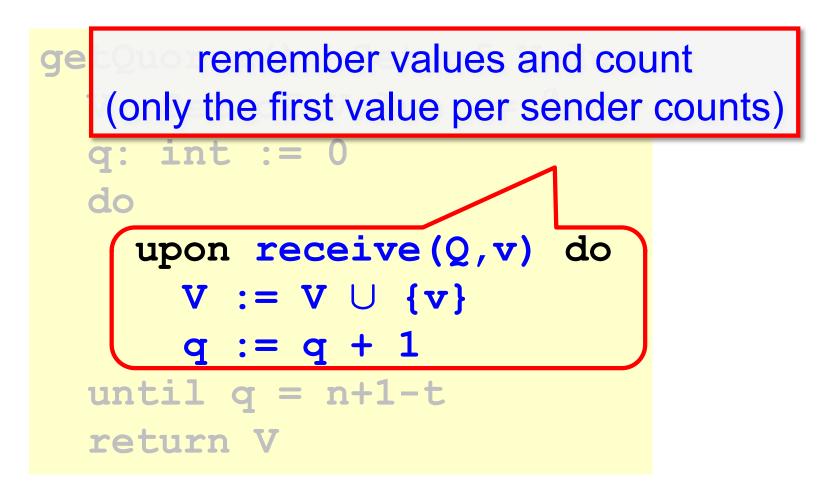
upon receive (P, V_0 , ..., V_l) do ... // handle message

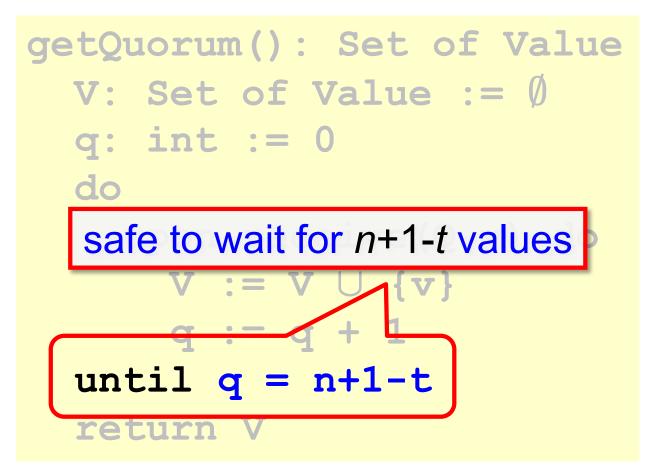
Forwarding

background // forward messages forever upon receive(P_j,v) do send(P_i,v) to all


```
getQuorum(): Set of Value
  V: Set of Value := 0
  q: int := 0
  do
     upon receive (Q, v) do
       \mathbf{V} := \mathbf{V} \cup \{\mathbf{v}\}
       q := q + 1
  until q = n+1-t
  return V
```





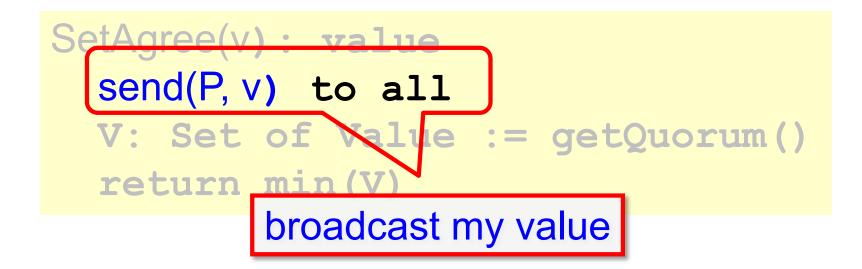
getQuorum(): Set of Value
 V: Set of Value := Ø
 q: int := 0
 do

