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A Vertex
Combinatorial: an element of a set.
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A Vertex
Combinatorial: an element of a set.

Geometric: a point in high-
dimensional Euclidean Space
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Simplexes

0-simplex 1-simplex

3-simplex
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Simplexes

0-simplex 1-simplex

3-simplex

Combinatorial: a set of vertexes.
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Simplexes

0-simplex 1-simplex

2-simplex 3-simplex

Combinatorial: a set of vertexes.
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Simplexes

0-simplex 1-simplex

3-simplex

Combinatorial: a set of vertexes.
Geometric: convex hull of points in 

general position

dimension
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Simplicial Complex
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Simplicial Complex
Combinatorial: a set of simplexes 

close under inclusion.
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Simplicial Complex
Combinatorial: a set of simplexes 

close under inclusion.Geometric: simplexes “glued 
together” along faces …
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Graphs vs Complexes
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Graphs vs Complexes
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Graphs vs Complexes
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dimension 0 or 1

arbitrary dimension

complexes are a natural generalization of graphs
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Abstract Simplicial Complex

finite set V with a collection K of 
subsets of V, such that …
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Abstract Simplicial Complex

1. for all s 2 S, {s} 2 K
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Abstract Simplicial Complex

1. for all s 2 S, {s} 2 K
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finite set S with a collection K of 
subsets of S, such that …

2. for all X 2 K, and Y ½ X, Y 2 K
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Geometric Simplicial Complex
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Geometric Simplicial Complex
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1. any face of a ¾2K is also in K

A collection of geometric simplices in Rd such that

2. for all ¾,¿ 2 K, their intersection
¾ Å ¿ is a face of each of them.
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Abstract: A

Geometric: |A|



Simplicial Maps
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Vertex-to-vertex map …
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Simplicial Map
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Vertex-to-vertex map …
that sends simplexes to 

simplexes 

Á: A! B
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BÁ
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Skeleton
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C
(solid tetrahedron)

skel1 C
skel0 C

skel2 C
(hollow tetrahedron)
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A facet of K is a simplex of maximal dimension
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Star(¾,K) is the complex of facets of K containing ¾
Complex



Open Star
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Staro(¾,K) union of interiors of simplexes containing ¾
Point Set
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Link(¾,K) is the complex of simplices of 
Star(¾,K) not containing ¾ Complex



Link(v,C)

v

C

v

More Links



Link(e,C)C

More Links

e e
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Let A and B be complexes with 
disjoint sets of vertices

their join A*B is the complex

and simplices ® [ ¯, where ® 2 A, and ¯ 2 B.

with vertices V(A) [ V(B)



Join
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BA A*B
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Carrier Map
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Maps simplex of A to subcomplex of B

©
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©: A! 2B

A B



Carrier Maps are Monotonic
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©
A B

If ¿ µ ¾ then ©(¿) µ ©(¾)
or

for ¾,¿ 2 A, ©(¾Å¿) µ ©(¾)Å©(¿)



Example

©



Example

©on vertices



Example

© on edges

There is no simplicial map carried by 
©: 

endpoints must be sent to endpoints!



Strict Carrier Maps
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©
A B

for all ¾,¿ 2 A, ©(¾Å¿) = ©(¾)Å©(¿)



Strict Carrier Maps

46Distributed Computing through 
Combinatorial Topology

©
A B

for all ¾,¿ 2 A, ©(¾Å¿) = ©(¾)Å©(¿)

replace µ with =



Rigid Carrier Maps
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©
A B

for ¾ 2 A, ©(¾) is pure of dimension dim ¾



given strict ©: A! 2B

Carrier of a Simplex
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given strict ©: A ! 2B

Carrier of a Simplex
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©
A B

for each ¿ 2 B, 
9 unique smallest ¾ 2 A such that ¿ 2 ©(¾).



given strict ©: A ! 2B

Carrier of a Simplex
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©
A B

for each ¿ 2 B, 
9 unique smallest ¾ 2 A such that ¿ 2 ©(¾).

