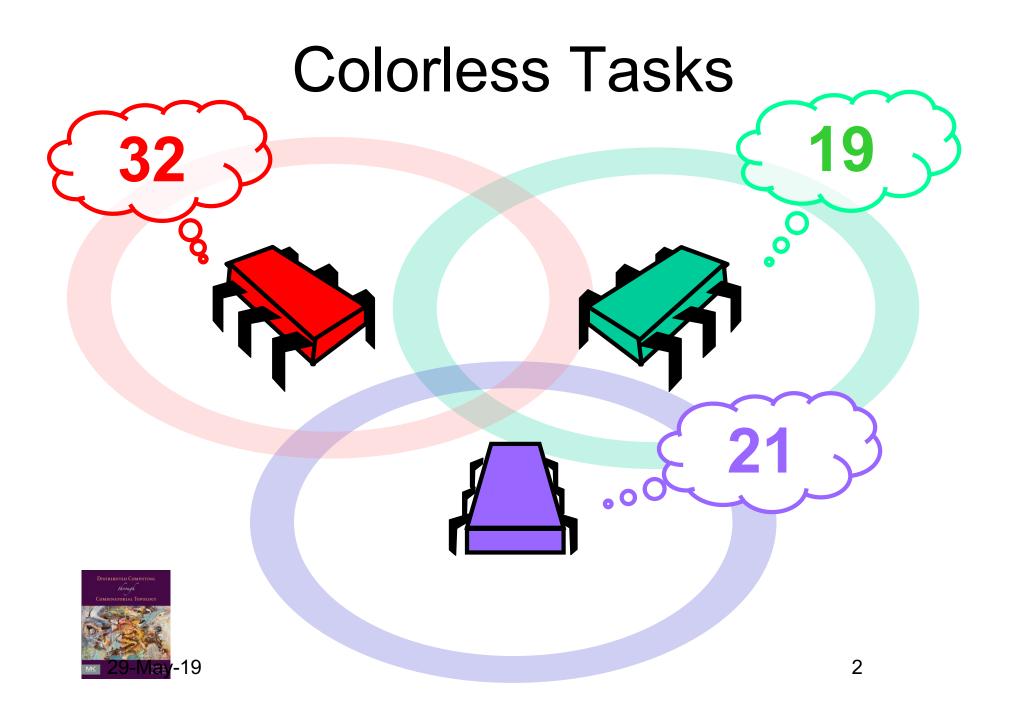
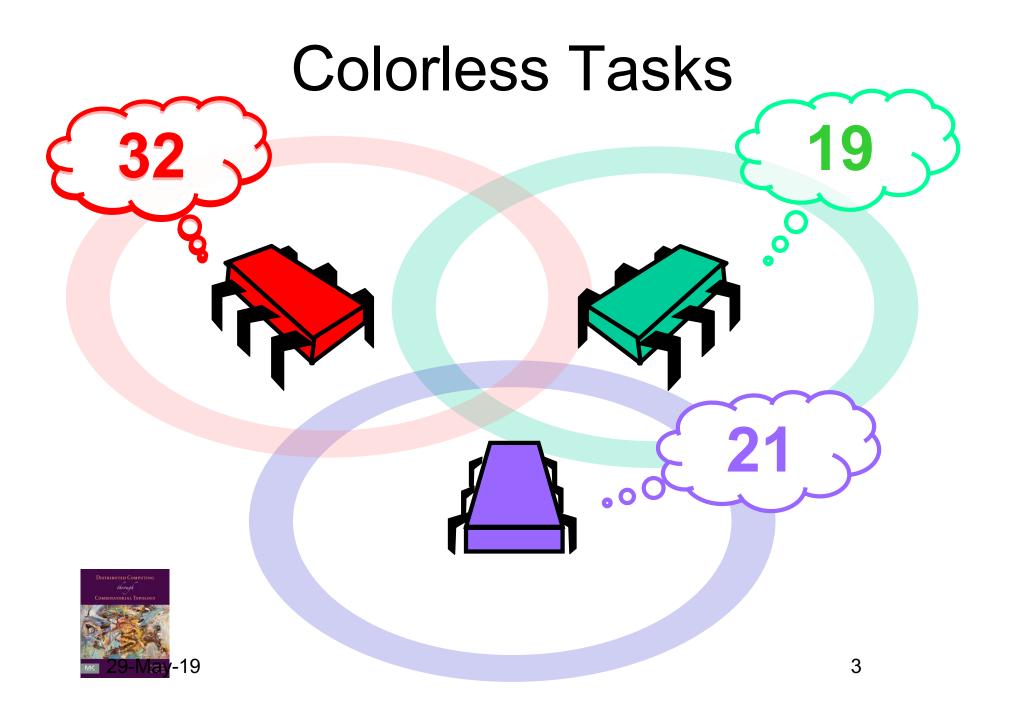
Colorless Tasks

MITRO207, P4, 2019





Colorless Tasks

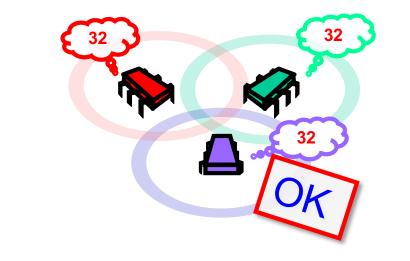
The set of input values ...

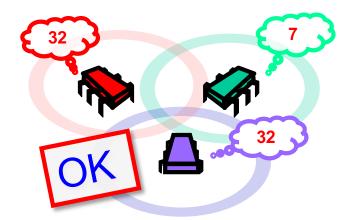
determines the set of output values.

Number and identities irrelevant...

for both input and output values

Examples

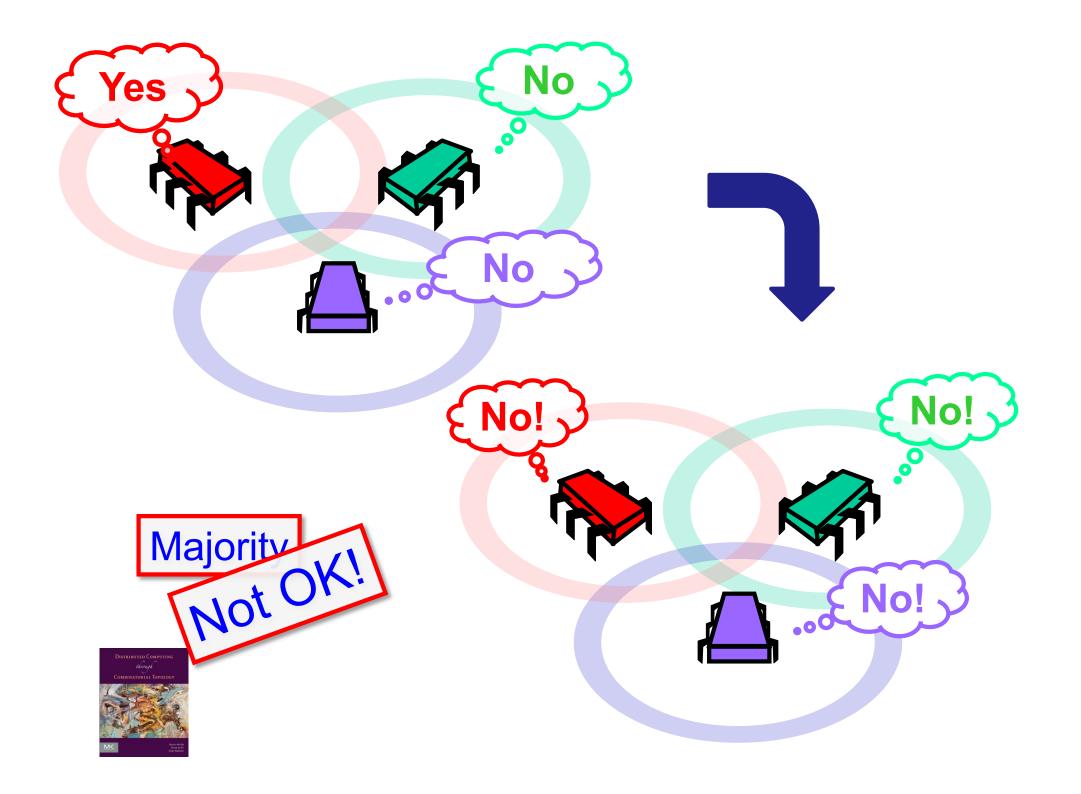




Non-Examples

Weak Symmetry-Breaking When all participate ...

At least one on group 0, at least one on group 1



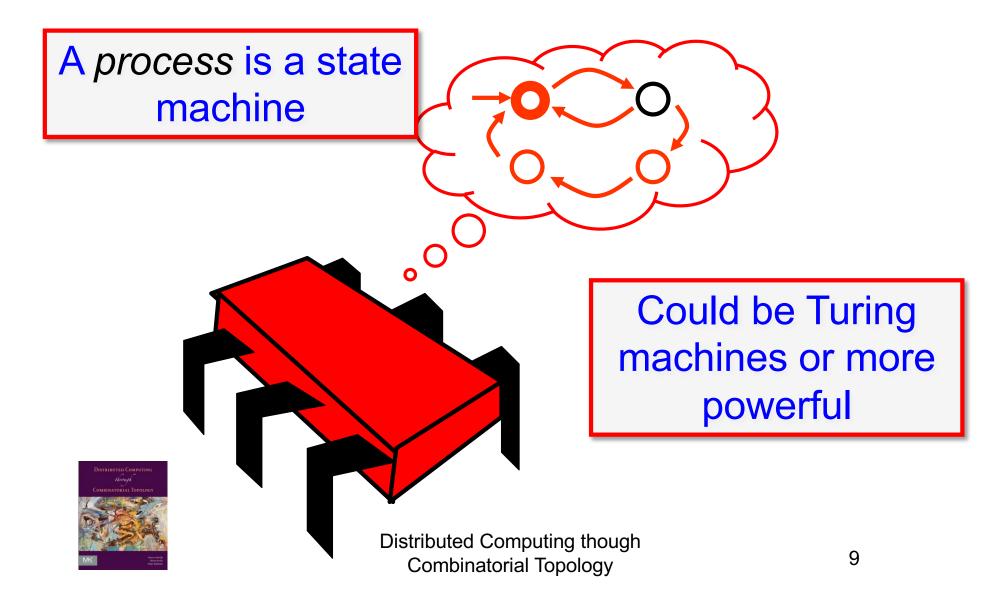
Road Map

Operational Model

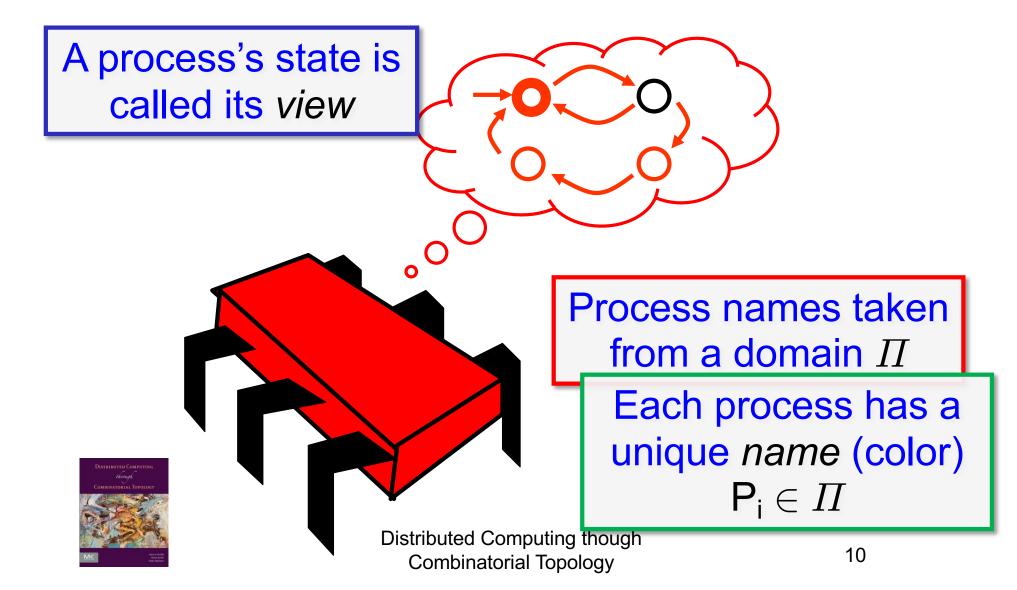
Combinatorial Model

Main Theorem

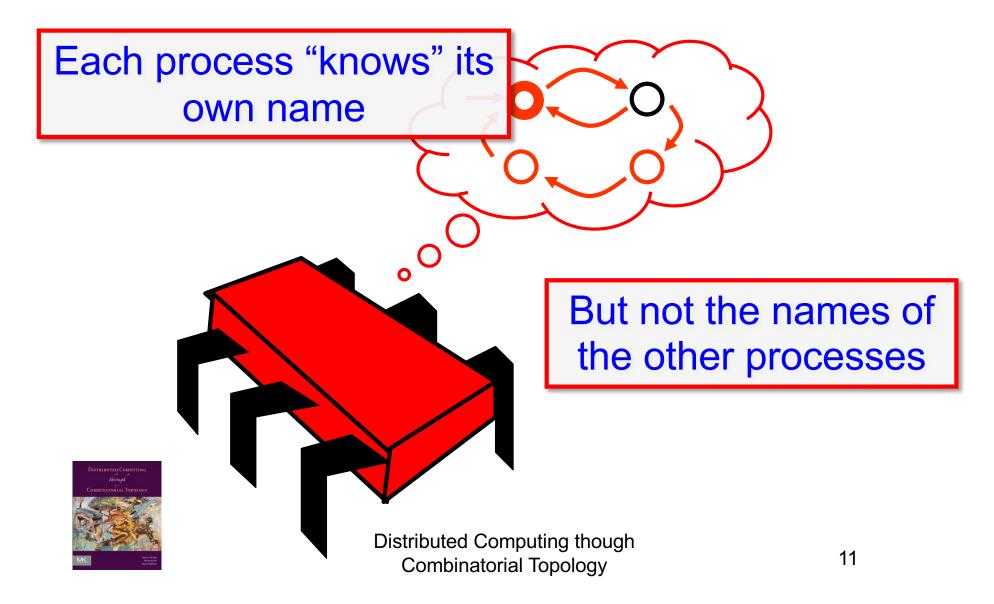
Processes

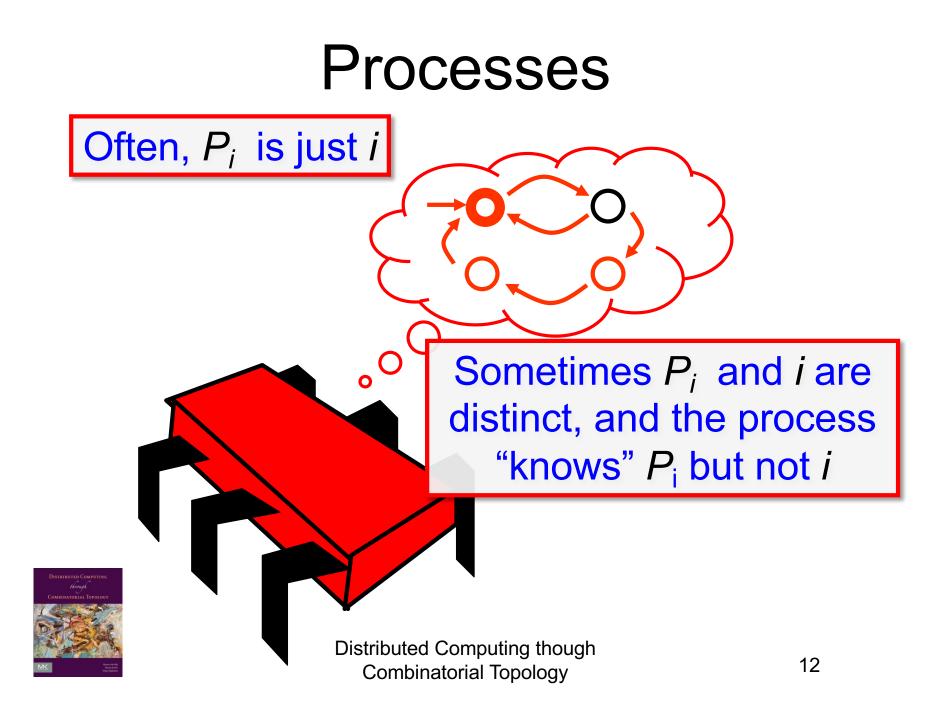


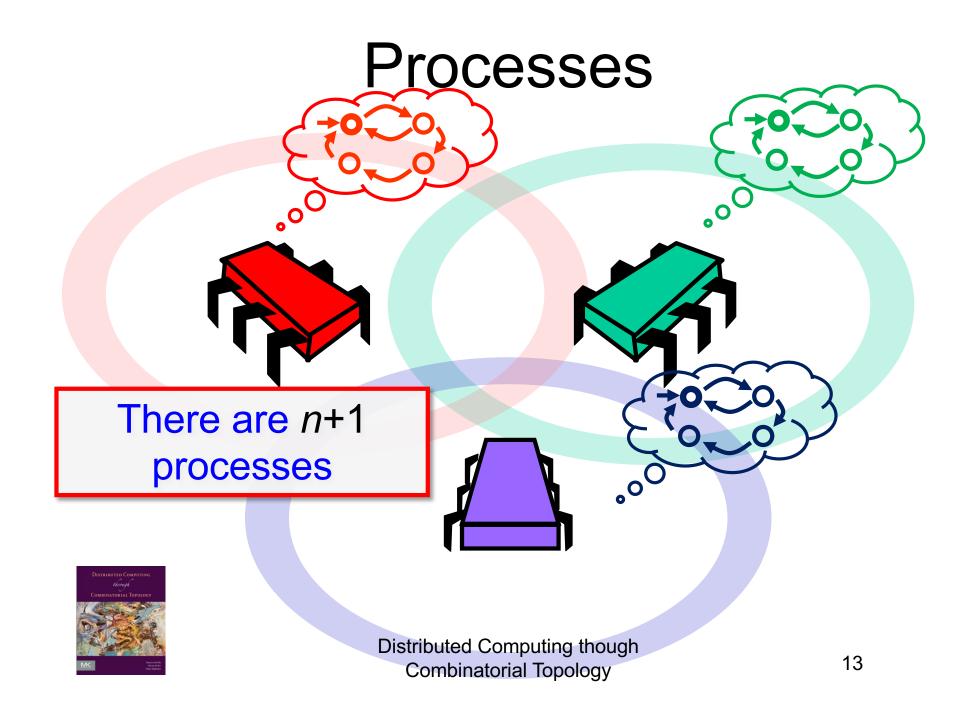
Processes

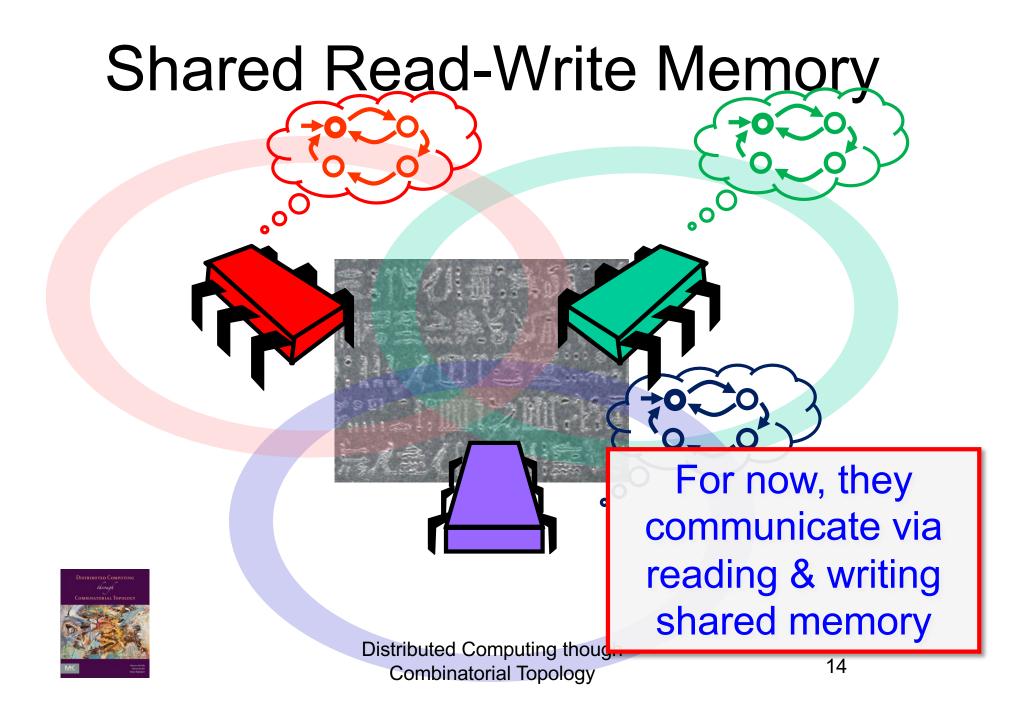


Processes





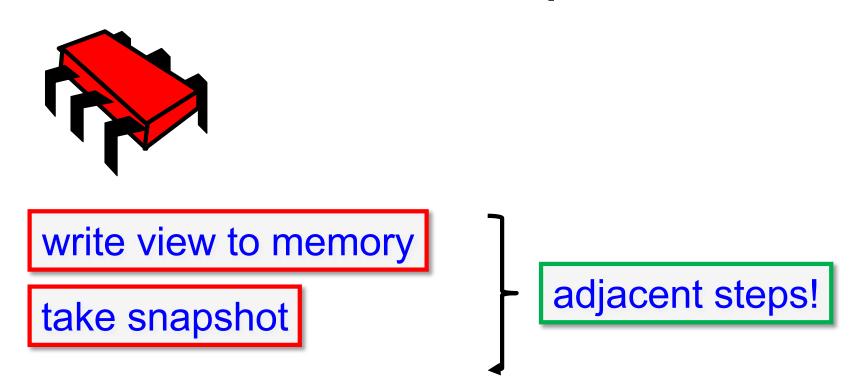




Individual reads & writes are too low-level ...

