Elements of combinatorial topology

MITRO207, P4, 2019

Road Map

Simplicial Complexes

Standard Constructions

Carrier Maps

Connectivity

Subdivisions

Road Map

Simplicial Complexes

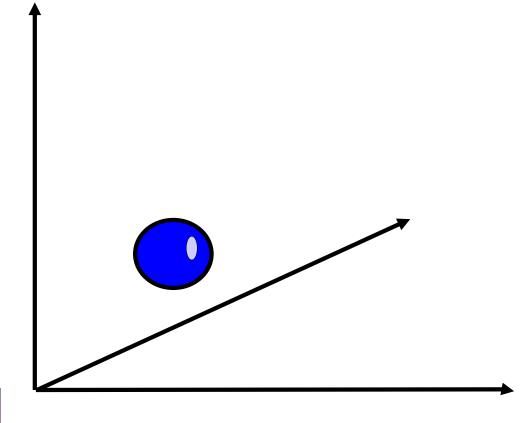
Standard Constructions

Carrier Maps

Connectivity

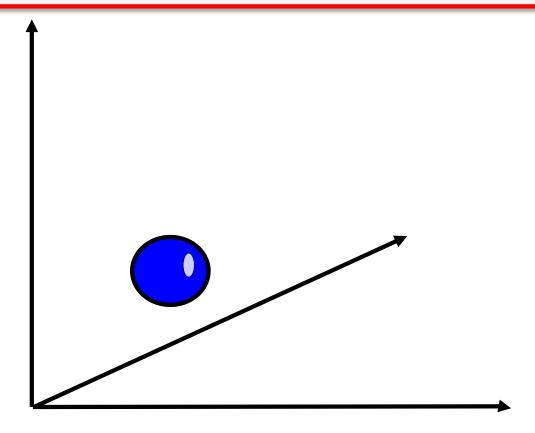
Subdivisions

A Vertex



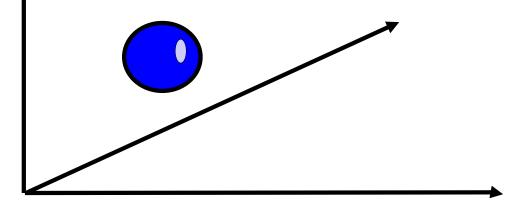
A Vertex

Combinatorial: an element of a set.

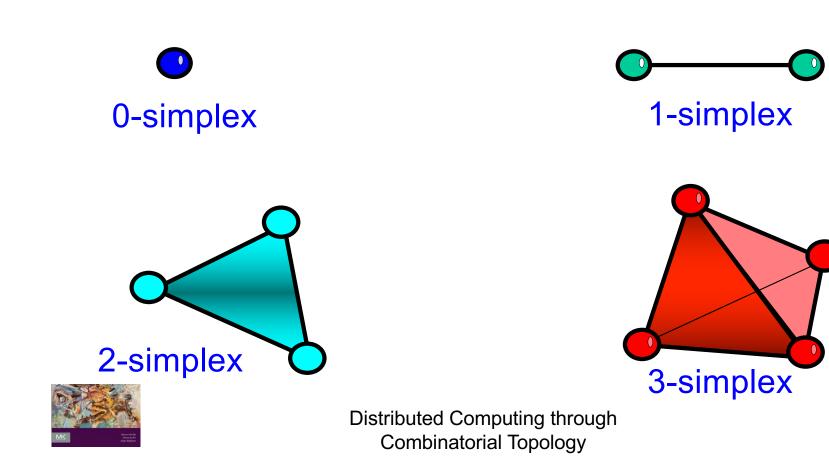


A Vertex

Geometric: a point in highdimensional Euclidean Space

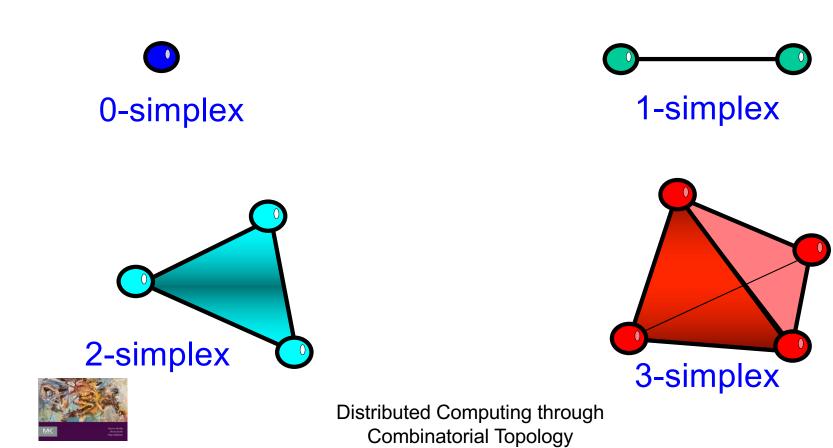


Simplexes

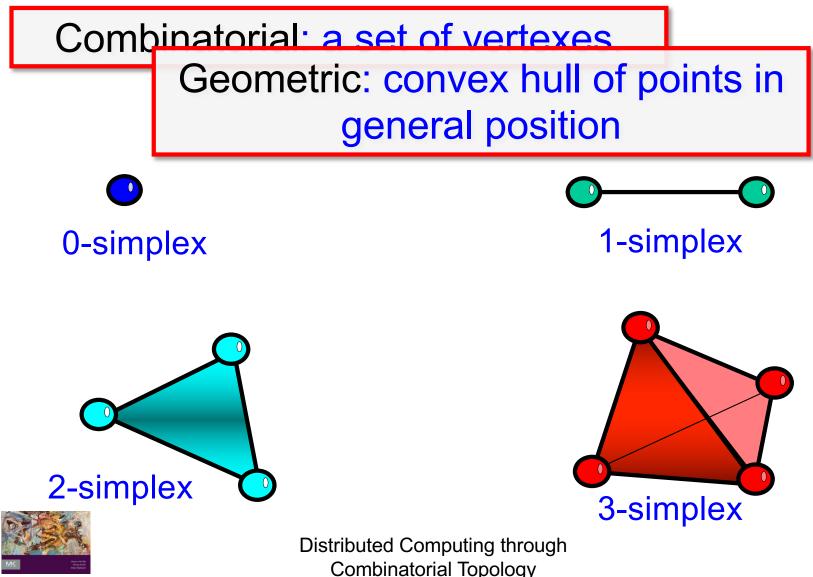


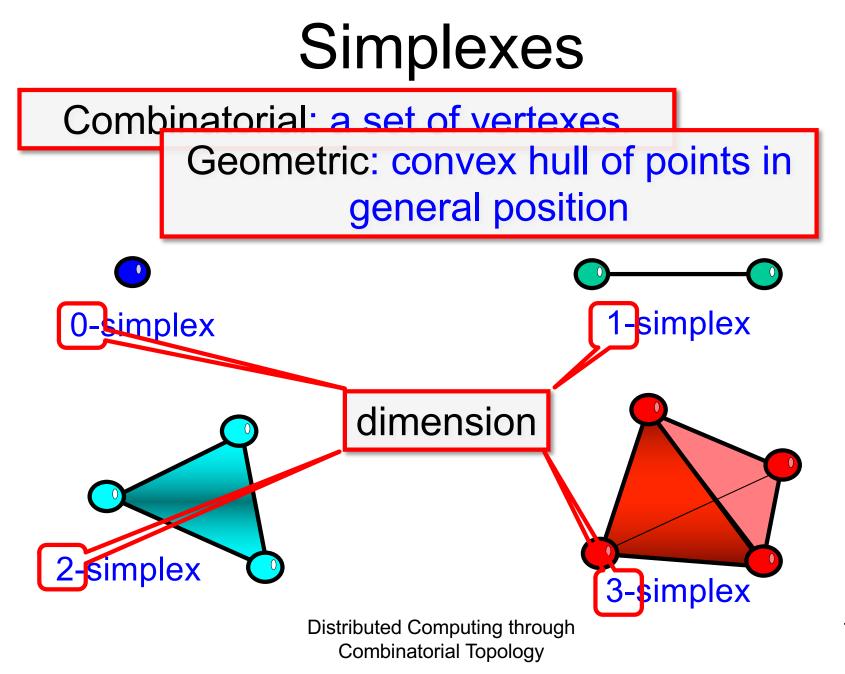
Simplexes

Combinatorial: a set of vertexes.