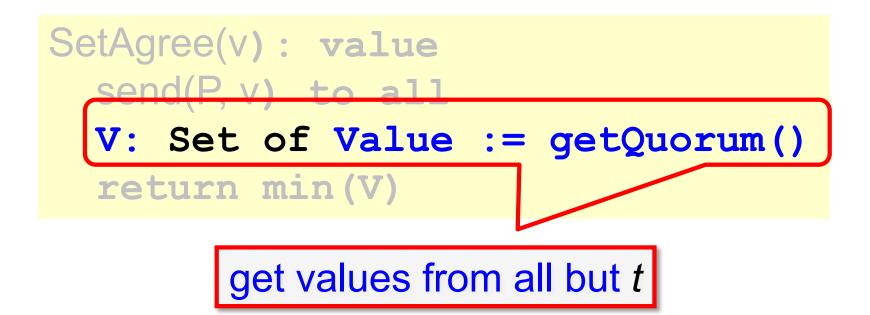
return values when enough received

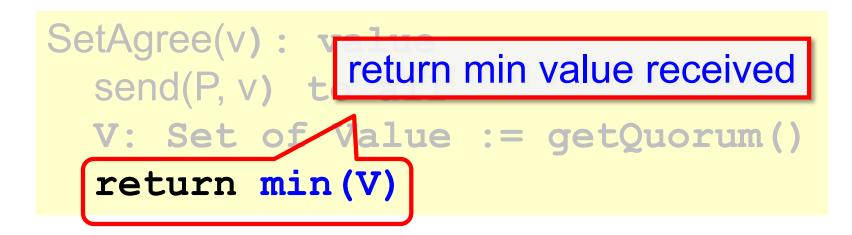
$$v := v \cup \{v\}$$

$$q := q + 4$$
until q = n+1-t
return V

SetAgree(v_i): value
 send(P, v_i) to all
 V: Set of Value := getQuorum()
 return min(V)



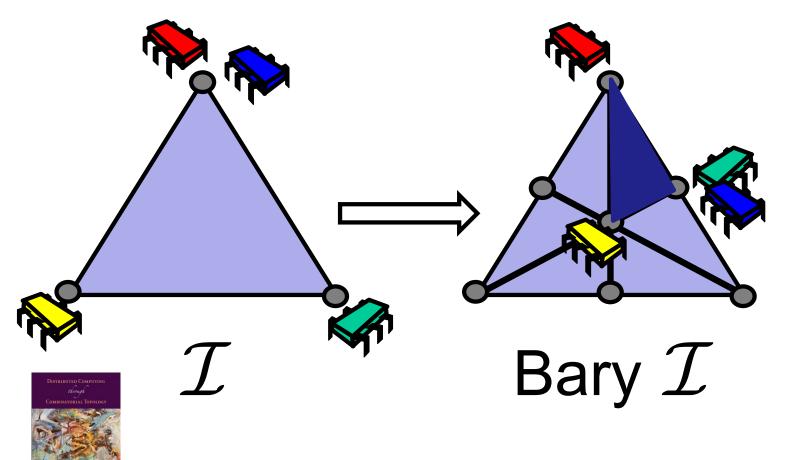




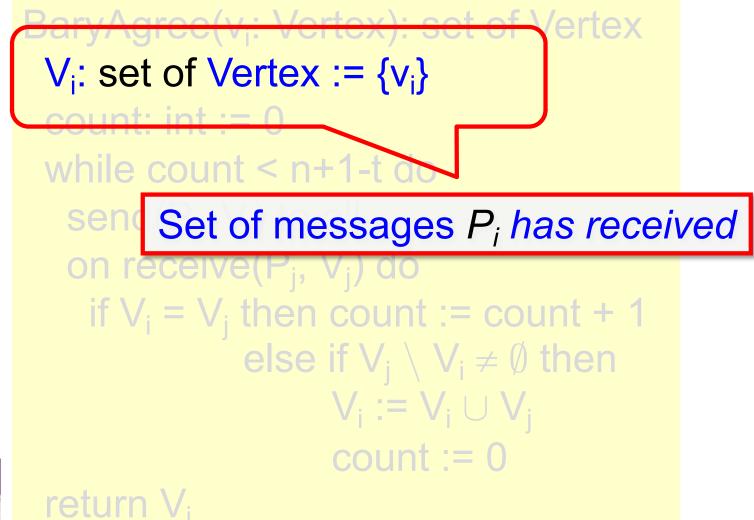
possible to "miss" only *t* lesser values