A snapshot = atomic read of all memory

We will use immediate snapshot ...






```
immediate
  mem[i] := view;
  snap := snapshot(mem[*])
```


Ρ	Q	R					Ρ
write						writ	е
snap						snap)
	write						
	snap						
		write					
		snap					
{p}	{p,q}	{p,q,r	}			{p}	
			Р	Q	F	ર	
			write	write	writ		

Р	Q	R
write	write	write
snap	snap	snap
{p,q,r}	{p,q,r}	{p,q,r}

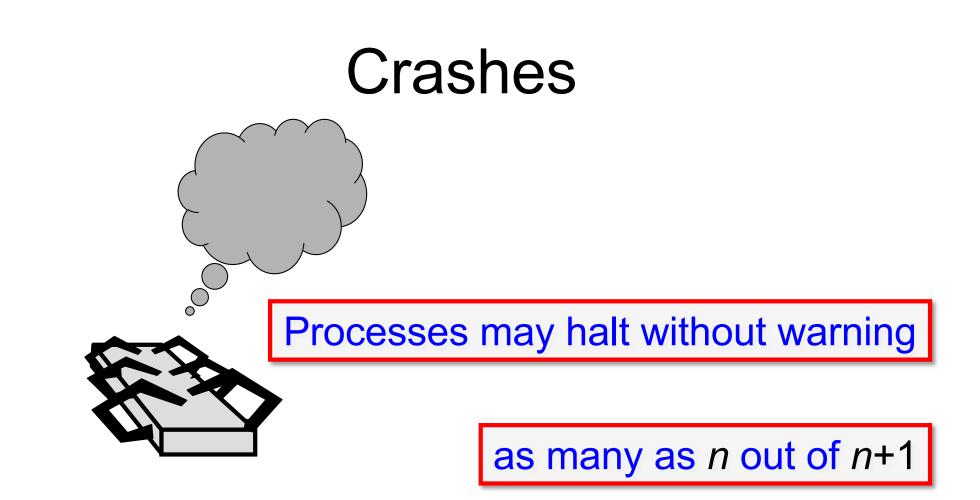
Realistic?

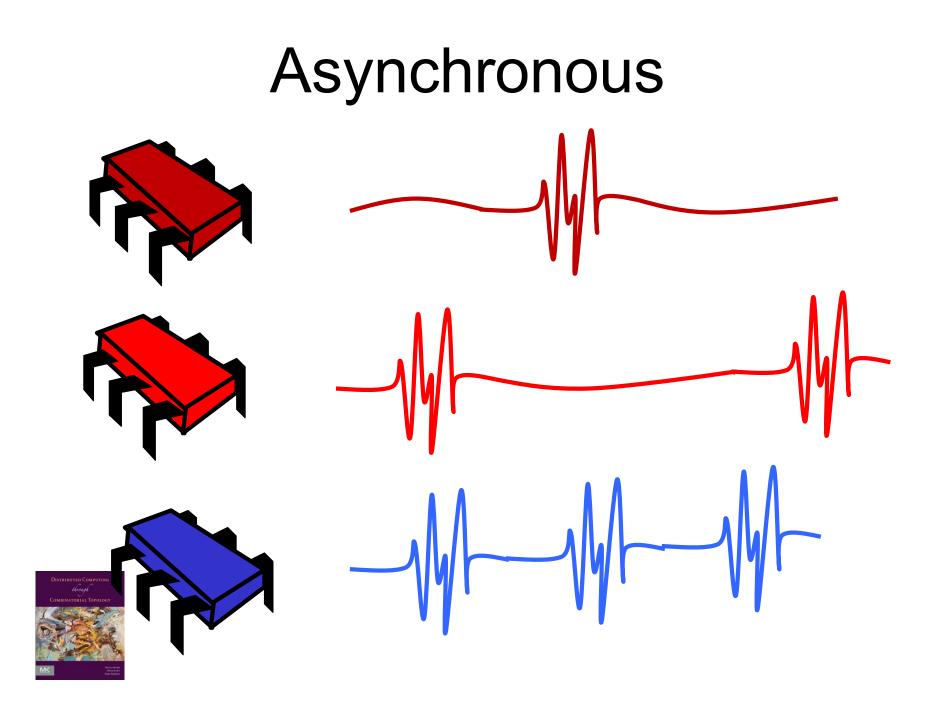
My laptop reads only a few contiguous memory words at a time

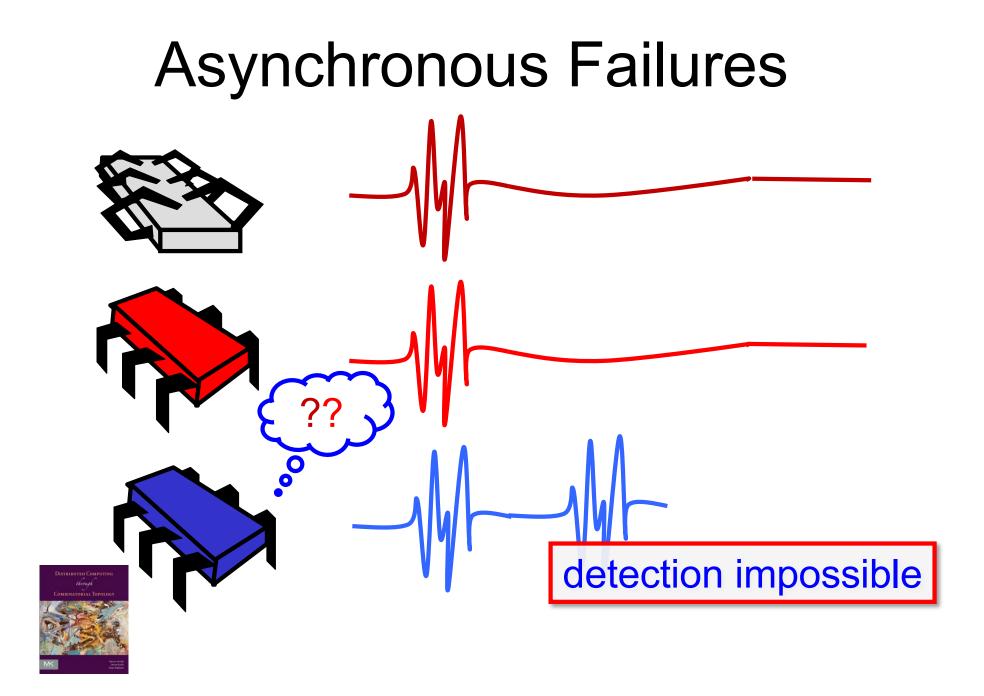
No!

Simpler lower bounds: if it's impossible with IS, it's impossible on your laptop.

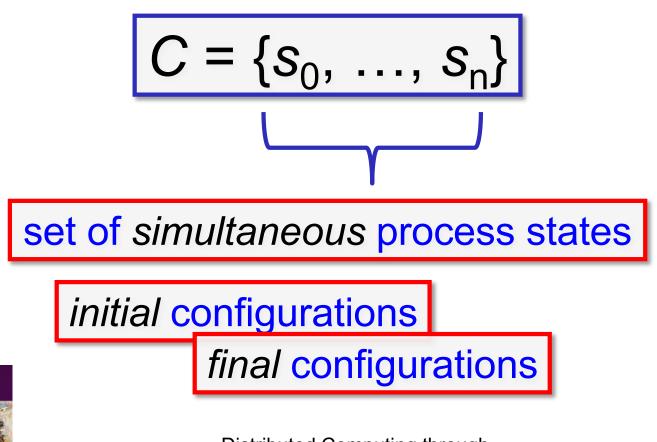
Can implement IS from read-write



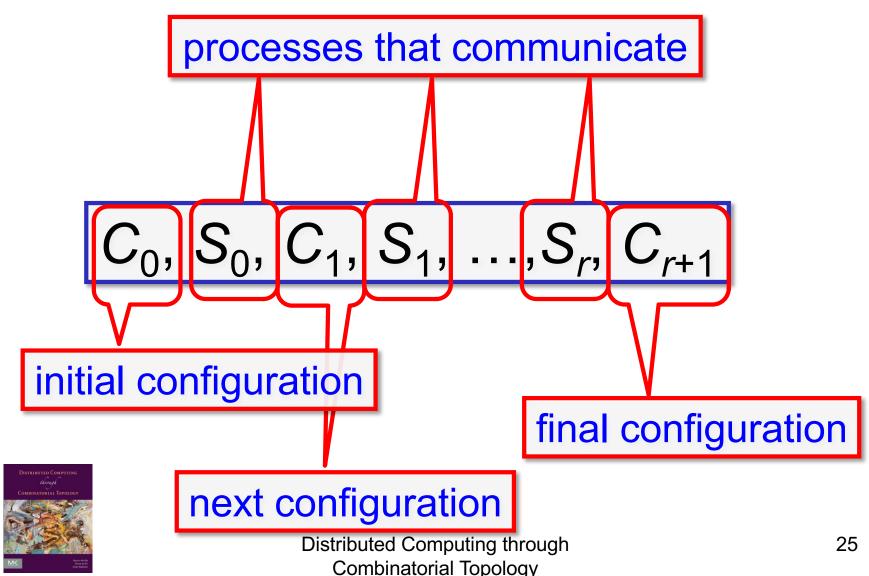


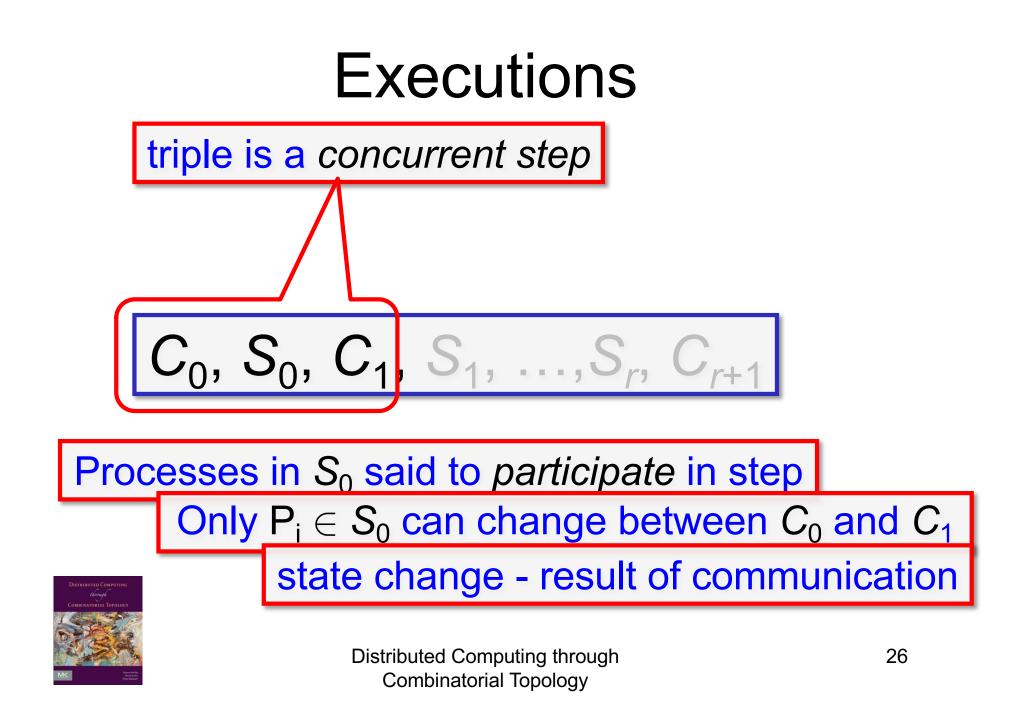


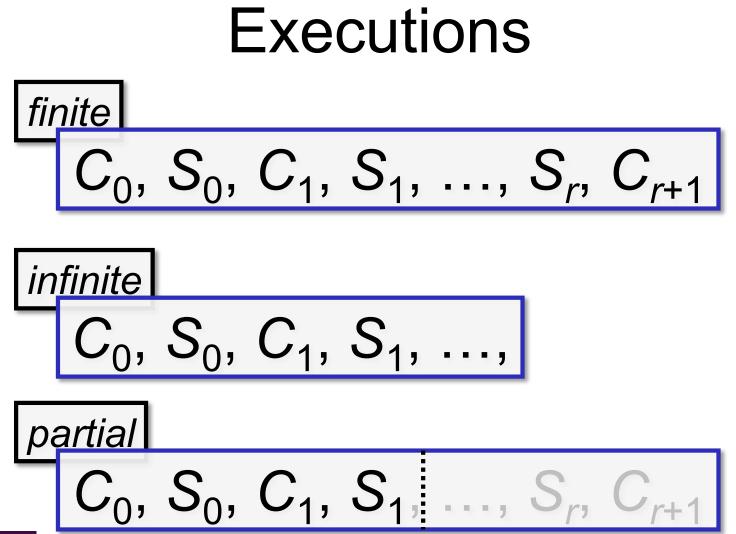
Configurations



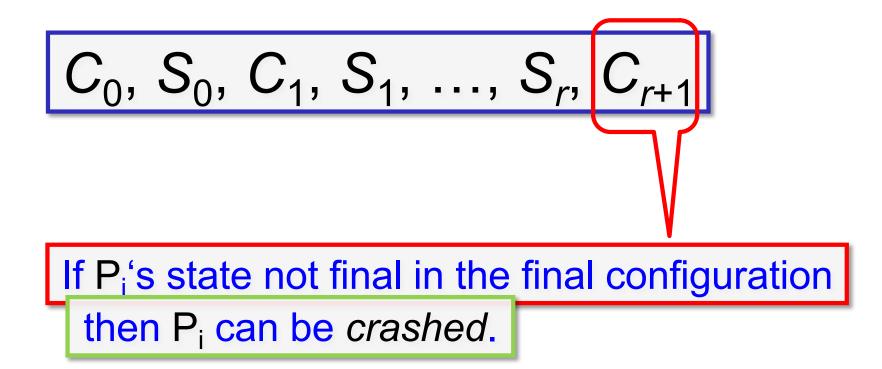
Executions

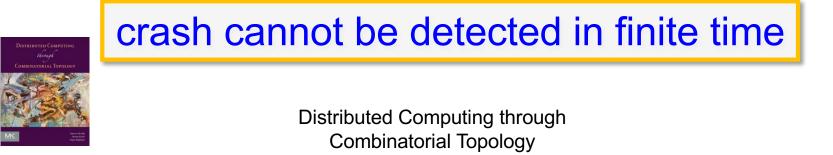


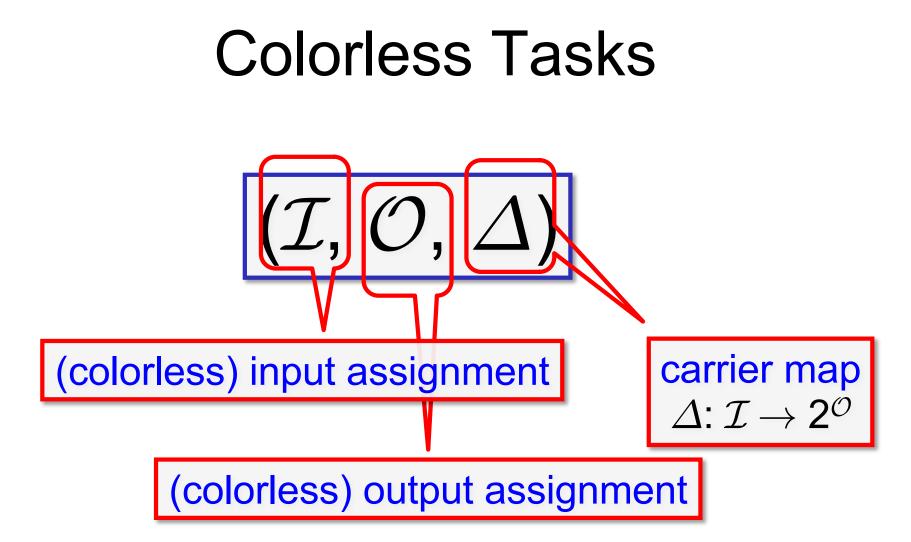




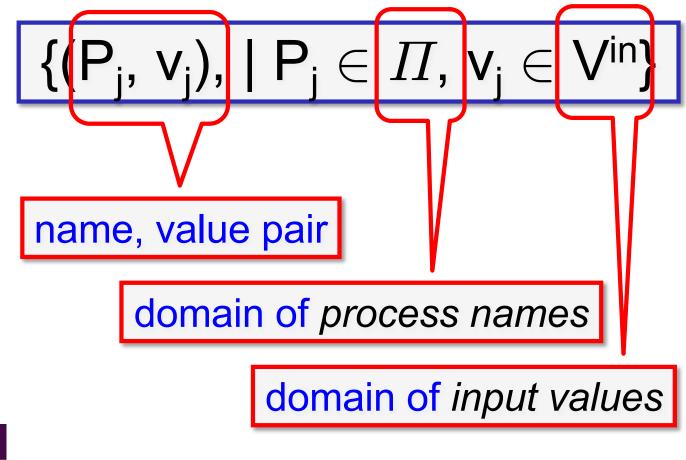
Crashes are Implicit







(Colored) Input Assignments



Colorless Input Assignments

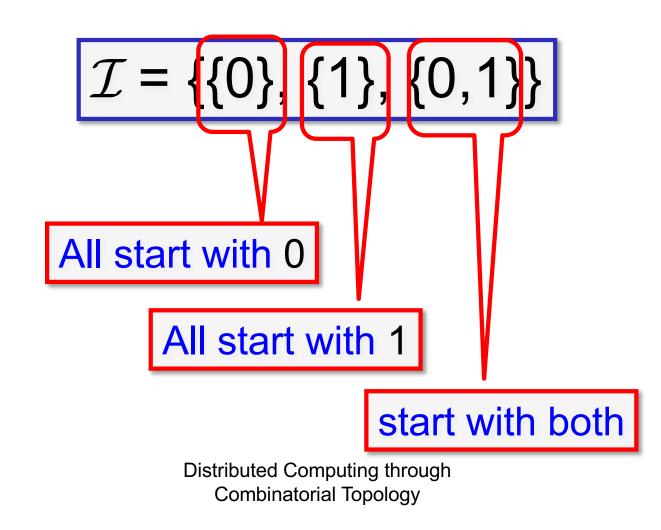
$$\{(\mathsf{P}_{\mathsf{j}},\,\mathsf{v}_{\mathsf{j}}),\,|\;\mathsf{P}_{\mathsf{j}}\in\varPi,\,\mathsf{v}_{\mathsf{j}}\in\mathsf{V}^{\mathsf{in}}\}$$

