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Two-Process Systems

Two-process systems can 
be captured by elementary 

graph theory
gentle introduction to more 
general structures needed 

later for larger systems
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A Vertex
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A Vertex
Combinatorial: an element of a set.
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A Vertex
Combinatorial: an element of a set.

Geometric: a point in Euclidean Space
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An Edge
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An Edge
Combinatorial: a set of two vertexes.

9



An Edge
Combinatorial: a set of two vertexes.

Geometric: line segment joining two points
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A Graph
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A Graph
Combinatorial: a set of sets of vertices.
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A Graph
Combinatorial: a set of sets of vertices.

Geometric: points joined by line segments
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Graphs

finite set V with a collection 
G of subsets of V,
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Graphs

simplices
(singular: simplex)

finite set V with a collection 
G of subsets of V,

vertices
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Graphs
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(1) If X 2 G, then |X| · 2

finite set V with a collection 
G of subsets of V,
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Graphs

Distributed Computing through 
Combinatorial Topology

(1) If X 2 G, then |X| · 2

finite set V with a collection 
G of subsets of V,

vertex: |X| = 1 
edge: |X|= 2 
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Graphs

(1) If X 2 G, then |X| · 2
(2) for all v 2 V, {v} 2 G

finite set V with a collection 
G of subsets of V,
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Graphs

(1) If X 2 G, then |X| · 2
(2) for all v 2 V, {v} 2 G

(3) for all X 2 G, and Y ½ X, Y 2 G

finite set V with a collection 
G of subsets of V,

19



Dimension

dim(X) = |X|-1. 

dimension 0

dimension 1

Distributed Computing through 
Combinatorial Topology

20



Pure Graphs

pure of dim 0

pure of dim 1
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Graph Coloring
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Graph Coloring

Â: G! C
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Graph Coloring

Â: G! C
for each edge (s0, s1) 2 G, Â(s0) ¹ Â(s1).
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Graph Coloring

Â: G! C
for each edge (s0, s1) 2 G, Â(s0) ¹ Â(s1).

usually process nameschromatic graphs
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Graph Labeling

1 0

0

1
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Graph Labeling

1 0

0

1f: G! L
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Graph Labeling

1 0

0

1f: G! L
usually values from some domain
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Labeled Chromatic Graph

0 1

1

0

name(s) = Â(s) view(s) = f(s) 
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Simplicial Maps

Vertex-to-vertex map …

that also sends edges to edges.
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Rigid Simplicial Maps

A simplicial map can send 
an edge to a vertex …
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Rigid Simplicial Maps

A simplicial map can send 
an edge to a vertex …

A simplicial map that sends 
an edge to an edge is rigid.
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A Path Between two Vertices
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A Path Between two Vertices

A graph is connected if 
there is a path between 
every pair of vertices
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Not Connected

A graph is connected if 
there is a path between 
every pair of vertices
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Theorem
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Theorem

Á

The image of a connected 
graph under a simplicial map 
is connected.
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Carrier Maps
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©: G! 2H

For graphs G, H, a carrier map 

Carries each simplex of G to a subgraph of H …

©
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Carrier Maps

Distributed Computing through 
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©: G! 2H

For graphs G, H, a carrier map 

Carries each simplex of G to a subgraph of H …

©

satisfying monotonicity:
for all ¾,¿2G, if ¾µ¿, then ©(¾)µ©(¿).
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Monotonicity

Strict Carrier Maps
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For all ¾,¿2G, if ¾µ¿, then ©(¾)µ©(¿).
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Monotonicity

Strict Carrier Maps

Distributed Computing through 
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For all ¾,¿2G, if ¾µ¿, then ©(¾)µ©(¿).

Equivalent to …
©(¾Å¿) µ ©(¾) Å ©(¿)
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Monotonicity

Strict Carrier Maps

Distributed Computing through 
Combinatorial Topology

For all ¾,¿2G, if ¾µ¿, then ©(¾)µ©(¿).

