
Two-process systems

MITRO207, P4, 2019

Two-Process Systems

Two-process systems can
be captured by elementary

graph theory
gentle introduction to more
general structures needed

later for larger systems
Distributed Computing through

Combinatorial Topology
2

Road Map
Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Task Solvability
Distributed Computing through

Combinatorial Topology
3

Road Map
Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Task Solvability
Distributed Computing through

Combinatorial Topology
4

A Vertex

Distributed Computing through
Combinatorial Topology

5

A Vertex
Combinatorial: an element of a set.

Distributed Computing through
Combinatorial Topology

6

A Vertex
Combinatorial: an element of a set.

Geometric: a point in Euclidean Space

Distributed Computing through
Combinatorial Topology

7

An Edge

8

An Edge
Combinatorial: a set of two vertexes.

9

An Edge
Combinatorial: a set of two vertexes.

Geometric: line segment joining two points

10

A Graph

Distributed Computing through
Combinatorial Topology

11

A Graph
Combinatorial: a set of sets of vertices.

Distributed Computing through
Combinatorial Topology

12

A Graph
Combinatorial: a set of sets of vertices.

Geometric: points joined by line segments

Distributed Computing through
Combinatorial Topology

13

Graphs

finite set V with a collection
G of subsets of V,

Distributed Computing through
Combinatorial Topology

14

Graphs

simplices
(singular: simplex)

finite set V with a collection
G of subsets of V,

vertices

Distributed Computing through
Combinatorial Topology

15

Graphs

Distributed Computing through
Combinatorial Topology

(1) If X 2 G, then |X| · 2

finite set V with a collection
G of subsets of V,

16

Graphs

Distributed Computing through
Combinatorial Topology

(1) If X 2 G, then |X| · 2

finite set V with a collection
G of subsets of V,

vertex: |X| = 1
edge: |X|= 2

17

Graphs

(1) If X 2 G, then |X| · 2
(2) for all v 2 V, {v} 2 G

finite set V with a collection
G of subsets of V,

18

Graphs

(1) If X 2 G, then |X| · 2
(2) for all v 2 V, {v} 2 G

(3) for all X 2 G, and Y ½ X, Y 2 G

finite set V with a collection
G of subsets of V,

19

Dimension

dim(X) = |X|-1.

dimension 0

dimension 1

Distributed Computing through
Combinatorial Topology

20

Pure Graphs

pure of dim 0

pure of dim 1

Distributed Computing through
Combinatorial Topology

21

Graph Coloring

Distributed Computing through
Combinatorial Topology

22

Graph Coloring

Â: G! C

Distributed Computing through
Combinatorial Topology

23

Graph Coloring

Â: G! C
for each edge (s0, s1) 2 G, Â(s0) ¹ Â(s1).

Distributed Computing through
Combinatorial Topology

24

Graph Coloring

Â: G! C
for each edge (s0, s1) 2 G, Â(s0) ¹ Â(s1).

usually process nameschromatic graphs

Distributed Computing through
Combinatorial Topology

25

Graph Labeling

1 0

0

1

Distributed Computing through
Combinatorial Topology

26

Graph Labeling

1 0

0

1f: G! L

Distributed Computing through
Combinatorial Topology

27

Graph Labeling

1 0

0

1f: G! L
usually values from some domain

Distributed Computing through
Combinatorial Topology

28

Labeled Chromatic Graph

0 1

1

0

name(s) = Â(s) view(s) = f(s)

Distributed Computing through
Combinatorial Topology

29

Simplicial Maps

Vertex-to-vertex map …

that also sends edges to edges.

Distributed Computing through
Combinatorial Topology

30

Rigid Simplicial Maps

A simplicial map can send
an edge to a vertex …

Distributed Computing through
Combinatorial Topology

31

Rigid Simplicial Maps

A simplicial map can send
an edge to a vertex …

A simplicial map that sends
an edge to an edge is rigid.