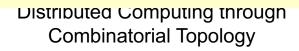
Barycentric Agreement

Assuming n+1>2t



BaryAgree(v_i: Vertex): set of Vertex V_i : set of Vertex := { v_i } count: int := 0while count < n+1-t do $send(P_i, V_i)$ to all on receive(P_i , V_i) do if $V_i = V_i$ then count := count + 1 else if $V_i \setminus V_i \neq \emptyset$ then $V_i := V_i \cup V_i$ count := 0





BaryAgree(v_i: Vertex): set of Vertex V_i: set of Vertex := {v_i}

count: int := 0

while count < *n*+1-*t* do

 $send(P_i, V_i)$ to all

keep track of confirmations received so far

else if $V_j \setminus V_i \neq \emptyset$ then $V_i := V_i \cup V_j$ count := 0

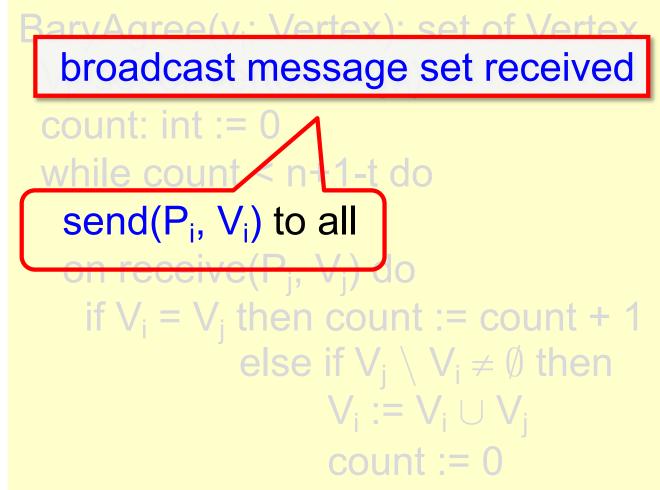
BaryAgree(v_i: Vertex): set of Vertex V_i: set of Vertex := {v_i}

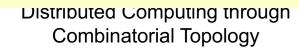
<u>count: int := (</u>

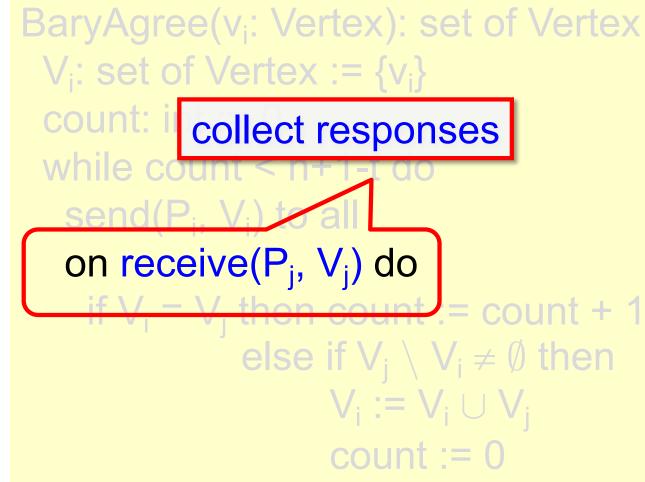
while count < n+1-t do

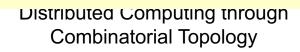
get confirmation from each non-faulty process

else if $V_j \setminus V_i \neq \emptyset$ then $V_i := V_i \cup V_j$ count := 0









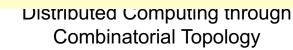
BaryAgree(v_i: Vertex): set of Vertex
V_i: set of Vertex := {v_i}
count: int := 0