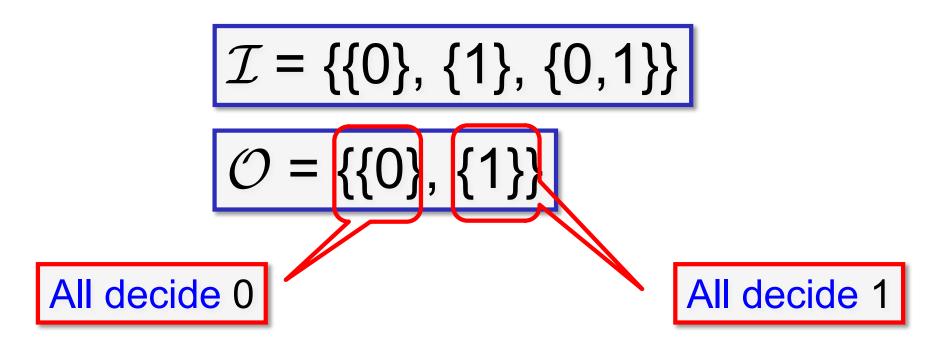
discard process names, keep values

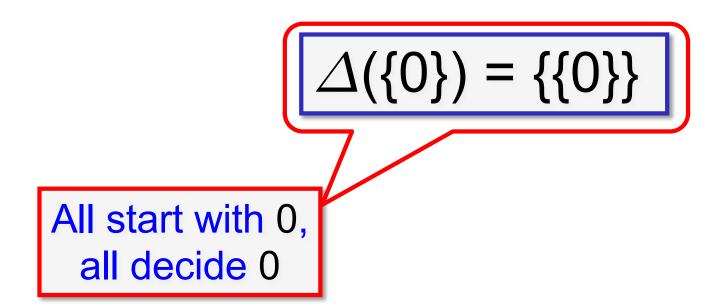
(Colorless) Output Assignments

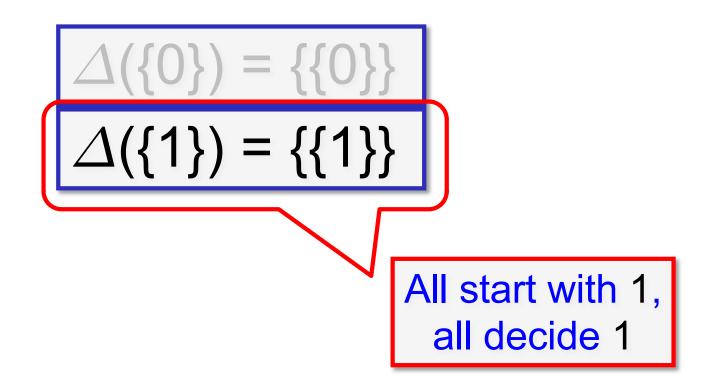
$$\{(\mathsf{P}_{\mathsf{j}},\,\mathsf{v}_{\mathsf{j}}),\,|\;\mathsf{P}_{\mathsf{j}}\in\varPi,\,\mathsf{v}_{\mathsf{j}}\in\mathsf{V^{out}}\}$$

$$\{(\mathsf{P}_{\mathsf{j}},\,\mathsf{v}_{\mathsf{j}}),\,|\;\mathsf{P}_{\mathsf{j}}\in\varPi,\,\mathsf{v}_{\mathsf{j}}\in\mathsf{V}^{\mathsf{out}}\}$$

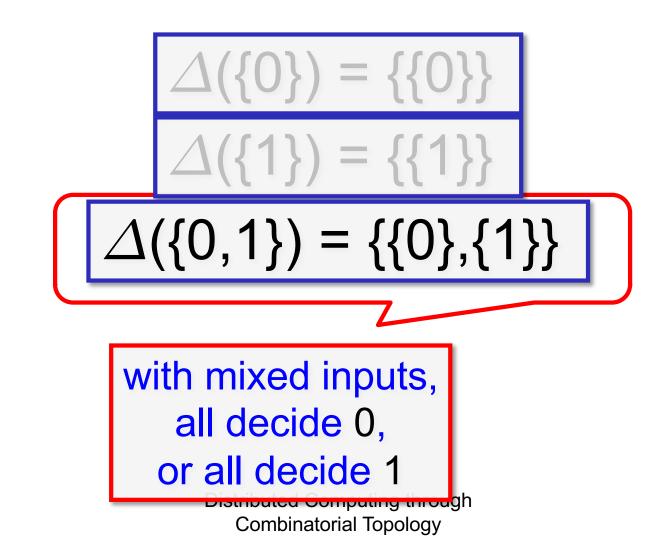




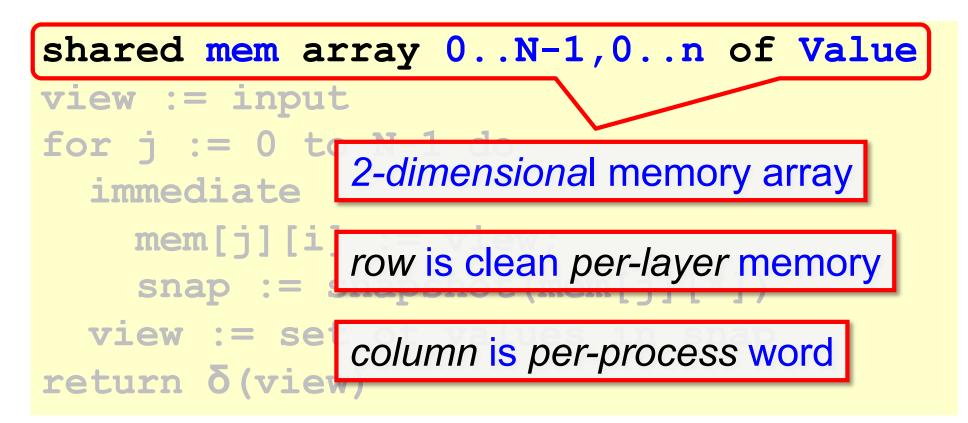


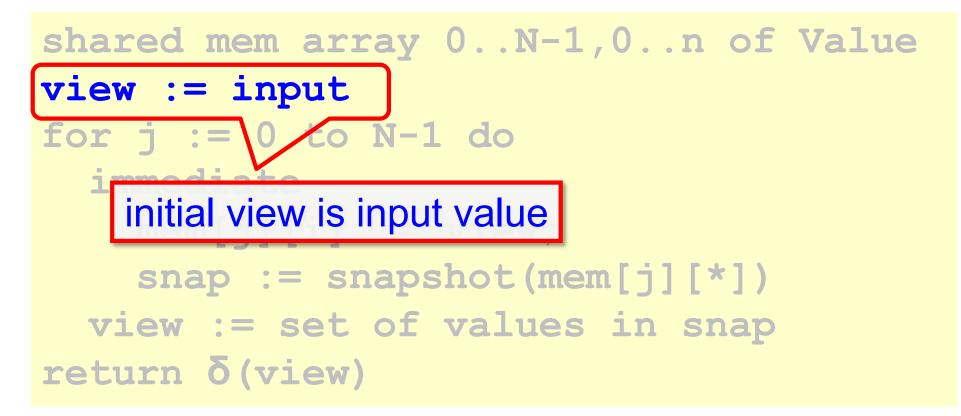


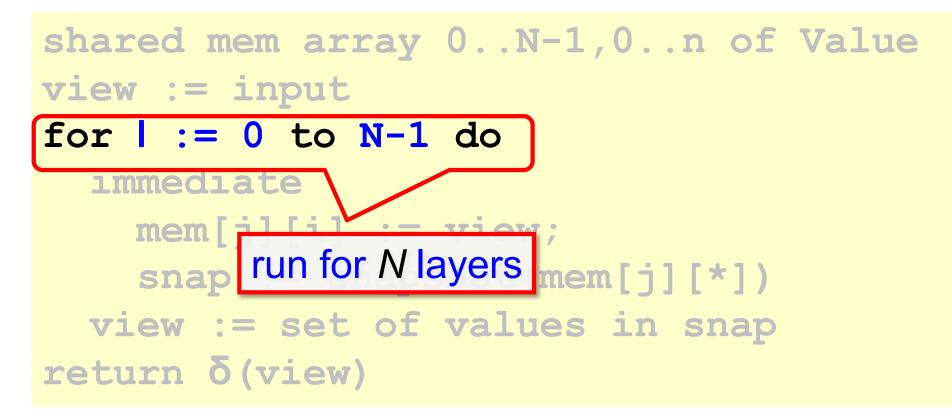
Example: Binary Consensus

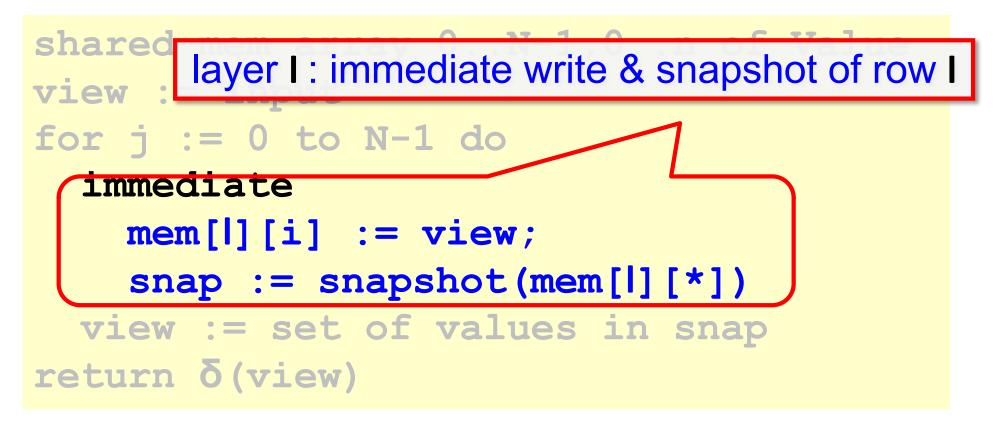


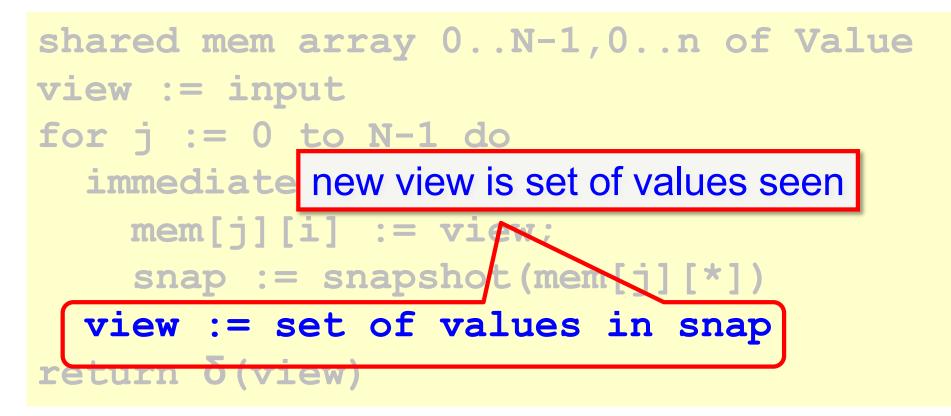

```
shared mem array 0...N-1,0...n of Value
view := input
for | := 0 to N-1 do
   immediate
        mem[l][i] := view;
        snap := snapshot(mem[l][*])
   view := set of values in snap
return δ(view)
```

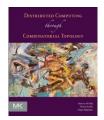





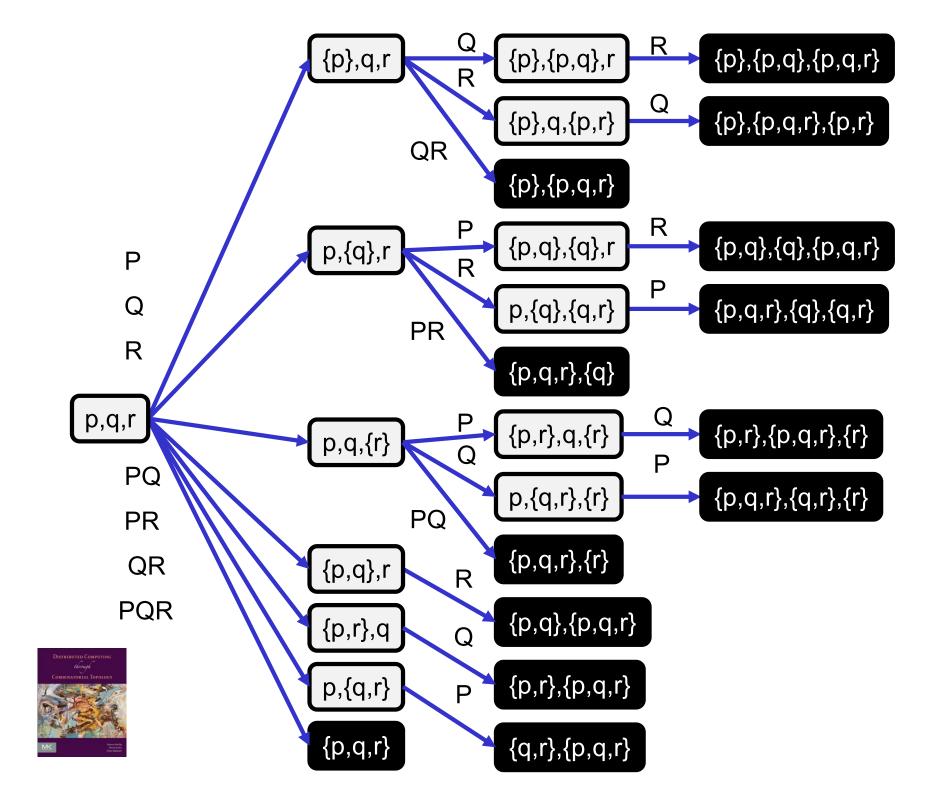


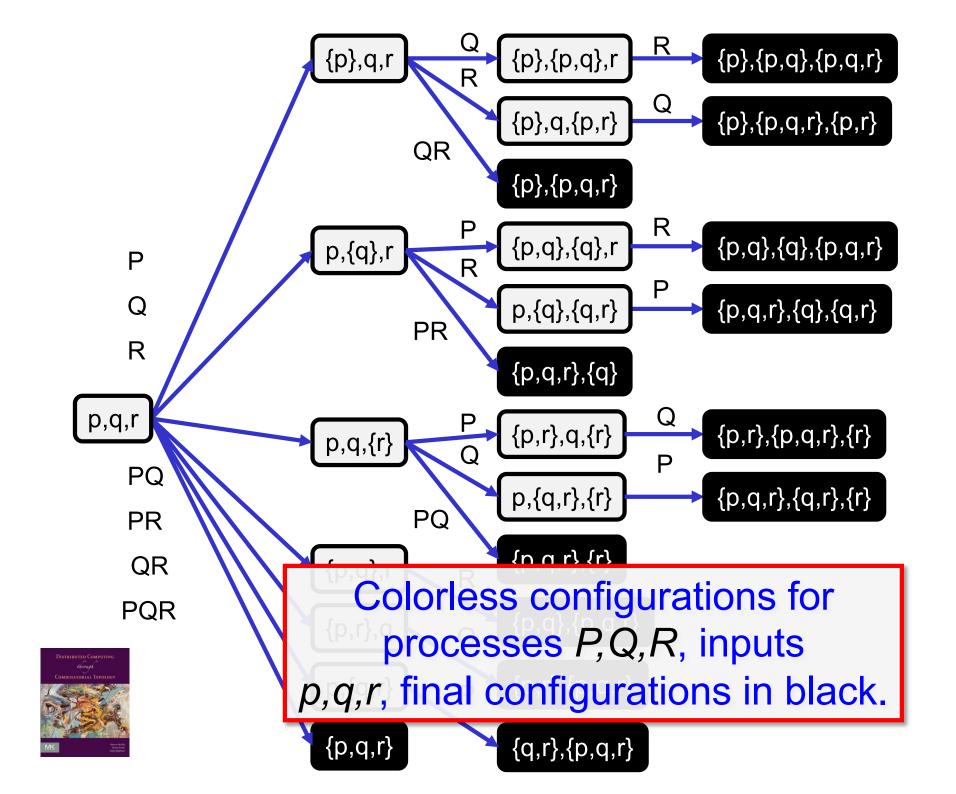






```
shared mem array 0...N-1,0...n of Value
view := input
for j := 0 to N-1 do
    immediate
    finally apply decision value to final view
        snap := snapshot(mem[j][*])
    view := set of values in snap
    return δ(view)
```