Distributed Computing through
Combinatorial Topology

32

A Path Between two Vertices

Distributed Computing through
Combinatorial Topology

33

A Path Between two Vertices

A graph is connected if
there is a path between
every pair of vertices

Distributed Computing through
Combinatorial Topology

34

Not Connected

A graph is connected if
there is a path between
every pair of vertices

Distributed Computing through
Combinatorial Topology

35

Theorem

Distributed Computing through
Combinatorial Topology

Theorem

Á

The image of a connected
graph under a simplicial map
is connected.

36

Carrier Maps

Distributed Computing through
Combinatorial Topology

©: G! 2H

For graphs G, H, a carrier map

Carries each simplex of G to a subgraph of H …

©

37

Carrier Maps

Distributed Computing through
Combinatorial Topology

©: G! 2H

For graphs G, H, a carrier map

Carries each simplex of G to a subgraph of H …

©

satisfying monotonicity:
for all ¾,¿2G, if ¾µ¿, then ©(¾)µ©(¿).

38

Monotonicity

Strict Carrier Maps

Distributed Computing through
Combinatorial Topology

For all ¾,¿2G, if ¾µ¿, then ©(¾)µ©(¿).

39

Monotonicity

Strict Carrier Maps

Distributed Computing through
Combinatorial Topology

For all ¾,¿2G, if ¾µ¿, then ©(¾)µ©(¿).

Equivalent to …
©(¾Å¿) µ ©(¾) Å ©(¿)

40

Monotonicity

Strict Carrier Maps

Distributed Computing through
Combinatorial Topology

For all ¾,¿2G, if ¾µ¿, then ©(¾)µ©(¿).

Equivalent to …
©(¾Å¿) µ ©(¾) Å ©(¿)

Definition
© is strict if ©(¾Å¿) = ©(¾) Å ©(¿)

41

Connected Carrier Maps

Distributed Computing through
Combinatorial Topology

©: G! 2H

For each vertex s2G, ©(s) is non-empty and …

©

for each edge ¾2G, ©(¾) is connected.

42

Carrier map ©: G! 2H is connected if …

Road Map
Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Task Solvability
Distributed Computing through

Combinatorial Topology
43

Two Processes

Distributed Computing through
Combinatorial Topology

Hello! I’m
Alice

Hello! I’m
Bob

44

Informal Task Definition

Distributed Computing through
Combinatorial Topology

Processes start with input values …

They communicate …

They halt with output values …

legal for those inputs.

45

Formal Task Definition

Distributed Computing through
Combinatorial Topology

Input graph I
all possible assignments of input values

46

Formal Task Definition

Distributed Computing through
Combinatorial Topology

Input graph I
all possible assignments of input values

Output graph O
all possible assignments of output values

47

Formal Task Definition

Distributed Computing through
Combinatorial Topology

Input graph I
all possible assignments of input values

Output graph O
all possible assignments of output values

Carrier map ¢: I! 2O

all possible assignments of output values
for each input

48

Task Input Graph: Consensus

Distributed Computing through
Combinatorial Topology

1

10

0

I

49

Task Input Graph

Distributed Computing through
Combinatorial Topology

0 1

10

I

50

Task Input Graph

Distributed Computing through
Combinatorial Topology

1 1

00

Pure

Colored by process names

Labeled by input values

51

Task Output Graph

Distributed Computing through
Combinatorial Topology

1 1

00

O

52

Task Carrier Map

Distributed Computing through
Combinatorial Topology

1 1

00

1 1

00

¢: I ! 2OI O

53

Task Carrier Map

Distributed Computing through
Combinatorial Topology

1 1

00

1 1

00

¢: I ! 2OI O

If Bob runs alone with input 1 …

then he decides output 1.
54

Task Carrier Map

Distributed Computing through
Combinatorial Topology

1 1

00

1 1

00

¢: I ! 2OI O

If Bob and Alice both have input 1 …

then they both decide output 1.
55

Task Carrier Map

Distributed Computing through
Combinatorial Topology

1 1

00

1 1

00

¢: I ! 2OI O

If Bob has 1 and Alice 0 …

then they must agree, on either one.
56

Example: Coordinated Attack

57

Alice and Bob win
If they both attack

together

Alice Bob

Distributed Computing through
Combinatorial Topology

Enemy

Indifferent

Attack at dawn! Attack at noon!