Equivalent to …
©(¾Å¿) µ ©(¾) Å ©(¿)

Definition
© is strict if ©(¾Å¿) = ©(¾) Å ©(¿)
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Connected Carrier Maps
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©: G! 2H

For each vertex s2G, ©(s) is non-empty and …

©

for each edge ¾2G, ©(¾) is connected.

42

Carrier map ©: G! 2H is connected if …
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Two Processes
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Hello! I’m
Alice

Hello! I’m
Bob
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Informal Task Definition
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Processes start with input values …

They communicate …

They halt with output values …

legal for those inputs.
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Formal Task Definition
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Input graph I
all possible assignments of input values
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Formal Task Definition
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Input graph I
all possible assignments of input values

Output graph O
all possible assignments of output values
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Formal Task Definition

Distributed Computing through 
Combinatorial Topology

Input graph I
all possible assignments of input values

Output graph O
all possible assignments of output values

Carrier map ¢: I! 2O

all possible assignments of output values 
for each input

48



Task Input Graph: Consensus
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1

10

0

I
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Task Input Graph
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0 1

10

I
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Task Input Graph
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1 1

00

Pure

Colored by process names

Labeled by input values
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Task Output Graph

Distributed Computing through 
Combinatorial Topology

1 1

00

O
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Task Carrier Map
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1 1

00

1 1

00

¢: I ! 2OI O
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Task Carrier Map

Distributed Computing through 
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1 1

00

1 1

00

¢: I ! 2OI O

If Bob runs alone with input 1 …

then he decides output 1.
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Task Carrier Map
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Combinatorial Topology

1 1

00

1 1

00

¢: I ! 2OI O

If Bob and Alice both have input 1 …

then they both decide output 1.
55



Task Carrier Map

Distributed Computing through 
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1 1

00

1 1

00

¢: I ! 2OI O

If Bob has 1 and Alice 0 …

then they must agree, on either one.
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Example: Coordinated Attack

57

Alice and Bob win
If they both attack 

together

Alice Bob
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Enemy



Indifferent

Attack at dawn! Attack at noon!

Input Graph
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I
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Output Graph
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dawn! noon!

failed!

O
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Carrier Map
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¢

I

O
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Carrier Map
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¢

dawn! failed!

dawn! I

O
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Carrier Map
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¢

noon!failed!

noon!I

O
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Carrier Map
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¢

dawn!

dawn! I

O
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Carrier Map
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¢

failed

? I

O
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Example: Coordinated Attack

65

Alice Bob
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Enemy



Example: Coordinated Attack

66

Alice Bob

Distributed Computing through 
Combinatorial Topology

Enemy

Alice and Bob realize that 
they do not need to agree 

on an exact time …



Example: Coordinated Attack
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Alice Bob
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Enemy

Alice and Bob realize that 
they do not need to agree 

on an exact time …
they will win if attack times 

are sufficiently close.



0 1

0 1/5 2/5 3/5 4/5 1

Coordinated Attack Graphs
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0 1

0 1/5 2/5 3/5 4/5 1

Coordinated Attack Graphs

Distributed Computing through 
Combinatorial Topology

¢

I

O
69



0 1

0 1/5 2/5 3/5 4/5 1

Coordinated Attack Graphs
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0 1

0 1/5 2/5 3/5 4/5 1

Coordinated Attack Graphs
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¢

I
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Tasks
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Protocols

Distributed Computing through 
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Models of Computation

73



Alice’s Protocol

74

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
mem[A] := view;
view := view + mem[A] + mem[B];

return δ(view)
Finite program

Bob’s protocol is symmetric

Distributed Computing through 
Combinatorial Topology



shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
mem[A] := view;
view := view + mem[B];

return δ(view)

Alice’s Protocol

75Distributed Computing through 
Combinatorial Topology

shared two-element memory



shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
mem[A] := view;
view := view + mem[B];

return δ(view)

Alice’s Protocol

76Distributed Computing through 
Combinatorial Topology

Start with input value



shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
mem[A] := view;
view := view + mem[B];

return δ(view)

Alice’s Protocol

77Distributed Computing through 
Combinatorial Topology

Run for L rounds



shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
mem[A] := view;
view := view + mem[B];

return δ(view)