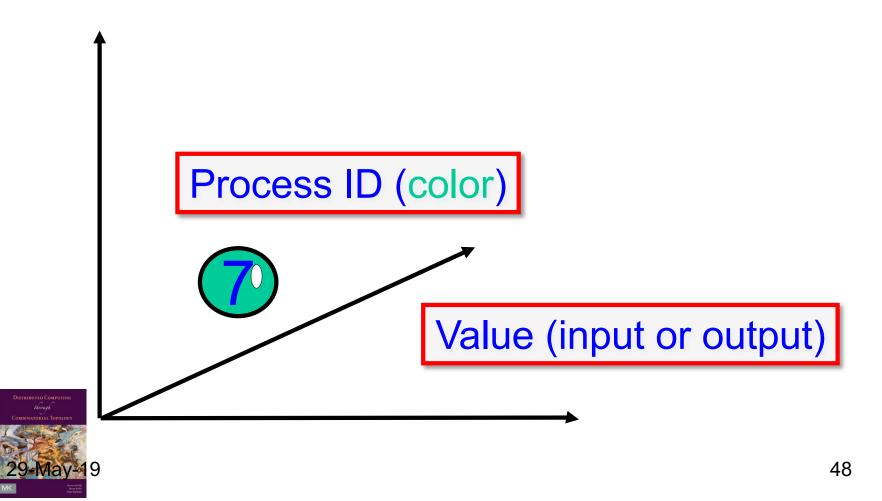
Road Map

Operational Model

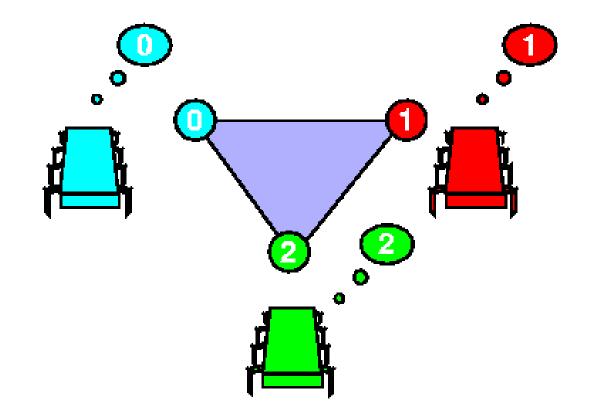
Combinatorial Model

Main Theorem

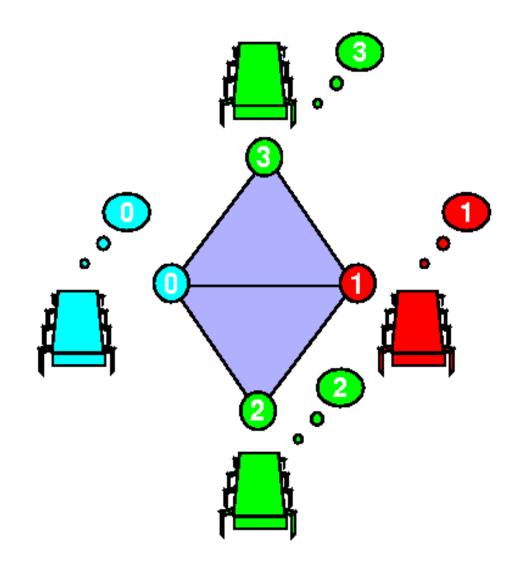
Vertex = Process State



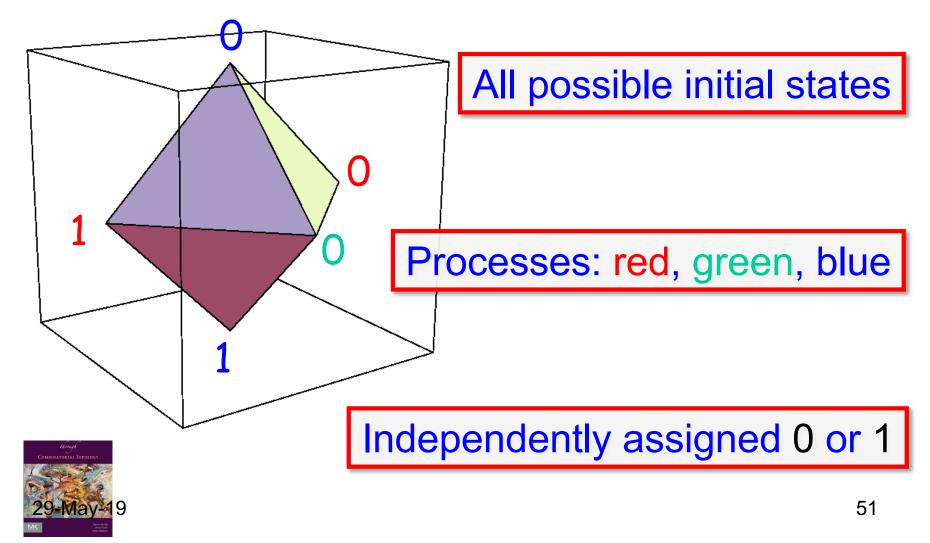
Simplex = Global State



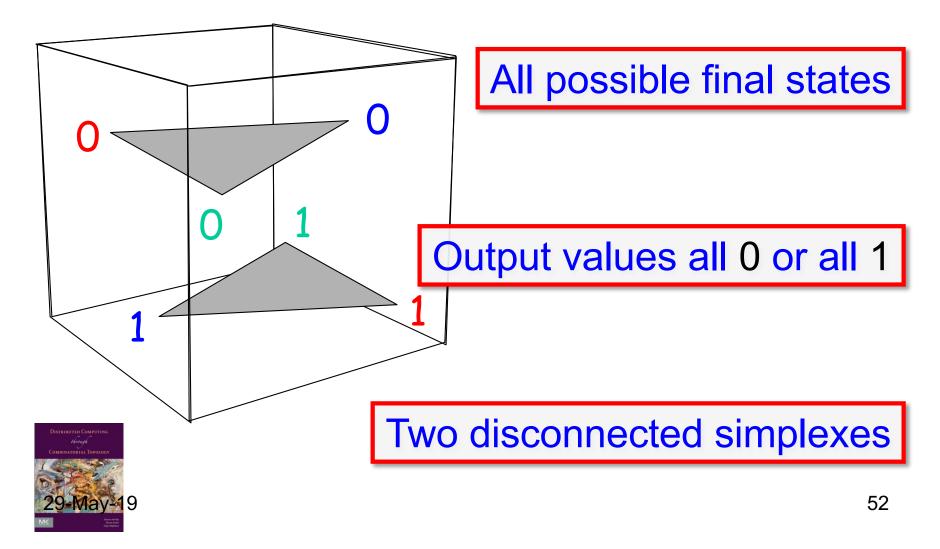
Complex = Global States



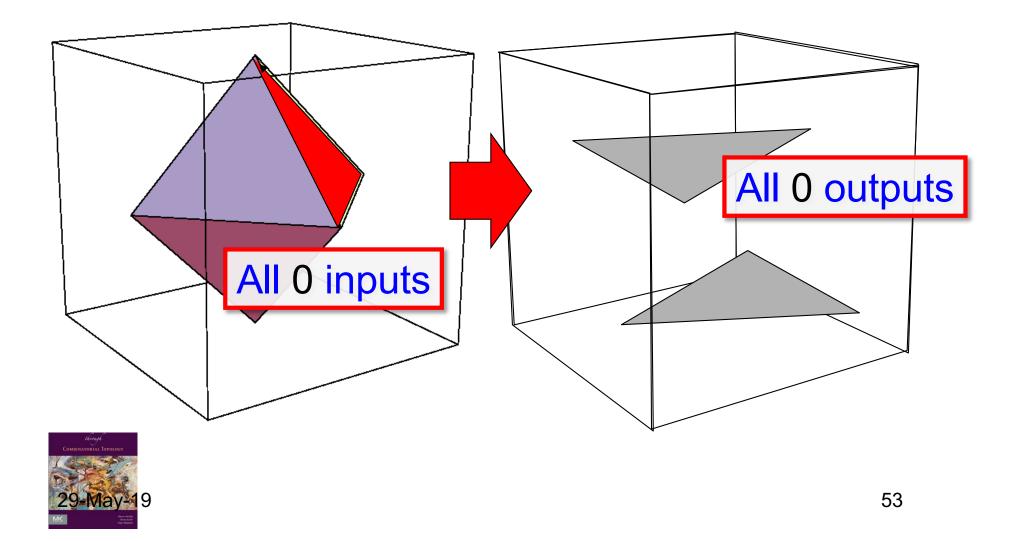
Input Complex for Binary Consensus



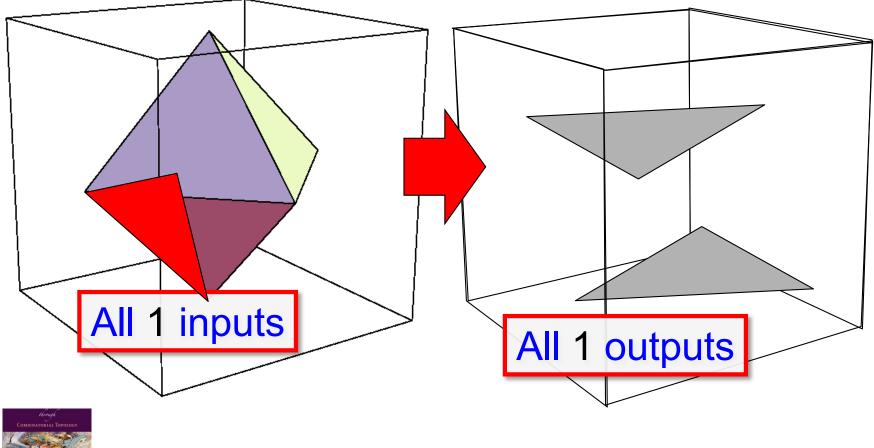
Output Complex for Binary Consensus



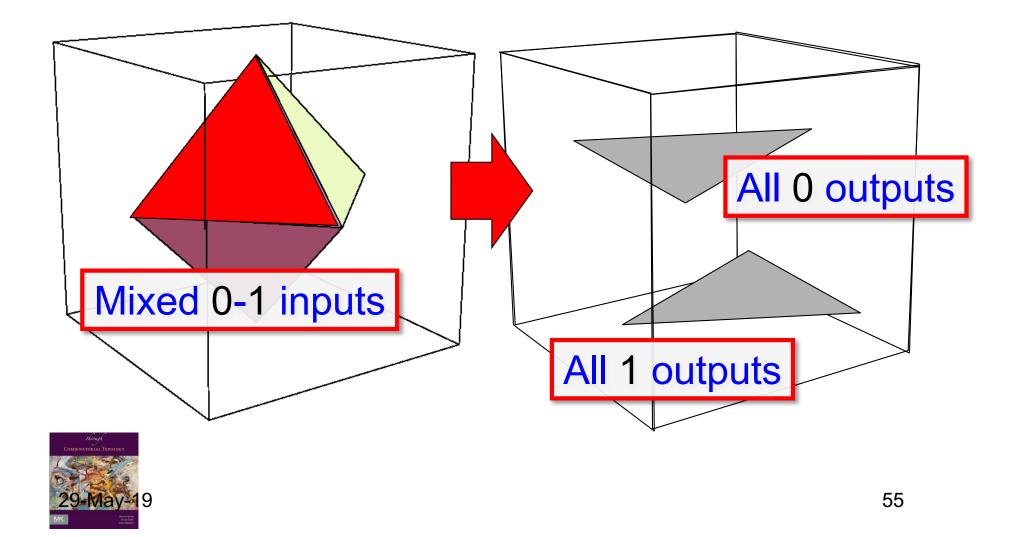
Carrier Map for Consensus



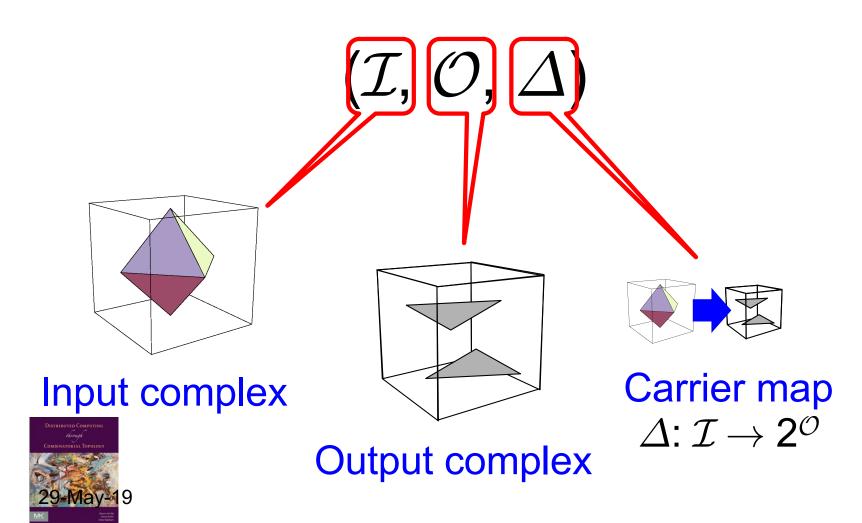
Carrier Map for Consensus

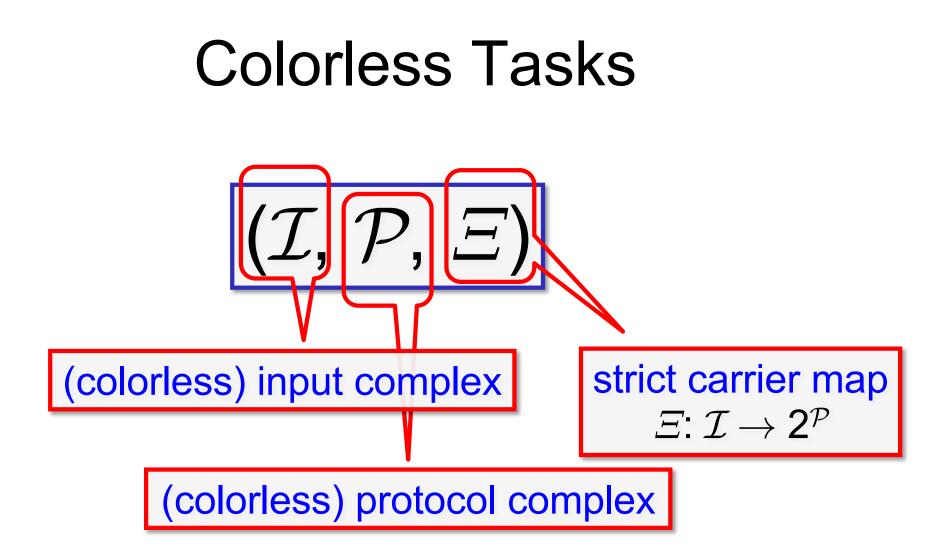


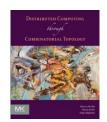
Carrier Map for Consensus



Task Specification







Protocol Complex

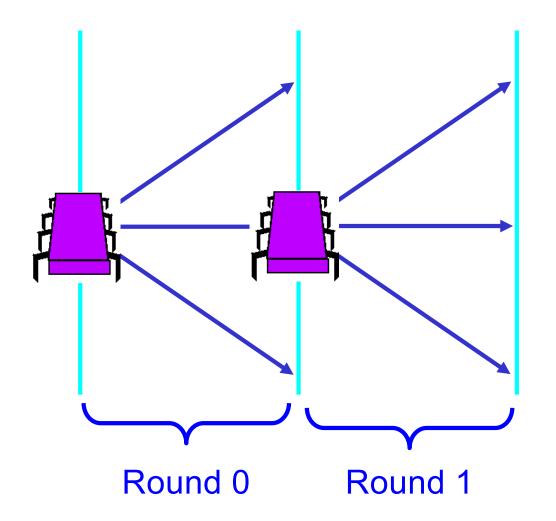
Vertex: process name, view

all values read and written

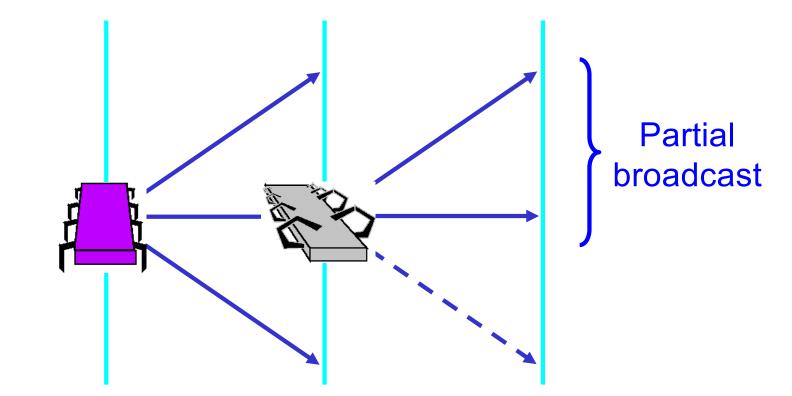
Simplex: compatible set of views

Each execution defines a simplex

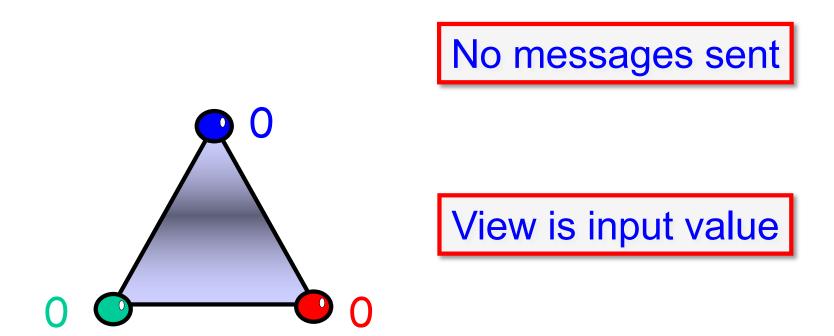
Example: Synchronous Message-Passing



Failures: Fail-Stop

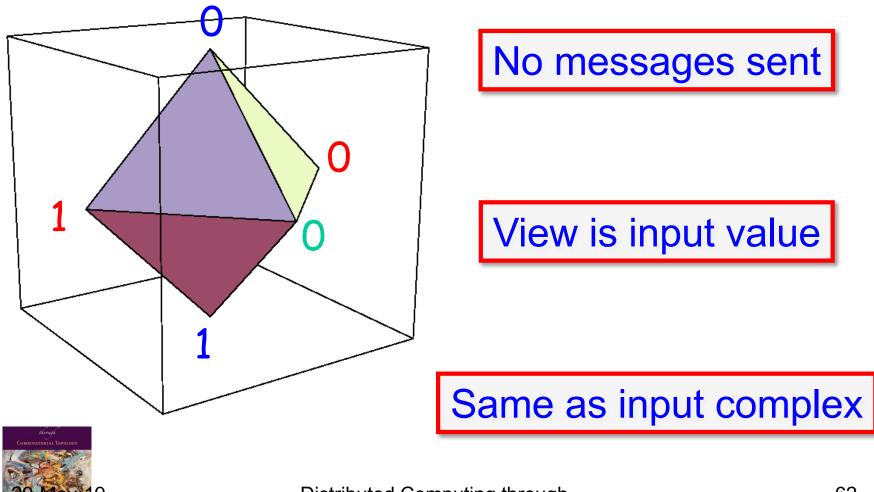


Single Input: Round Zero