¾ = Car(¿, ©)



given strict ©: A ! 2B

Carrier of a Simplex
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©
A B

for each ¿ 2 B, 
9 unique smallest ¾ 2 A such that ¿ 2 ©(¾).

sometimes
omitted

¾ = Car(¿, ©)



Given carrier maps

Carrier Map Carried By 
Carrier Map
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©: A! 2B

ª: A! 2B
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©: A! 2B

ª: A! 2B

© is carried by ª if
for all ¾ 2 A, ©(¾) µ ª(¾)



Given carrier maps

Carrier Map Carried By 
Carrier Map
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©: A! 2B

ª: A! 2B

© is carried by ª if
for all ¾ 2 A, ©(¾) µ ª(¾)

written: © µ ª



Given carrier and simplicial maps

Simplicial Map Carried By 
Carrier Map
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©: A! 2B

j: A! B
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©: A! 2B

j: A! B
j is carried by © if



Given carrier and simplicial maps
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©: A! 2B

j: A! B
j is carried by © if

for all ¾ 2 A, j(¾) µ ©(¾)



Given carrier and simplicial maps

Simplicial Map Carried By 
Carrier Map
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©: A! 2B

j: A! B
j is carried by © if

for all ¾ 2 A, j(¾) µ ©(¾)
written: j µ ©



Given carrier and continuous maps

Continuous Map Carried By 
Carrier Map
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©: A! 2B

f: |A| ! |B|



Given carrier and continuous maps

Continuous Map Carried By 
Carrier Map
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©: A! 2B

f: |A| ! |B|
f is carried by © if



Given carrier and continuous maps

Continuous Map Carried By 
Carrier Map
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©: A! 2B

f: |A| ! |B|
f is carried by © if

for all ¾ 2 A, f(|¾|) µ |©(¾)|



Given carrier maps

Compositions
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©: A! 2B

ª: B! 2C

(ª ° ©)(¾) := [¿ 2 ©(¾) ª(¿)

their composition is



If ©, ª are both

Theorem
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strict
so is © ° ª

rigid
so is © ° ª



Given carrier and simplicial maps

Compositions
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©: A! 2B j: C! A



Given carrier and simplicial maps

Compositions
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©: A! 2B j: C! A
their composition is the carrier map

(© ° j): C! 2B



Given carrier and simplicial maps

Compositions
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©: A! 2B j: C! A
their composition is the carrier map

(© ° j): C! 2B
defined by

(© ° j)(¾) := © (j(¾))



Given carrier and simplicial maps

Compositions
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©: A! 2B j: B! C



Given carrier and simplicial maps

Compositions
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©: A! 2B j: B! C
their composition is the carrier map

(j ° ©): A! 2C



Given carrier and simplicial maps

Compositions
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©: A! 2B j: B! C
their composition is the carrier map

(j ° ©): A! 2C
defined by

(© ° j)(¾) := [¿ 2 ©(¾) j(¿)



Colorings
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¢n :=



Chromatic Complex
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Â

A ¢n

rigid simplicial map



Color-Preserving Simplicial 
Map
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j

A ¢n

color of v = color of j(v)
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A Path

9-Apr-19 74

vertex

vertex
vertex vertex

vertex

edge
edge edge edge

simplicial
complex



Path Connected
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Any two vertexes can be linked by a path



0-sphere

1-disc

Rethinking Path Connectivity

Let’s call this complex 0-connected



1-Connectivity

1-sphere

2-disc



?