Alice’s Protocol

78Distributed Computing through 
Combinatorial Topology

Alice writes her value, read Bob’s 
value, and concatenate it to her view



shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
mem[A] := view;
view := view + mem[B];

return δ(view)

Alice’s Protocol

79Distributed Computing through 
Combinatorial Topology

Alice writes her value, read Bob’s 
value, and concatenate it to her view

(full-information protocol)



shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
mem[A] := view;
view := view + mem[B];

return δ(view)

Alice’s Protocol

80Distributed Computing through 
Combinatorial Topology

finally, apply task-specific 
decision map to view



Formal Protocol Definition
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Input graph I
all possible assignments of input values
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Formal Protocol Definition

Distributed Computing through 
Combinatorial Topology

Input graph I
all possible assignments of input values

Protocol graph P
all possible process views after execution
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Formal Protocol Definition

Distributed Computing through 
Combinatorial Topology

Input graph I
all possible assignments of input values

Protocol graph P
all possible process views after execution

Carrier map ¥: I! 2P

all possible assignments of views
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One-Round Protocol Graph
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10

0? 0101 ?1

¥

I

P
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One-Round Protocol Graph
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0? 0101 ?1

Colored by process names

Labeled with final views

P
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One-Round Protocol Graph
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0? 0101 ?1

Alice finishes before Bob 
starts, doesn’t see his value

P
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One-Round Protocol Graph
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0? 0101 ?1

Alice and Bob run together,
she sees his value.

P
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One-Round Protocol Graph
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0? 0101 ?1

Alice finishes, then Bob starts

P
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One-Round Protocol Graph
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0? 0101 ?1

Alice and Bob run together

P
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One-Round Protocol Graph
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0? 0101 ?1

Bob can’t tell whether Alice saw him

P
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Execution Carrier Map
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10

0? 0101 ?1

¥

I

P
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Execution Carrier Map
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10

0? 0101 ?1

¥

I

P

¥: I ! 2P

strict carrier map
¥(¾) Å ¥(¿) = ¥(¾ Å ¿)
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Output graph0 2/31/3 1

0? 0101 ?1 Protocol graph

δ

The Decision Map

Distributed Computing through 
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δ
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All Together
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0 1

0 2/31/3 1

0? 0101 ?1¢

δ

I

P

O

¥
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Definition

Distributed Computing through 
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Decision map δ (of protocol ¥) is carried by
carrier map ¢ if

for each input vertex s,

for each input edge ¾,
δ(¥(s)) µ ¢(s)

δ(¥(¾)) µ ¢(¾).
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Meaning

96

δ(¥(s)) µ ¢(s)

process starts in state s



Meaning
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δ(¥(s)) µ ¢(s)

runs the protocol to completion



Meaning
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δ(¥(s)) µ ¢(s)

makes a decision …



Meaning
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δ(¥(s)) µ ¢(s)

decision is permitted by task carrier map



Definition

Solving a Task
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The protocol (I,P,¥) solves the task (I, O, ¢)
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Definition

Solving a Task

Distributed Computing through 
Combinatorial Topology

The protocol (I,P,¥) solves the task (I, O, ¢)

if there is …
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Definition

Solving a Task

Distributed Computing through 
Combinatorial Topology

The protocol (I,P,¥) solves the task (I, O, ¢)

if there is …

a simplicial decision map
δ:P! O
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Definition

Solving a Task

Distributed Computing through 
Combinatorial Topology

The protocol (I,P,¥) solves the task (I, O, ¢)

if there is …

a simplicial decision map
δ:P! O

103

such that δ is carried by ¢.
(δ agrees with ¢)



Layered Read-Write Model
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Layered Read-Write Protocol 
(Alice)

Distributed Computing through 
Combinatorial Topology
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shared mem array 0..1,0..L of Value
view: Value := my input value;
for i: int := 0 to L do
mem[i][A] := view;
view := view + mem[i][A] + mem[i][B];

return δ(view)



shared mem array 0..1,0..L of Value
view: Value := my input value;
for i: int := 0 to L do
mem[i][A] := view;
view := view + mem[i][A] + mem[i][B];

return δ(view)