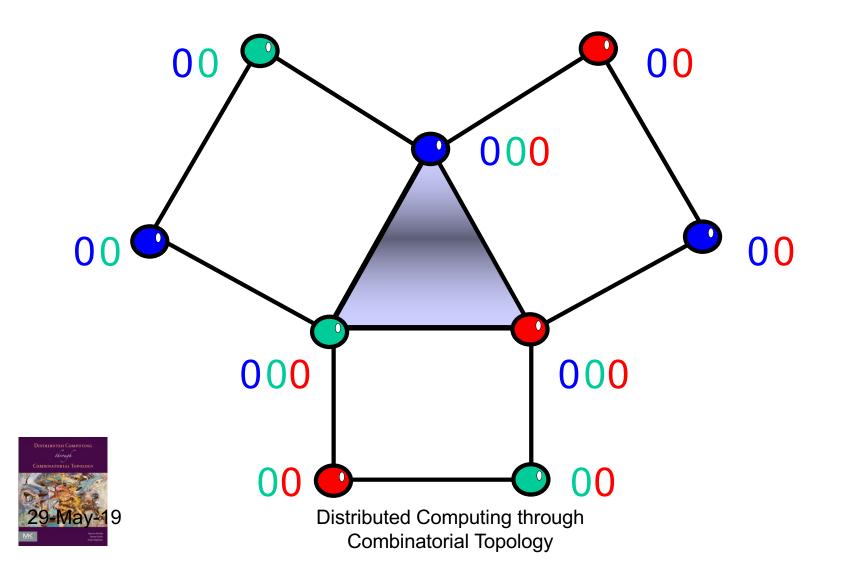


Same as input simplex

Round Zero Protocol Complex

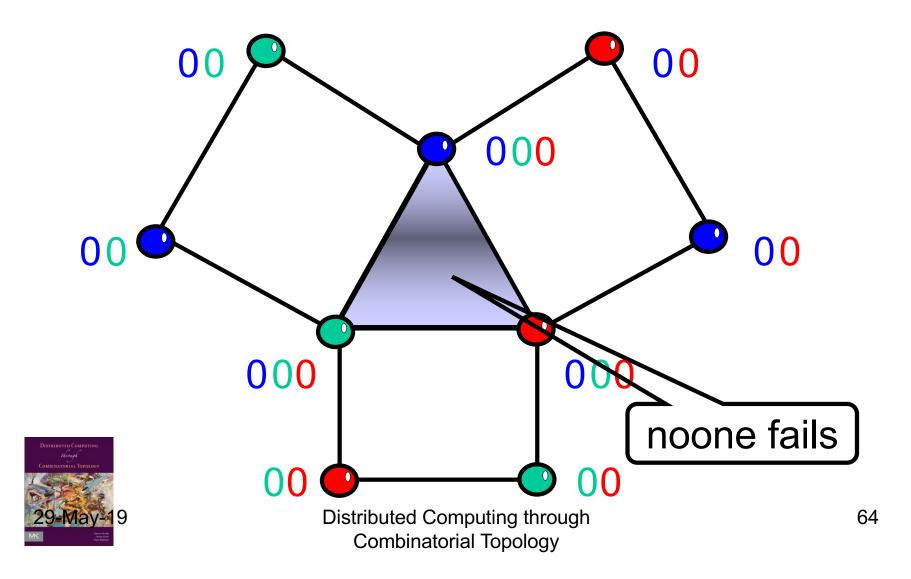


Single Input: Round One

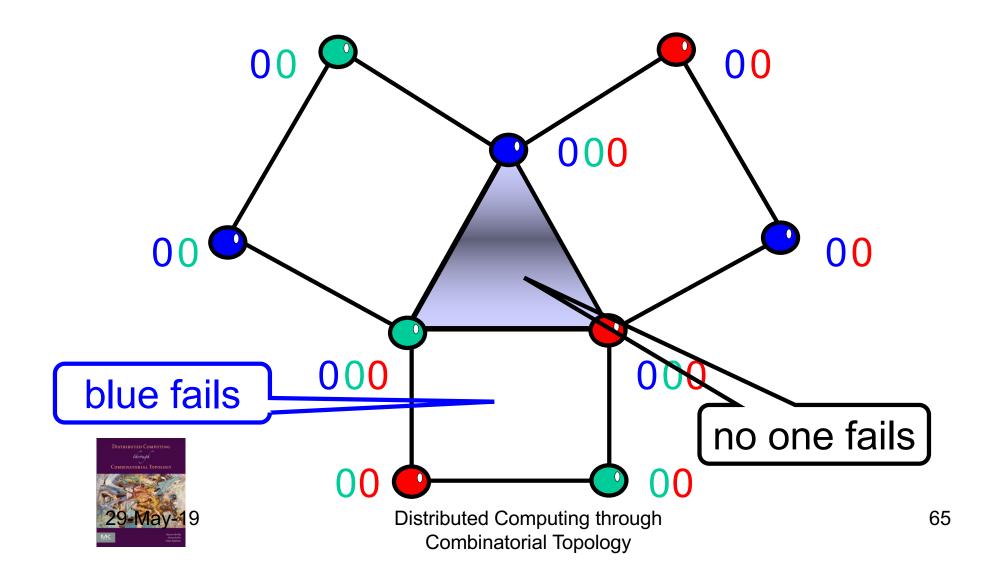


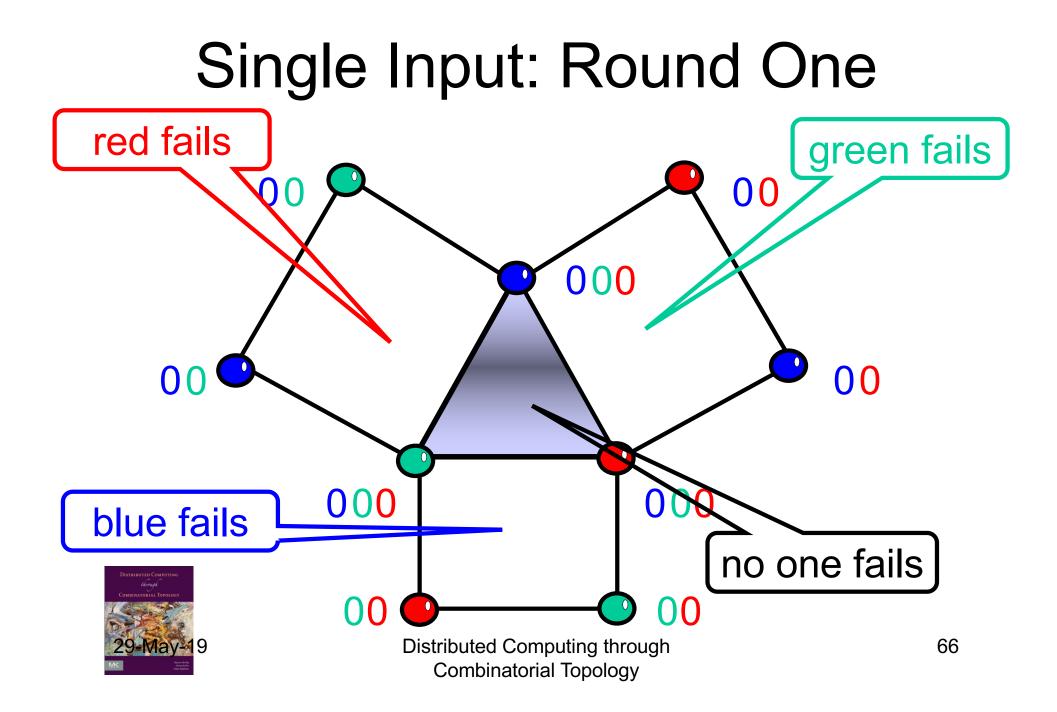
63

Single Input: Round One

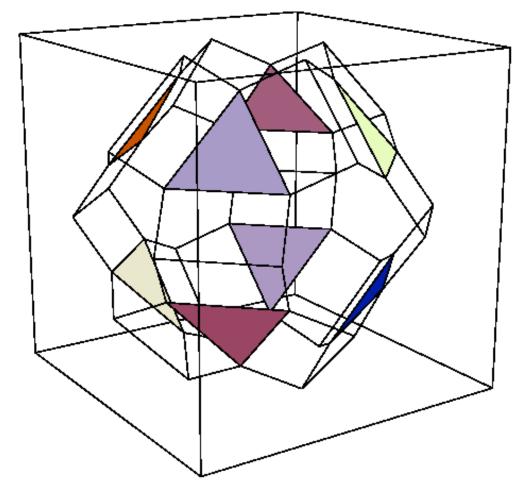


Single Input: Round One

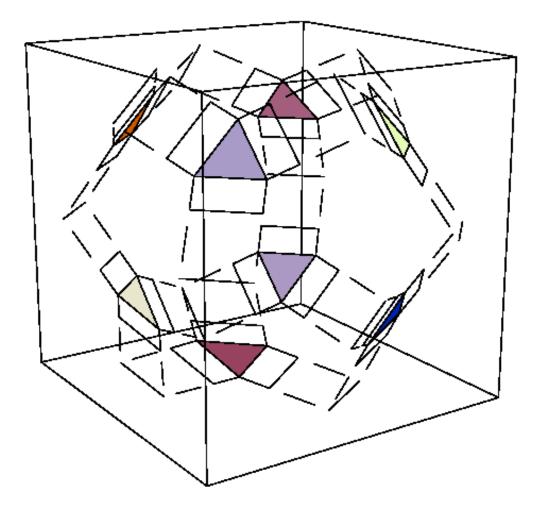




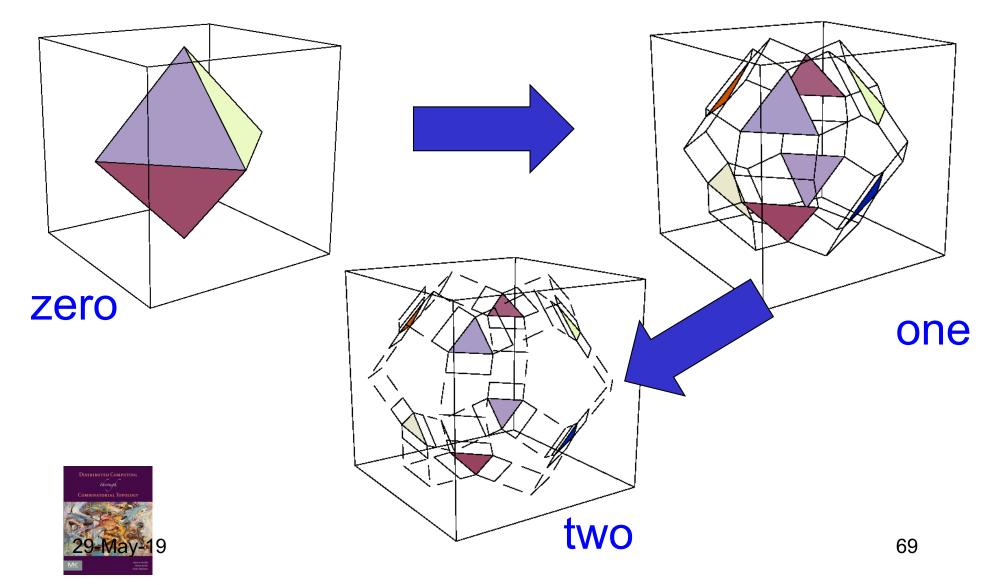
Protocol Complex: Round One

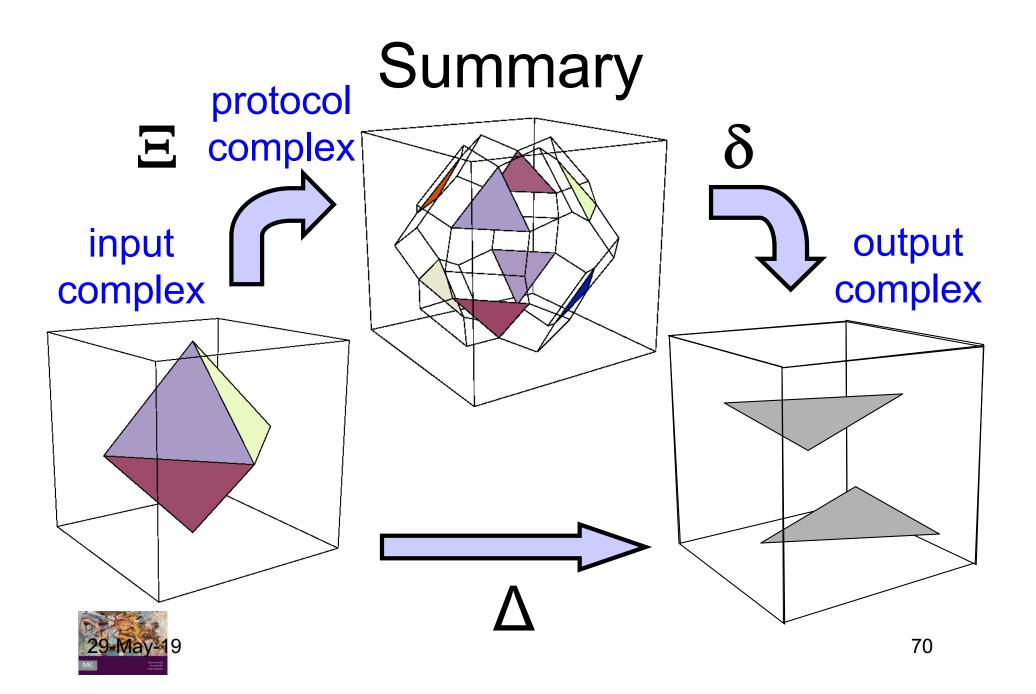


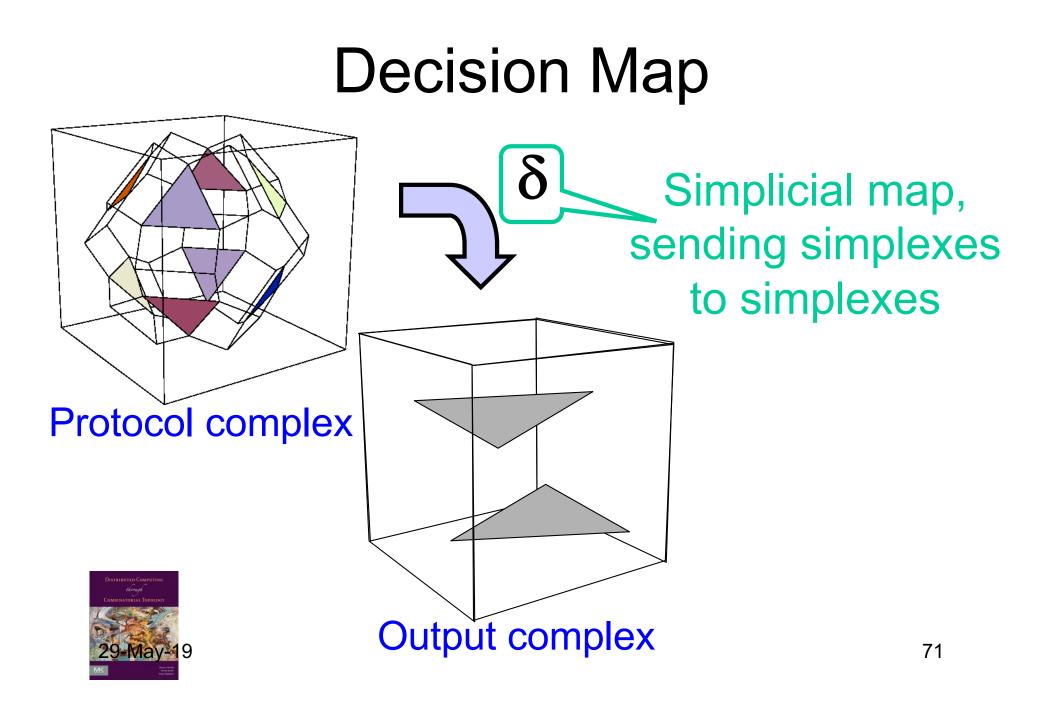
Protocol Complex: Round Two



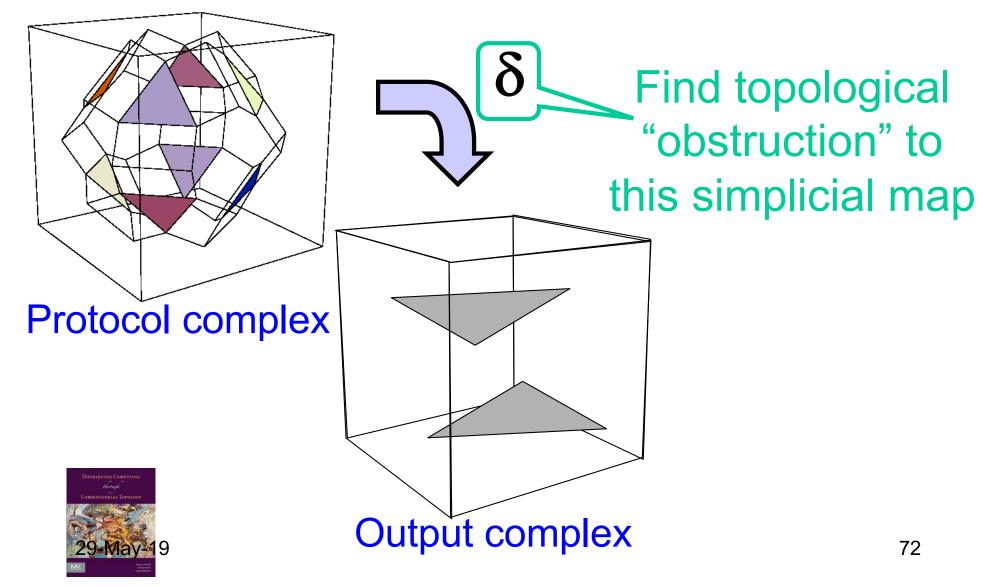
Protocol Complex Evolution

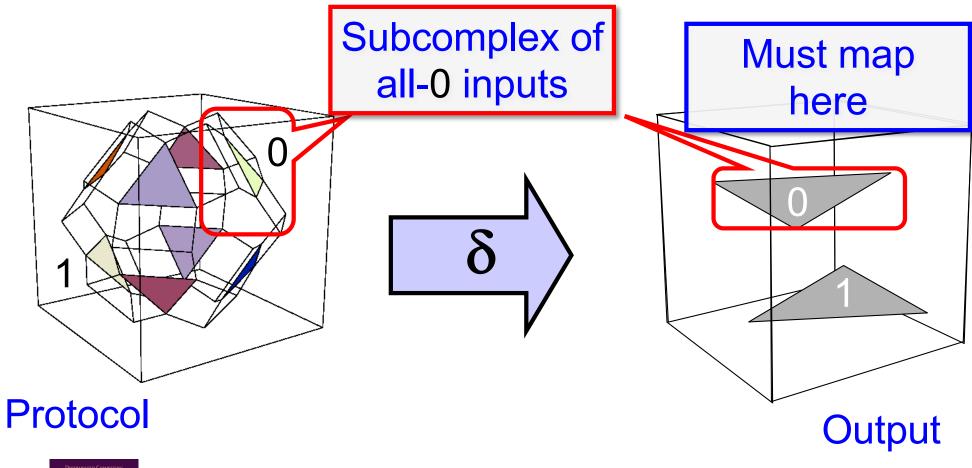


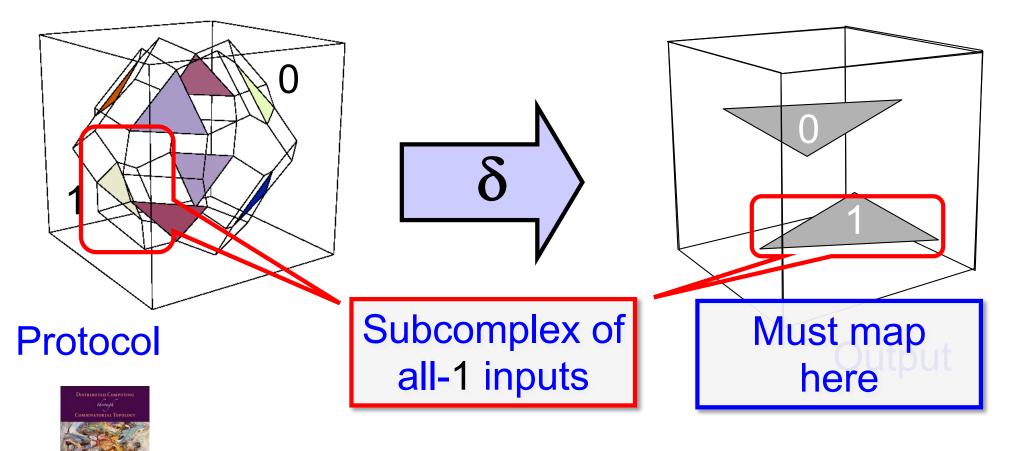




Strategy for Lower Bounds/Impossibility Results

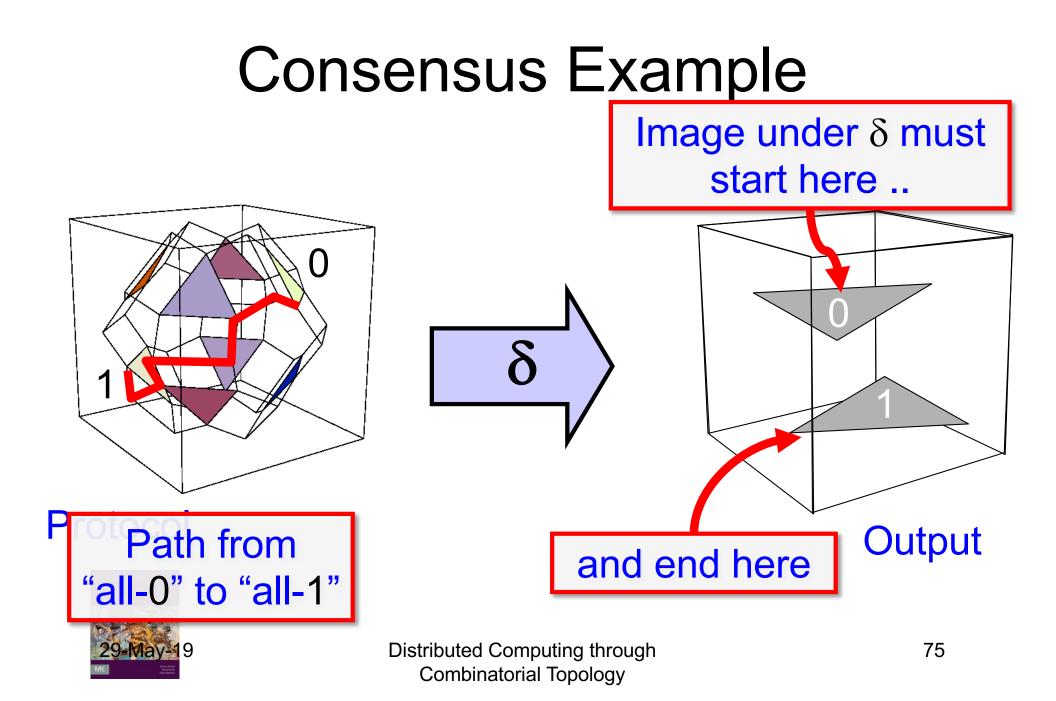


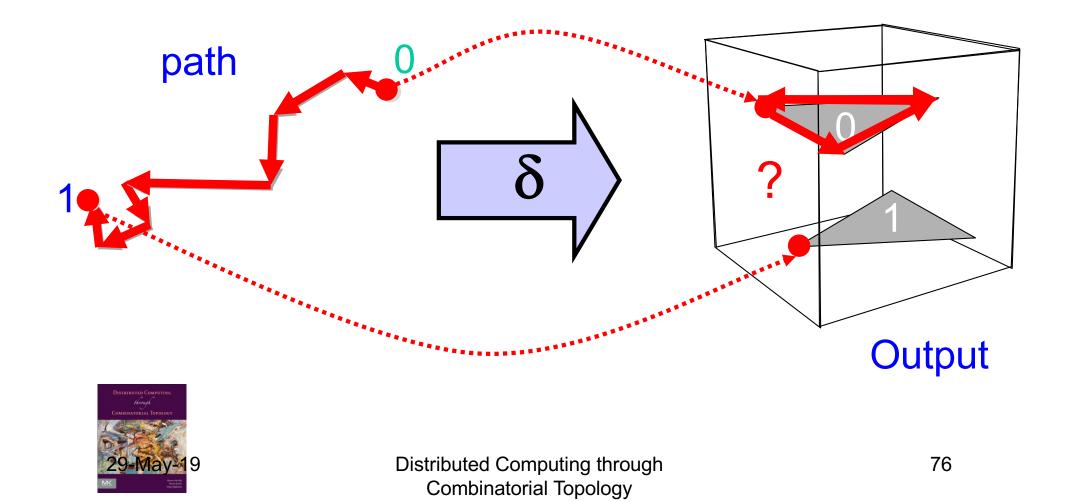


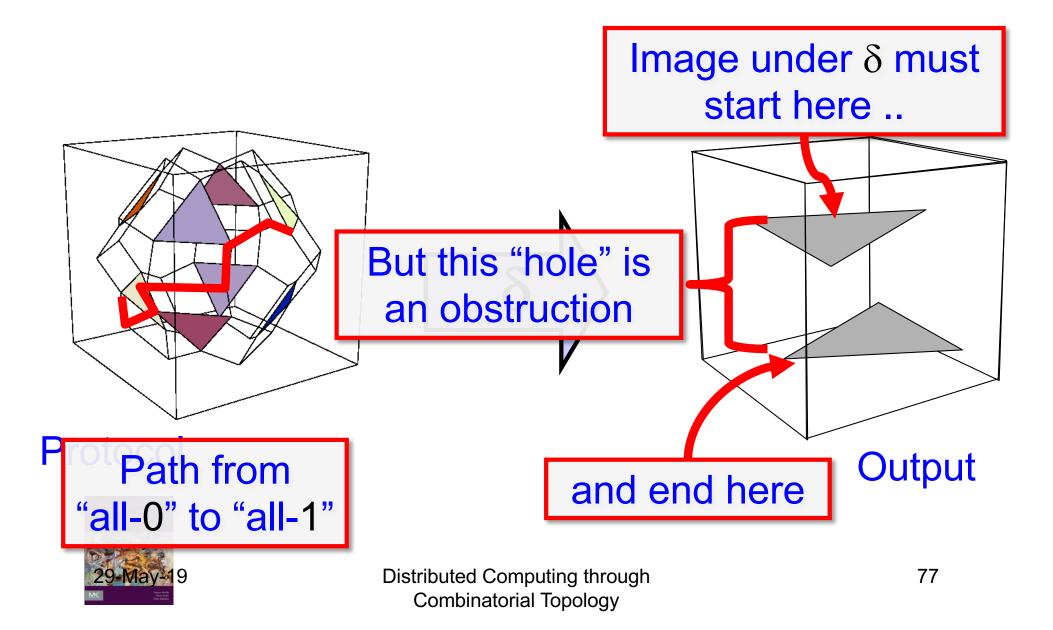


Distributed Computing through Combinatorial Topology

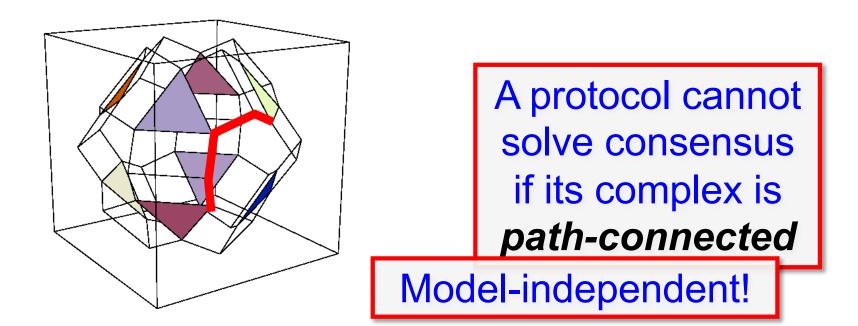
29-May-19



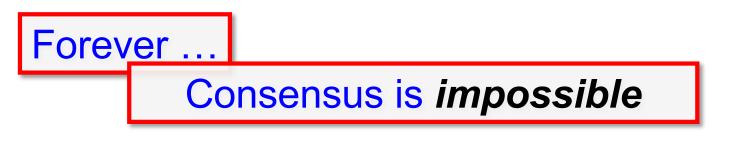




Conjecture

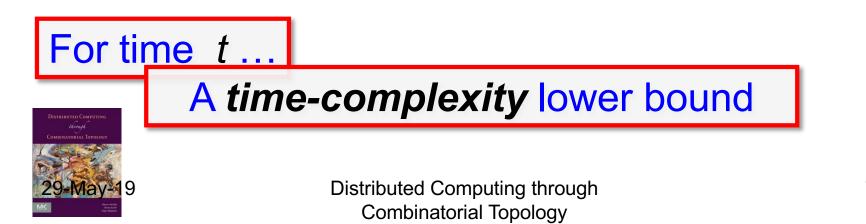


If Adversary keeps Protocol Complex path-connected ...

