Combinatorial Structures for Distributed Computing

Class 2: Asynchronous Computability Theorem

Petr Kuznetsov, Telecom ParisTech Kyoto University, 2018

Distributed tasks

T task, a one-shot distributed function (I,O,Δ):

✓ Set of input vectors I

✓ Set of output vectors O

✓ Task specification Δ : I → 2^o

A task T is read-write solvable if there is a read-write algorithm that ensures, for every input vector I in I:
 ✓ Every correct process eventually outputs a value (decides)

✓ The output vector $O \in \Delta(I)$

Asynchronous computability theorem [HS99,BG93]

A task (I,O,Δ) is read-write solvable if and only if there is a chromatic simplicial map from a subdivision $\chi^r(I)$ to O carried by Δ

Read-write model (RW) and IIS are equivalent [BG93,BG97,GR10]

a task is solvable in IIS iff it is solvable in RW

Input Complex for Binary Consensus

Output Complex for Binary Consensus

Carrier Map for Consensus

Carrier Map for Consensus

Carrier Map for Consensus

Colorless tasks

Correctness depends on inputs/outputs only, regardless of process identifiers

- $T = (I, O, \Delta)$:
 - ✓ Set of input sets I
 - ✓ Set of output sets O
 - ✓ Task specification Δ : I → 2^o
- k-Set agreement
 - \checkmark I = O= s^N
 - $\checkmark \forall \sigma \in I: \Delta(\sigma) = skel^k \sigma$

Colorless Tasks

(Colorless) Asynchronous Computability Theorem

The colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free RW protocol ...

(Colorless) t-resilient Asynchronous Computability Theorem

The colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a t-resilient RW protocol ...

Protocol Implies Map

May assume protocol complex is $\mathcal{P} = X^N \operatorname{skel}^t \mathcal{I}$.

Simplicial Approximation Theorem

Given a continuous map

 $f: |\mathcal{A}| \to |\mathcal{B}|$

there is an N such that f has a simplicial approximation

Map Implies Protocol

Simplicial Approximation

 $\phi: X^{N} \mathcal{A} \to \mathcal{B}$ is a simplicial approximation of $f: |\mathcal{A}| \to |\mathcal{B}|$ if ...

for every v in \mathcal{A} ...

 $f(St(\vec{v})) \subseteq St(\phi(\vec{v}))$

 $\int f(\operatorname{St}(\vec{v})) \int d\vec{v} d\vec{v}$ \overline{B}

What about...

- Generic sub-models of RW
 - ✓ Many problems (e.g., consensus) cannot be solved wait-free
 - ✓ So restrictions (sub-models) of RW were considered
- Adversarial models specifying the possible correct sets [DFGT,2009]
 - Non-uniform/correlated faults
 - For colorless tasks, a superset-closed adversaries is characterized by its core size

Combinatorial Structures for Distributed Computing

Kyoto University, 2018

Model as a task [KR16,KR18]

- A (long-lived, non-compact) model can be matched by a (one-shot, compact) task
- Any fair adversary has a matching task
 ✓ also holds for adversaries
 ✓ "natural" models
- E.g., k-concurrency:

IS as a task $(s^N, \mathcal{X}(s^N), \mathcal{X})$

A process starts at its corner...

IS as a task $(s^N, \mathcal{X}(s^N), \mathcal{X})$

and outputs a vertex of it color (carrier-preserving)

Chromatic simplex agreement on $\chi(I)$

IS - the task for wait-freedom

Read-write model (RW) and IIS are equivalent [BG93,BG97,GR10]

a task is solvable in IIS iff it is solvable in RW

Asynchronous computability theorem[HS93]:

A task (I,O,Δ) is wait-free read-write solvable if and only if there is a chromatic simplicial map from a subdivision $\chi^r(I)$ to O carried by Δ

Model as a task?

- M model, a set of (infinite) runs
 ✓ Alternating writes and snapshots
- T task, a one-shot distributed function (I,O,Δ):
 ✓ Set of input vectors I (input complex)
 ✓ Set of output vectors O (output complex)
 ✓ Task specification Δ: I → 2° (carrier map)
- T*, iterations of T, have the same task computability as M

(Solving a task in M is equivalent to solving T)

Affine tasks

(s^ℕ,L,*∆*):

- s^N N-dimensional simplex
- $L \subseteq \mathcal{X}^{k}(s^{N})$
- $\Delta(\sigma) = \mathcal{X}^{k}(\sigma) \cap \mathsf{L}$

 $L=\mathcal{X}^{k}(s^{N})$: IS

Model as a task

IS is the matching affine task for wait-free runs
 ✓ What about restrictions of wait-free?

k-concurrency?

