Distributed Computing through Combinatorial Topology

MITRO207, P4, 2019

Administrivia

- Language: English? Français sur demande
- Lectures: Wednesday, 8:30-11:45
- Web page: http://perso.telecomparistech.fr/~kuznetso/MITRO207-2019/
- Homeworks
 - Corrected, not graded
 - TD: 29.05.2019
- Office hours:
 - C213-2, appointments by email to petr.kuznetsov@telecomparistech.fr
- Credit = written exam: June 25, 2019 (3 hours)
- Bonus for homeworks, participation, discussion of exercises, bugs found

Literature

Distributed Computing
Through Combinatorial Topology
Maurice Herlihy, Dmitry Kozlov, Sergio
Rajsbaum
Morgan Kaufman, 2013, available online (TPT
library

 Algorithms for ConcurrentSystems.
 R. Guerraoui, P. Kuznetsov, 2018

(Preliminary) road map

- The matter and the method of distributed computing
- Basics of combinatorial topology
- Colorless tasks
- Simulations and reductions
- Generic tasks and manifold computations
- Renaming and oriented manifolds

In the Beginning ...

a computer was just a Turing machine ...

Road Map

Distributed Computing

Two Classic Distributed Problems

The Muddy Children

Coordinated Attack

Road Map

Distributed Computing

Two Classic Distributed Problems

The Muddy Children

Coordinated Attack

Combinatorial Topology

Communication

Communication

Communication

Message-Passing

Prof. James Moriarty Brown University Providence RI 02912

> Mr. S. Holmes 221B Baker Street London NW1 6XE

Read-Write Memory

http://www.alpa.ch/en/news/2011/dead-sea-scrolls

Read-Write Models

write & read individual locations

write & take memory snapshot

Group writes together then takes snapshots together

Layered Read-Write Memory

Black Box Memory

Failures

Crash failures: processes halt

Which ones?

Wait-Free Failure Model

t-Resilient Failure Model

Correlated Failures

Processes on same server may crash

Adversaries

Adversaries

Adversaries

Processes share a clock
Synchronous

Synchronous

Processes do not share a clock

Synchronous

Processes do not share a clock Asynchronous

Synchronous

Processes do not share a clock Asynchronous

Processes have approximatelysynchronized clocks

Synchronous

Processes do not share a clock Asynchronous

Processes have approximatelysynchronized clocks Semi-synchronous

Synchronous

Synchronous Failures

Asynchronous

Asynchronous Failures

Semi-Synchronous

Semi-Synchronous Failures

Computation Model Space

Multicores

Asynchronous Wait-free Shared Memory

Distributed Computing

Parallel Computing

Synchronous Message-passing (or shared memory)

Local Views

Multiple Local Views

Multiple Local Views

Multiple Local Views

each view is represented by a labeled vertex

Global States

compatible views represented by an edge

Communication

Communication

Combinatorial Topology

One Communication Round

Distributed Computing though Combinatorial Topology

Informally

Unreliable communication does not change "topology" of global states

Reliable Communication?

Reliable Communication?

Distributed Computing though Combinatorial Topology

Tasks

32 19 21

Tasks

Possible set of input values

32 19 21

Tasks

Possible set of input values

Finite computation

Tasks

Possible set of input values

Finite computation

Possible set of output values

Distributed Computing though Combinatorial Topology

Road Map

Distributed Computing

Two Classic Distributed Problems

The Muddy Children

Coordinated Attack

Muddy Children

At least one of you is dirty!

Combinatorial Topology

You may not communicate!

Operational Explanation

Operational Explanation

Combinatorial Explanation

Combinatorial Explanation

Distributed Computing though Combinatorial Topology

Distributed Computing though Combinatorial Topology

Road Map

Distributed Computing

Two Classic Distributed Problems

The Muddy Children

Coordinated Attack

Coordinated Attack

Combinatorial Topology

The Two Generals

Your Mission

Design a protocol to ensure that Alice and Bob attack simultaneously

Theorem

There is no protocol that ensures that the Red armies attack simultaneously

Suppose Bob receives a message at 1:00 saying "attack at Dawn".

Suppose Bob receives a message at 1:00 saying "attack at Dawn".

Are we done?

Suppose Bob receives a message at 1:00 saying "attack at Dawn".

Are we done?

No, because Alice doesn't know if Bob got that message ...

So Bob sends an acknowledgment to Alice

So Bob sends an acknowledgment to Alice

Are we done?

So Bob sends an acknowledgment to Alice

Are we done?

No, because Bob doesn't know if Alice got that message ...

Bob is Alice is

Distributed Computing though Combinatorial Topology

1:00 PM

2:00 PM

Distributed Computing though Combinatorial Topology

output graph

Test and Set

- TAS(X) **tests** if X = 1, **sets** X to 1 if not, and returns the old value of X
 - Instruction available on almost all processors

```
TAS(X):  \begin{cases} if X == 1 return 1; \\ X = 1; \\ return 0; \end{cases}
```


2 processes, P and Q, perform TAS(X) What is the protocol complex?

2-Process Test and Set

What if there are 3 processes: P, Q, and R?

HW: (Simplified) Peterson's lock: 2 processes

```
bool flag[0] = false;
               bool flag[1] = false;
               int turn;
P0:
                                 P1:
                                  flag[1] = true;
flag[0] = true;
                                  turn = 0;
turn = 1;
                                  if(flag[0] and turn==0)
if(flag[1] and turn==1){
return false // failure
                                 return false // failure
                                 return true
return true
                                                // critical
       // critical section
                                            section
```

What is the protocol complex?
Can we prove that the two processes cannot be both in the critical section

Operational Reasoning

http://commons.wikimedia.org/wiki/File:Professor_Lucifer_Butts.gif

Combinatorial Reasoning

Combinatorial Reasoning

Combinatorial Reasoning

... restricted model-dependent reasoning

This work is licensed under a <u>Creative Commons Attribution</u>-ShareAlike 2.5 License.

You are free:

- to Share to copy, distribute and transmit the work
- to Remix to adapt the work
- Under the following conditions:
 - Attribution. You must attribute the work to "Distributed Computing Through Combinatorial Topology
 - " (but not in any way that suggests that the authors endorse you or your use of the work).
 - Share Alike. If you alter, transform, or build upon this work, you may
 distribute the resulting work only under the same, similar or a compatible
 license.
- For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to
 - http://creativecommons.org/licenses/by-sa/3.0/.
- Any of the above conditions can be waived if you get permission from the copyright holder.
- Nothing in this license impairs or restricts the author's moral rights.