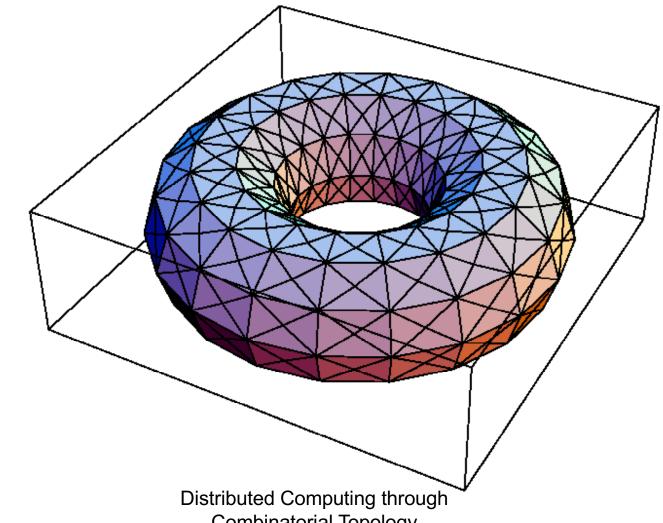


Simplexes



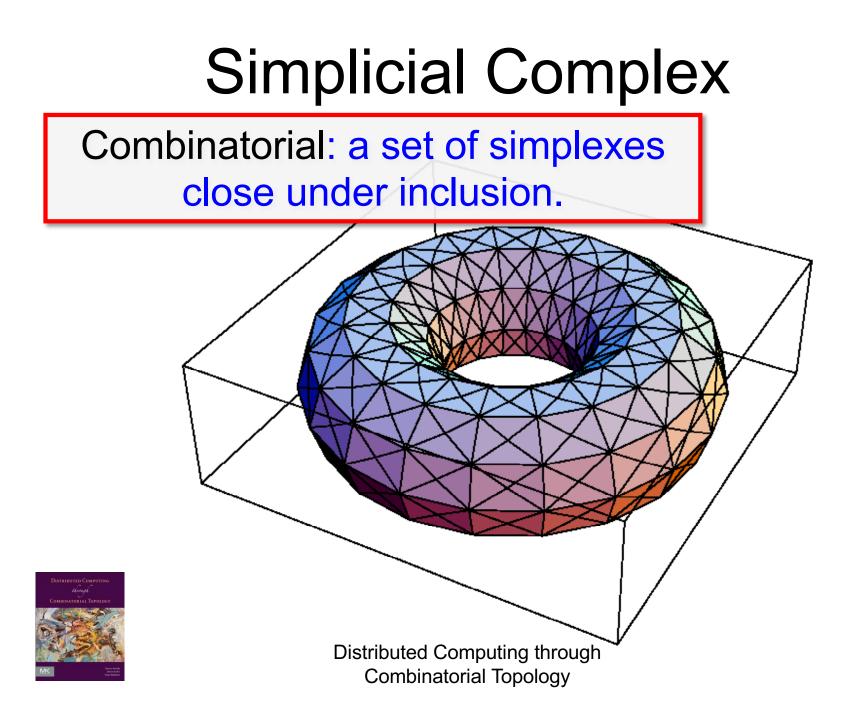


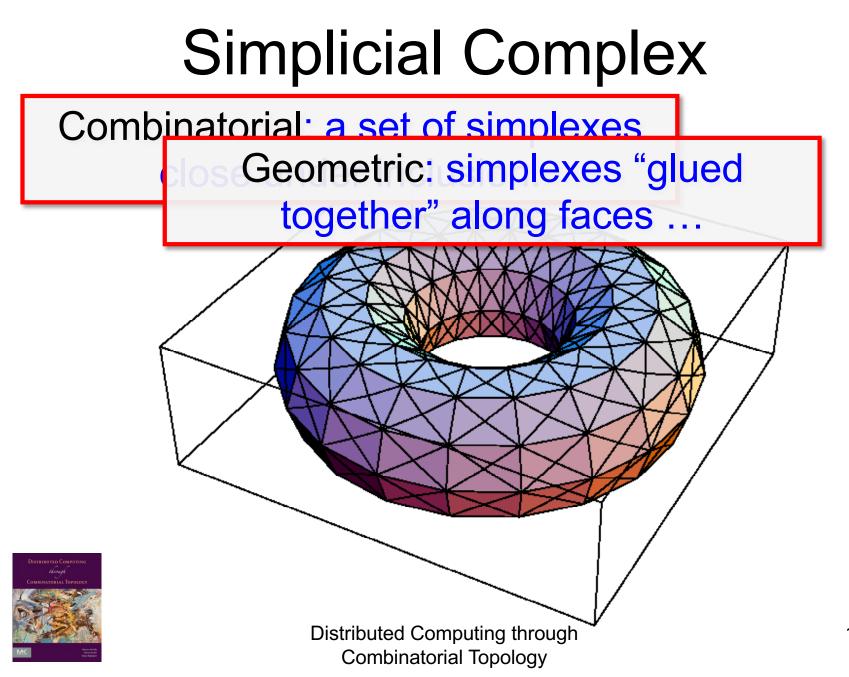
Simplicial Complex

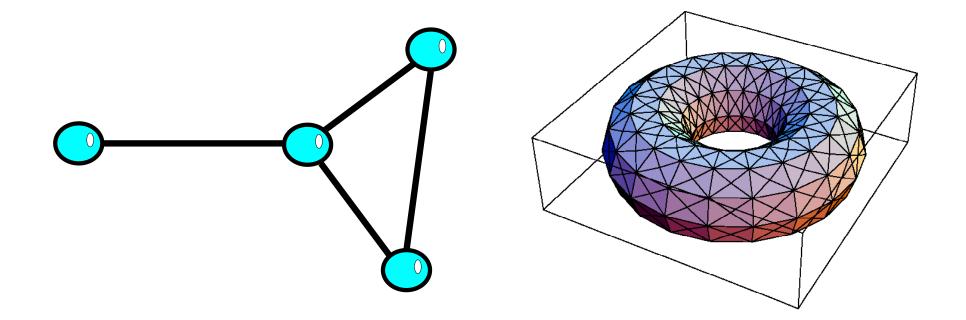


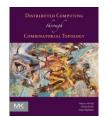


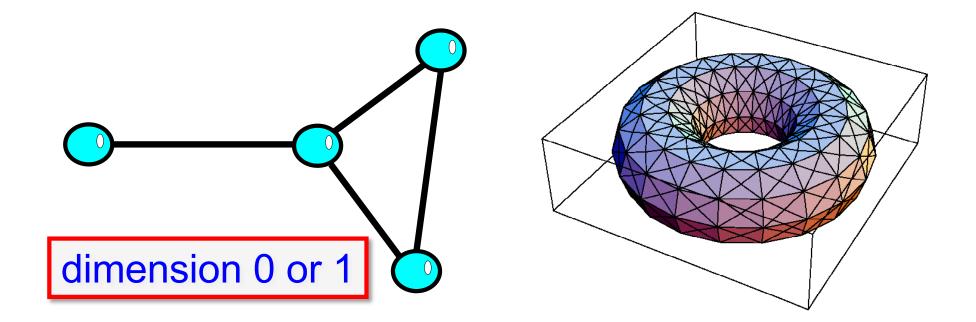
Combinatorial Topology

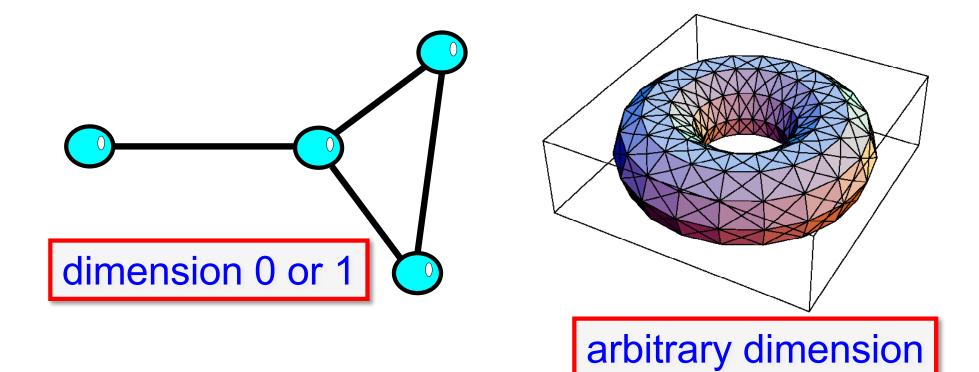


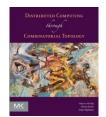


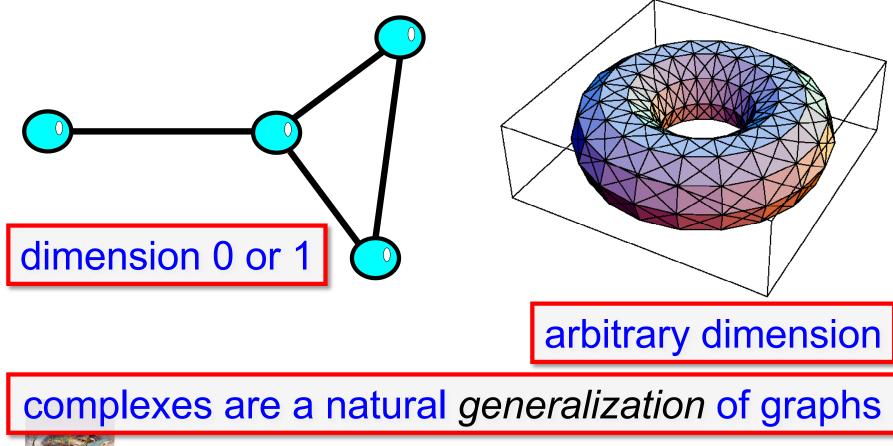




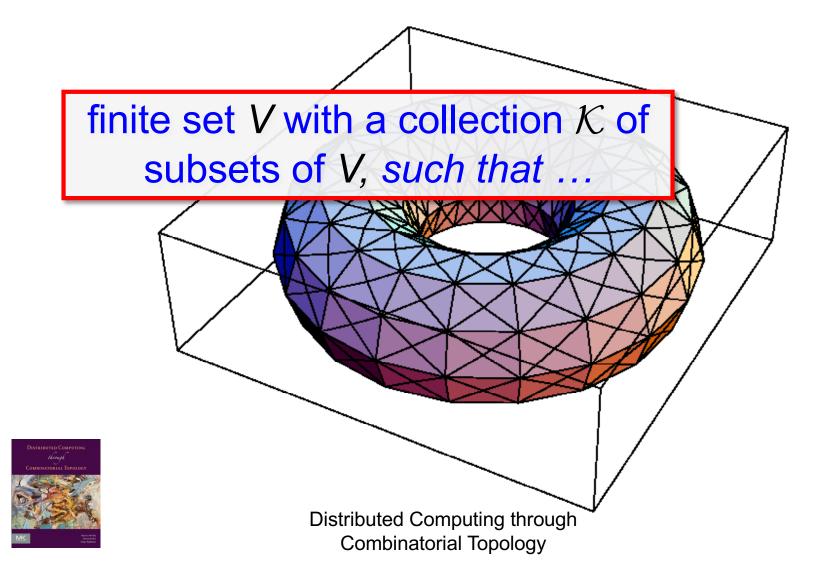






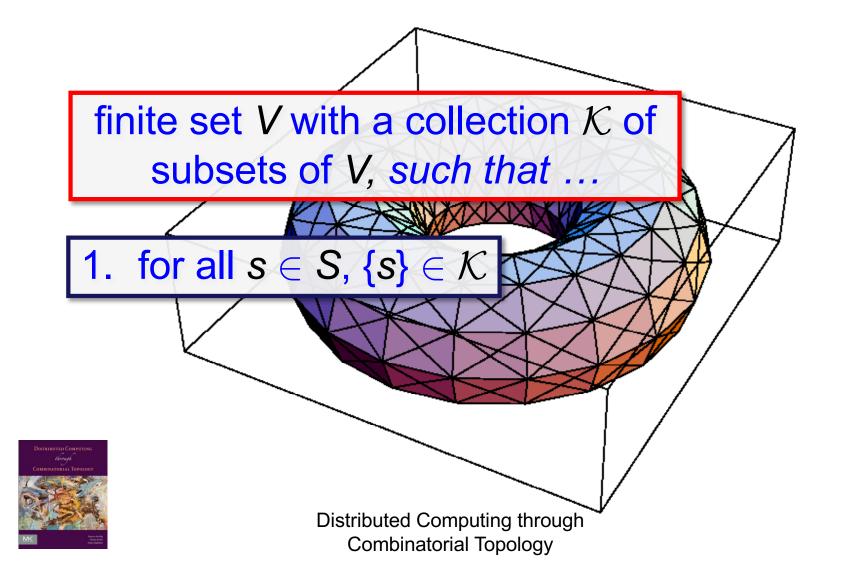


Abstract Simplicial Complex

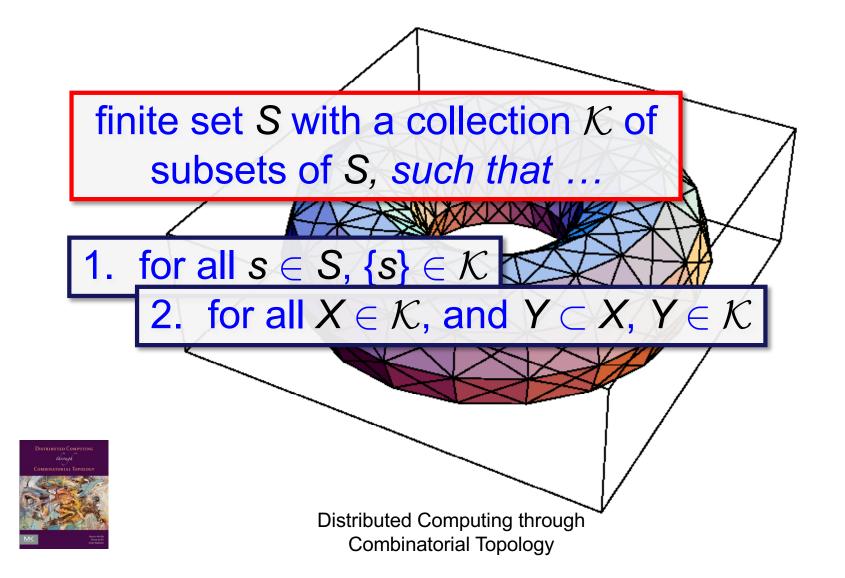


18

Abstract Simplicial Complex

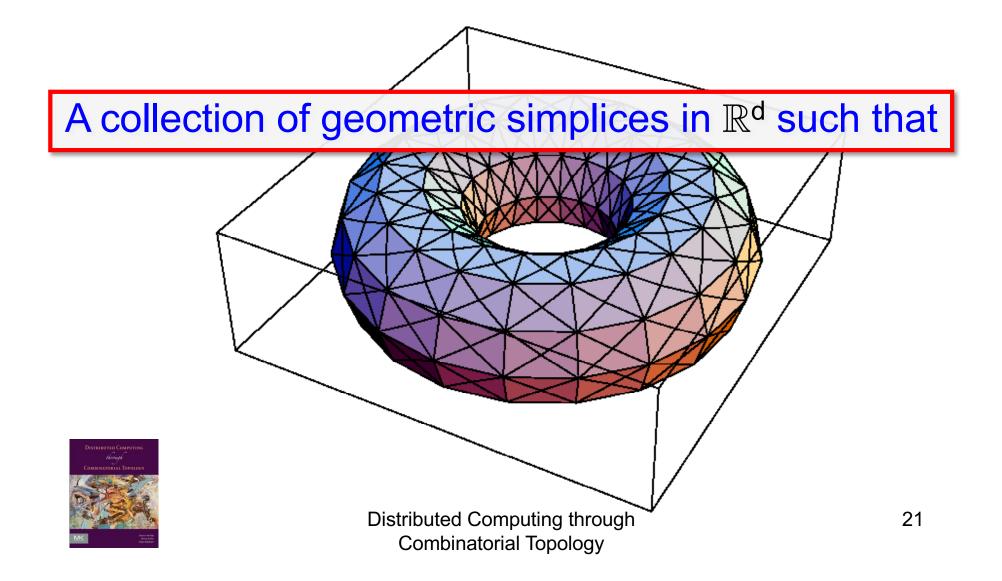


Abstract Simplicial Complex

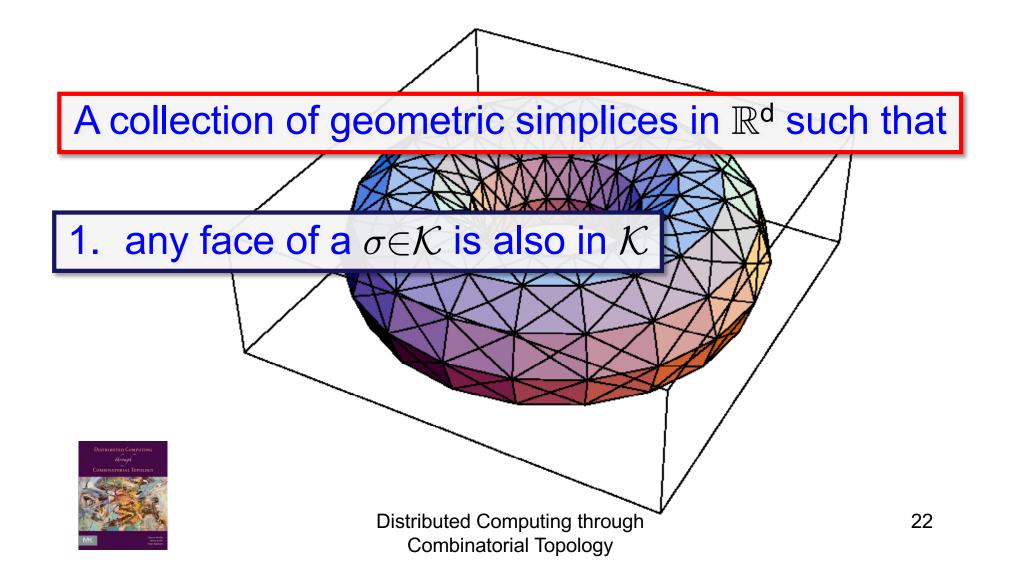


20

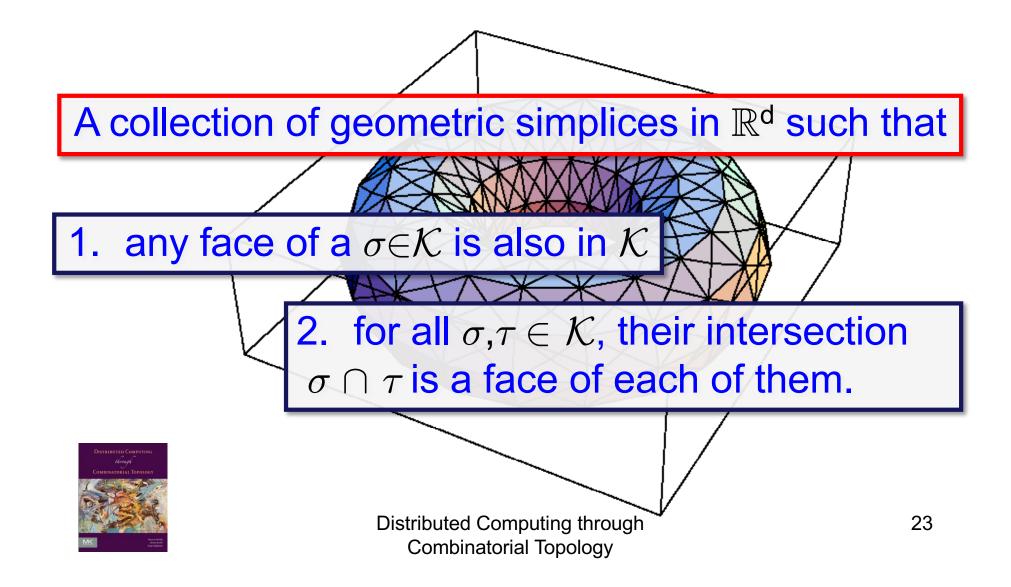
Geometric Simplicial Complex



Geometric Simplicial Complex



Geometric Simplicial Complex

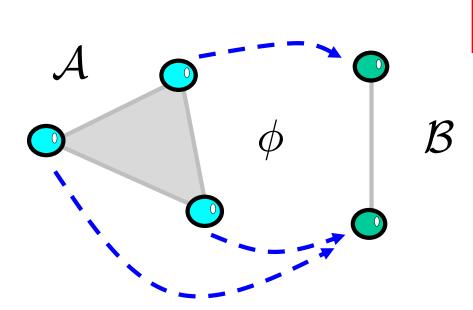


Abstract vs Geometric Complexes

Abstract vs Geometric Complexes

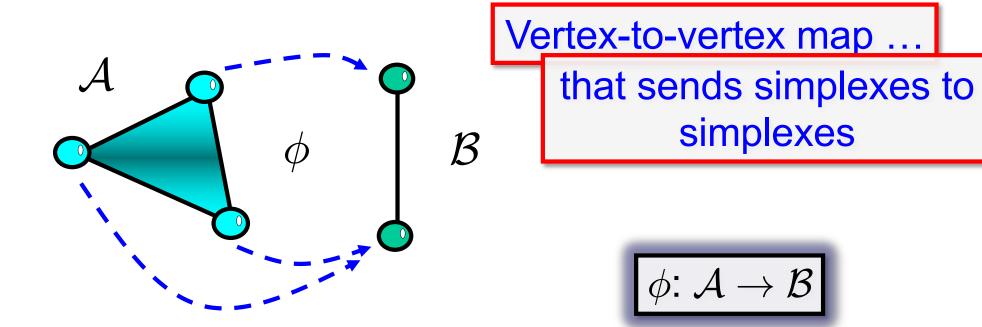
Abstract vs Geometric Complexes

Simplicial Maps



Vertex-to-vertex map ...