 ✓ a subset of RW runs where at most k process are concurrently active

Concurrency levels [Gaf09]

1-concurrent: at most one process makes progress at a time (global lock)

k-concurrent: at most k processes make progress concurrently (k-resource semaphore)

n-concurrency = wait-freedom ≅ IS

A matching affine task for k-concurrency (0<k<n)?

Defining *R*_k

Contention sets: all the processes that share a carrier (\approx see each other):

 $Cont(\sigma) = \{ S \subseteq \Pi, \forall p, p' \in S, carrier(p, \sigma) = carrier(p', \sigma) \}$

Include all simplices in $\mathcal{X}^2(s^N)$ of contention k or less

$$\mathcal{R}_k = \{ \sigma \in \operatorname{Chr}^2 \mathbf{s}, \forall S \in \operatorname{Cont}(\sigma), |S| \le k \}$$

 R_1

Process proceed in the same total order in two IS rounds:

L_{ord}: total order task for s²

 R_2

All simplices that touch 1-dimenional faces

k-concurrency = R_k^*

T is solvable in R_k^* iff T is solvable k-concurrently:

- 1. k-concurrency simulates R_k^*
- 2. R_k^* simulates k-concurrency

1. From k-concurrency to R_k^*

R_k can be solved k-concurrently:

k-concurrent chromatic simplex agreement on R_k

Two rounds of k-concurrent IS implementation [BG93] give R^k

2. From to R_k^* to k-concurrency

- *R^k* can be used to solve k-set agreement:
 - ✓ Decide on the value of (up to k) "leaders" processes (chosen by the size of IS¹ output)
- IIS (and thus R_k*) can simulate RW
 [BG97,GR10]

Simulate a protocol that uses readwrite and k-set consensus objects?

Not that simple: how to combine simulating RW with solving k-SA?

Example: total order (k=1)

Solution of any task (I,O,Δ) in just one iteration of L_{ord}

p0, p1, p2 | p0, p1, p2

Example: R_2

More iterations might be needed

{p0},{p1},{p2} | {p0},{p1},{p2}

Who are the leaders?

Simulating k-concurrency

- Adaptive k-set consensus
 - ✓k-commit-adopt: commit (decide) if among k "fastest" non-terminated processes, adopt otherwise
- RW + (adaptive) k-set consensus => k state machines
 - ✓ Generalized universality [GG11]
 - \checkmark m active simulators: machines 1..min(m,k) are active
 - ✓Any RW protocol on up to k state machines can be simulated
- k processes simulate a k-concurrent system
 - ✓ Extended BG simulation [Gaf09]
 - ✓ Let state machines be (EBG) simulators

RW + k-set agreement simulate k-concurrency

k-concurrency = R_k^*

T is solvable in R_k^* iff T is solvable k-concurrently:

- 1. k-concurrency simulates R_k^*
- 2. R_k^* simulates k-concurrency

Other models?

Adversarial models [DFGT09]

✓ Non-uniform/correlated faults

✓ [SHG16]: t-resilience

- Set-consensus collections [DFGK16]
 ✓RW + set-consensus objects in {(s₁,t₁),...,(s_m,t_m)}
 ✓k-concurrency ≅ k-set consensus
- Affine tasks are in X²(s^N)
 ✓ Sometimes even in X¹(s^N)

What is good about it?

- Compact representation of non-compact models
- Conjecture: possible for all "natural models"
 ✓ Captured by computing artifacts
 ✓ Not 0-1-exclusion, WSB, Möbius etc.
- Conjecture: relations between models (affine tasks) are decidable
 - ✓ Reduces to maps between bounded sub-complexes of *X*²(s^N)
 - ✓ 3-process, read-write wait-free solvability of (colorless) tasks are undecidable [GK95,HR97]

Decidability of tasks

- Given a task T and a model M ...
- Is it decidable that T can be solved in M?

in general, no

- 3-process, read-write wait-free solvability of (colorless) tasks is undecidable [GK95,HR97]
 - ✓ Loop agreement task is reducible [HS93] to loop contractibility ≅ word problem
 - ✓ Extends to 2-resilient solvability

Concluding

- Computability can be captured by the analysis of the corresponding simplicial complex
 - ✓ For tasks and (some) adversarial models
- Open problems
 - ✓Long-lived abstractions (queues, hash tables, TMs...)
 - ✓ Byzantine adversary: a faulty process deviates arbitrarily
 - ✓ Anonymous systems?
 - ✓ Partial synchrony
- Mathematics induced by DC?