Combinatorial Structures for
Distributed Computing

Class 2: Asynchronous Computability
Theorem

enta {_ve )
\jc(’&\b" (lr)prpv ox t \ /
> ;
e ¥ TG ngeonts ]
& , s 2 I'la c\
e ution Q)d-l s COm 1Ilat0
- ‘:f?(,
st 101\11‘0»\‘;*"0(&3? 0, . \\' < \\
5 % 5 %, 4
~NQ . & % U
L) H Q A({I@Qb 9]
'y XY
)
7 &
H

Petr Kuznetsov, Telecom ParisTech
Kyoto University, 2018



Distributed tasks

= T task, a one-shot distributed function (I,0,A):
v'Set of input vectors I

v'Set of output vectors O
v'Task specification A: I =» 20

= Atask T is read-write solvable if there is a read-write
algorithm that ensures, for every input vector | in I:

v'Every correct process eventually outputs a value (decides)
v'The output vector Oc A(l)



Asynchronous computability
theorem [HS99,BG93]

A task (I,0,A) is read-write solvable if and only if
there is a chromatic simplicial map from a
subdivision X"(I) to O carried by A

Read-write model (RW) and IIS are equivalent
[BG93,BG97,GR10]

= g task is solvablein IS iff it is solvable in RW



Input Complex for Binary
Consensus

A\‘> All possible initial states |

.

0 ‘Processes: red, green, blue‘

‘ Independently assigned O or 1 ‘
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Output Complex for Binary
Consensus

\< >

0 ‘ All possible final states ‘
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_ ‘ Output values all 0 or all 1 ‘
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‘ Two disconnected simplexes ‘
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Carrier Map for Consensus

All O outputs

All O inputs
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Carrier Map for Consensus

All 1 outputs
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Carrier Map for Consensus
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Task specification

Input complex < Carrier map

Output complex 4+ L — 27
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Colorless tasks

Correctness depends on inputs/outputs only,
regardless of process identifiers
« T=(I,0,A):

v'Set of input sets I

v'Set of output sets O

v'Task specification A: I =» 2°

= k-Set agreement II %

v I=0=3sN %

vV oc I. A(o)=skelkc \/Q



Colorless Tasks

‘(Colorless) input complex ‘ strict carrier map
| 57— 27

‘(colorless) protocol complex \
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(Colorless) Asynchronous
Computability Theorem

‘The colorless task (Z,0,A) has a wait-free RW protocol ... ‘

if and only if ... |
there is a continuous map ‘

f 7= 101
carried by A. ‘

A
Map? ‘
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(Colorless) t-resilient Asynchronous
Computability Theorem

‘The colorless task (Z,0,A) has a t-resilient RW protocol ... ‘

if and only if ... |
there is a continuous map ‘

- |skelZ] — O] |
‘Carried by A. ‘
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Protocol Implies Map

‘May assume protocol complex is P = XN skel' Z. ‘

‘decision manI!,
O X skell!Z— O

_ N
8f: | X skel' Z] — |0 ~ | carried by A.

9|: |skelt Z] — |O]
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Simplicial Approximation Theorem

= Given a continuous map

f 1Al = |B
= thereis an N such that f has a simplicial
approximation

¢ | XINA — B

Holds for most any mesh-
shrinking subdivision




Map Implies Protocol

f: |skelt Z] — |O|

— |carried by A.

o. XNskell T — O

‘Solve using ... ‘

‘ barycentric agreement ‘

‘t—set agreement ‘

Distributed Computing through Combinatorial Topology



Simplicial Approximation

¢: XNA— B
Is a simplicial approximation of
f: Al — |B| if ...

‘foreveryvinA ‘

f(5t(v)) € SH{o(v))
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What about...

= Generic sub-models of RW

v'"Many problems (e.g., consensus) cannot be solved
wait-free

v'So restrictions (sub-models) of RW were considered

= Adversarial models specifying the possible
correct sets [DFGT,2009]

e Non-uniform/correlated faults

e For colorless tasks, a superset-closed adversaries is
characterized by its core size
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Combinatorial Structures for
Distributed Computing

Affine tasks
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Model as a task [KR16,KR18]

= A (long-lived, non-compact) model can be
matched by a (one-shot, compact) task

= Any fair adversary has a matching task

v" also holds for adversaries
v “natural” models
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IS as a task (sN,A(sN),X)

A process starts at its corner...
P




IS as a task (sN,A(sN),X)

and outputs a vertex of it color (carrier-preserving)

Chromatic simplex agreement on x(I)



IS - the task for wait-freedom

Read-write model (RW) and IIS are equivalent
[BG93,BG97,GR10]

= a task is solvable in IIS iff it is solvable in RW

Asynchronous computability theorem[HS93]:

A task (I,0,A) is wait-free read-write solvable if and
only if there is a chromatic simplicial map from a
subdivision x"(I) to O carried by A



Model as a task?