Simplicial Map



Road Map

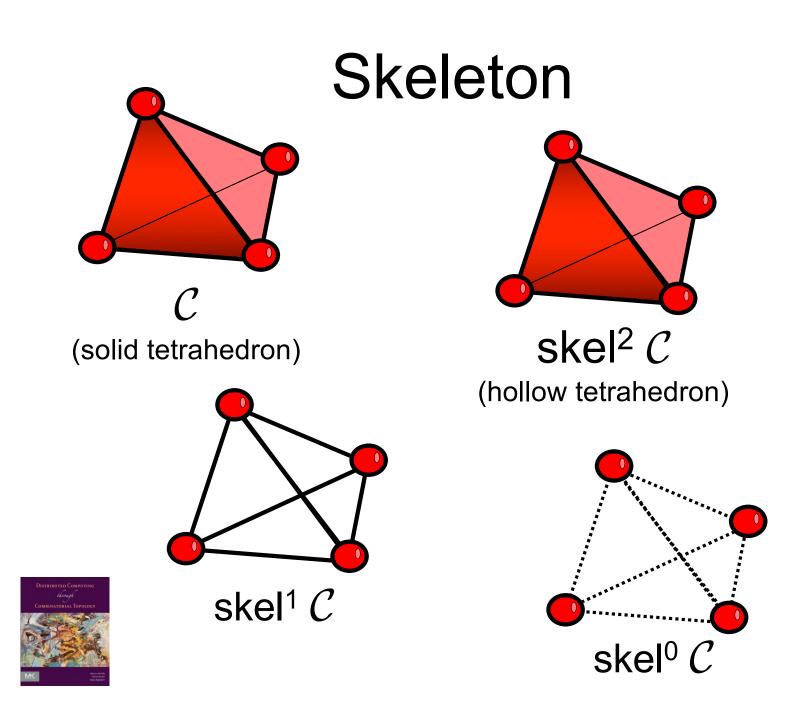
Simplicial Complexes

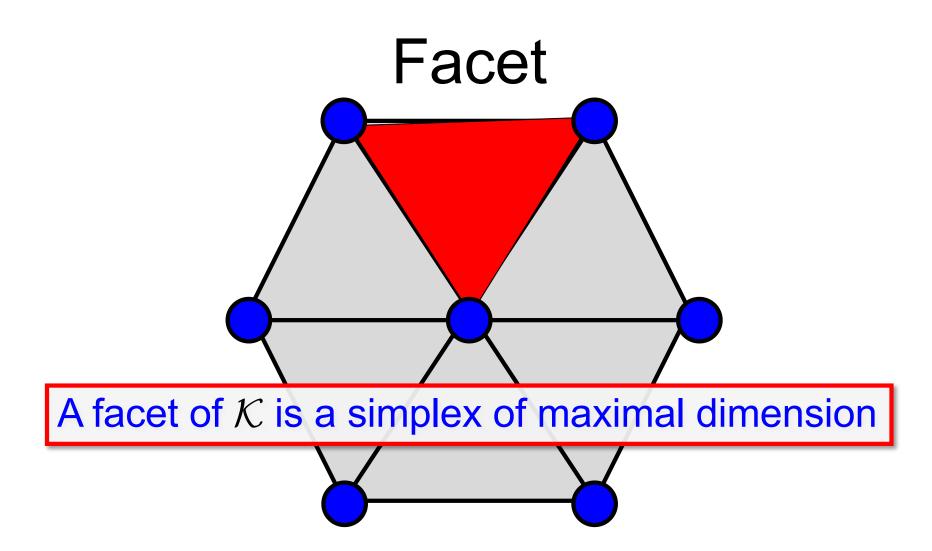
Standard Constructions

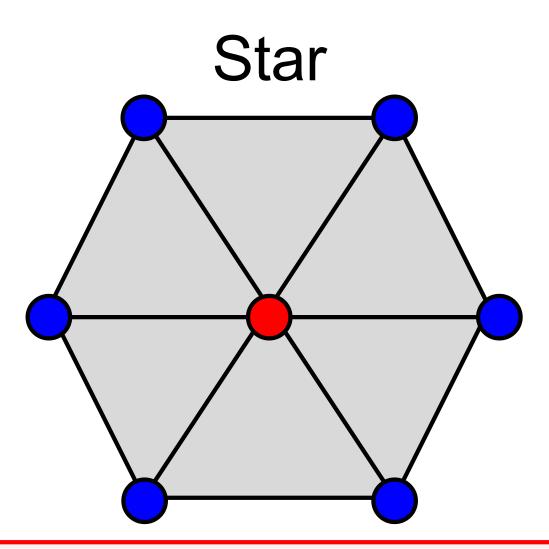
Carrier Maps

Connectivity

Subdivisions



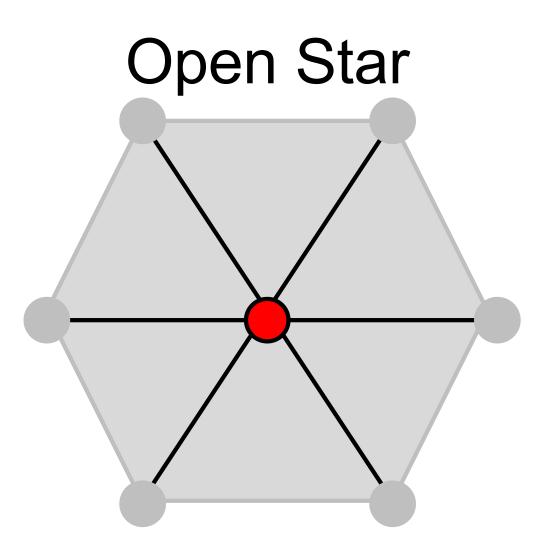




Star(σ , \mathcal{K}) is the complex of facets of \mathcal{K} containing σ

Distributed Computing through Combinatorial Topology 32

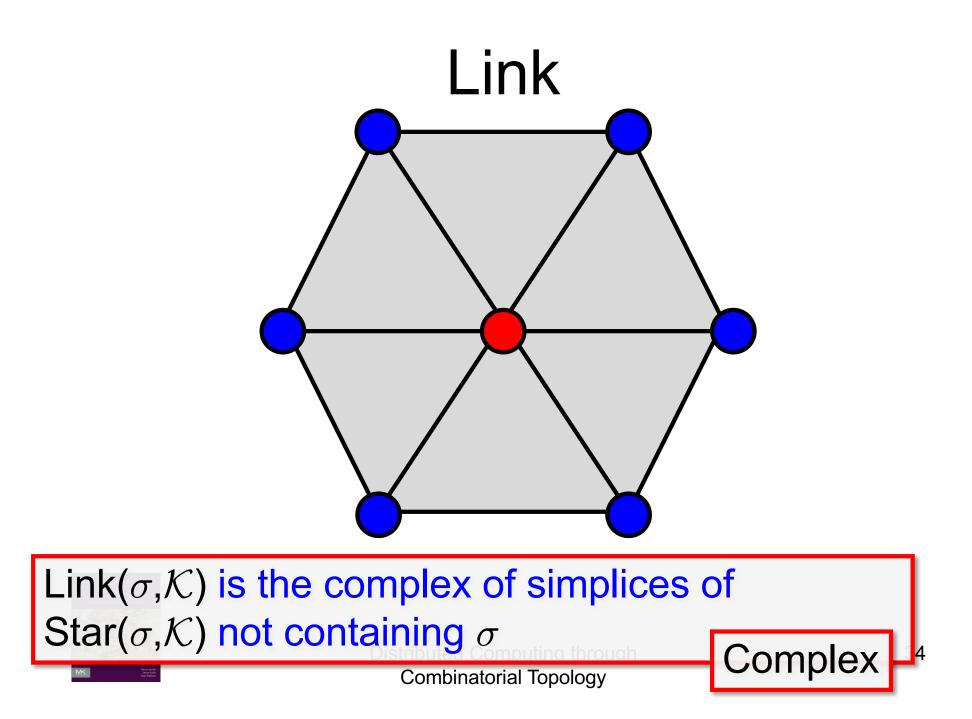
Complex



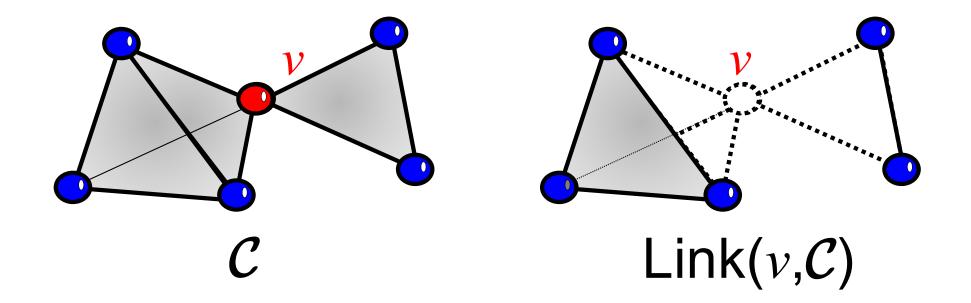
Star^o(σ , \mathcal{K}) union of interiors of simplexes containing σ

Distributed Computing through Combinatorial Topology 33

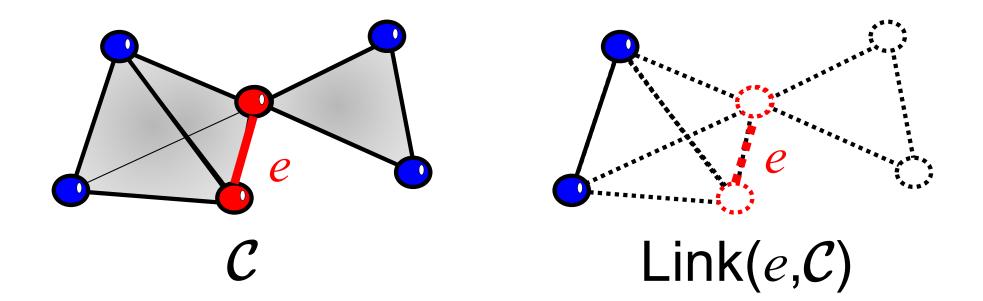
Point Set



More Links



More Links



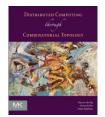
Join

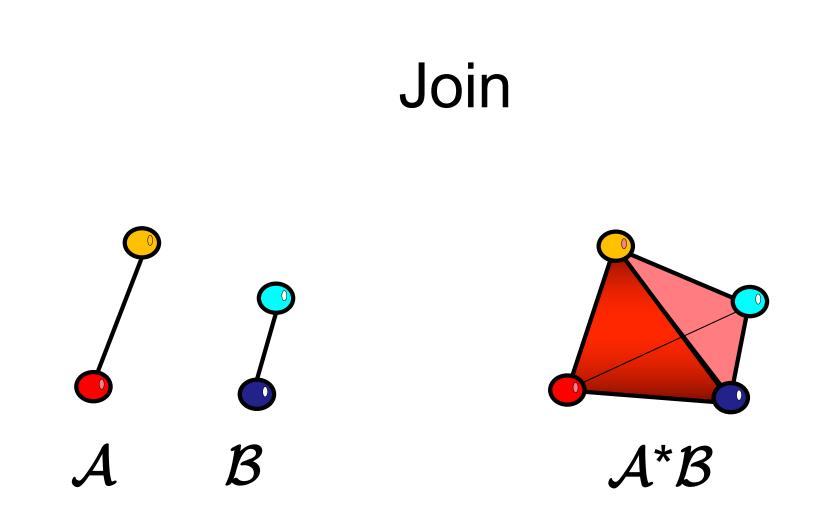
Let \mathcal{A} and \mathcal{B} be complexes with disjoint sets of vertices

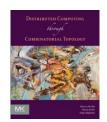
their join $\mathcal{A}^*\mathcal{B}$ is the complex

with vertices $V(\mathcal{A}) \cup V(\mathcal{B})$

and simplices $\alpha \cup \beta$, where $\alpha \in A$, and $\beta \in B$.