Input Graph

Distributed Computing through
Combinatorial Topology

I

58

Output Graph

Distributed Computing through
Combinatorial Topology

dawn! noon!

failed!

O

59

Carrier Map

Distributed Computing through
Combinatorial Topology

¢

I

O
60

Carrier Map

Distributed Computing through
Combinatorial Topology

¢

dawn! failed!

dawn! I

O
61

Carrier Map

Distributed Computing through
Combinatorial Topology

¢

noon!failed!

noon!I

O
62

Carrier Map

Distributed Computing through
Combinatorial Topology

¢

dawn!

dawn! I

O
63

Carrier Map

Distributed Computing through
Combinatorial Topology

¢

failed

? I

O
64

Example: Coordinated Attack

65

Alice Bob

Distributed Computing through
Combinatorial Topology

Enemy

Example: Coordinated Attack

66

Alice Bob

Distributed Computing through
Combinatorial Topology

Enemy

Alice and Bob realize that
they do not need to agree

on an exact time …

Example: Coordinated Attack

67

Alice Bob

Distributed Computing through
Combinatorial Topology

Enemy

Alice and Bob realize that
they do not need to agree

on an exact time …
they will win if attack times

are sufficiently close.

0 1

0 1/5 2/5 3/5 4/5 1

Coordinated Attack Graphs

Distributed Computing through
Combinatorial Topology

¢

I

O
68

0 1

0 1/5 2/5 3/5 4/5 1

Coordinated Attack Graphs

Distributed Computing through
Combinatorial Topology

¢

I

O
69

0 1

0 1/5 2/5 3/5 4/5 1

Coordinated Attack Graphs

Distributed Computing through
Combinatorial Topology

¢

I

O
70

0 1

0 1/5 2/5 3/5 4/5 1

Coordinated Attack Graphs

Distributed Computing through
Combinatorial Topology

¢

I

O
71

Road Map
Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Task Solvability
Distributed Computing through

Combinatorial Topology
72

Protocols

Distributed Computing through
Combinatorial Topology

Models of Computation

73

Alice’s Protocol

74

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
mem[A] := view;
view := view + mem[A] + mem[B];

return δ(view)
Finite program

Bob’s protocol is symmetric

Distributed Computing through
Combinatorial Topology

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
mem[A] := view;
view := view + mem[B];

return δ(view)

Alice’s Protocol

75Distributed Computing through
Combinatorial Topology

shared two-element memory

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
mem[A] := view;
view := view + mem[B];

return δ(view)

Alice’s Protocol

76Distributed Computing through
Combinatorial Topology

Start with input value

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
mem[A] := view;
view := view + mem[B];

return δ(view)

Alice’s Protocol

77Distributed Computing through
Combinatorial Topology

Run for L rounds

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
mem[A] := view;
view := view + mem[B];

return δ(view)

Alice’s Protocol

78Distributed Computing through
Combinatorial Topology

Alice writes her value, read Bob’s
value, and concatenate it to her view

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
mem[A] := view;
view := view + mem[B];

return δ(view)

Alice’s Protocol

79Distributed Computing through
Combinatorial Topology

Alice writes her value, read Bob’s
value, and concatenate it to her view

(full-information protocol)

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
mem[A] := view;
view := view + mem[B];

return δ(view)

Alice’s Protocol

80Distributed Computing through
Combinatorial Topology

finally, apply task-specific
decision map to view

Formal Protocol Definition

Distributed Computing through
Combinatorial Topology

Input graph I
all possible assignments of input values

81

Formal Protocol Definition

Distributed Computing through
Combinatorial Topology

Input graph I
all possible assignments of input values

Protocol graph P
all possible process views after execution

82

Formal Protocol Definition

Distributed Computing through
Combinatorial Topology

Input graph I
all possible assignments of input values

Protocol graph P
all possible process views after execution

Carrier map ¥: I! 2P

all possible assignments of views

83

One-Round Protocol Graph

Distributed Computing through
Combinatorial Topology

10

0? 0101 ?1

¥

I

P
84

One-Round Protocol Graph

Distributed Computing through
Combinatorial Topology

0? 0101 ?1

Colored by process names

Labeled with final views

P

85

One-Round Protocol Graph

Distributed Computing through
Combinatorial Topology

0? 0101 ?1

Alice finishes before Bob
starts, doesn’t see his value

P

86

One-Round Protocol Graph

Distributed Computing through
Combinatorial Topology

0? 0101 ?1

Alice and Bob run together,
she sees his value.