As before, run for L layers

Distributed Computing through 
Combinatorial Topology
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Layered Read-Write Protocol 
(Alice)



shared mem array 0..1,0..L of Value
view: Value := my input value;
for i: int := 0 to L do
mem[i][A] := view;
view := view + mem[i][A] + mem[i][B];

return δ(view)

Distributed Computing through 
Combinatorial Topology

Each layer uses a distinct, “clean” memory

107

Layered Read-Write Protocol 
(Alice)



Layered R-W Protocol Graph
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10

0? 0101 ?1

¥

I

P
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Layered R-W Protocol Graph

Distributed Computing through 
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¥

P is always a subdivision of I

I P
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Alice’s 1/3-Agreement 
Protocol

Distributed Computing through 
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mem[A] := 0
other := mem[B]
if other == ? then
decide 0

else
decide 2/3

111



Alice’s 1/3-Agreement 
Protocol

Distributed Computing through 
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mem[A] := 0
if mem[B] == ? then
decide 0

else
decide 2/3

Alice writes her value to memory
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Alice’s 1/3-Agreement 
Protocol

Distributed Computing through 
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mem[A] := 0
if mem[B] == ? then
decide 0

else
decide 2/3

If she doesn’t see Bob’s value, decide her own.
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Alice’s 1/3-Agreement 
Protocol

Distributed Computing through 
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mem[A] := 0
if mem[B] == ? then
decide 0

else
decide 2/3

If she see’s Bob’s value, jump to the middle
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0 2/31/3 1

0 2/31/3 1

0 2/31/3 1

Distributed Computing through 
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One-Layer 1/3-Agreement 
Protocol

Distributed Computing through 
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0 1

0 2/31/3 1

0? 0101 ?1

δ

I

P

O

¥
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No 1-Layer 1/5-Agreement 
Protocol

Distributed Computing through 
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0 1

1/5 3/52/5 4/5

0? 0101 ?1

δ
P

O

¥

10

(no map possible)

I
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10

0 1/5 2/5 3/5 4/5 1

¥

0? 0101 ?1

2-Layer 1/5-Agreement 

Distributed Computing through 
Combinatorial Topology

¥

I

O

layer 1

layer 2

δ
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Fact

Distributed Computing through 
Combinatorial Topology

In the layered read-write model,

The 1/K-Agreement Task

Has a dlog3 Ke–layer protocol
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Road Map
Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Task Solvability
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Fact

Distributed Computing through 
Combinatorial Topology

The protocol graph for any L-layer protocol with 
input graph I is a subdivision of I, where each 
edge is subdivided 3L times.
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Main Theorem

Distributed Computing through 
Combinatorial Topology

The two-process task (I, O, ¢) is solvable in the 
layered read-write model if and only if there 
exists a connected carrier map ©: I! 2O

carried by ¢.
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Proof sketch: the “if” part

Distributed Computing through 
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Let ©: I! 2O be a connected carrier map carried by 
¢.

For each edge ¾i=(si,ti)2I, there is a path 𝜋𝑖 in ©(¾i) 
connecting ©(si) and ©(ti) (choosing just one vertex 
in each image is enough)
Approximate agreement on the path can be solved 
using dlog3 Le layers where L is maxi2I |𝜋𝑖 |
For edges (s,t), (s,u): “glue together” protocols for 
(s,t) and (s,u): they agree on s. 

123

The protocol is carried by ¢, so it solves T



Proof sketch: the “only if” part

Distributed Computing through 
Combinatorial Topology

Let a layered protocol P solve T with a 
decision map δ
Let ¥: I! 2P be the protocol carrier map.

124

Then the composition ©= δ°¥ is a  
connected carrier map I! 2O carried by 
¢ (check Problem 3 in Exercise Set 2).



Corollary
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The consensus task has no layered 
read-write protocol
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Corollary
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Any ²–agreement task has a layered 
read-write protocol
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