Road Map

Simplicial Complexes

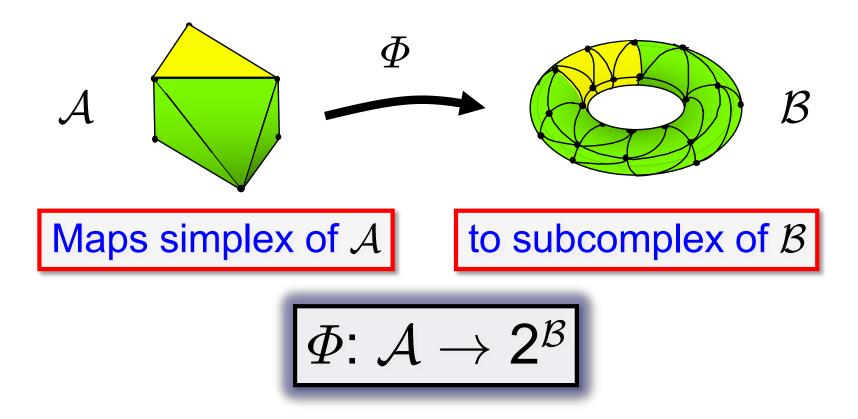
Standard Constructions

Carrier Maps

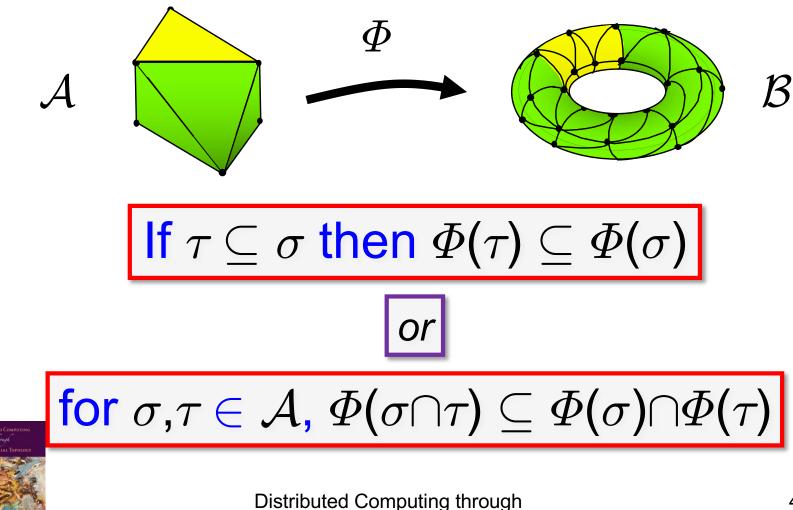
Connectivity

Subdivisions

Carrier Map

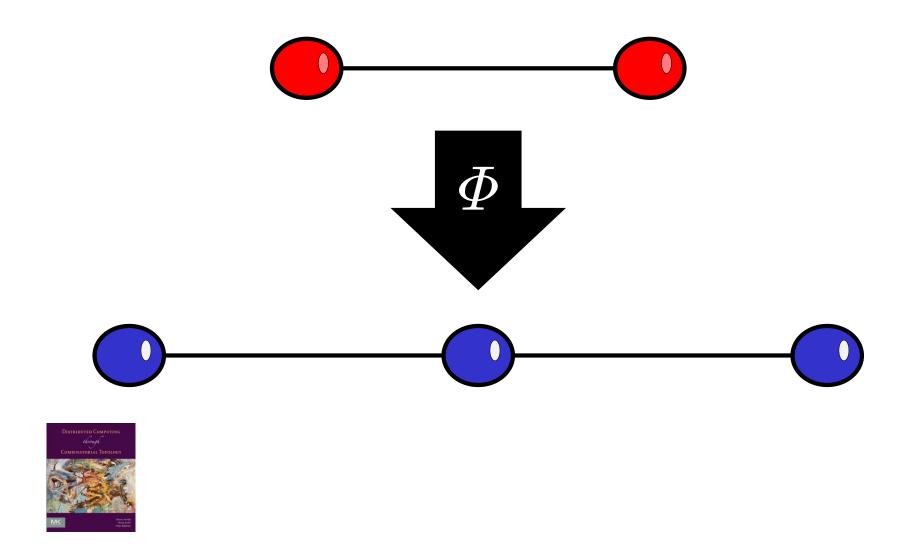


Carrier Maps are Monotonic



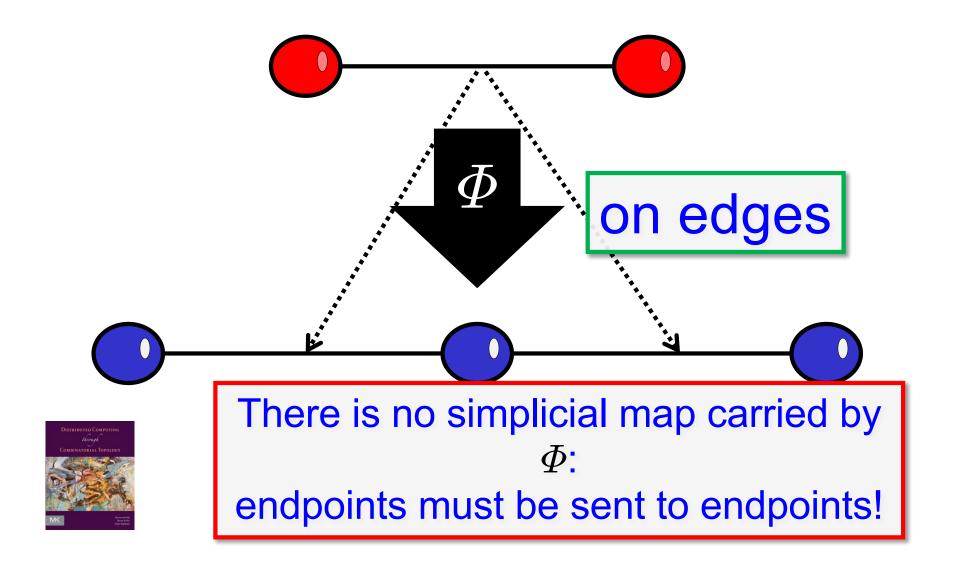
Combinatorial Topology

Example

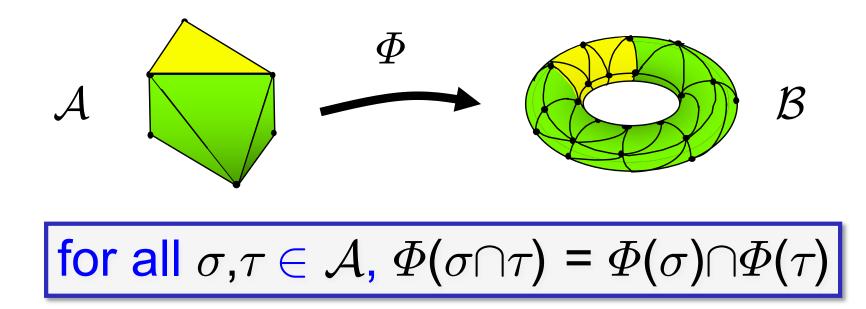


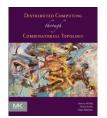
Example ${\it \Phi}$ on vertices

Example

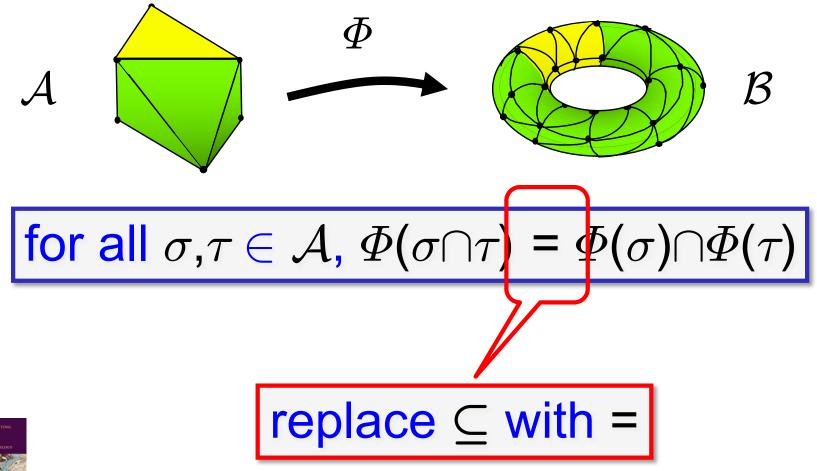


Strict Carrier Maps

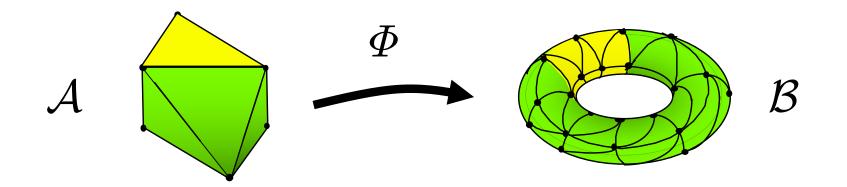




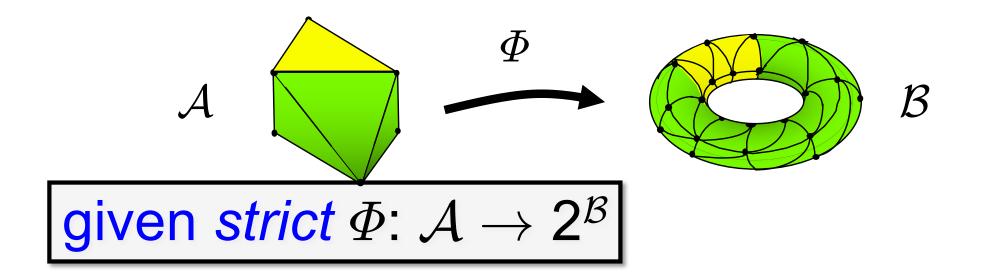
Strict Carrier Maps

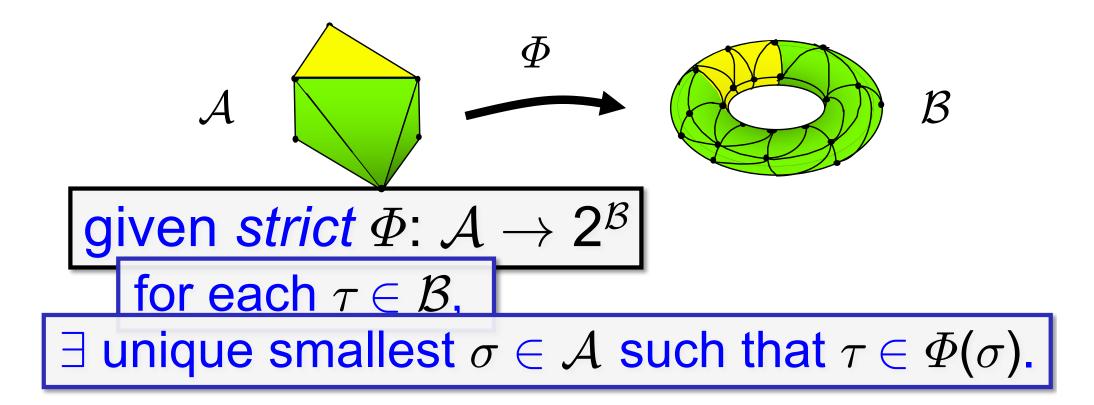


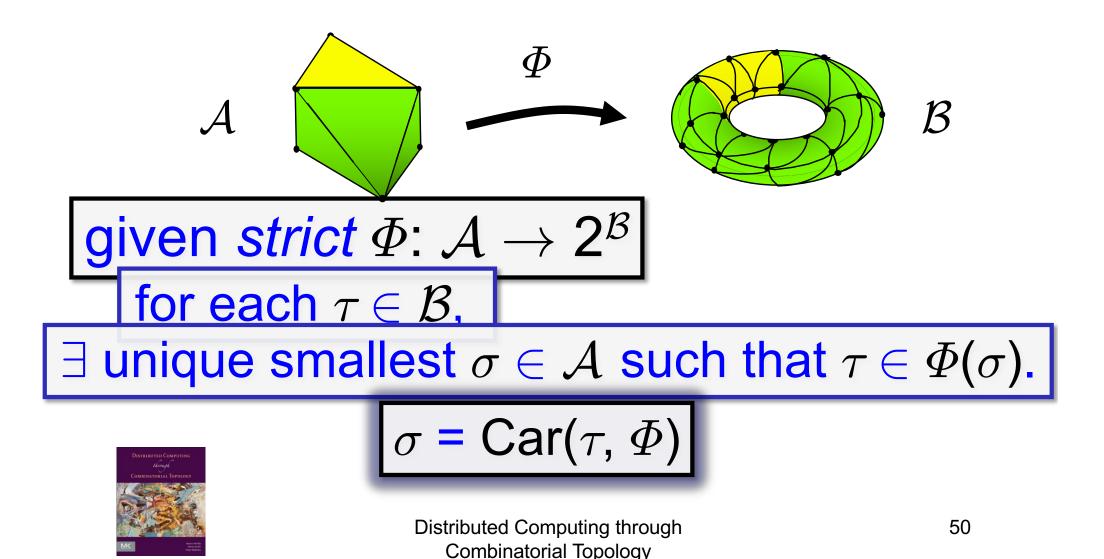
Rigid Carrier Maps

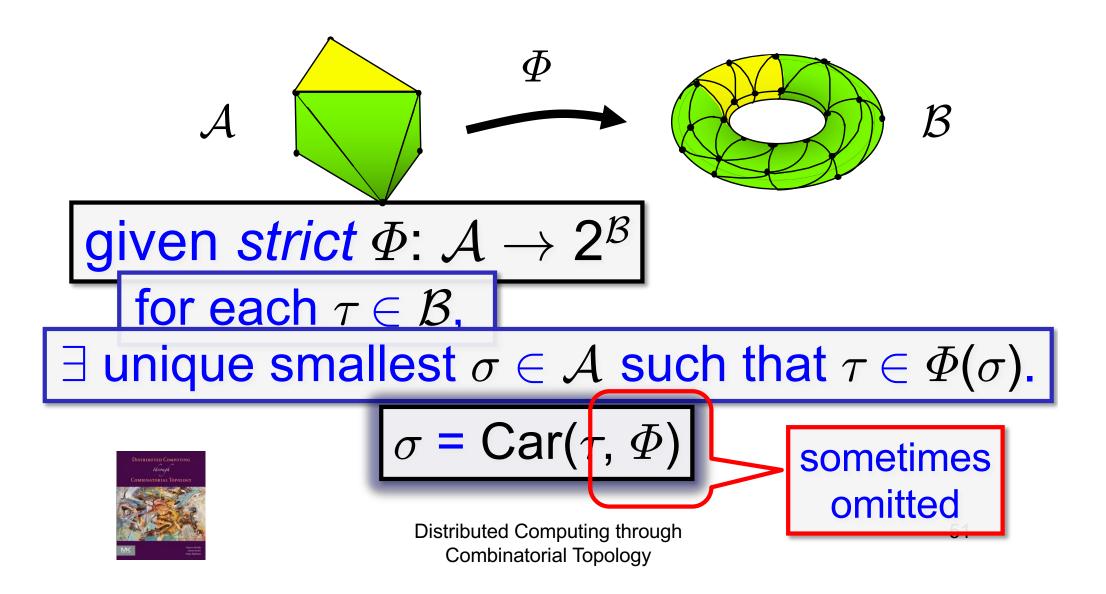


for $\sigma \in \mathcal{A}$, $\Phi(\sigma)$ is pure of dimension dim σ



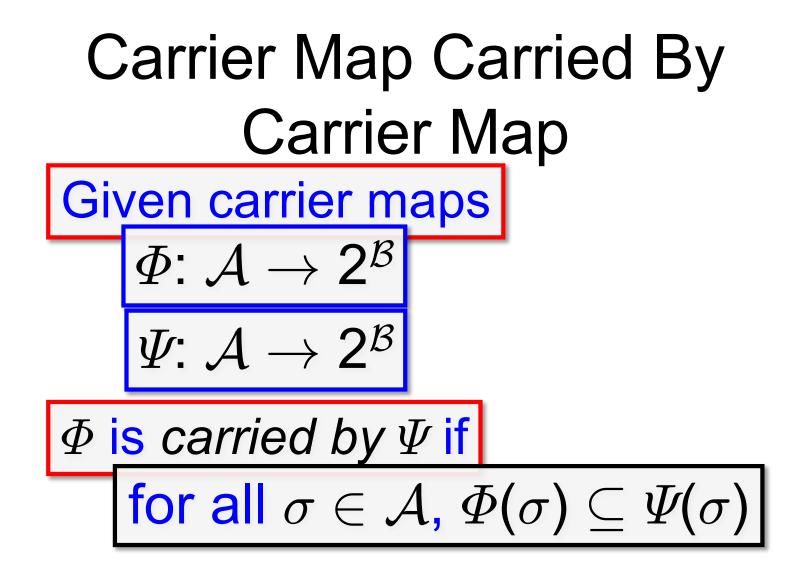


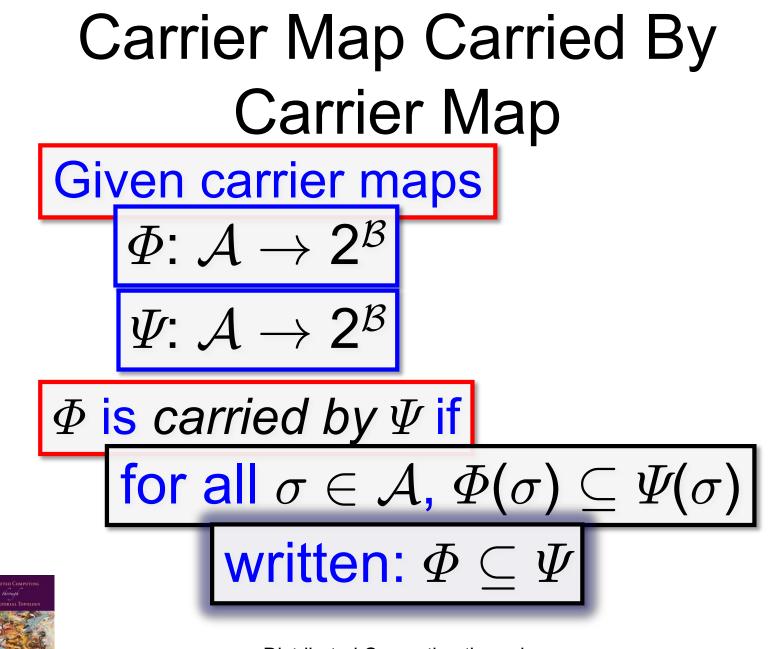


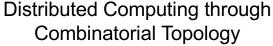


Carrier Map Carried By Carrier Map Given carrier maps

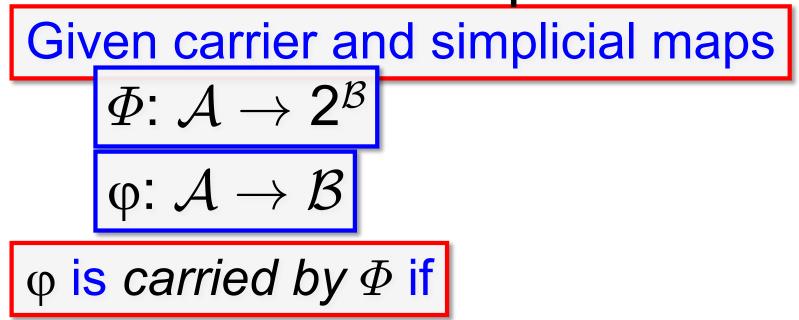
$$arPhi:\mathcal{A}
ightarrow 2^{\mathcal{B}}$$
 $arPhi:\mathcal{A}
ightarrow 2^{\mathcal{B}}$

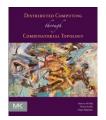


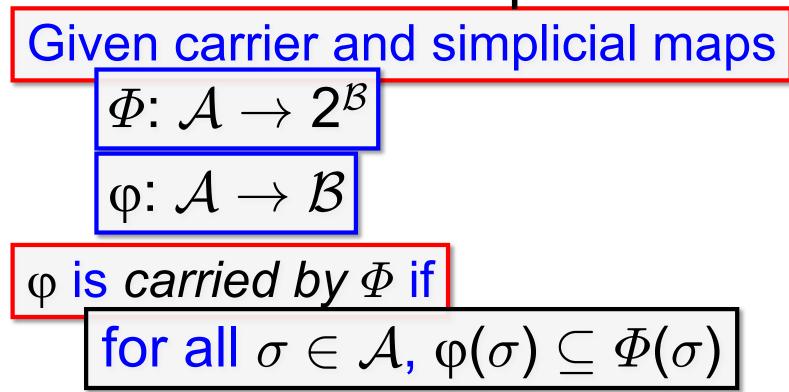


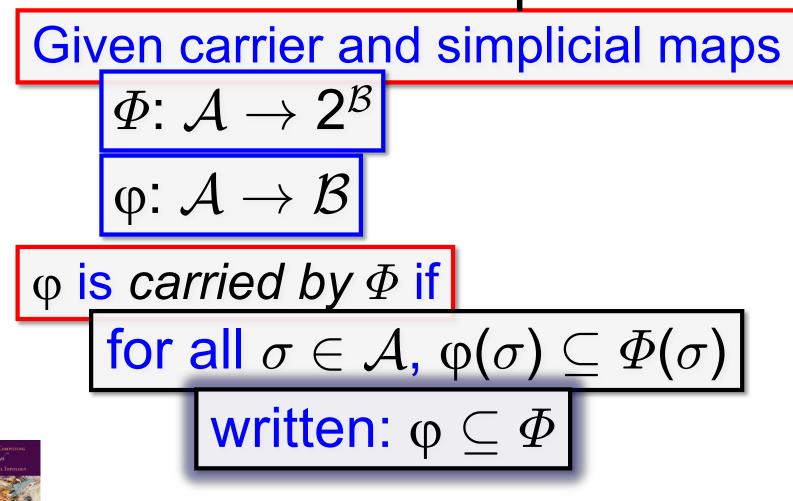


$$arPhi:\mathcal{A}
ightarrow 2^{\mathcal{B}} \ \phi:\mathcal{A}
ightarrow \mathcal{B}$$