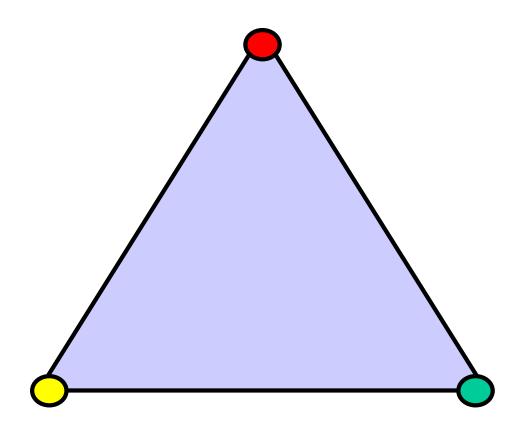


For *r* rounds ...

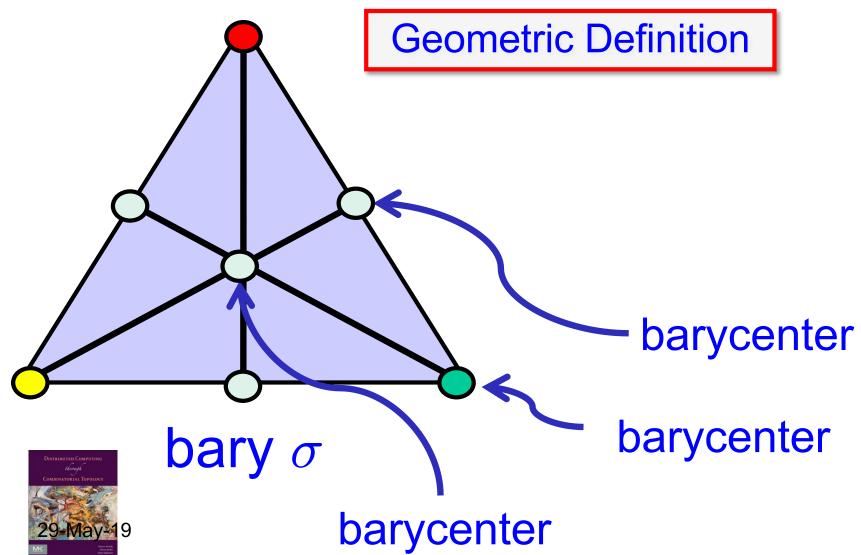
A round-complexity lower bound



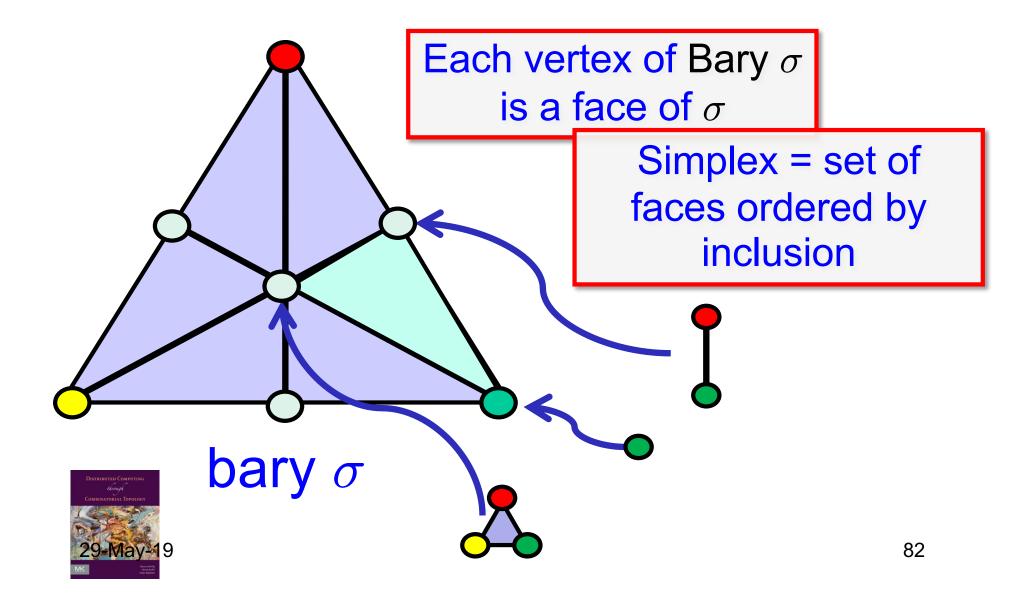
Barycentric Subdivision



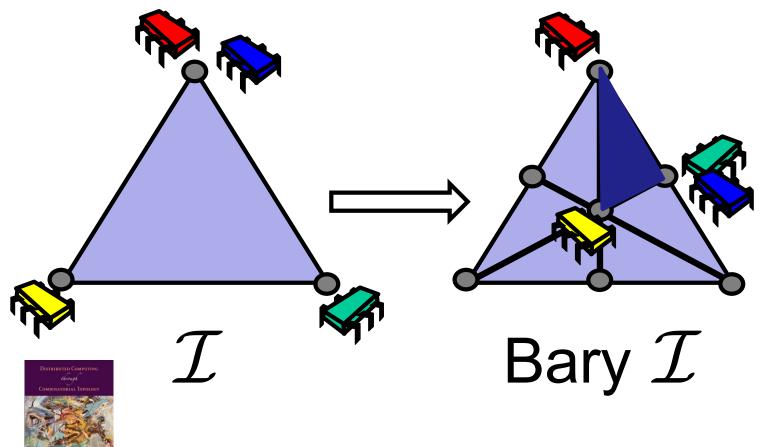
Barycentric Subdivision



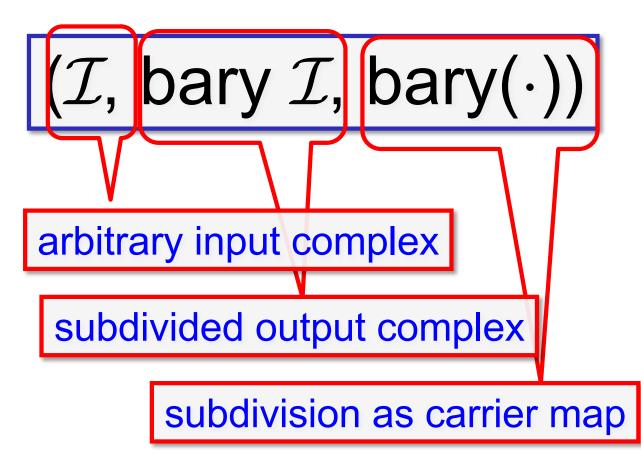
Barycentric Subdivision



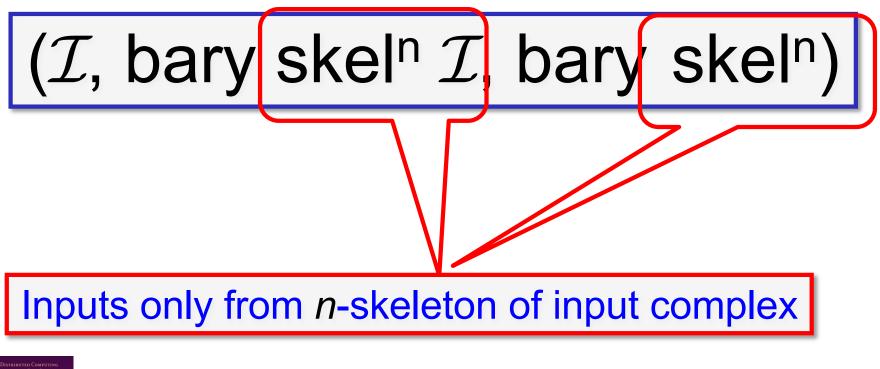
Barycentric Agreement



Barycentric Agreement

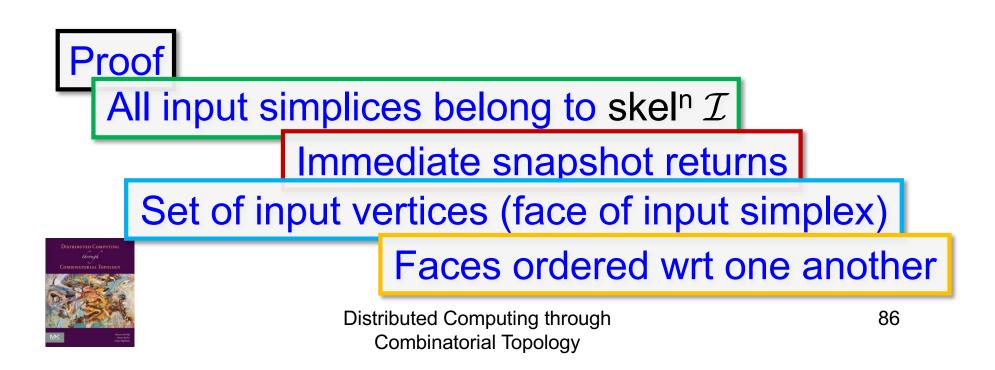


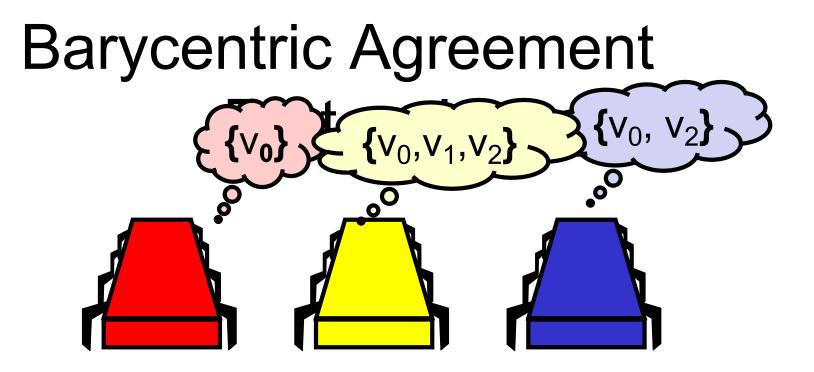
If There are *n*+1 Processes

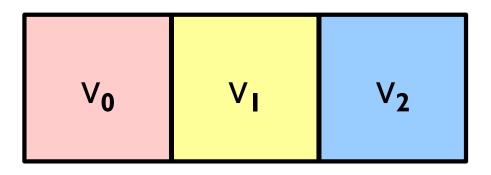


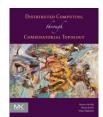
Theorem

A one-layer immediate snapshot protocol solves the (n+1)-process barycentric agreement task (\mathcal{I} , bary skelⁿ \mathcal{I} , bary skelⁿ)