P

87

One-Round Protocol Graph

Distributed Computing through
Combinatorial Topology

0? 0101 ?1

Alice finishes, then Bob starts

P

88

One-Round Protocol Graph

Distributed Computing through
Combinatorial Topology

0? 0101 ?1

Alice and Bob run together

P

89

One-Round Protocol Graph

Distributed Computing through
Combinatorial Topology

0? 0101 ?1

Bob can’t tell whether Alice saw him

P

90

Execution Carrier Map

Distributed Computing through
Combinatorial Topology

10

0? 0101 ?1

¥

I

P
91

Execution Carrier Map

Distributed Computing through
Combinatorial Topology

10

0? 0101 ?1

¥

I

P

¥: I ! 2P

strict carrier map
¥(¾) Å ¥(¿) = ¥(¾ Å ¿)

92

Output graph0 2/31/3 1

0? 0101 ?1 Protocol graph

δ

The Decision Map

Distributed Computing through
Combinatorial Topology

δ

93

All Together

Distributed Computing through
Combinatorial Topology

0 1

0 2/31/3 1

0? 0101 ?1¢

δ

I

P

O

¥

94

Definition

Distributed Computing through
Combinatorial Topology

Decision map δ (of protocol ¥) is carried by
carrier map ¢ if

for each input vertex s,

for each input edge ¾,
δ(¥(s)) µ ¢(s)

δ(¥(¾)) µ ¢(¾).

95

Meaning

96

δ(¥(s)) µ ¢(s)

process starts in state s

Meaning

97

δ(¥(s)) µ ¢(s)

runs the protocol to completion

Meaning

98

δ(¥(s)) µ ¢(s)

makes a decision …

Meaning

99

δ(¥(s)) µ ¢(s)

decision is permitted by task carrier map

Definition

Solving a Task

Distributed Computing through
Combinatorial Topology

The protocol (I,P,¥) solves the task (I, O, ¢)

100

Definition

Solving a Task

Distributed Computing through
Combinatorial Topology

The protocol (I,P,¥) solves the task (I, O, ¢)

if there is …

101

Definition

Solving a Task

Distributed Computing through
Combinatorial Topology

The protocol (I,P,¥) solves the task (I, O, ¢)

if there is …

a simplicial decision map
δ:P! O

102

Definition

Solving a Task

Distributed Computing through
Combinatorial Topology

The protocol (I,P,¥) solves the task (I, O, ¢)

if there is …

a simplicial decision map
δ:P! O

103

such that δ is carried by ¢.
(δ agrees with ¢)

Layered Read-Write Model

104

Layered Read-Write Protocol
(Alice)

Distributed Computing through
Combinatorial Topology

105

shared mem array 0..1,0..L of Value
view: Value := my input value;
for i: int := 0 to L do
mem[i][A] := view;
view := view + mem[i][A] + mem[i][B];

return δ(view)

shared mem array 0..1,0..L of Value
view: Value := my input value;
for i: int := 0 to L do
mem[i][A] := view;
view := view + mem[i][A] + mem[i][B];

return δ(view)

As before, run for L layers

Distributed Computing through
Combinatorial Topology

106

Layered Read-Write Protocol
(Alice)

shared mem array 0..1,0..L of Value
view: Value := my input value;
for i: int := 0 to L do
mem[i][A] := view;
view := view + mem[i][A] + mem[i][B];

return δ(view)

Distributed Computing through
Combinatorial Topology

Each layer uses a distinct, “clean” memory

107

Layered Read-Write Protocol
(Alice)