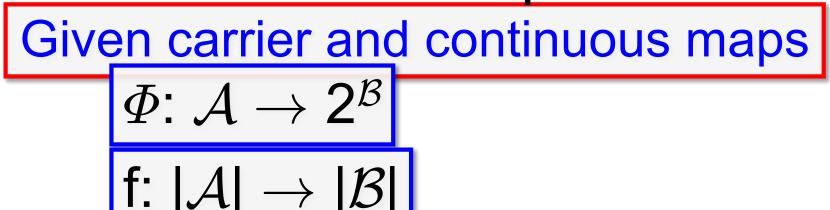




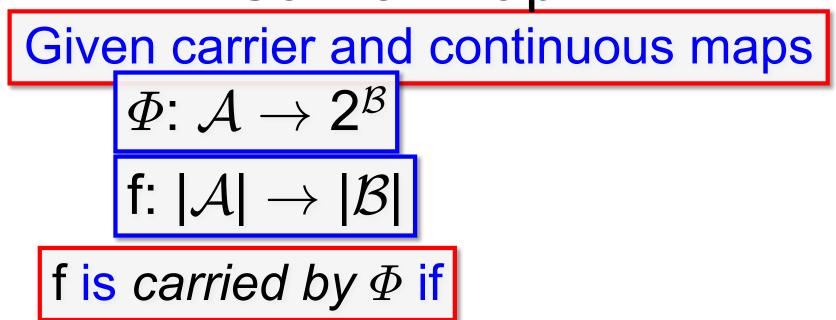




Continuous Map Carried By Carrier Map

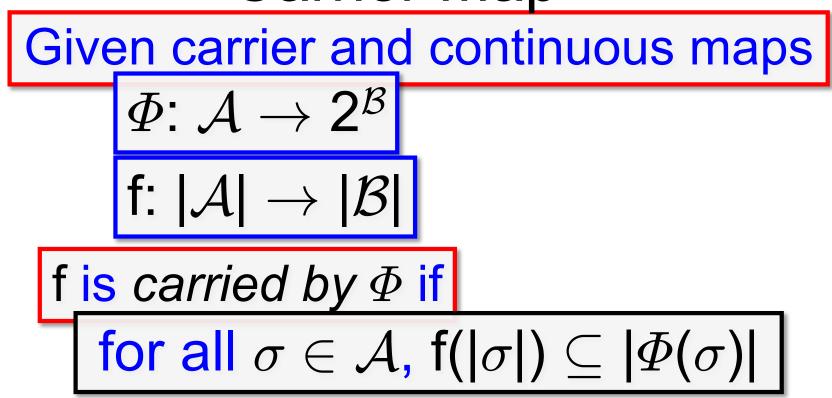


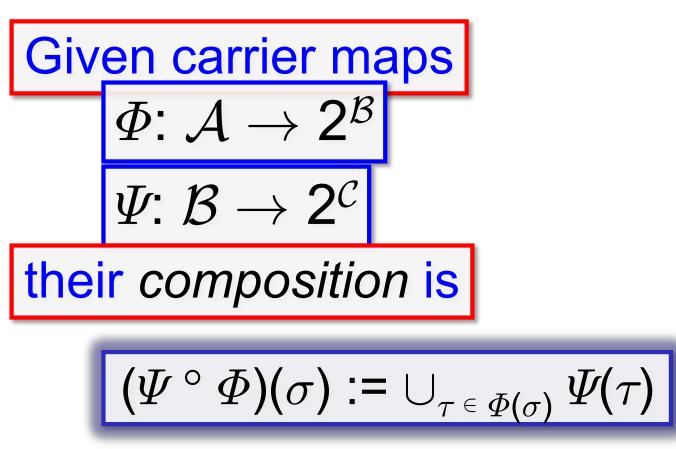
Continuous Map Carried By Carrier Map



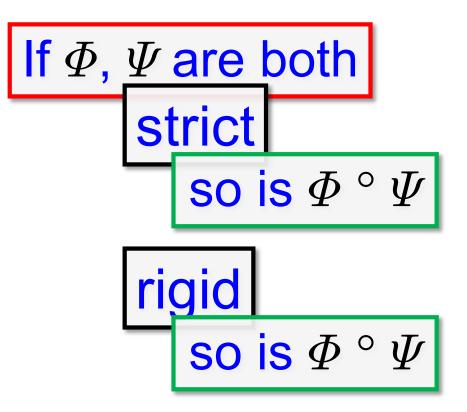


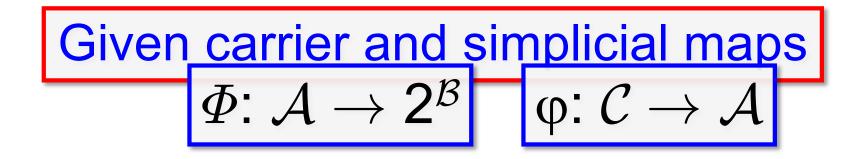
Continuous Map Carried By Carrier Map

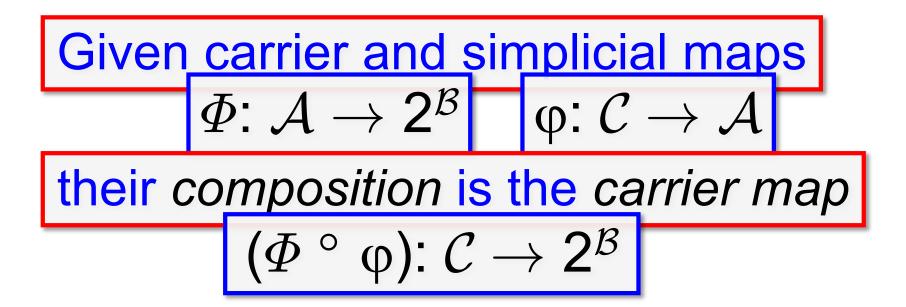


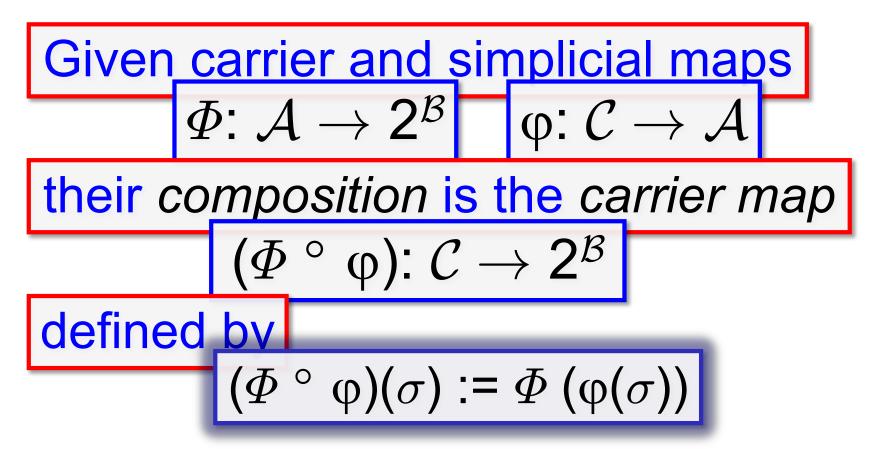


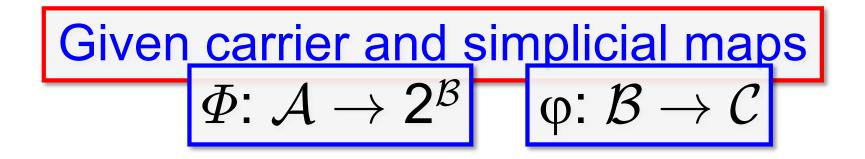
Theorem

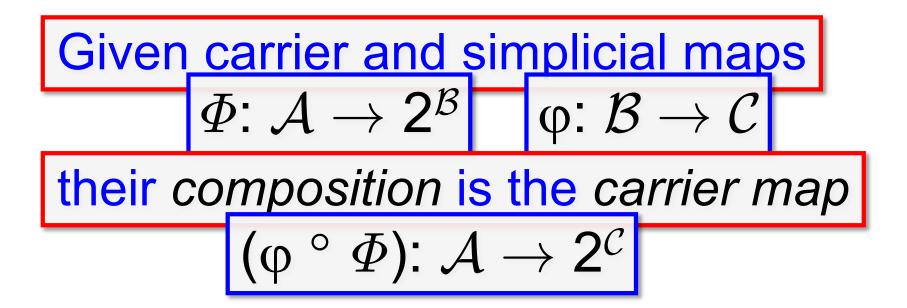


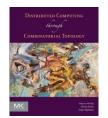


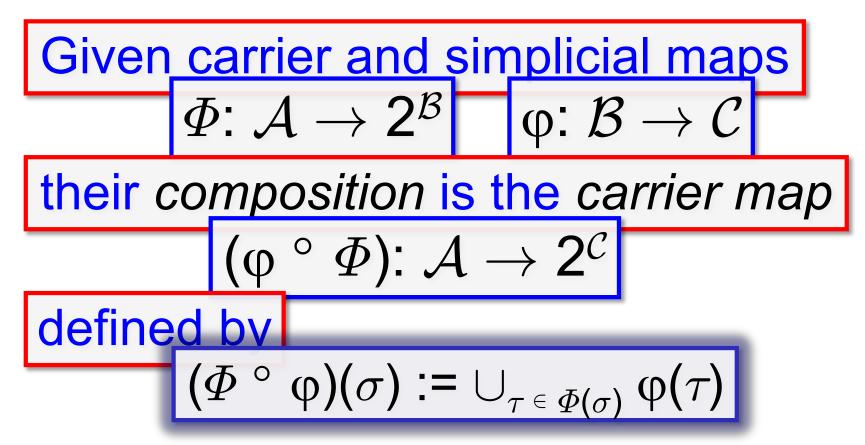




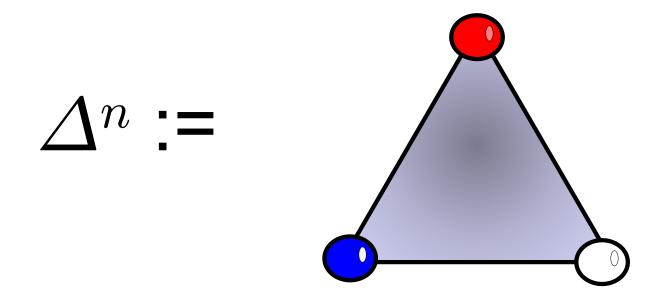


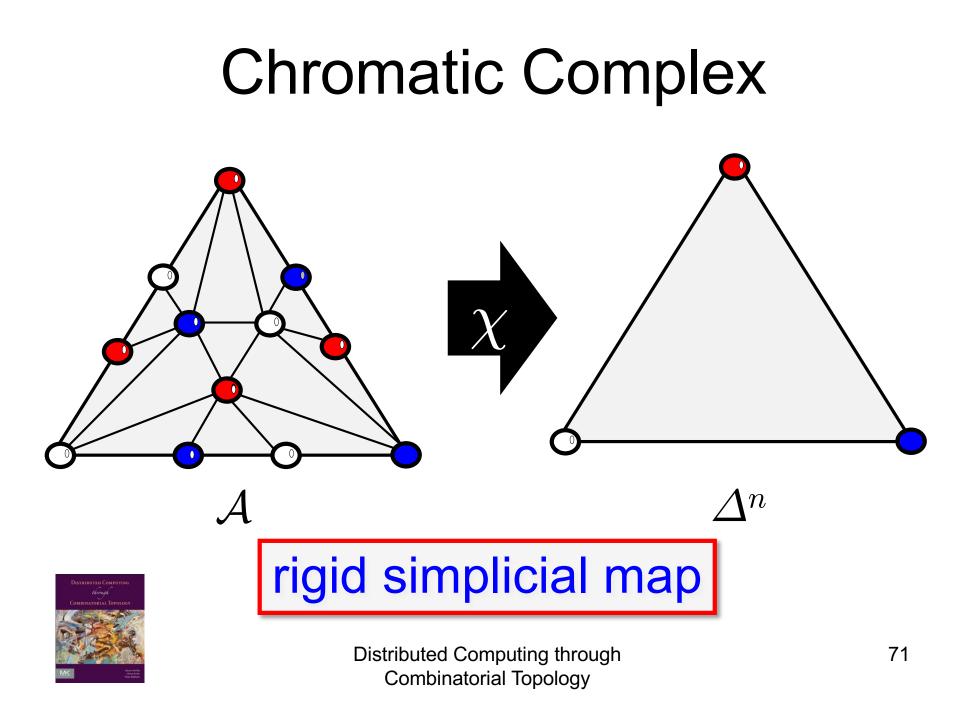


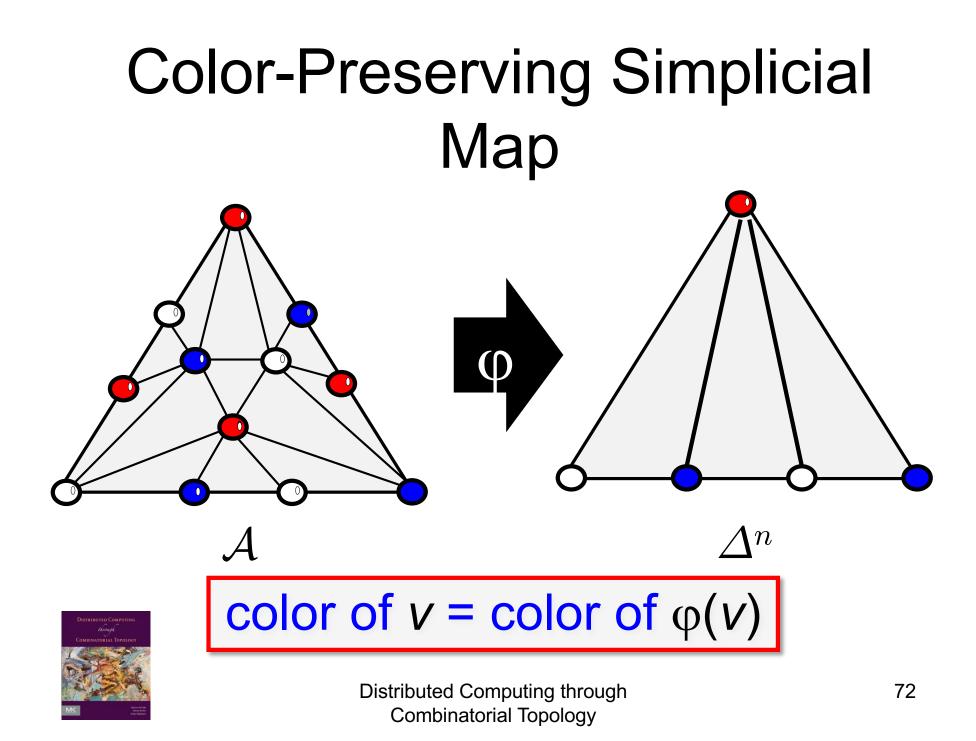




Colorings







Road Map

Simplicial Complexes

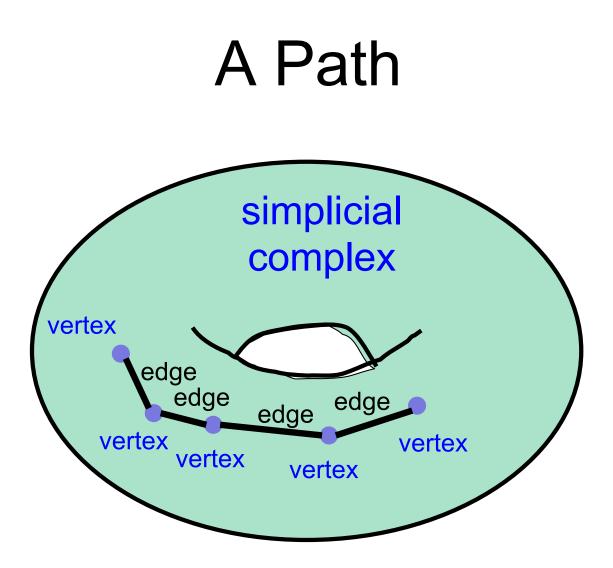
Standard Constructions

Carrier Maps

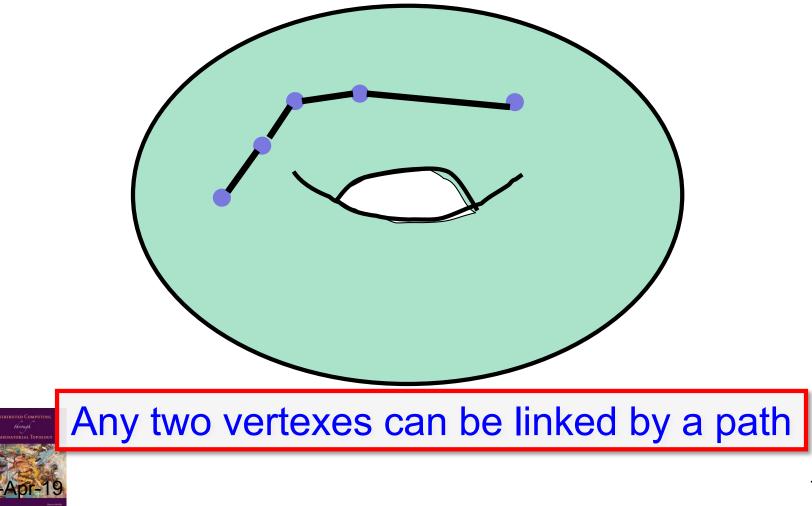
Connectivity

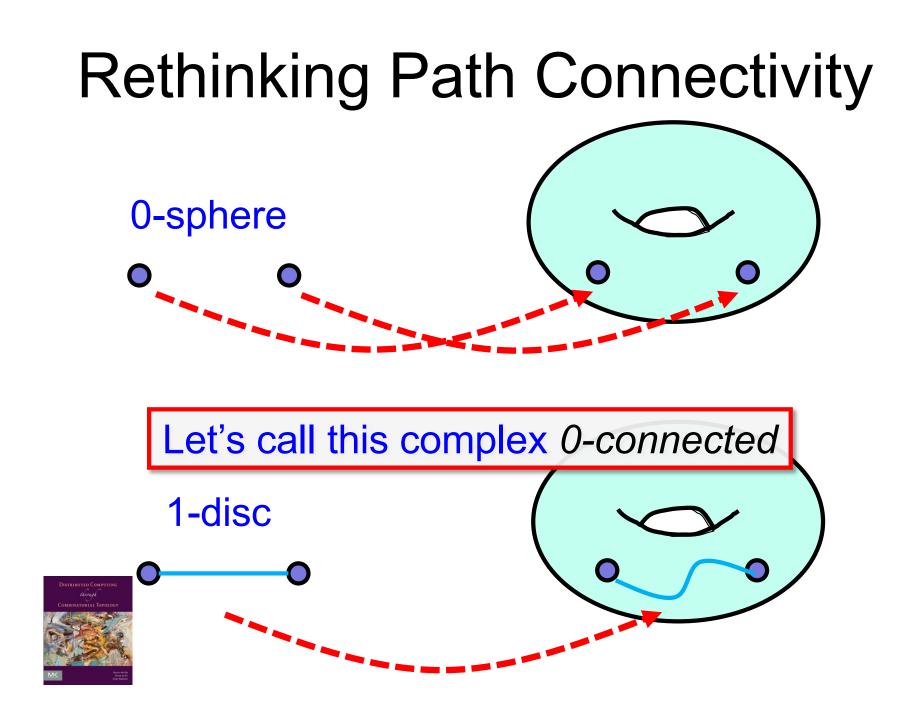
Subdivisions

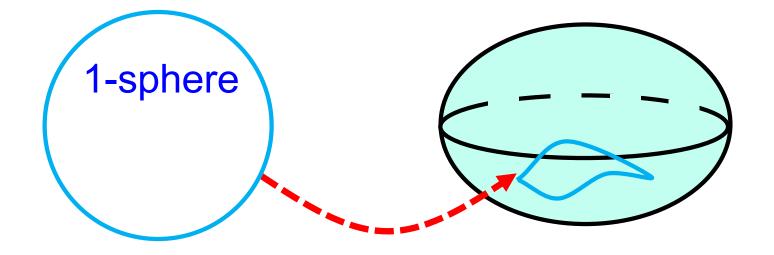
Distributed Computing through Combinatorial Topology

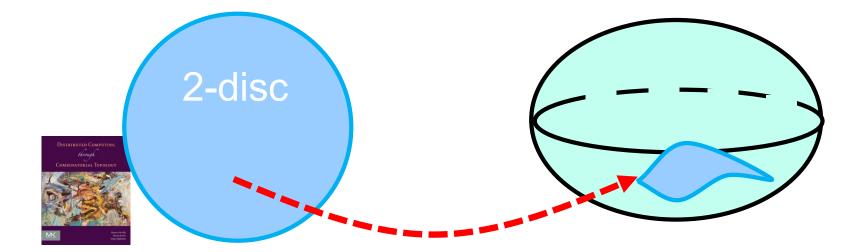


Path Connected

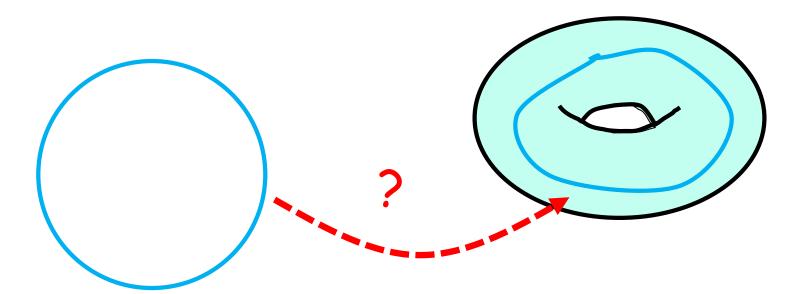