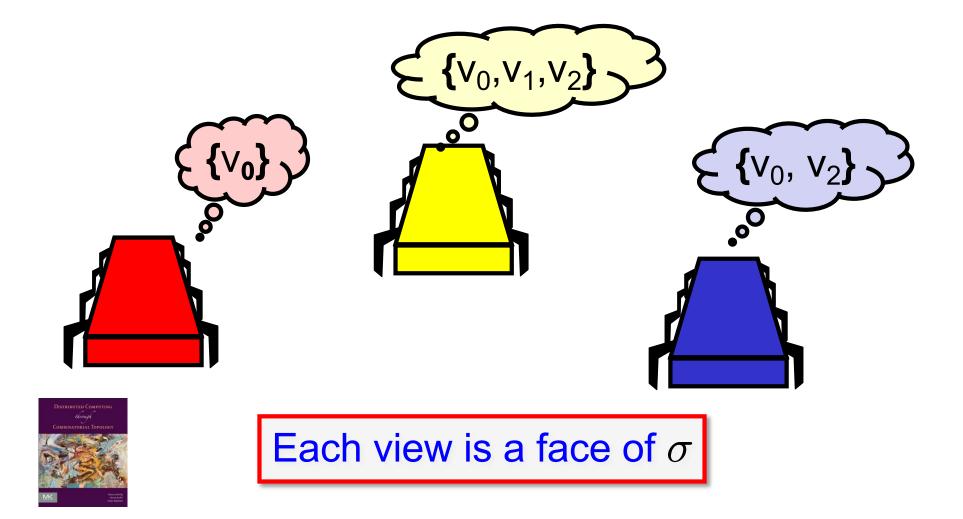


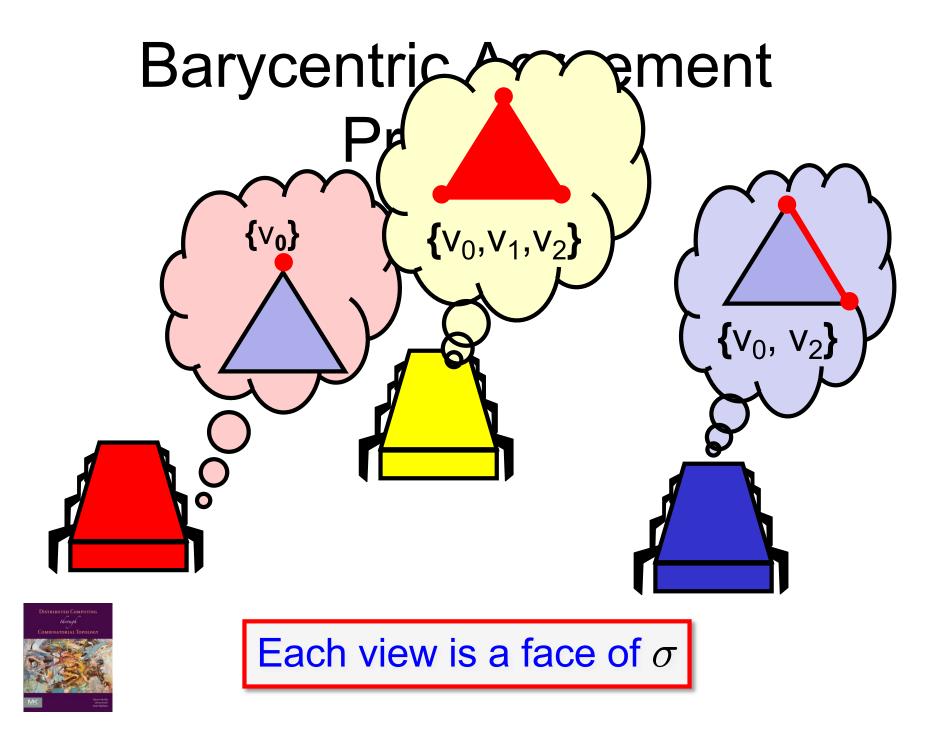


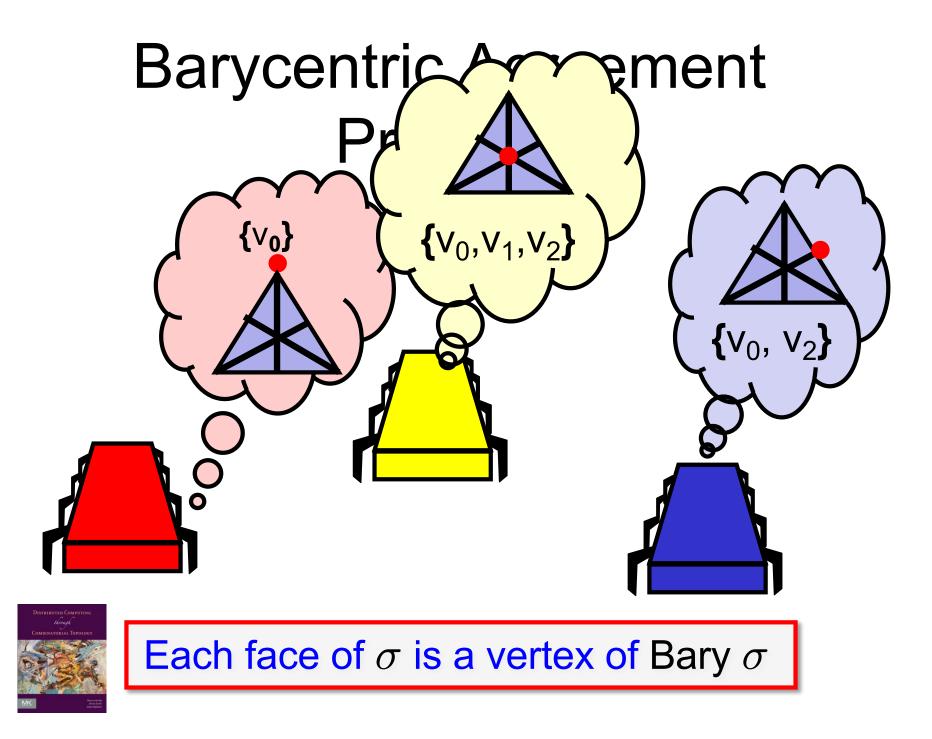


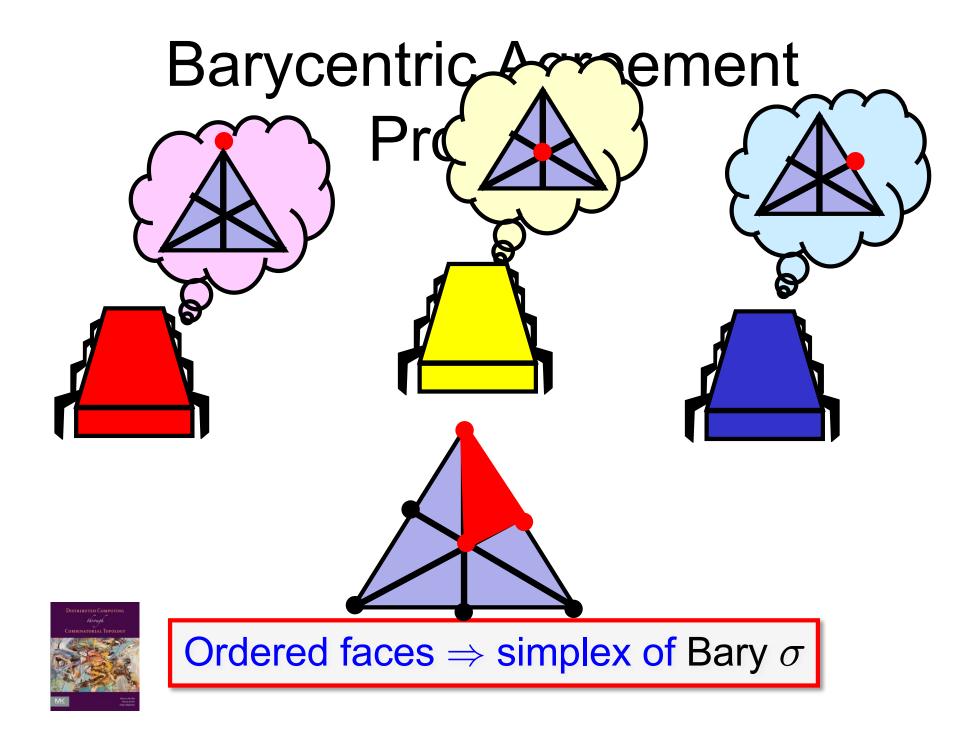
Snapshots are ordered

Barycentric Agreement Protocol

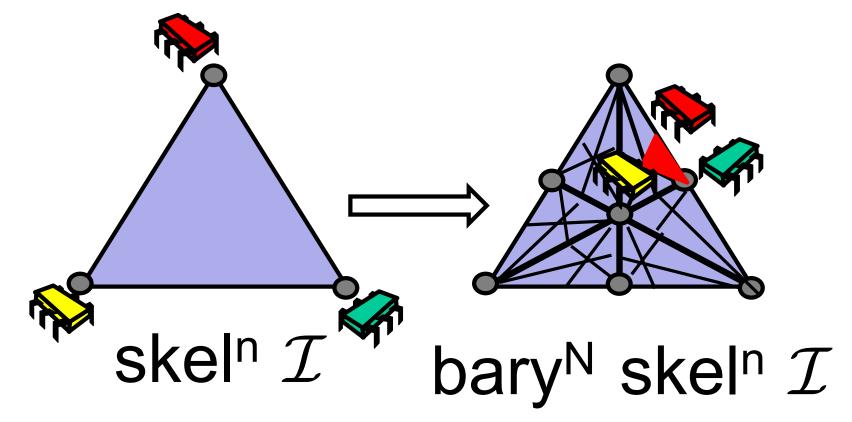


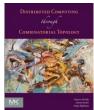






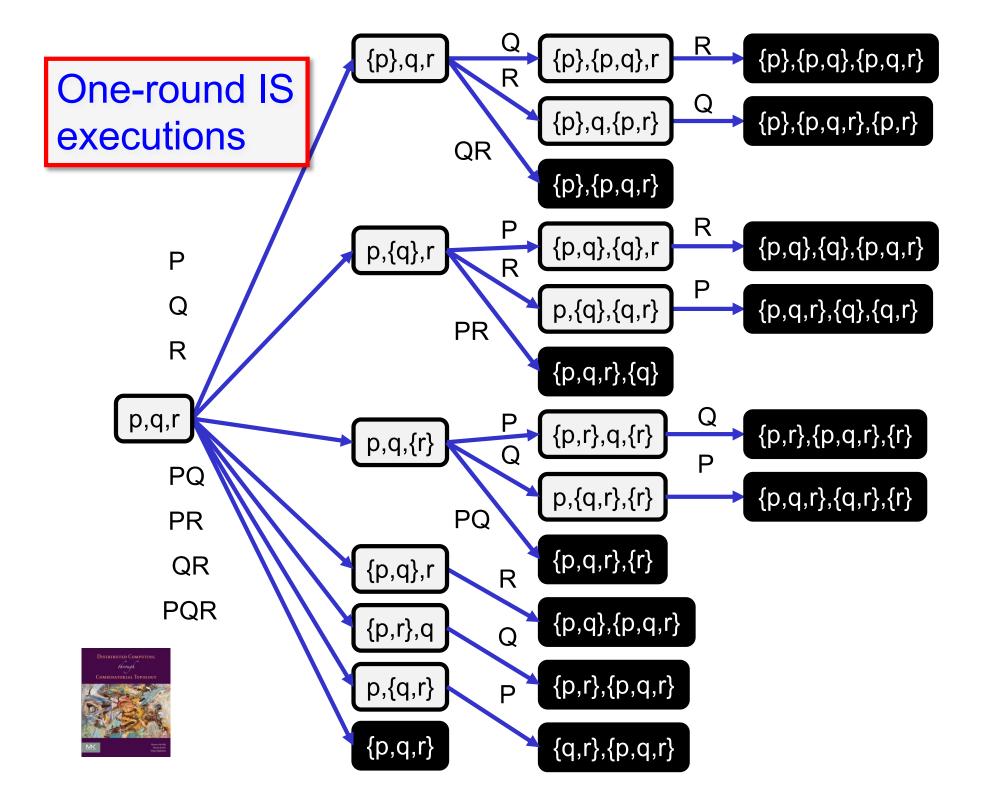
Iterated Barycentric Agreement

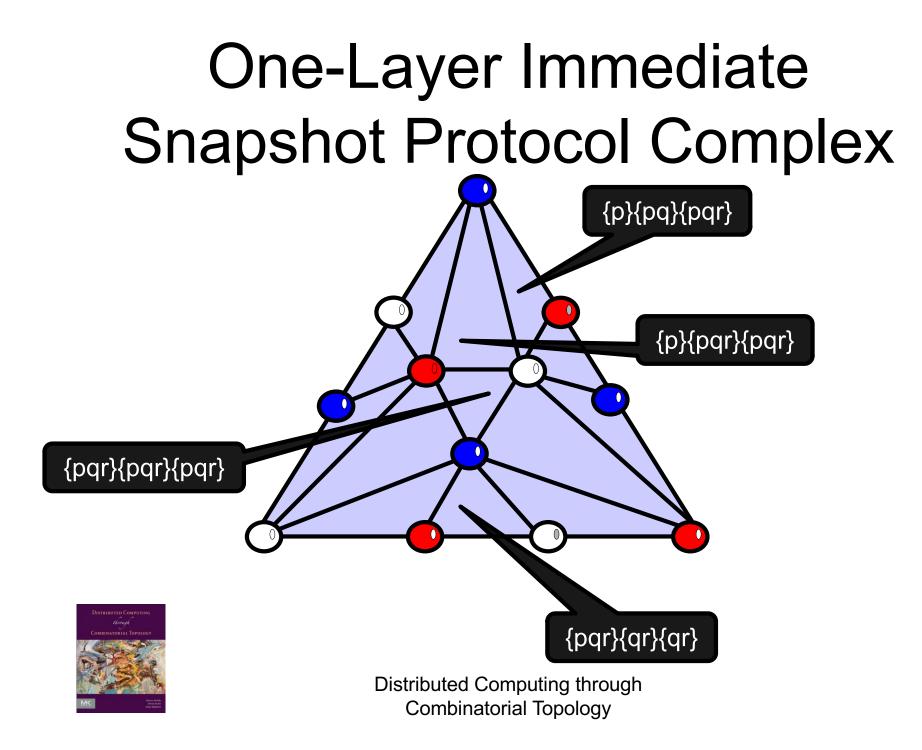




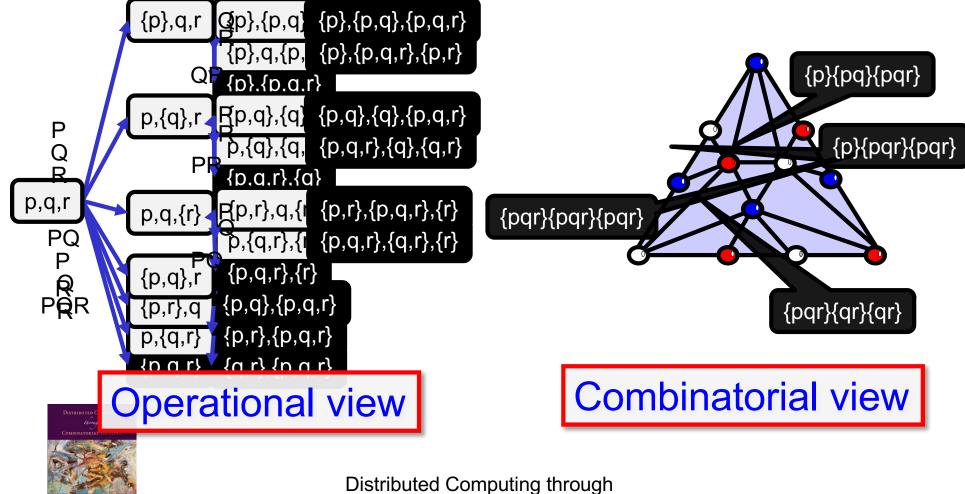
Iterated Barycentric Agreement

(\mathcal{I} , bary^N skelⁿ \mathcal{I} , bary^N skelⁿ)



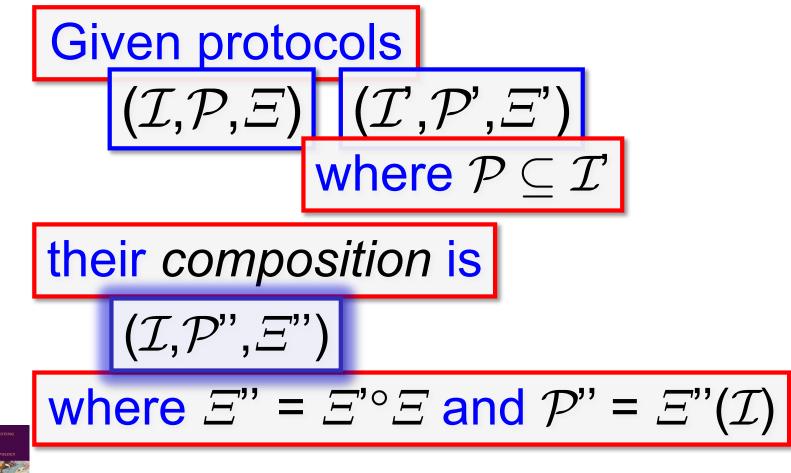


Compare Views



Combinatorial Topology

Compositions



Theorem

The protocol complex for a singlelayer colorless IS protocol $(\mathcal{I}, \mathcal{P}, \Xi)$ is Bary \mathcal{I}

Theorem

The protocol complex for an *N*-layer IS protocol $(\mathcal{I}, \mathcal{P}, \Xi)$ is Bary^N \mathcal{I}

Corollary

The protocol complex for an *N*-layer IS protocol $(\mathcal{I}, \mathcal{P}, \Xi)$ is *n*-connected

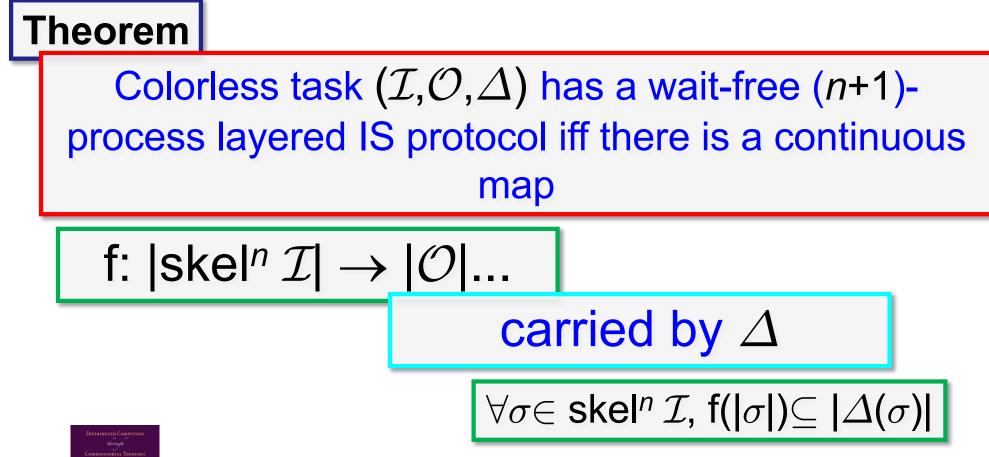
Road Map

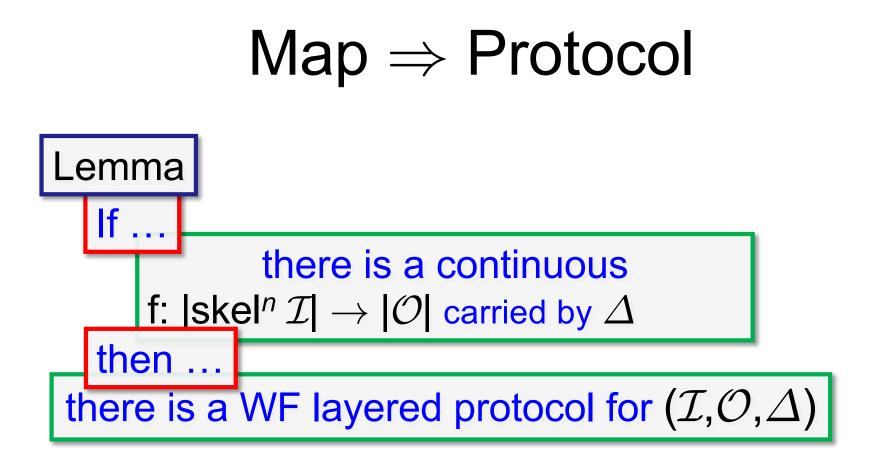
Operational Model

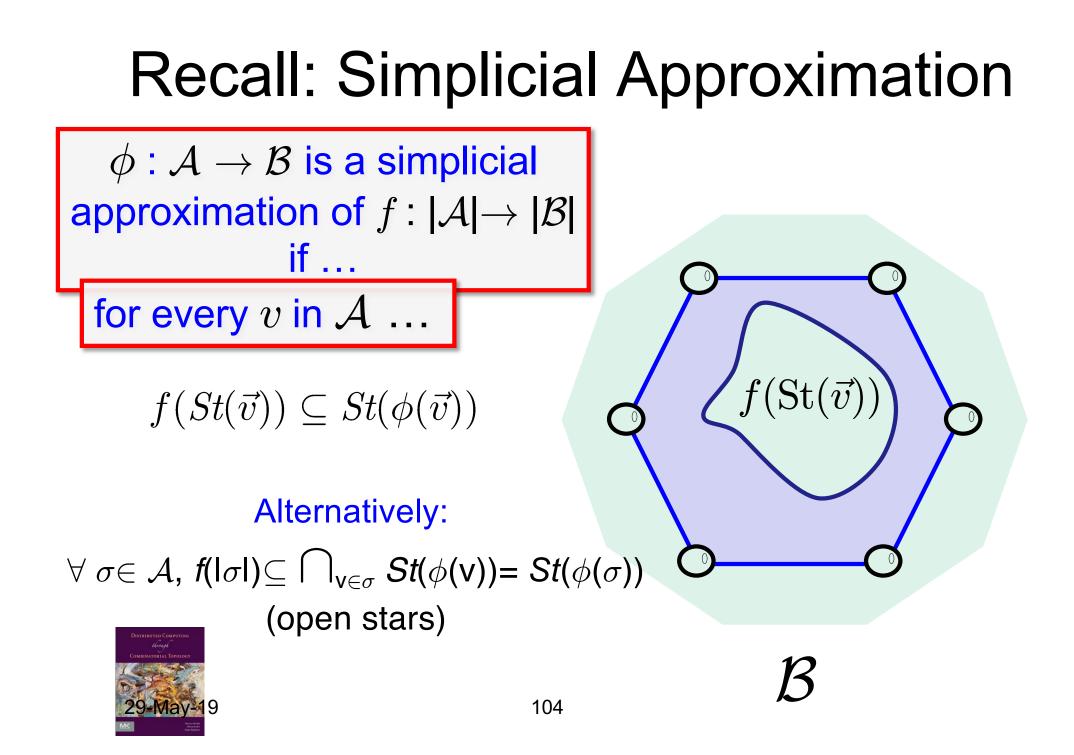
Combinatorial Model

Main Theorem

Fundamental Theorem







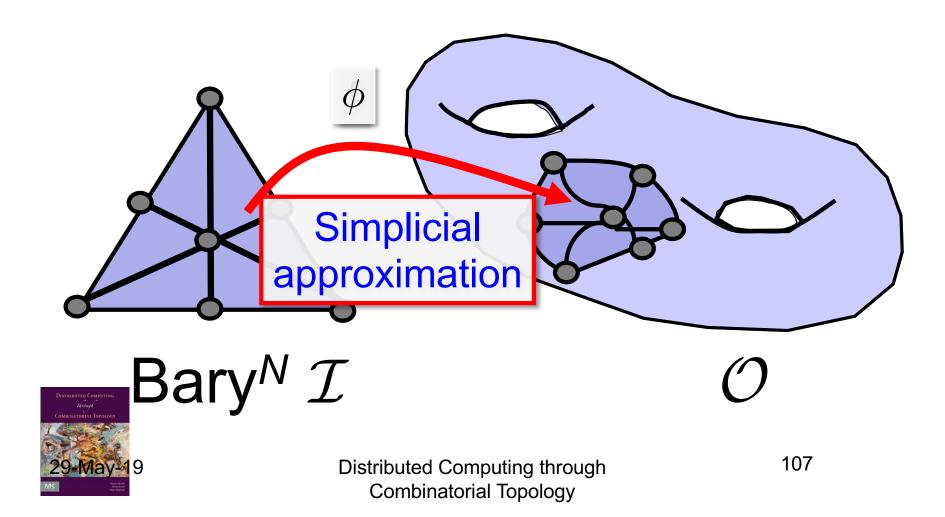
Recall: Simplicial Approximation Theorem

- Given a continuous map $f:|A| \to |B|$
- there is an N such that *f* has a simplicial approximation

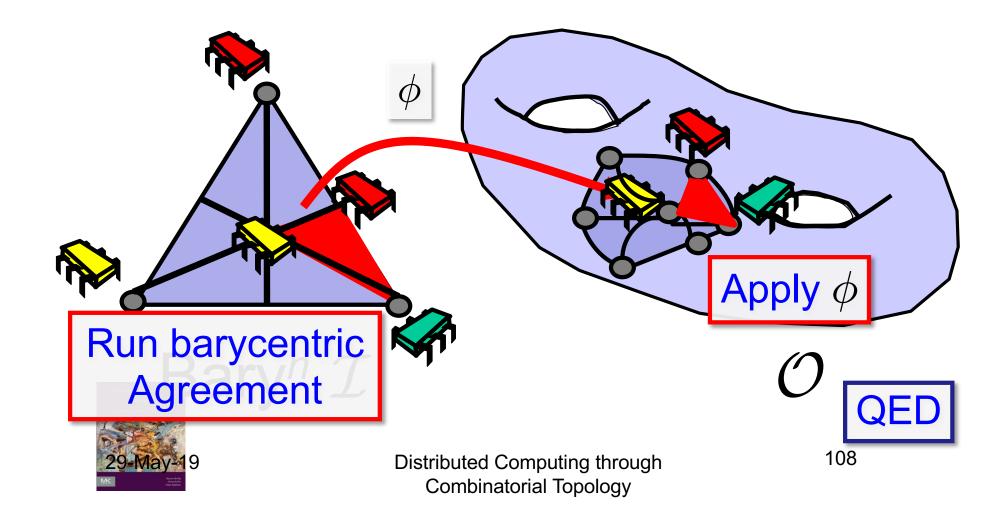
$$\phi: Bary^N A \to B$$

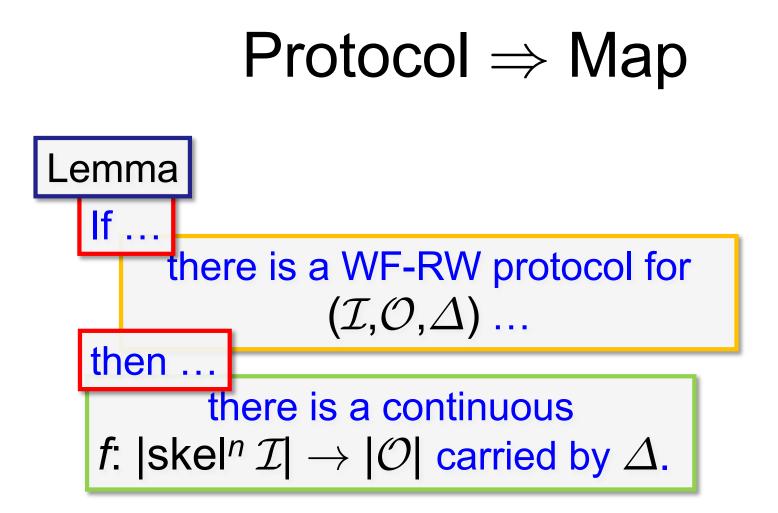
$Map \Rightarrow Protocol$ Hypothesis f Continuous T. Distributed Computing through 106 **Combinatorial Topology**

$Map \Rightarrow Protocol$

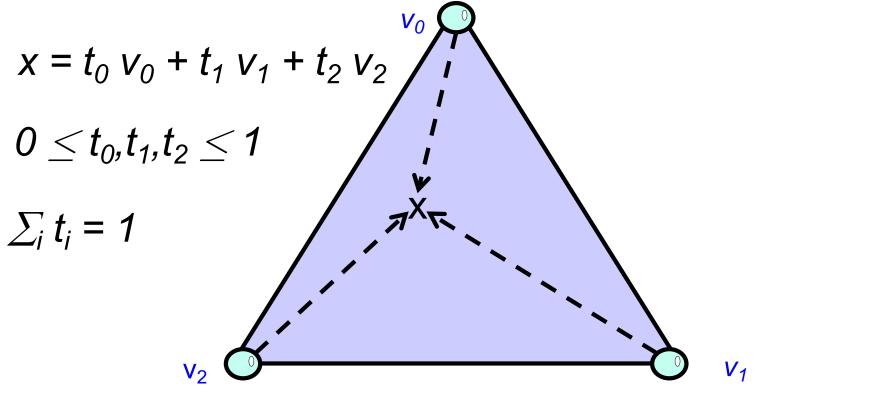


$Map \Rightarrow Protocol$





Recall: Barycentric Coordinates



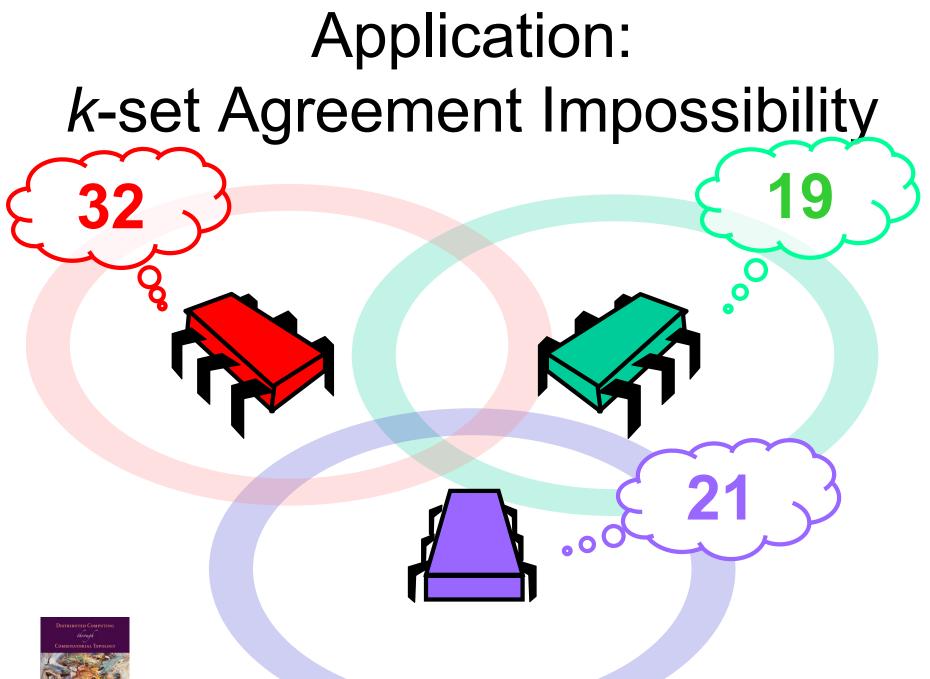
Given a complex C, very point of |C| has a unique representation using barycentric coordinates

$Protocol \Rightarrow Map$

- Bary^N the protocol map
- δ : Bary^N $\mathcal{I} \rightarrow O$ the decision map

$$\delta \circ \operatorname{Bary}^{\mathsf{N}}$$
 is carried by Δ :
 $\forall \sigma \in \mathcal{I}, \ \delta \circ \operatorname{Bary}^{\mathsf{N}}(\sigma) \subseteq \Delta(\sigma)$

