Two-process systems

MITRO207, P4, 2019

Two-Process Systems

later for larger systems

Distributed Computing through

general structures needed

Combinatorial Topology

Road Map

Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Task Solvability

Road Map

Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

A Vertex

A Vertex

Combinatorial: an element of a set.

A Vertex

Combinatorial: an element of a set

Geometric: a point in Euclidean Space

An Edge

An Edge

Combinatorial: a set of two vertexes.

An Edge

Combinatorial: a set of two vertexes

Geometric: line segment joining two points

A Graph

A Graph

Combinatorial: a set of sets of vertices.

A Graph

Combinatorial: a set of sets of vertices

Geometric: points joined by line segments

Dimension

dimension 1

$$\dim(X) = |X|-1.$$

Pure Graphs

 χ : $\mathcal{G} o \mathbf{C}$

for each edge $(s_0, s_1) \in \mathcal{G}$, $\chi(s_0) \neq \chi(s_1)$.

 χ : $\mathcal{G} \to \mathbb{C}$

for each edge $(s_0, s_1) \in \mathcal{G}$, $\chi(s_0) \neq \chi(s_1)$.

chromatic graphs

usually process names

Graph Labeling

Graph Labeling

 $f:\mathcal{G} o \mathcal{L}$

Graph Labeling

usually values from some domain

 $f: \mathcal{G} \to \mathcal{L}$

Labeled Chromatic Graph

 $\mathsf{name}(s) = \chi(s)$

view(s) = f(s)

Simplicial Maps

Rigid Simplicial Maps

A simplicial map can send an edge to a vertex ...

Rigid Simplicial Maps

A simplicial map can send an edge to a vertex ...

A simplicial map that sends an edge to an edge is *rigid*.

A Path Between two Vertices

A Path Between two Vertices

A graph is connected if there is a path between every pair of vertices

Not Connected

A graph is connected if there is a path between every pair of vertices

Theorem

Theorem

The image of a connected graph under a simplicial map is connected.

Carrier Maps

For graphs G, H, a carrier map

Carries each simplex of \mathcal{G} to a subgraph of \mathcal{H} ...

Carrier Maps

For graphs G, H, a carrier map

Carries each simplex of \mathcal{G} to a subgraph of \mathcal{H} ...

satisfying monotonicity: for all $\sigma, \tau \in \mathcal{G}$, if $\sigma \subseteq \tau$, then $\Phi(\sigma) \subseteq \Phi(\tau)$.

Strict Carrier Maps

Monotonicity

For all $\sigma, \tau \in \mathcal{G}$, if $\sigma \subseteq \tau$, then $\Phi(\sigma) \subseteq \Phi(\tau)$.

Strict Carrier Maps

Monotonicity

For all $\sigma, \tau \in \mathcal{G}$, if $\sigma \subseteq \tau$, then $\Phi(\sigma) \subseteq \Phi(\tau)$.

Equivalent to ...

$$\Phi(\sigma \cap \tau) \subseteq \Phi(\sigma) \cap \Phi(\tau)$$

Strict Carrier Maps

Monotonicity

For all $\sigma, \tau \in \mathcal{G}$, if $\sigma \subseteq \tau$, then $\Phi(\sigma) \subseteq \Phi(\tau)$.

Equivalent to ...

$$\Phi(\sigma \cap \tau) \subseteq \Phi(\sigma) \cap \Phi(\tau)$$

Definition

$$\Phi$$
 is strict if $\Phi(\sigma \cap \tau) = \Phi(\sigma) \cap \Phi(\tau)$

Connected Carrier Maps

Carrier map $\Phi: \mathcal{G} \to 2^{\mathcal{H}}$ is connected if ...

For each vertex $s \in \mathcal{G}$, $\Phi(s)$ is non-empty and ...

for each edge $\sigma \in \mathcal{G}$, $\Phi(\sigma)$ is connected.

Road Map

Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Two Processes

Informal Task Definition

Processes start with input values ...