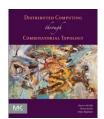




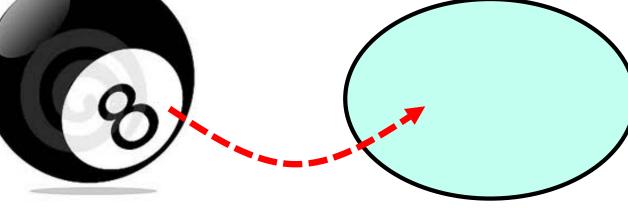


This Complex is not 1-Connected





2-Connectivity 2-sphere 3-disk



n-connectivity

C is *n*-connected, if, for $m \le n$, every continuous map of the *m*-sphere

$$f: S^m \to |\mathcal{C}|$$

can be extended to a continuous map of the (*m*+1)-disk

$$f: D^{m+1} \to |\mathcal{C}|$$

n-connectivity

C is *n*-connected, if, for $m \le n$, every continuous map of the *m*-sphere

$$f: S^m \to |\mathcal{C}|$$

can be extended to a continuous map of the (*m*+1)-disk $f: D^{m+1} \to |\mathcal{C}|$

(-1)-connected is non-empty

Road Map

Simplicial Complexes

Standard Constructions

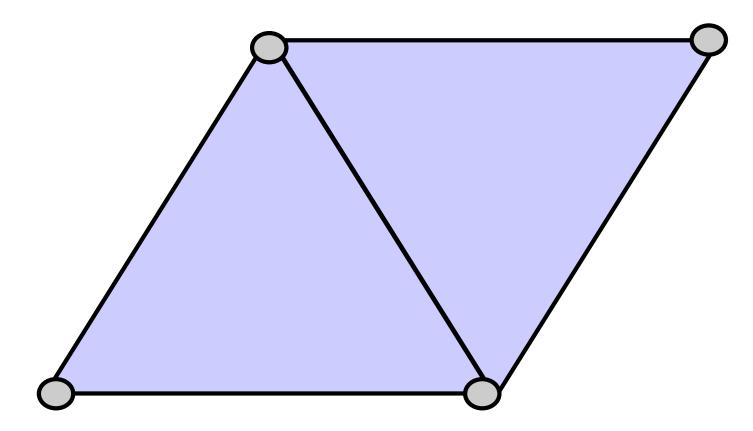
Carrier Maps

Connectivity

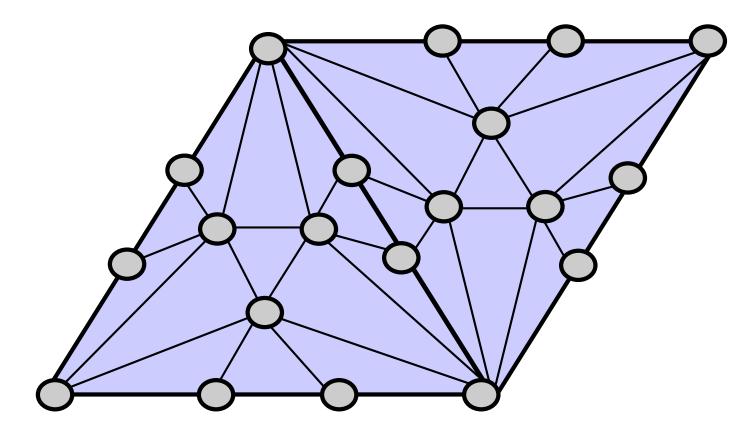
Subdivisions

Distributed Computing through Combinatorial Topology

Subdivisions

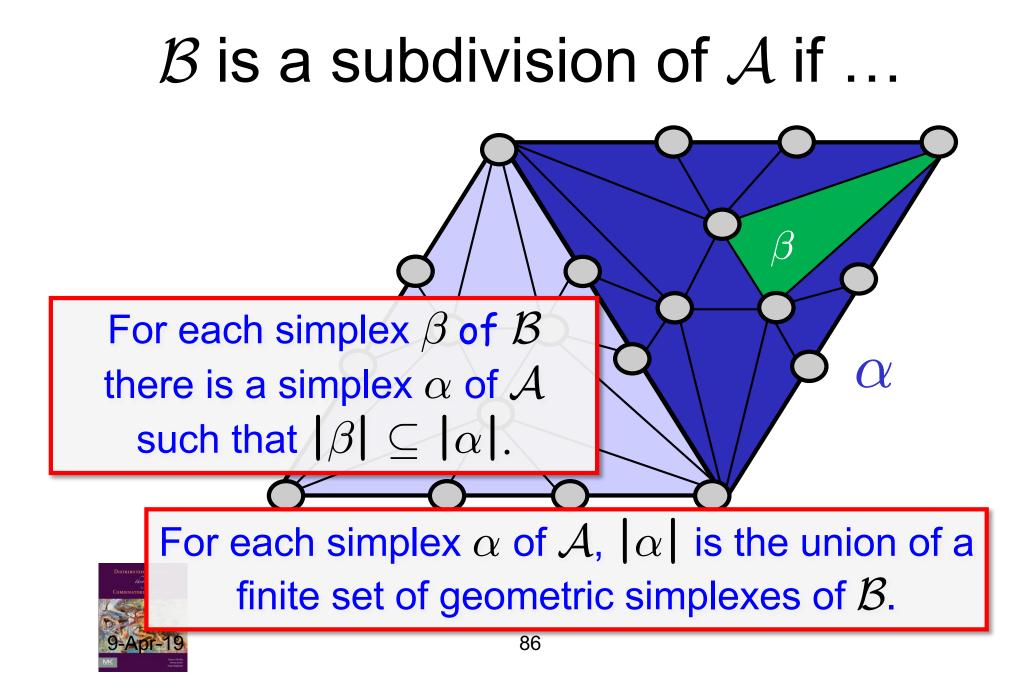


Subdivisions

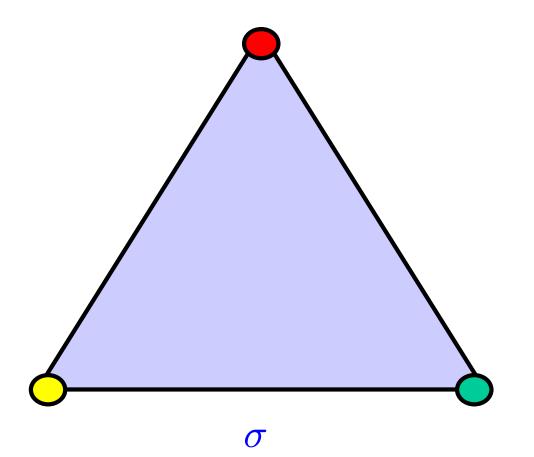


${\mathcal B} \text{ is a subdivision of } {\mathcal A} \text{ if } \dots$

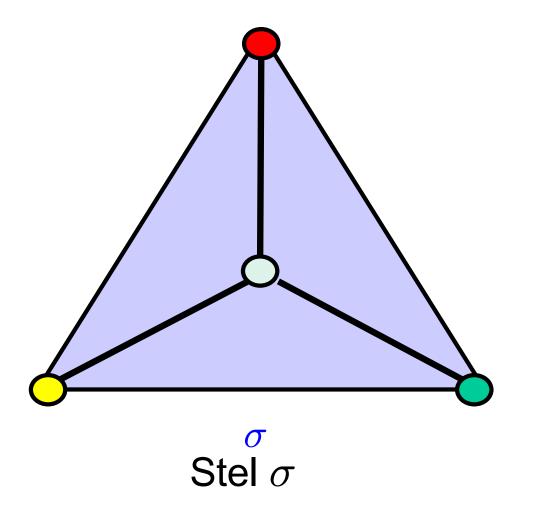
For each simplex β of β there is a simplex α of \mathcal{A} such that $|\beta| \subseteq |\alpha|$.