remember if message confirms my view

if
$$V_i = V_j$$
 then count := count + 1

 $V_i := V_i \cup V_j$

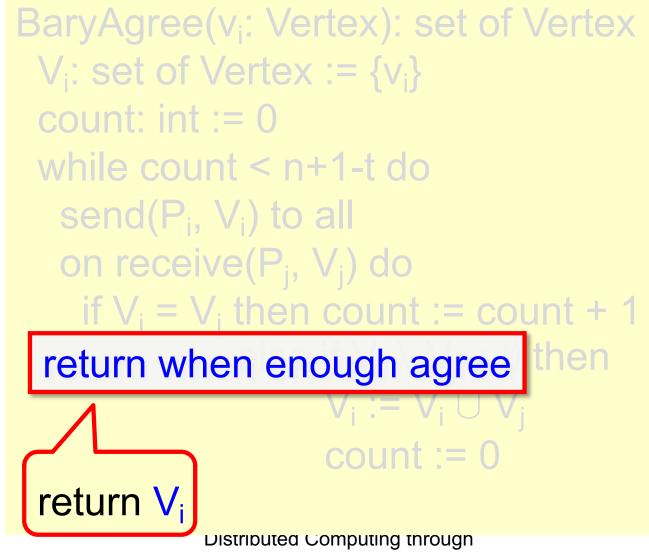
count := 0



BaryAgree(v_i: Vertex): set of Vertex
V_i: set of Vertex := {v_i}
count: int := 0

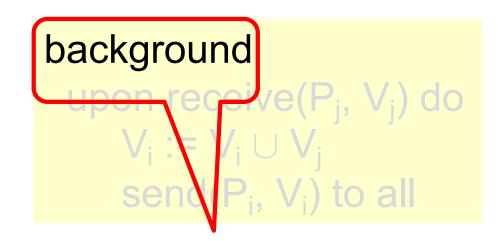
otherwise learned something new, start over

send(P_i, V_i) to all
on receive(P_j, V_j) dp
if V_i = V_j then count := count + 1
else if V_j \ V_i
$$\neq \emptyset$$
 then
V_i := V_i \cup V_j
count := 0



Combinatorial Topology

Wait, There's More!



the operating system runs forever ...

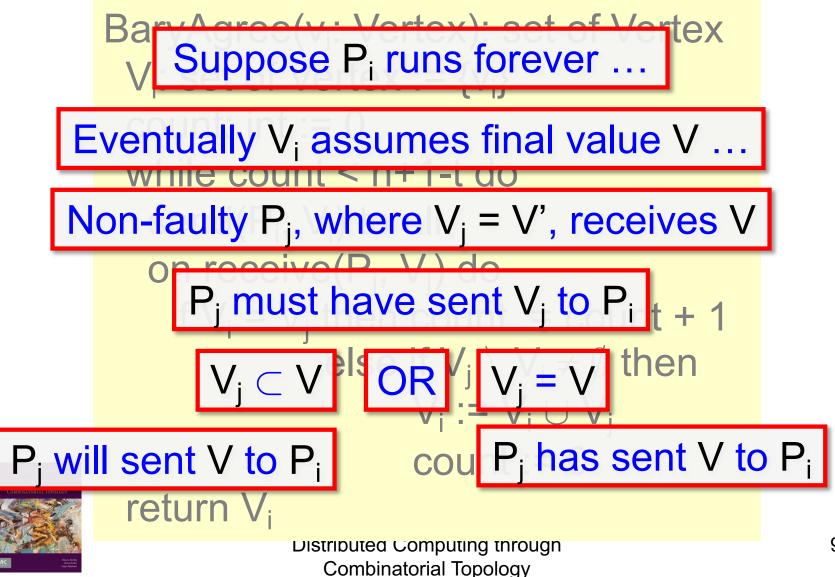
Wait, There's More!