Layered R-W Protocol Graph

Distributed Computing through
Combinatorial Topology

10

0? 0101 ?1

¥

I

P
108

Layered R-W Protocol Graph

Distributed Computing through
Combinatorial Topology

¥

P is always a subdivision of I

I P

109

Road Map
Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Task Solvability
Distributed Computing through

Combinatorial Topology
110

Alice’s 1/3-Agreement
Protocol

Distributed Computing through
Combinatorial Topology

mem[A] := 0
other := mem[B]
if other == ? then
decide 0

else
decide 2/3

111

Alice’s 1/3-Agreement
Protocol

Distributed Computing through
Combinatorial Topology

mem[A] := 0
if mem[B] == ? then
decide 0

else
decide 2/3

Alice writes her value to memory

112

Alice’s 1/3-Agreement
Protocol

Distributed Computing through
Combinatorial Topology

mem[A] := 0
if mem[B] == ? then
decide 0

else
decide 2/3

If she doesn’t see Bob’s value, decide her own.

113

Alice’s 1/3-Agreement
Protocol

Distributed Computing through
Combinatorial Topology

mem[A] := 0
if mem[B] == ? then
decide 0

else
decide 2/3

If she see’s Bob’s value, jump to the middle

114

0 2/31/3 1

0 2/31/3 1

0 2/31/3 1

Distributed Computing through
Combinatorial Topology

115

One-Layer 1/3-Agreement
Protocol

Distributed Computing through
Combinatorial Topology

0 1

0 2/31/3 1

0? 0101 ?1

δ

I

P

O

¥

116

No 1-Layer 1/5-Agreement
Protocol

Distributed Computing through
Combinatorial Topology

0 1

1/5 3/52/5 4/5

0? 0101 ?1

δ
P

O

¥

10

(no map possible)

I

117

10

0 1/5 2/5 3/5 4/5 1

¥

0? 0101 ?1

2-Layer 1/5-Agreement

Distributed Computing through
Combinatorial Topology

¥

I

O

layer 1

layer 2

δ

118

Fact

Distributed Computing through
Combinatorial Topology

In the layered read-write model,

The 1/K-Agreement Task

Has a dlog3 Ke–layer protocol

119

Road Map
Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Task Solvability
Distributed Computing through

Combinatorial Topology
120

Fact

Distributed Computing through
Combinatorial Topology

The protocol graph for any L-layer protocol with
input graph I is a subdivision of I, where each
edge is subdivided 3L times.

121

Main Theorem

Distributed Computing through
Combinatorial Topology

The two-process task (I, O, ¢) is solvable in the
layered read-write model if and only if there
exists a connected carrier map ©: I! 2O

carried by ¢.

122

Proof sketch: the “if” part

Distributed Computing through
Combinatorial Topology

Let ©: I! 2O be a connected carrier map carried by
¢.

For each edge ¾i=(si,ti)2I, there is a path 𝜋𝑖 in ©(¾i)
connecting ©(si) and ©(ti) (choosing just one vertex
in each image is enough)
Approximate agreement on the path can be solved
using dlog3 Le layers where L is maxi2I |𝜋𝑖 |
For edges (s,t), (s,u): “glue together” protocols for
(s,t) and (s,u): they agree on s.

123

The protocol is carried by ¢, so it solves T

Proof sketch: the “only if” part

Distributed Computing through
Combinatorial Topology

Let a layered protocol P solve T with a
decision map δ
Let ¥: I! 2P be the protocol carrier map.

124

Then the composition ©= δ°¥ is a
connected carrier map I! 2O carried by
¢ (check Problem 3 in Exercise Set 2).

Corollary

Distributed Computing through
Combinatorial Topology

The consensus task has no layered
read-write protocol

125

Corollary

Distributed Computing through
Combinatorial Topology

Any ²–agreement task has a layered
read-write protocol

126

127

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “Distributed Computing through

Combinatorial Topology” (but not in any way that suggests that the authors
endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.
• Any of the above conditions can be waived if you get permission from

the copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

Distributed Computing through
Combinatorial Topology

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