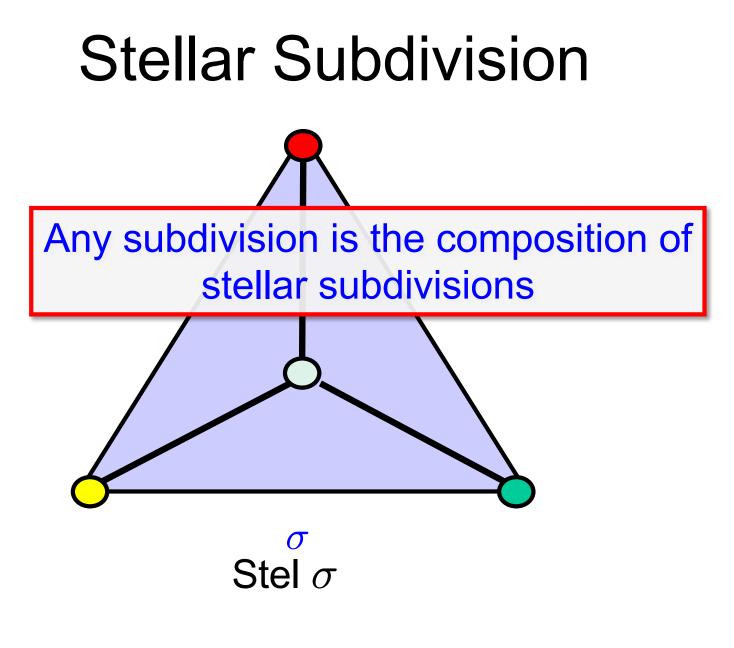


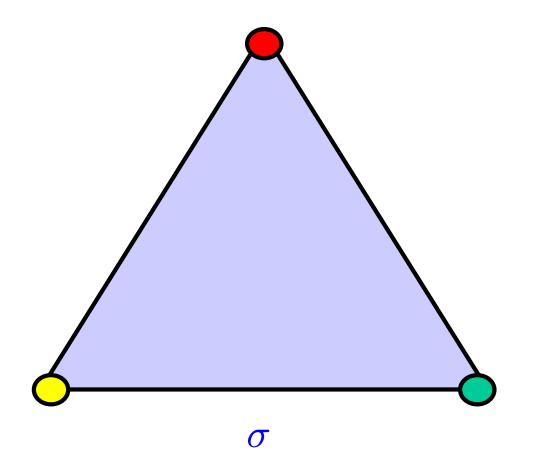
Stellar Subdivision



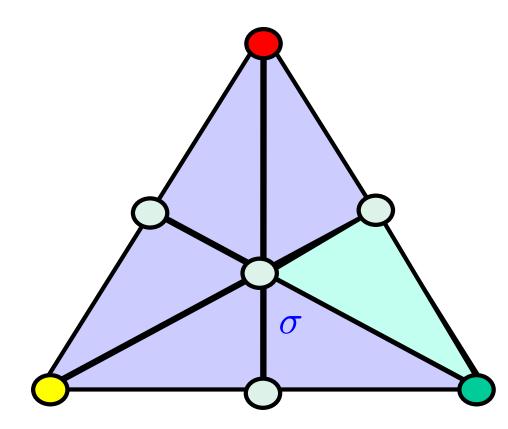
Stellar Subdivision

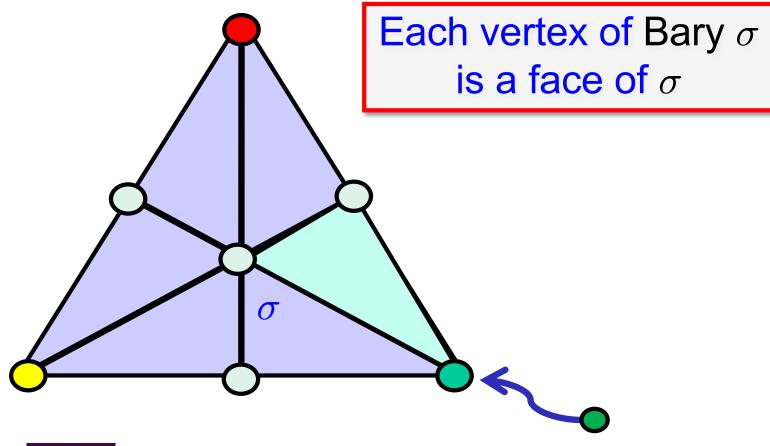


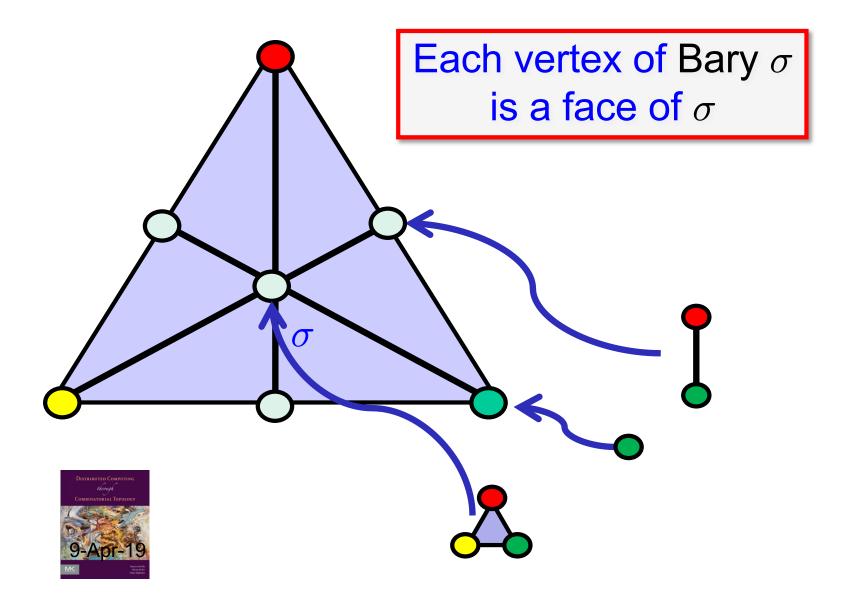


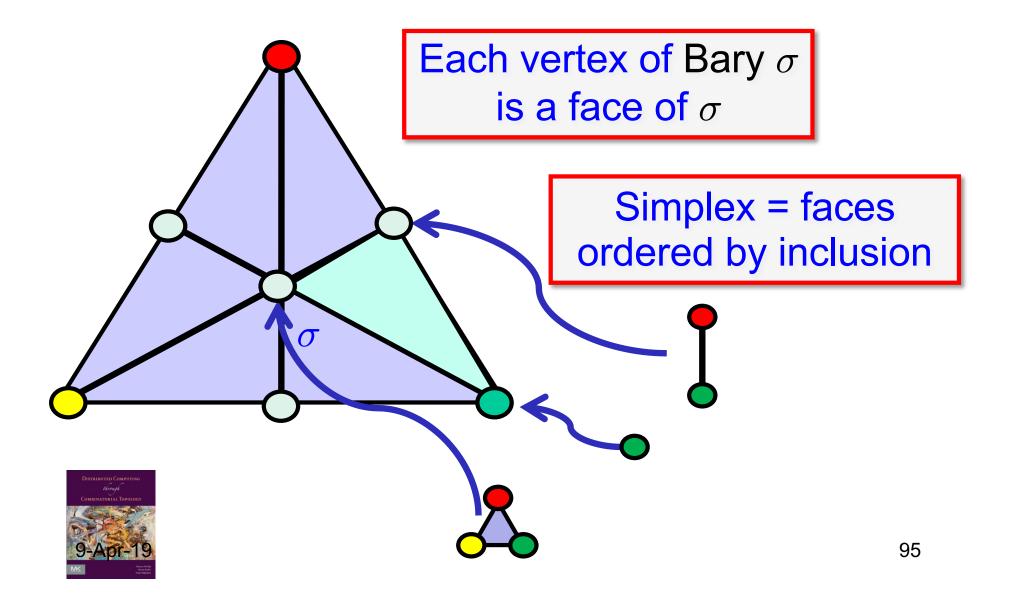




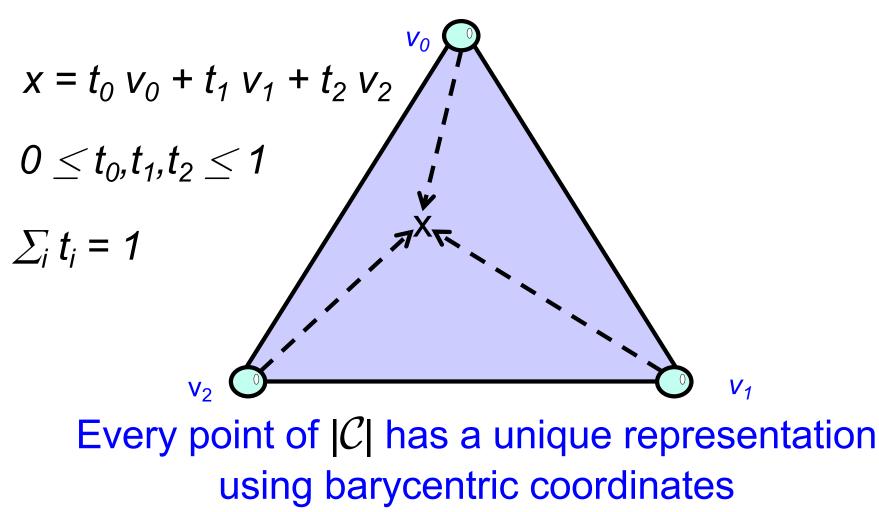




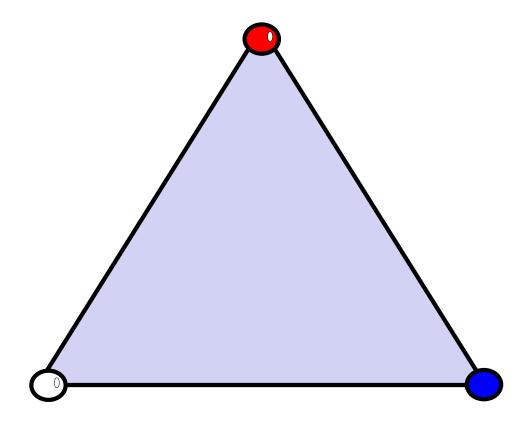




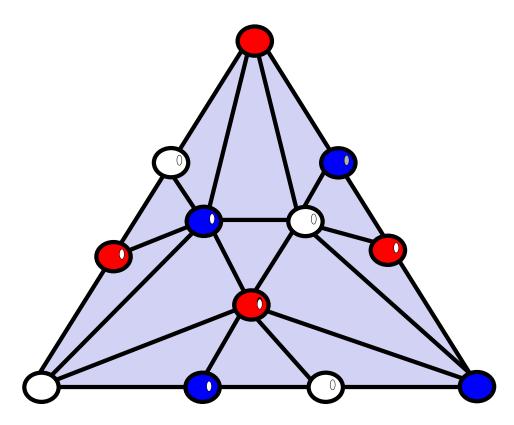
Barycentric Coordinates



Standard Chromatic Subdivision

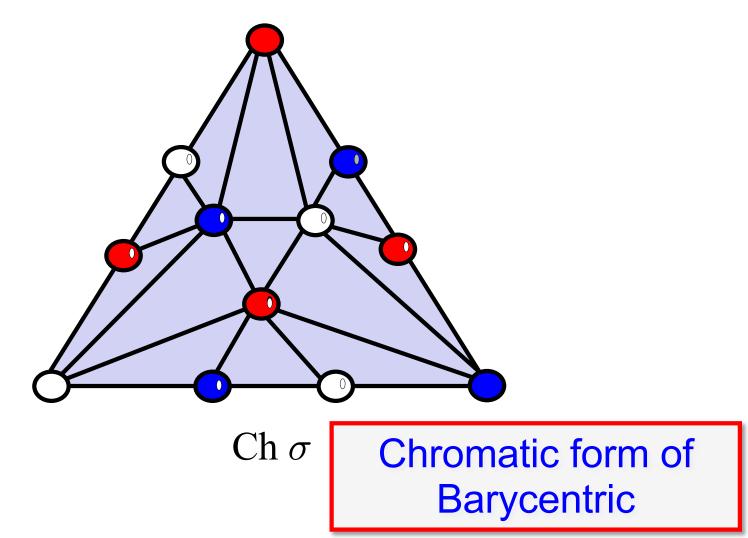


Standard Chromatic Subdivision



 $\mathrm{Ch}\,\sigma$

Standard Chromatic Subdivision



Road Map

Simplicial Complexes

Standard Constructions

Carrier Maps

Connectivity

Subdivisions

From Simplicial to Continuous

simplicial

 $\phi:\ A\to B$

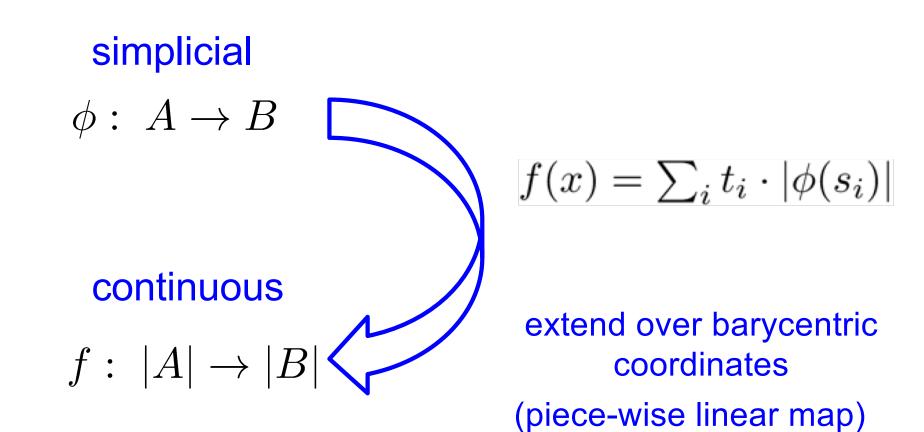
continuous

 $f: |A| \to |B|$

From Simplicial to Continuous

simplicial $\phi: A \to B$ continuous $f: |A| \to |B|$

From Simplicial to Continuous



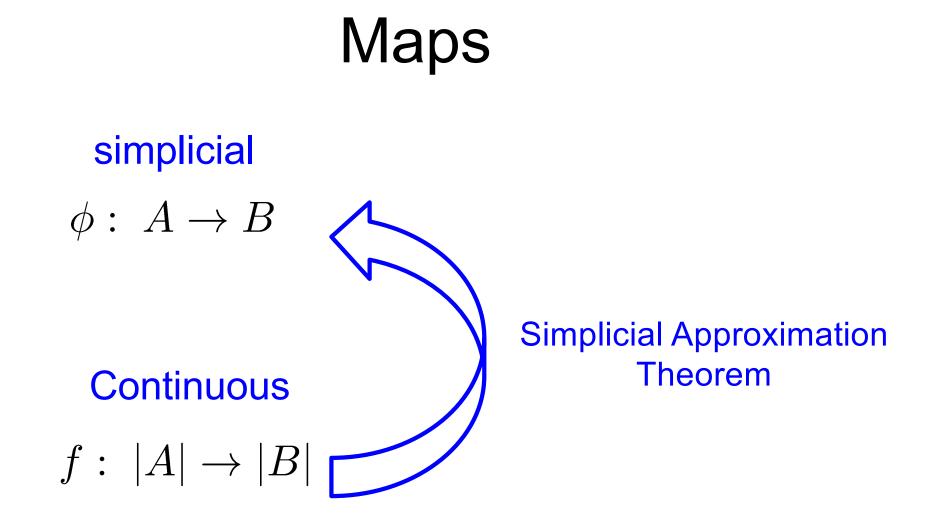
Maps

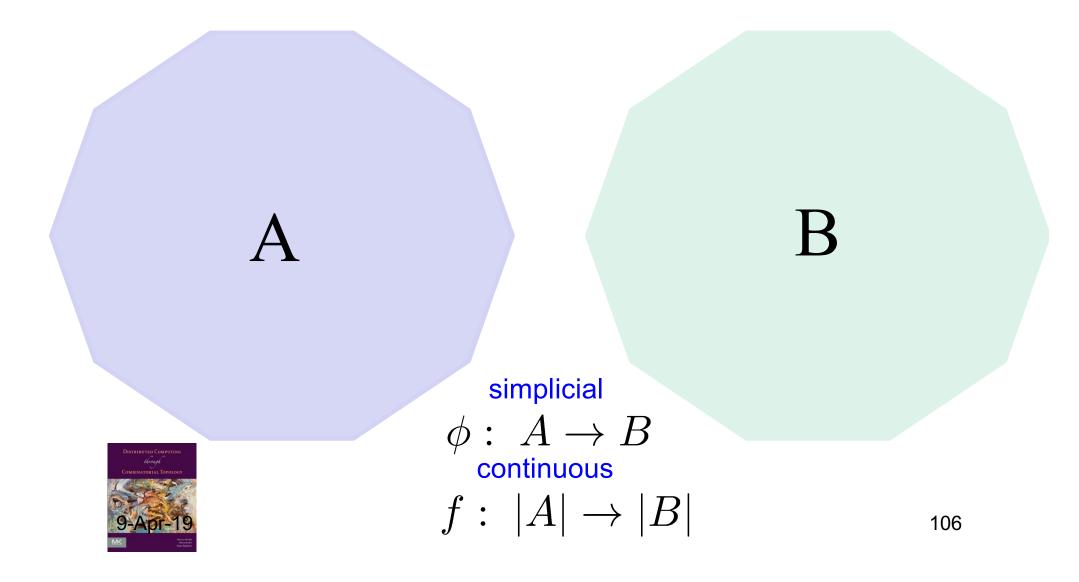
simplicial

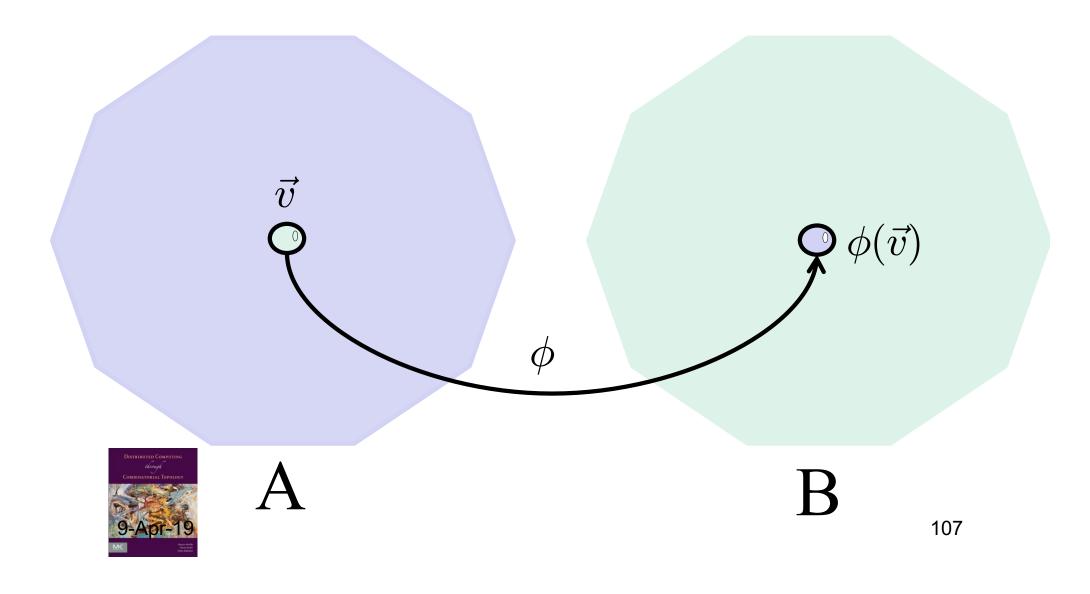
 $\phi:\; A \to B$

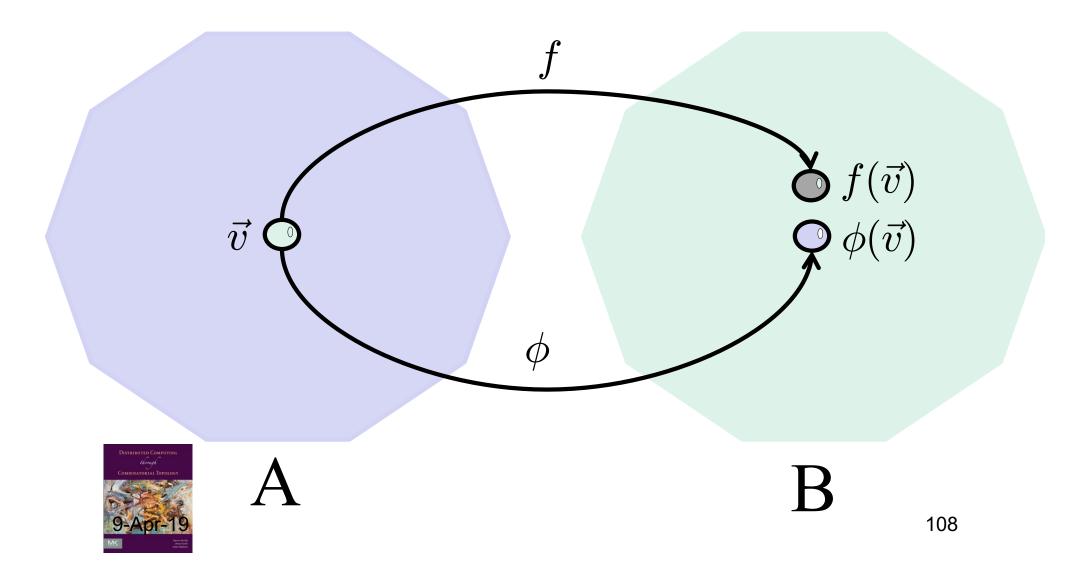
continuous

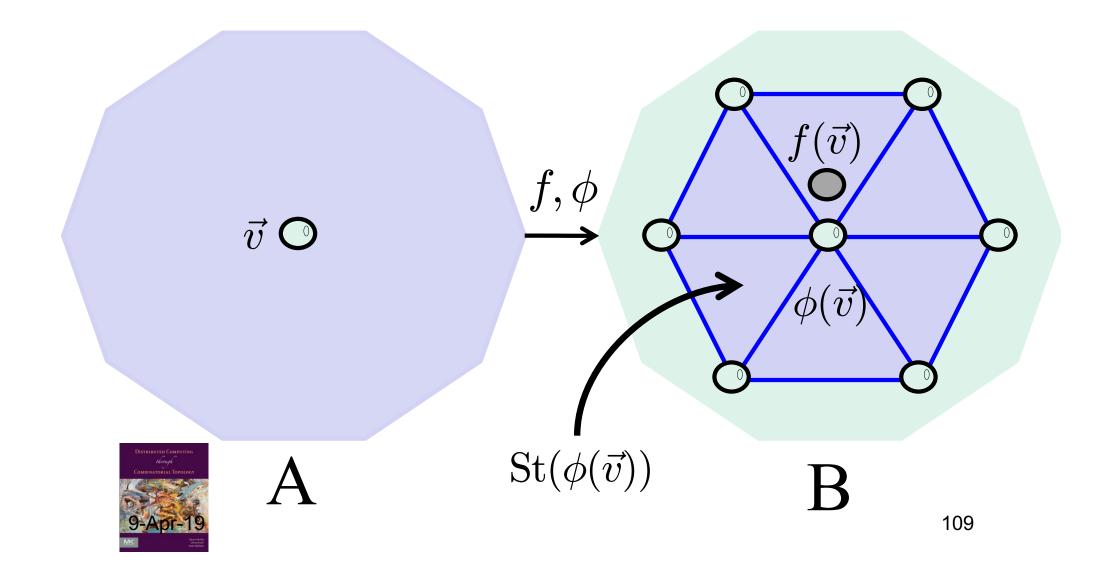
 $f: |A| \to |B|$

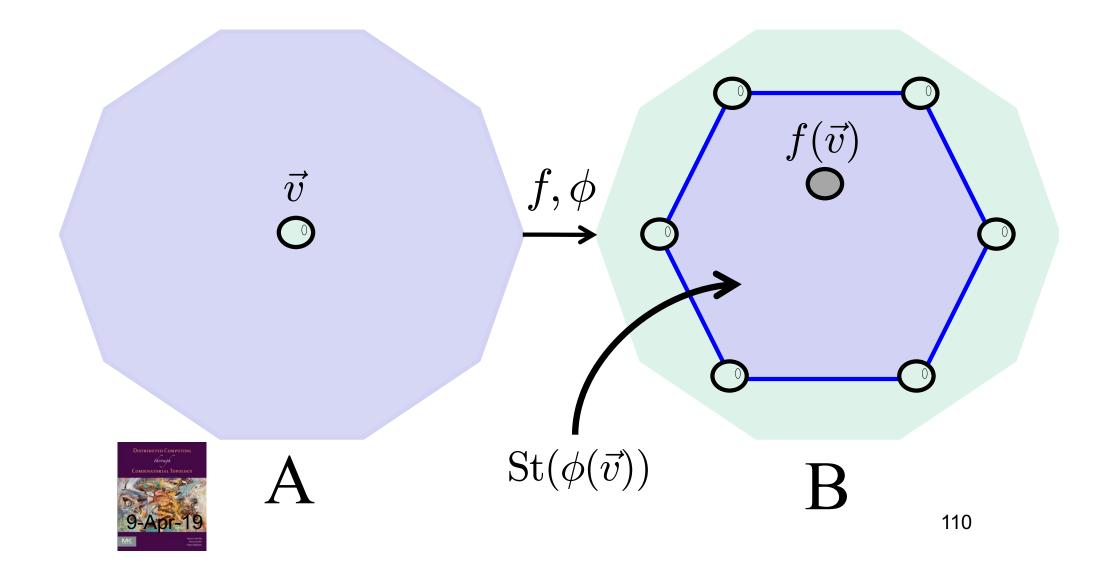


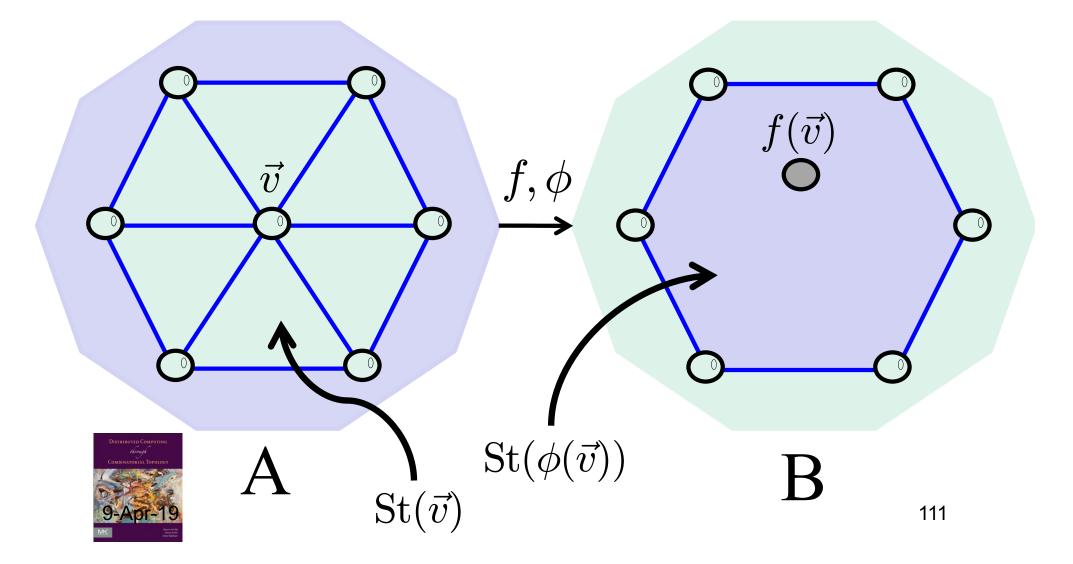