= M model, a set of (infinite) runs
v'Alternating writes and snapshots

= T task, a one-shot distributed function (I,0,A):
v'Set of input vectors I (input complex)
v'Set of output vectors O (output complex)
v'Task specification A: I =» 29(carrier map)

= T%, iterations of T, have the same task computability as M

(Solving a task in M is equivalent to solving T)
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Model as a task

= |S is the matching affine task for wait-free runs
v'"What about restrictions of wait-free?

= k-concurrency?

v'a subset of RW runs where at most k process are
concurrently active



Concurrency levels [Gafo9]

II L OII
1-concurrent: at most one process
-o0—o—o0—o—1 _
makes progress at a time
I @ ] >
— (global lock)
. -1 ]
k-concurrent: at most k processes
: ——0—0—1
make progress concurrently
(k-resource semaphore) BE—1—

n-concurrency = wait-freedom = IS

A matching affine task for k-concurrency (O<k<n)?



Defining A,

Contention sets: all the processes that share
a carrier (= see each other):

Cont(c) = {S CIL,Vp,p" € S, carrier(p,o) = carrier(p’, o)}

Include all simplices in X 2(sN) of contention k
or less

Ry = {0 € Chr’s, VS € Cont(o),|S| < k}



R,

Process proceed in the same total order in two IS
rounds:
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A

All simplices that touch 1-dimenional faces
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k-concurrency = R~

T is solvable in R, *iff T is solvable k-concurrently:

1. k-concurrency simulates R *

2. R,* simulates k-concurrency
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1. From k-concurrency to A~

R, can be solved k-concurrently:
k-concurrent chromatic simplex agreement on R,

N+1 o e See < N+1
N ® ® See < N
> | ® ® | See 10r2
1 [ ® ] See 1

Two rounds of k-concurrent IS implementation [BG93] give Rk



2. From to R, to k-concurrency

= R¥can be used to solve k-set
agreement:
v'Decide on the value of (up to k)

“leaders” processes (chosen by the size
of ISt output)

= 1IS (and thus R, *) can simulate RW ~ £ZZEE5

NS
[BG97,GR10]

Simulate a protocol that uses read-
write and k-set consensus objects?

Not that simple: how to combine
simulating RW with solving k-SA?




Example: total order (k=1)

A
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Solution of any task (I,0,A) in
N

i
. : : AP,
just one iteration of L, TR

Y
=\

{P0}{p1}1,{p2} | {p0}.{p1}{p2}

A

Decide on
Decide on Decide on Z (\glgi 1v2p2i?)
a (deterministicall P 1
ch(osen) value v, i¥1 a value v; A{pO.p1})  nthe link of {Vo,v1}

A({p0}) In the link of v,



Example: A,

More iterations might be
needed

iy

A

AN,

\V
V«)V
{p0}{p1}{p2} | {PO}{p1}{p2} ///,(71@

Who are the leaders?



Simulating k-concurrency

= Adaptive k-set consensus

v'k-commit-adopt: commit (decide) if among k “fastest”
non-terminated processes, adopt otherwise

= RW + (adaptive) k-set consensus => k state
machines
v'Generalized universality [GG11]
v'm active simulators: machines 1..min(m,k) are active

v'Any RW protocol on up to k state machines can be
simulated

= k processes simulate a k-concurrent system

v Extended BG simulation [Gaf09]
v'Let state machines be (EBG) simulators

RW + k-set agreement simulate k-concurrency



k-concurrency = R~

T is solvable in R, *iff T is solvable k-concurrently:

1. k-concurrency simulates R *

2. R,* simulates k-concurrency
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Other models?
= Adversarial models [praTo9) @ O [O Q]

v'"Non-uniform/correlated faults
v [SHG16]: t-resilience ﬁ\

» Set-consensus collections [DFGK16]
v'RW + set-consensus objects in {(s4,t;),...,(S,t)}
v'k-concurrency = k-set consensus

« Affine tasks are in X’ %(sN) %

v'Sometimes even in X (sN) 2-consensus
(TAS)




What is good about it?

« Compact representation of non-compact models

= Conjecture: possible for all “natural models”

v’ Captured by computing artifacts
v"Not 0-1-exclusion, WSB, Mbbius etc.

= Conjecture: relations between models (affine
tasks) are decidable

v"Reduces to maps between bounded sub-complexes of
X 2(sN)
v’ 3-process, read-write wait-free solvability of (colorless)

tasks are undecidable [GK95,HR97]
&5



Decidability of tasks

« Givenatask T and a model M ...
= |s it decidable that T can be solved in M?

In general, no

= 3-process, read-write wait-free solvability of
(colorless) tasks is undecidable [GK95,HR97]

v’ Loop agreement task is reducible [HS93] to loop
contractibility = word problem

v Extends to 2-resilient solvability

D g

C o




Concluding

« Computability can be captured by the
analysis of the corresponding simplicial
complex

v'For tasks and (some) adversarial models

» Open problems

v'Long-lived abstractions (queues, hash tables,
TMs...)

v'Byzantine adversary: a faulty process deviates
arbitrarily

v'Anonymous systems?
v'Partial synchrony

« Mathematics induced by DC?