This Complex is not 1-
Connected



2-Connectivity

3-disk

2-sphere



n-connectivity

9-Apr-19 80

C is n-connected, if, for m · n, every 
continuous map of the m-sphere

can be extended to a continuous 
map of the (m+1)-disk



n-connectivity
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C is n-connected, if, for m · n, every 
continuous map of the m-sphere

can be extended to a continuous 
map of the (m+1)-disk

f : Sm ! C

(-1)-connected is non-empty



Road Map
Simplicial Complexes

Standard Constructions

Carrier Maps

Connectivity

Subdivisions

Distributed Computing through 
Combinatorial Topology

Simplicial & Continuous Approximations
82



Subdivisions
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Subdivisions
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B is a subdivision of A if …
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For each simplex ¯ of B
there is a simplex ® of A

such that |¯| µ |®|.

¯

®



B is a subdivision of A if …

9-Apr-19 86

For each simplex ¯ of B
there is a simplex ® of A

such that |¯| µ |®|.

¯

®

For each simplex ® of A, |®| is the union of a 
finite set of geometric simplexes of B.



Stellar Subdivision
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¾



Stellar Subdivision
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¾
Stel ¾



Stellar Subdivision
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¾
Stel ¾

Any subdivision is the composition of 
stellar subdivisions



Barycentric Subdivision
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¾



Barycentric Subdivision
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¾
Bary ¾



Barycentric Subdivision
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¾



Barycentric Subdivision
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¾

Each vertex of Bary ¾
is a face of ¾



Barycentric Subdivision
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¾

Each vertex of Bary ¾
is a face of ¾



Barycentric Subdivision
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¾

Each vertex of Bary ¾
is a face of ¾

Simplex = faces 
ordered by inclusion



Barycentric Coordinates
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Every point of |C| has a unique representation 
using barycentric coordinates

v0

v1v2

x = t0 v0 + t1 v1 + t2 v2

0 · t0,t1,t2 · 1

åi ti = 1 x



Standard Chromatic 
Subdivision



Ch ¾

Standard Chromatic 
Subdivision



Ch ¾

Standard Chromatic 
Subdivision

Chromatic form of 
Barycentric
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From Simplicial to Continuous

9-Apr-19 101

simplicial

continuous



From Simplicial to Continuous
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simplicial

continuous



From Simplicial to Continuous
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simplicial

continuous
extend over barycentric 

coordinates
(piece-wise linear map)



Maps
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simplicial

continuous



Maps
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simplicial

Continuous
Simplicial Approximation 

Theorem



Simplicial Approximation
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A B

simplicial

continuous
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A B

Á

Simplicial Approximation

~v
Á(~v)



Simplicial Approximation
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A B

f

Á

f(~v)

Á(~v)~v



Simplicial Approximation
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A B

f,Á
f(~v)

Á(~v)

~v

St(Á(~v))



Simplicial Approximation
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A B

f,Á~v
f(~v)

St(Á(~v))



Simplicial Approximation

9-Apr-19 111
A B

f,Á

St(~v)

~v
f(~v)

St(Á(~v))



Simplicial Approximation
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A B

f,Á

St(~v)

f(~v)

St(Á(~v))



Simplicial Approximation
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A B

f

St(~v)

St(Á(~v))

f(St(~v))



Simplicial Approximation
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B

f(St(~v))



Simplicial Approximation
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B

Á is a simplicial 
approximation of f if …

f(St(~v))



Simplicial Approximation
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B

for every v in A …

Á is a simplicial 
approximation of f if … f(St(~v))



Simplicial Approximation 
Theorem

• Given a continuous map

• there is an N such that f has a simplicial
approximation
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Simplicial Approximation 
Theorem

• Given a continuous map

• there is an N such that f has a simplicial
approximation

9-Apr-19 118

Actually holds for most other (mesh-shrinking) subdivisions….
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This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License. 

• You are free:
– to Share — to copy, distribute and transmit the work 
– to Remix — to adapt the work 

• Under the following conditions:
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license. 
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– http://creativecommons.org/licenses/by-sa/3.0/. 

• Any of the above conditions can be waived if you get permission from 
the copyright holder. 
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