They communicate ...

They halt with output values ...

legal for those inputs.

Formal Task Definition

Input graph \mathcal{I}

all possible assignments of input values

Formal Task Definition

Input graph \mathcal{I}

all possible assignments of input values

Output graph O

all possible assignments of output values

Formal Task Definition

Input graph \mathcal{I}

all possible assignments of input values

Output graph \mathcal{O}

all possible assignments of output values

Carrier map $\Delta: \mathcal{I} \to \mathbf{2}^{\mathcal{O}}$

all possible assignments of output values for each input

Task Input Graph: Consensus

Task Input Graph

Task Input Graph

Task Output Graph

If Bob runs alone with input 1 ...

then he decides output 1.

If Bob and Alice both have input 1 ...

then they both decide output 1.

If Bob has 1 and Alice 0 ...

then they must agree, on either one.

Combinatorial Topology

Input Graph

Output Graph

Carrier Map

Combinatorial Topology

Combinatorial Topology

Road Map

Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Protocols

Models of Computation

Bob's protocol is symmetric


```
shared mem array 0..1 of Value
v shared two-element memory
for i: int := 0 to L do
   mem[A] := view;
   view := view + mem[B];
return δ(view)
```



```
shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do

me Run for L rounds
vi L rounds
v
```



```
shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
  mem[A] := view;
  view := view + mem[B];

return
Alice writes her value, read Bob's
  value, and concatenate it to her view
```



```
shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
  mem[A] := view;
  view := view + mem[B];
return Alice writes her value, read Bob's
                 (full-information protocol)
       value, and concatenate it to her
```


Distributed Computing through Combinatorial Topology

```
shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
  mem[A] := view;
  view := view + mem[B];
return δ(view)
```

finally, apply task-specific decision map to view

Formal Protocol Definition

Input graph \mathcal{I}

all possible assignments of input values

Formal Protocol Definition

Input graph \mathcal{I}

all possible assignments of input values

Protocol graph \mathcal{P}

all possible process views after execution

Formal Protocol Definition

Input graph \mathcal{I}

all possible assignments of input values

Protocol graph \mathcal{P}

all possible process views after execution

Carrier map Ξ : $\mathcal{I} \to \mathbf{2}^{\mathcal{P}}$

all possible assignments of views

Execution Carrier Map

Execution Carrier Map

Combinatorial Topology

The Decision Map

All Together

Definition

Decision map δ (of protocol Ξ) is carried by carrier map Δ if

for each input vertex s.

$$\delta(\Xi(s)) \subseteq \Delta(s)$$

for each input edge σ ,

$$\delta(\Xi(\sigma)) \subseteq \Delta(\sigma)$$
.

runs the protocol to completion

$$\delta(\Xi(s))\subseteq \Delta(s)$$

decision is permitted by task carrier map

Definition

The protocol $(\mathcal{I}, \mathcal{P}, \Xi)$ solves the task $(\mathcal{I}, \mathcal{O}, \Delta)$

Definition

The protocol $(\mathcal{I}, \mathcal{P}, \Xi)$ solves the task $(\mathcal{I}, \mathcal{O}, \Delta)$

if there is ...

Definition

The protocol $(\mathcal{I}, \mathcal{P}, \Xi)$ solves the task $(\mathcal{I}, \mathcal{O}, \Delta)$

if there is ...

a simplicial decision map

 $\delta{:}\mathcal{P}\to\mathcal{O}$

Definition

The protocol $(\mathcal{I}, \mathcal{P}, \Xi)$ solves the task $(\mathcal{I}, \mathcal{O}, \Delta)$

if there is ...

a simplicial decision map

 $\delta{:}\mathcal{P}\to\mathcal{O}$

such that δ is carried by Δ .