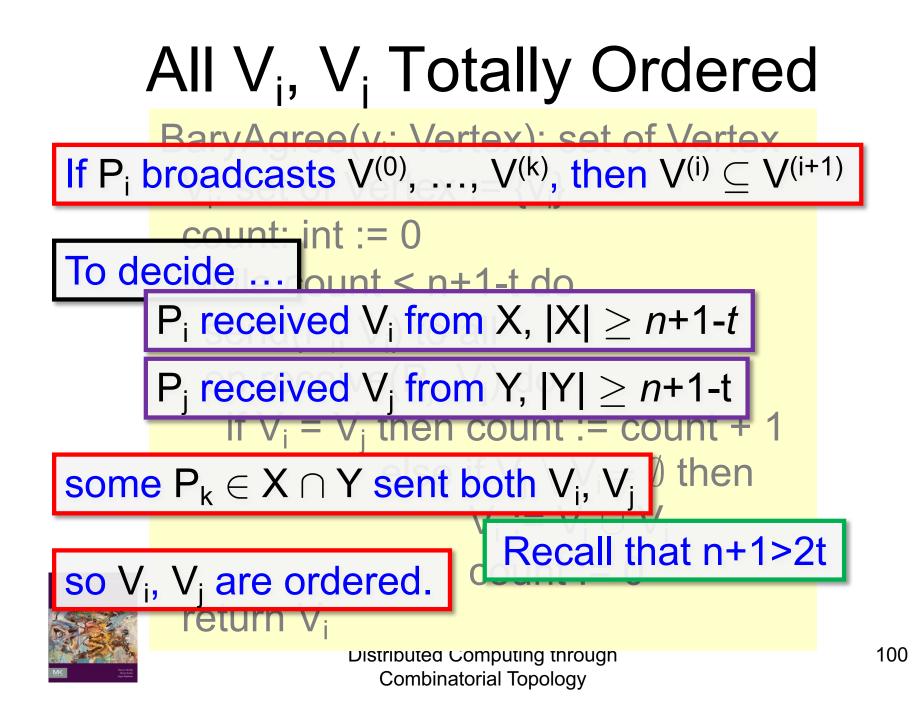
keep forwarding new values

background
upon receive(P_j, V_j) do
$$V_i := V_i \cup V_j$$

send(P_i, V_i) to all

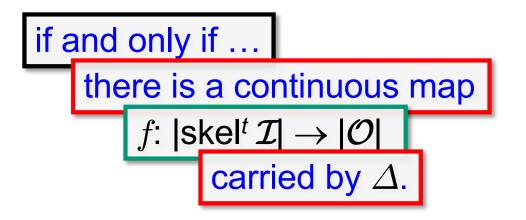
Lemma: Protocol Terminates





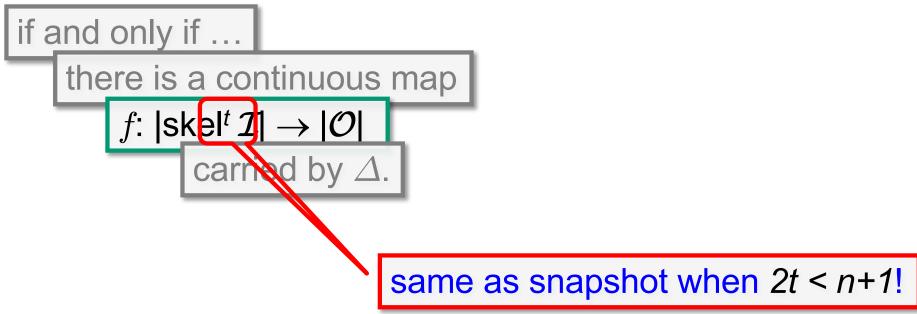
Theorem

For 2t < n+1, colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a *t*-resilient message-passing protocol ...



Theorem

For 2t < n+1, colorless task ($\mathcal{I}, \mathcal{O}, \Delta$) has a *t*-resilient message-passing protocol ...



Protocol implies map

- Any t-resilient message passing protocol implies a t-resilient layered snapshot protocol
 - Snapshots are "stronger" than messagepassing (even when $2t \ge (n + 1)$)
- A t-resilient layered snapshot protocol implies a map

 $f: |\mathsf{skel}^t \, \mathcal{I}| \to |\mathcal{O}|$

Map implies protocol

- There exists a simplicial approximation ϕ : Bary^N $\mathcal{I} \to \mathcal{O}$ carried by Δ
- Run t-set agreement for simplex agreement on skel^t \mathcal{I} (works even when $2t \ge (n + 1)$)
- Run N iteration on Barycentric agreement (for 2t < (n + 1)) and use ϕ

Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Automatic Proofs?

What if we could program a Turing machine to tell whether a task has a protocol?

In wait-free read-write memory?

Or other models?