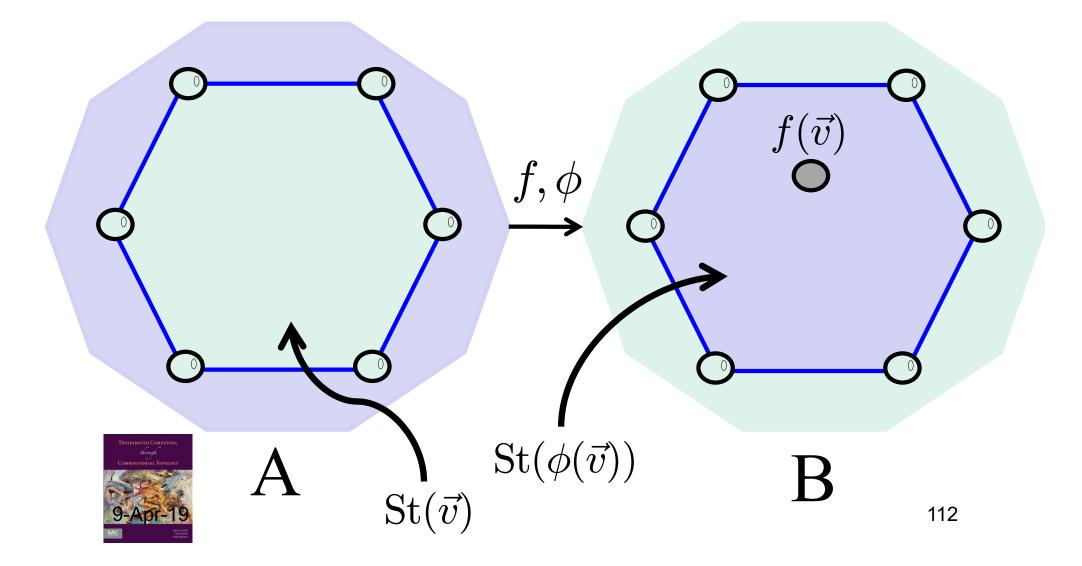


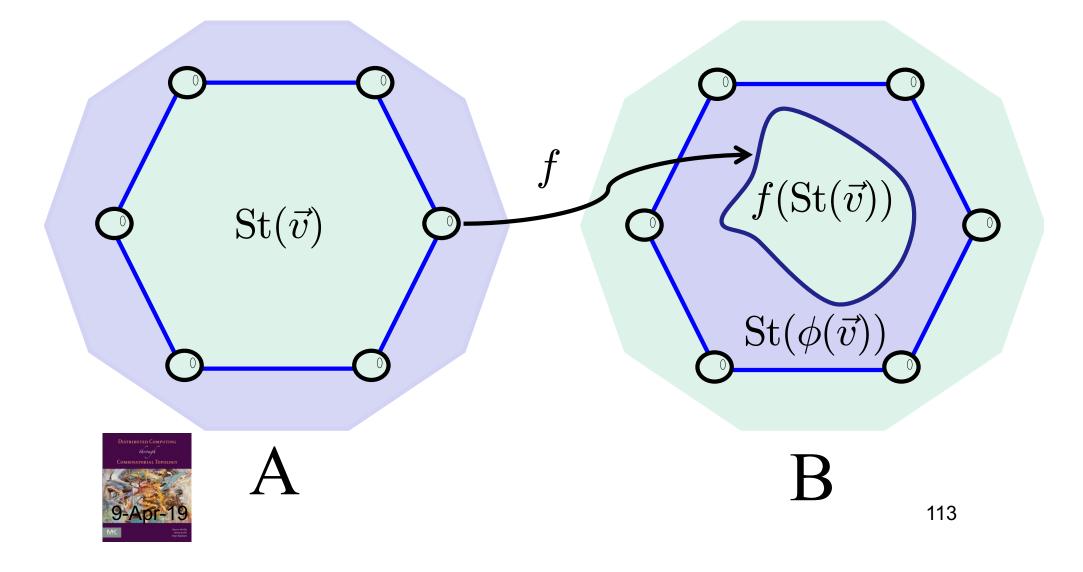


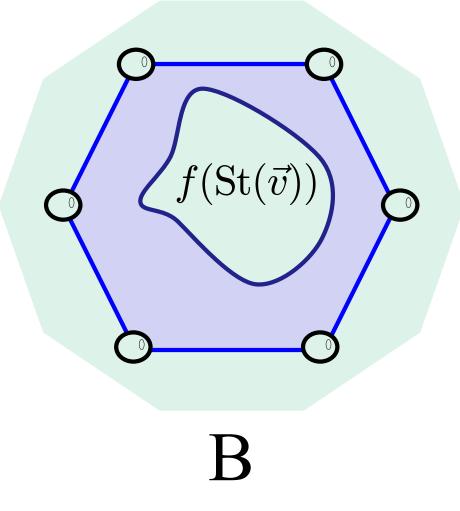


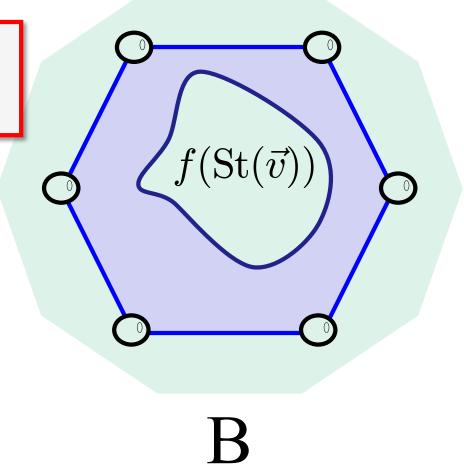


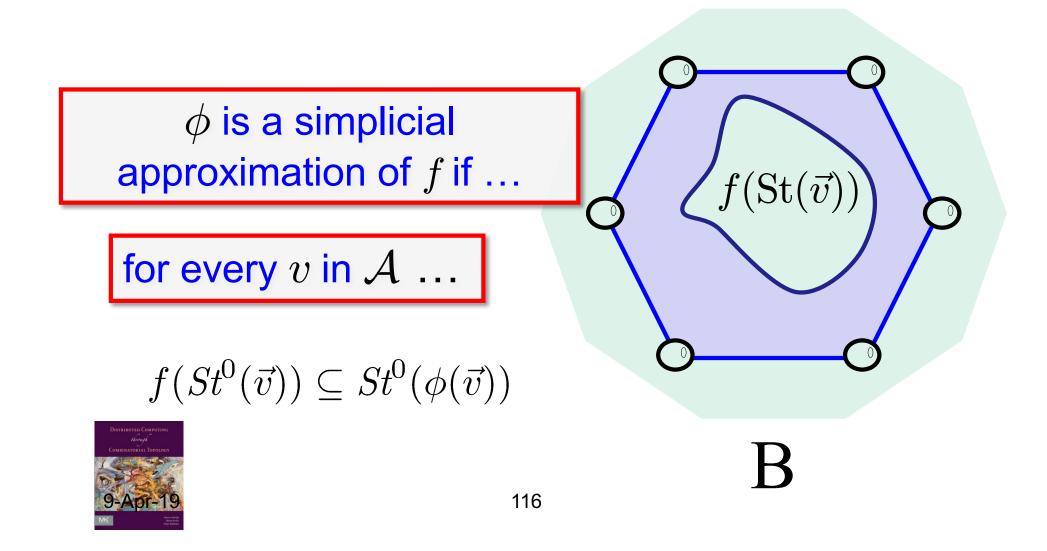












Simplicial Approximation Theorem

- Given a continuous map $f:|A| \to |B|$
- there is an N such that *f* has a simplicial approximation

$$\phi: Bary^N A \to B$$

Simplicial Approximation Theorem

• Given a continuous map

$$f:|A|\to|B|$$

there is an N such that *f* has a simplicial approximation

$$\phi: Bary^N A \to B$$

Actually holds for most other (mesh-shrinking) subdivisions....

This work is licensed under a Creative Commons Attribution-

ShareAlike 2.5 License.

- You are free:
 - **to Share** to copy, distribute and transmit the work
 - to Remix to adapt the work
- Under the following conditions:
 - Attribution. You must attribute the work to "Distributed Computing through Combinatorial Topology" (but not in any way that suggests that the authors endorse you or your use of the work).
 - Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.
- For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to
 - http://creativecommons.org/licenses/by-sa/3.0/.
- Any of the above conditions can be waived if you get permission from the copyright holder.
- Nothing in this license impairs or restricts the author's moral rights.