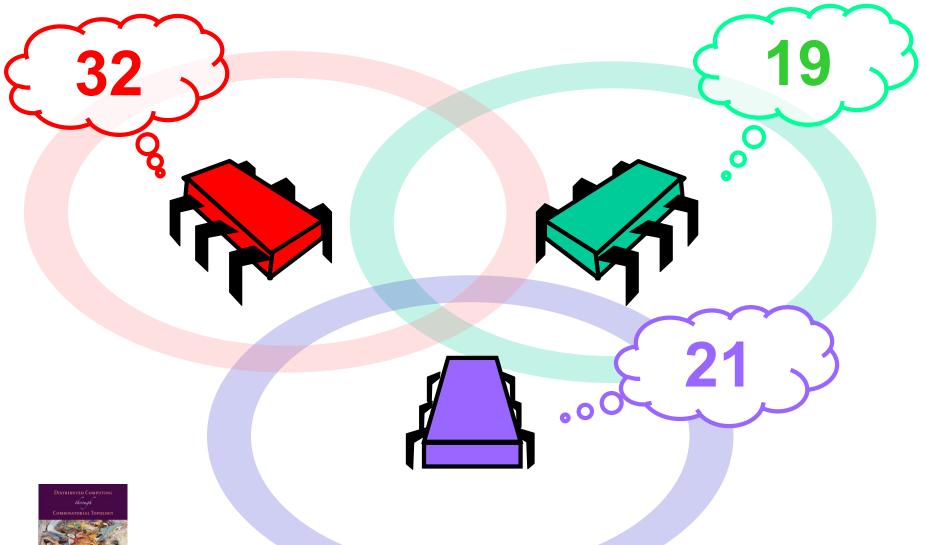
Take
$$\phi = |\delta|$$
: $|Bary^N \mathcal{I}| \rightarrow |O|$
(Barycentric extension of δ to $|Bary^N(\mathcal{I})| = |\mathcal{I}|$)is
carried by Δ :
 $\forall \sigma \in \mathcal{I}, \phi(|\sigma|) \subseteq |\delta \circ Bary^N(\sigma)| \subseteq |\Delta(\sigma)|$



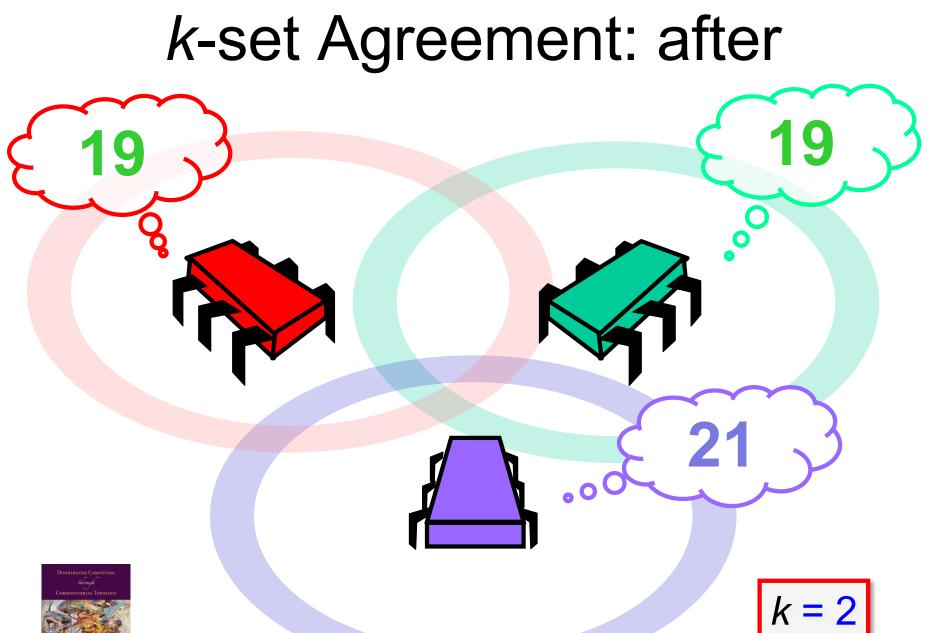
La constante de la constante de

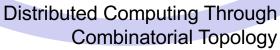
Distributed Computing Through Combinatorial Topology

k-set Agreement: before



Distributed Computing Through Combinatorial Topology

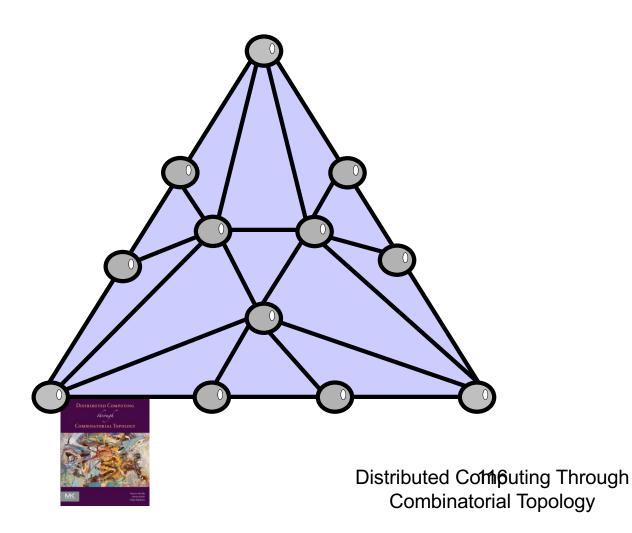


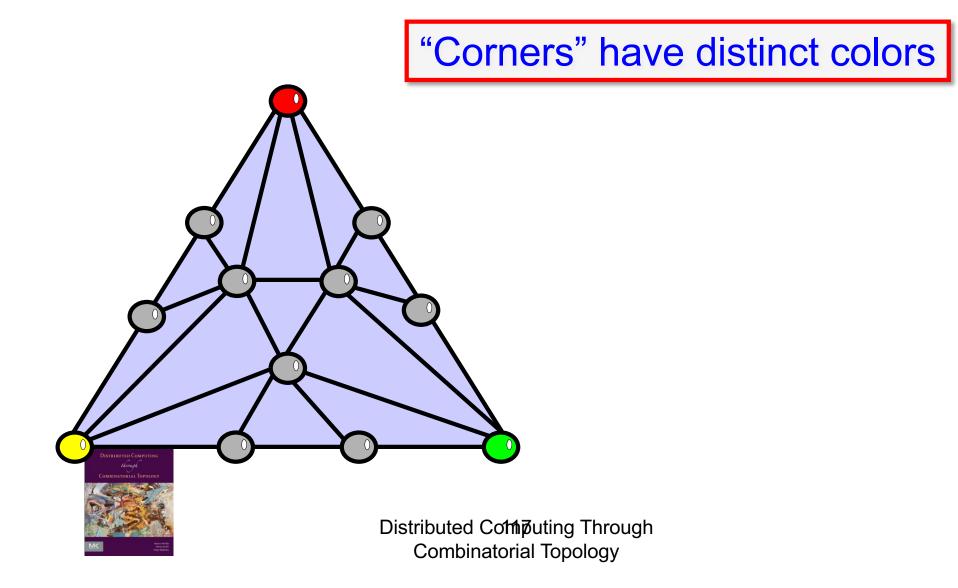


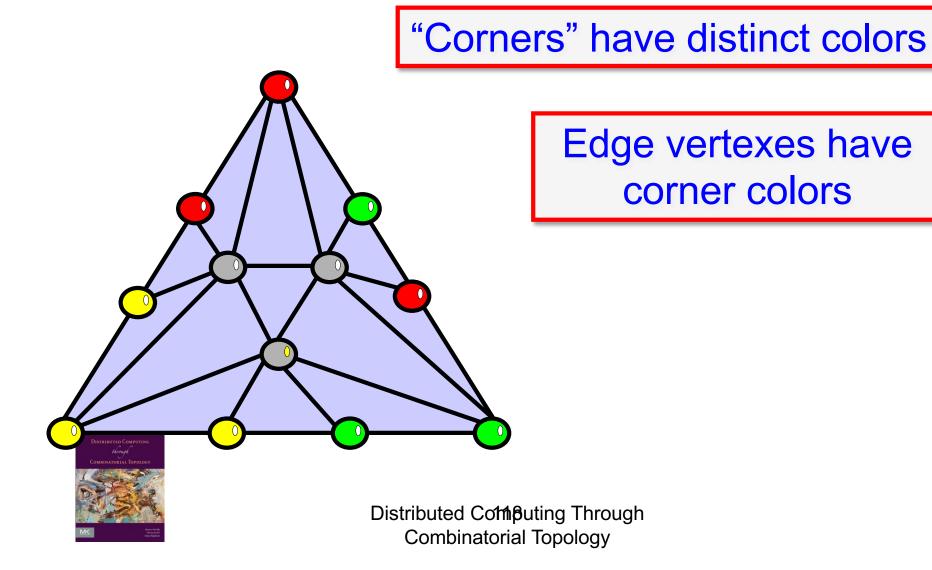
Theorem

No layered (n+1)-process IS protocol can solve *n*-set agreement

Distributed Computing Through Combinatorial Topology







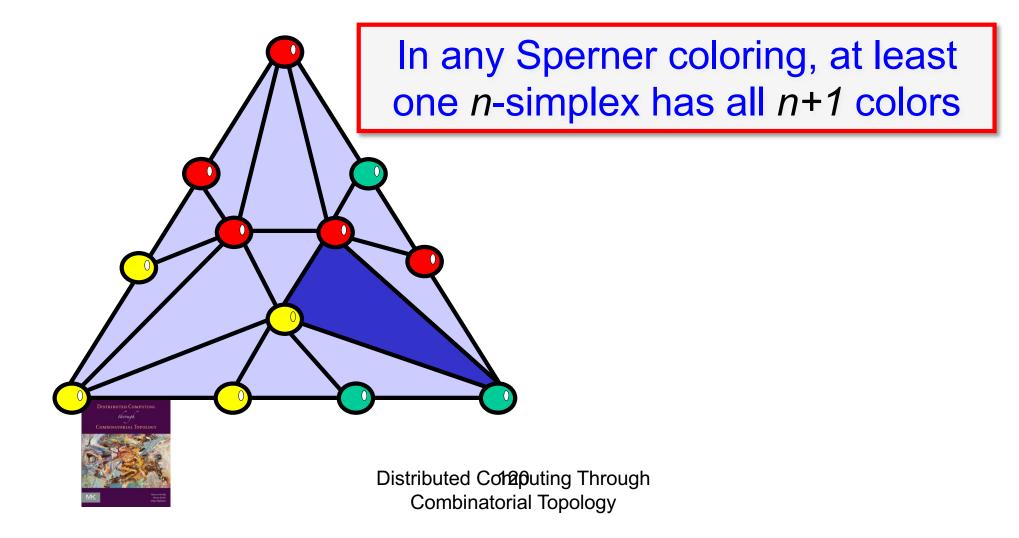
"Corners" have distinct colors

Edge vertexes have corner colors

Every vertex has face boundary colors

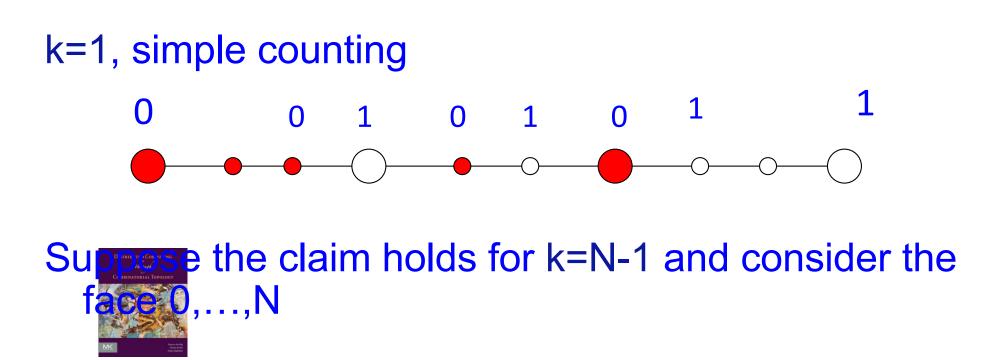
Distributed Computing Through **Combinatorial Topology**

Sperner's Lemma



Sperner's lemma: inductive step

- Claim: for each k=0,...,N, face 0,...,k contains an odd number of k-dimensional simplexes colored 0,...,k
- By induction: k=0 trivial (exactly one)

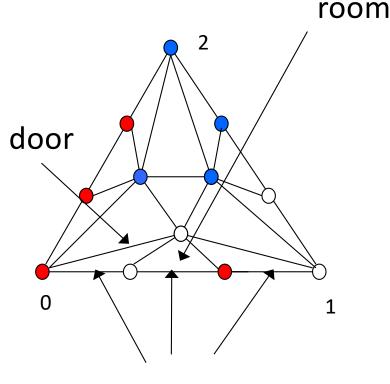


Sperner: rooms and doors

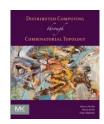
Each N-simplex is a room

An (N-1)-dimensional face (a subset of N-1 vertices) of a room colored in 0,...,N-1 is a door

A door is an exit if it is contained in the face 0,...,N-1

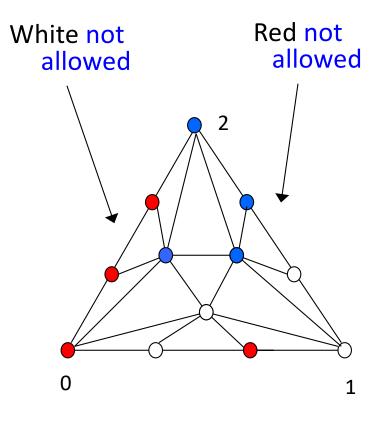


exit door



Sperner: exit doors

- No face other than 0,...,N-1 can contain simplexes colored 0,...,N-1
- Exits may only be contained in 0,...,N-1



Sperner: passages and dead ends

A room with a door is either:

- A passage (has two doors), or
- A dead end (has no doors)

There must be an odd number of dead ends (fully cetored simplexes)

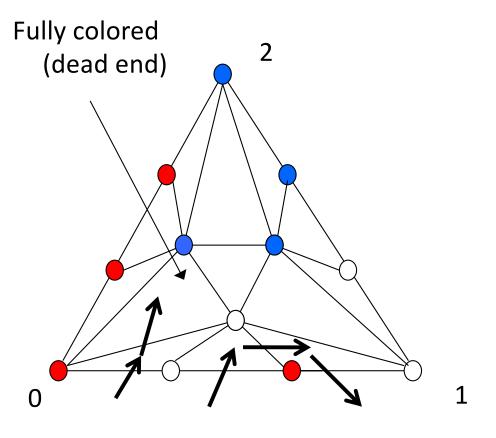
dead end passage

Sperner's: counting fully colored rooms

- Start with an exit and walk through the doors
- Two cases are possible:
- Stop in a dead end
- Reach another exit

The number of exit doors is odd =>

The total number of fully colored rooms is odd



No Layered IS Protocol can solve n-Set Agreement

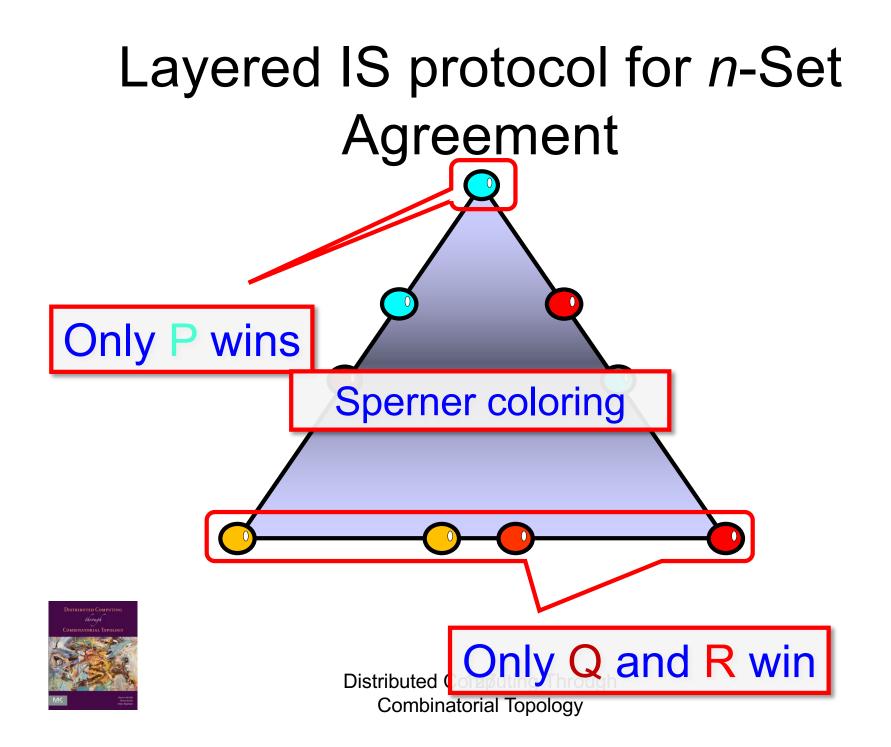
Assume protocol exists:

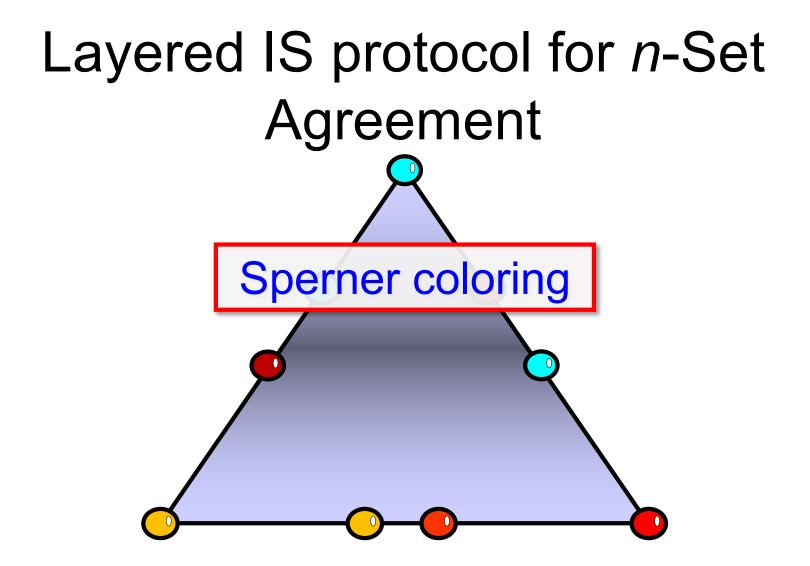
Run layered IS protocol

Choose value based on vertex

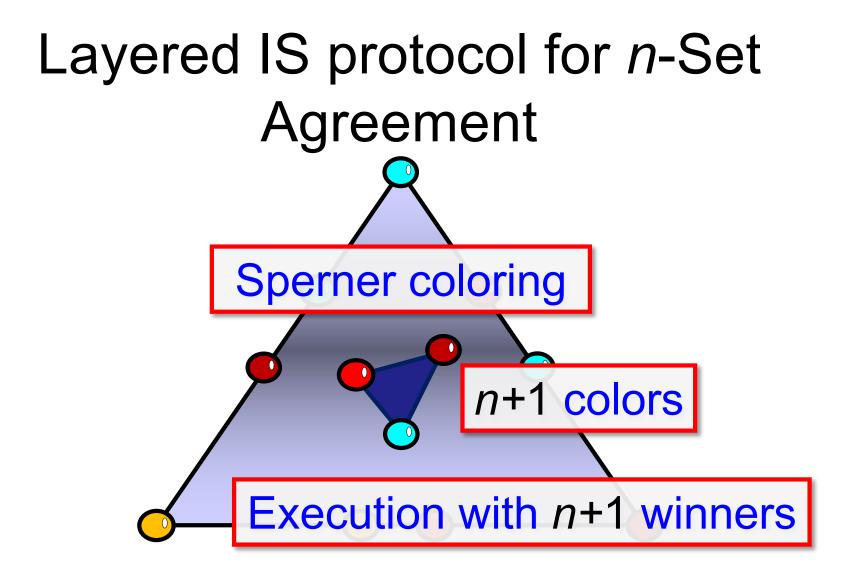
Idea: Color vertex with "winning" process name ...

Distributed Cohaputing Through Combinatorial Topology





Distributed Cohaputing Through Combinatorial Topology



Contradiction: at most *n* can win

Distributed Cohaputing Through Combinatorial Topology

This work is licensed under a Creative Commons Attribution-

ShareAlike 2.5 License.

- You are free:
 - **to Share** to copy, distribute and transmit the work
 - to Remix to adapt the work
- Under the following conditions:
 - Attribution. You must attribute the work to "Distributed Computing through Combinatorial Topology" (but not in any way that suggests that the authors endorse you or your use of the work).
 - Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.
- For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to
 - http://creativecommons.org/licenses/by-sa/3.0/.
- Any of the above conditions can be waived if you get permission from the copyright holder.
- Nothing in this license impairs or restricts the author's moral rights.