We could ...

automatically generate conference papers

No need for grad students

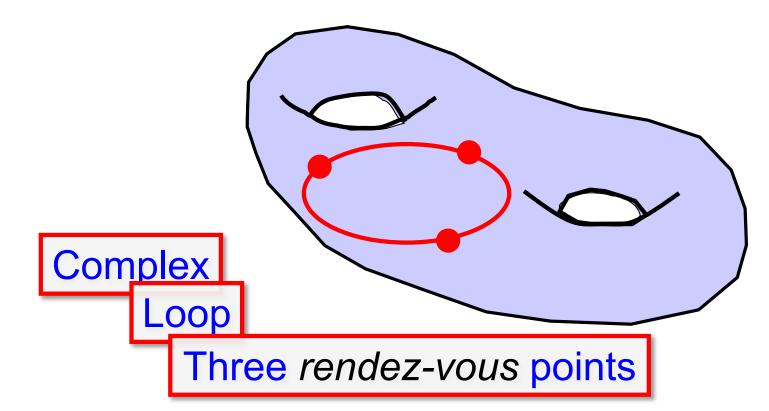
Alas no

Whether a protocol exists for a task in ...

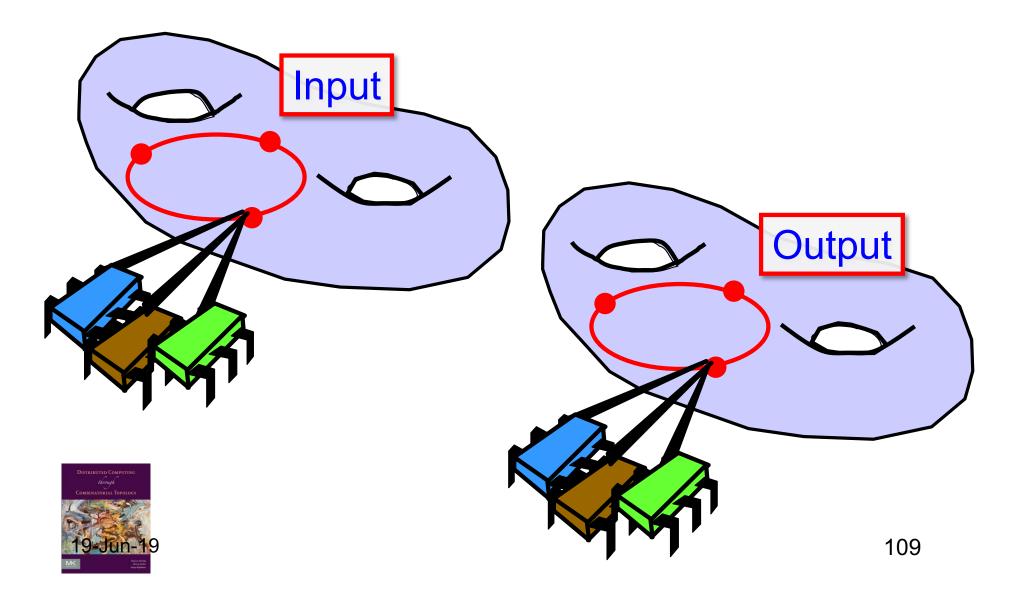
Read-write memory for 3+ processes ...