(δ agrees with Δ)

Layered Read-Write Model

Layered Read-Write Protocol (Alice)

```
shared mem array 0..1,0..L of Value
view: Value := my input value;
for i: int := 0 to L do
   mem[i][A] := view;
   view := view + mem[i][A] + mem[i][B];
return δ(view)
```


Layered Read-Write Protocol (Alice)

```
shared mem array 0..1,0..L of Value
view: Value := my input value;
for i: int := 0 to L do
    mem As before, run for L layers
    view := view + mem[i][A] + mem[i][B];
return δ(view)
```


Layered Read-Write Protocol (Alice)

```
shared mem array 0..1,0..L of Value
view: Value := my input value;
for i: int := 0 to L do
   mem[i][A] := view;
   view := view + mem[i][A] + mem[i][B];
return 5(view)
   Each layer uses a distinct, "clean" memory
```


Layered R-W Protocol Graph

Layered R-W Protocol Graph

 ${\mathcal P}$ is always a subdivision of ${\mathcal I}$

Road Map

Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement


```
mem[A] := 0
other := mem[B]
if other == \( \price \) then
  decide 0
else
  decide 2/3
```



```
mem[A] := 0

Alice writes her value to memory

else
  decide 2/3
```


If she doesn't see Bob's value, decide her own.

decide 2/3


```
mem[A] := 0
if mem[B] == \( \pm \) then
  decide 0
else
  decide 2/3
```

If she see's Bob's value, jump to the middle

One-Layer 1/3-Agreement Protocol

No 1-Layer 1/5-Agreement Protocol

2-Layer 1/5-Agreement

Fact

In the layered read-write model,

The 1/K-Agreement Task

Has a [log₃ K]–layer protocol

Road Map

Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Task Solvability

Fact

The protocol graph for any L-layer protocol with input graph \mathcal{I} is a subdivision of \mathcal{I} , where each edge is subdivided 3^L times.

Main Theorem

The two-process task $(\mathcal{I}, \mathcal{O}, \Delta)$ is solvable in the layered read-write model if and only if there exists a connected carrier map $\Phi \colon \mathcal{I} \to 2^{\mathcal{O}}$ carried by Δ .

Proof sketch: the "if" part

Let Φ : $\mathcal{I} \to 2^{\mathcal{O}}$ be a connected carrier map carried by Δ .

For each edge $\sigma_i = (s_i, t_i) \in \mathcal{I}$, there is a path π_i in $\Phi(\sigma_i)$ connecting $\Phi(s_i)$ and $\Phi(t_i)$ (choosing just one vertex in each image is enough)

Approximate agreement on the path can be solved using $\lceil \log_3 L \rceil$ layers where L is $\max_{i \in \mathcal{I}} |\pi_i|$ For edges (s,t), (s,u): "glue together" protocols for (s,t) and (s,u): they agree on s.

The protocol is carried by Δ , so it solves T

Proof sketch: the "only if" part

Let a layered protocol \mathcal{P} solve T with a decision map δ Let $\Xi: \mathcal{I} \to 2^{\mathcal{P}}$ be the protocol carrier map.

Then the composition $\Phi = \delta^{\circ} \Xi$ is a connected carrier map $\mathcal{I} \to 2^{\mathcal{O}}$ carried by Δ (check Problem 3 in Exercise Set 2).

Corollary

The consensus task has no layered read-write protocol

Corollary

Any ϵ -agreement task has a layered read-write protocol

This work is licensed under a <u>Creative Commons Attribution</u>-ShareAlike 2.5 License.

You are free:

- to Share to copy, distribute and transmit the work
- to Remix to adapt the work
- Under the following conditions:
 - Attribution. You must attribute the work to "Distributed Computing through Combinatorial Topology" (but not in any way that suggests that the authors endorse you or your use of the work).
 - Share Alike. If you alter, transform, or build upon this work, you may
 distribute the resulting work only under the same, similar or a compatible
 license.
- For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to
 - http://creativecommons.org/licenses/by-sa/3.0/.
- Any of the above conditions can be waived if you get permission from the copyright holder.
- Nothing in this license impairs or restricts the author's moral rights.