Read-write memory & k-set agreement ...for k > 2

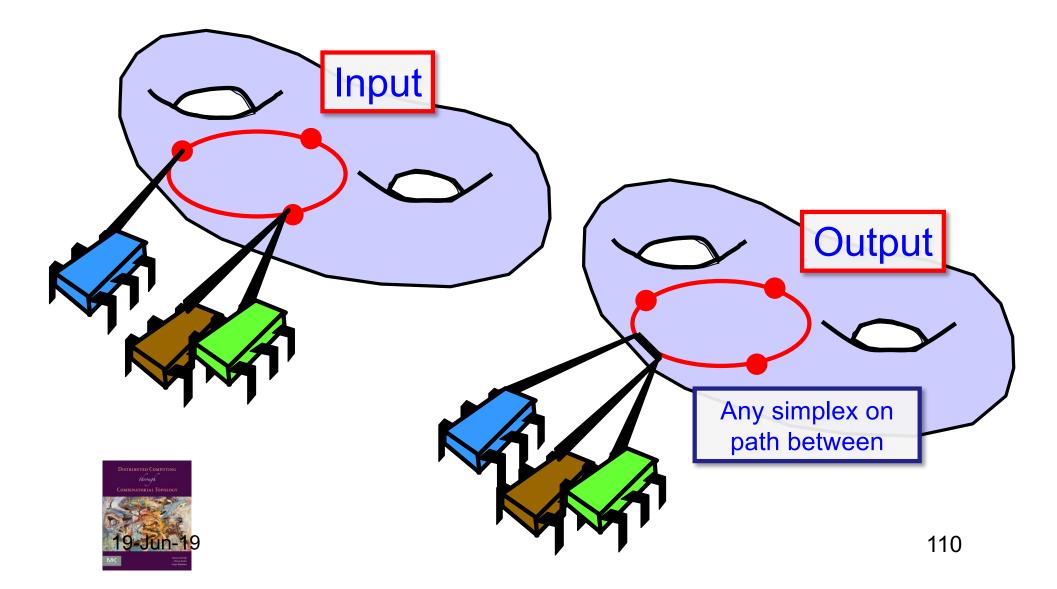
Loop Agreement



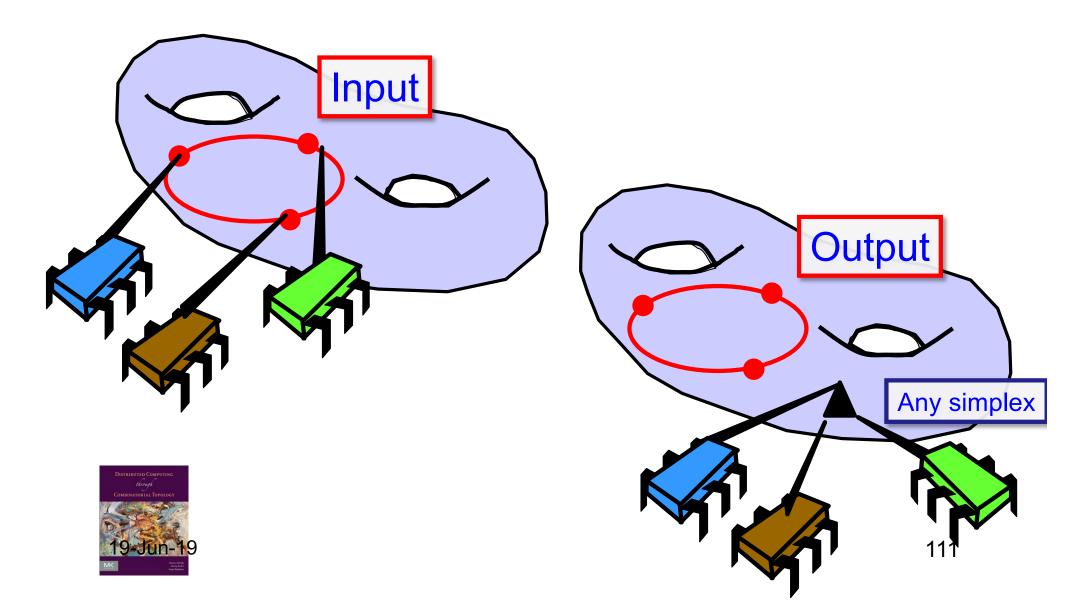
One Rendez-Vous Point



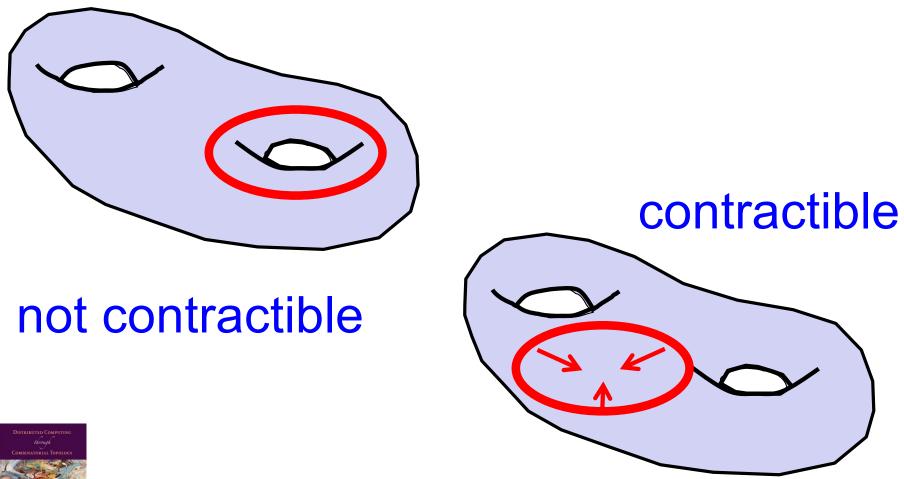
Two Rendez-Vous Points



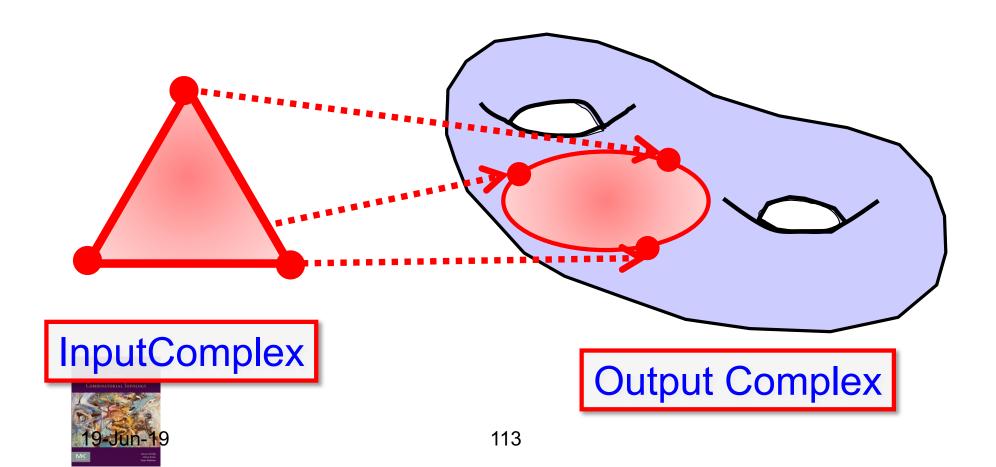
Three Rendez-Vous Points



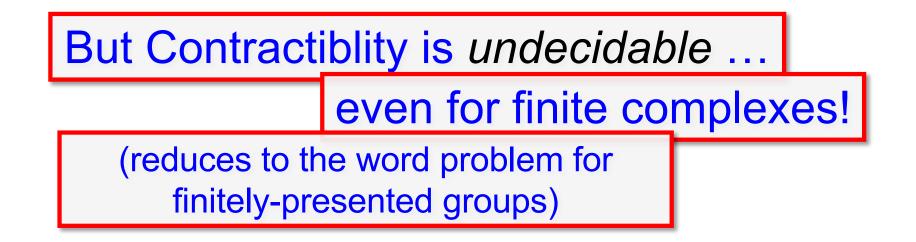
Contractibility



Solvable Iff Loop Contractible



Undecidability



Undecidable whether a task has a protocol in wait-free read-write memory

Other Models

Wait-free read-write memory plus k-set agreement , for k > 2

Solvable iff f: skel^{k-1} $\mathcal{I} \to \mathcal{O}$ exists ...

Implies contractible, for k > 2

Undecidable whether a task has a protocol in wait-free read-write memory plus *k*-set agreement , for *k* > 2

This work is licensed under a Creative Commons Attribution-

ShareAlike 2.5 License.

- You are free:
 - to Share to copy, distribute and transmit the work
 - to Remix to adapt the work
- Under the following conditions:
 - Attribution. You must attribute the work to "Distributed Computing through Combinatorial Topology" (but not in any way that suggests that the authors endorse you or your use of the work).
 - Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.
- For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to
 - http://creativecommons.org/licenses/by-sa/3.0/.
- Any of the above conditions can be waived if you get permission from the copyright holder.
- Nothing in this license impairs or restricts the author's moral rights.

