
Combinatorial Structures for 
Distributed Computing  

 
Class 2: Asynchronous Computability 

Theorem

Petr Kuznetsov, Telecom ParisTech
Kyoto University, 2018



Distributed tasks
	
§  T	task,	a	one-shot	distributed	function	(I,O,Δ):	

ü Set	of	input	vectors	I 

ü Set	of	output	vectors	O	
ü Task	specification	Δ:	I è	2O	

	

§  A	task	T	is	read-write	solvable	if	there	is	a	read-write	
algorithm	that	ensures,	for	every	input	vector	I	in	I:	
ü Every	correct	process	eventually	outputs	a	value	(decides)	
ü The	output	vector	O2¢(I)	



Asynchronous computability 
theorem	[HS99,BG93]

A	task	(I,O,Δ)	is	read-write	solvable	if	and	only	if	
there	is	a	chromatic	simplicial	map	from	a	
subdivision	χr(I)	to	O	carried	by	Δ	
	
Read-write	model	(RW)	and	IIS	are	equivalent	
[BG93,BG97,GR10]	
§  a	task	is	solvable	in	IIS	iff	it	is	solvable	in	RW	
	
	
	
	
	



Input Complex for Binary 
Consensus

0 

0 
0 1 

1 
Processes: red, green, blue 

Independently assigned 0 or 1 

All possible initial states 

Distributed	Computing	through	Combinatorial	Topology	



Output Complex for Binary 
Consensus

0 0 
0 

1 1 

1 
Output values all 0 or all 1 

Two disconnected simplexes 

All possible final states 

Distributed	Computing	through	Combinatorial	Topology	



Carrier	Map	for	Consensus	

All 0 inputs 

All 0 outputs 

Distributed	Computing	through	Combinatorial	Topology	



Carrier	Map	for	Consensus	

All 1 inputs All 1 outputs 

Distributed	Computing	through	Combinatorial	Topology	



Carrier	Map	for	Consensus	

Mixed 0-1 inputs 

All 0 outputs 

All 1 outputs 

Distributed	Computing	through	Combinatorial	Topology	



Task specification

9 

(I, O, ¢) 

Input complex 

Output complex 

Carrier map 
¢: I ! 2O 

Distributed	Computing	through	Combinatorial	Topology	



Colorless tasks
Correctness	depends	on	inputs/outputs	only,	
regardless	of	process	identifiers		
§  T	=	(I,O,Δ):	

ü Set	of	input	sets	I 

ü Set	of	output	sets	O	
ü Task	specification	Δ:	I è	2O	

§  k-Set	agreement	
ü  I = O= sN


ü 	8	¾2	I: ¢(¾)=skelk¾ 



Colorless	Tasks	

Distributed	Computing	through	Combinatorial	Topology	
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(I, P, ¥) 
strict carrier map 
¥: I ! 2P 

(colorless) protocol complex 

(colorless) input complex 



(Colorless)		Asynchronous		
Computability	Theorem	

Distributed	Computing	through	Combinatorial	Topology	

The colorless task (I,O,¢) has a wait-free RW protocol … 

if and only if … 

there is a continuous map 

f: |I| → |O| 
carried by ¢. 

I 

Map? 



(Colorless)		t-resilient	Asynchronous		
Computability	Theorem	

Distributed	Computing	through	Combinatorial	Topology	

The colorless task (I,O,¢) has a t-resilient RW protocol … 

if and only if … 

there is a continuous map 

f: |skeltI| → |O| 
carried by ¢. I 

skel1(I) 

No map 

map 



Protocol	Implies	Map	

Distributed	Computing	through	Combinatorial	Topology	

May assume protocol complex is P = ΧN skelt I. 

decision map 
δ: ΧN skelt I → O 

carried by ¢. |δ|: |ΧN skelt I| → |O| 

|δ|: |skelt I| → |O| 



Simplicial	Approximation	Theorem	
§  Given	a	continuous	map	

§  there	is	an	N	such	that	f	has	a	simplicial	
approximation	

Á: ΧN A → B 

f: |A| → |B| 

Holds for most any mesh-
shrinking subdivision 



Map	Implies	Protocol	

Distributed	Computing	through	Combinatorial	Topology	

f: |skelt I| → |O| 

Á: XN skelt I → O 

Solve using … 

barycentric agreement 

t-set agreement 

carried by ¢. 



Simplicial	Approximation	

17	

B

Á: ΧN A → B 
 is a simplicial approximation of 

f: |A| → |B| if … 

for every v in A …  
f(St(~v))



What about…
§  Generic	sub-models	of	RW	

ü Many	problems	(e.g.,	consensus)	cannot	be	solved	
wait-free	

ü So	restrictions	(sub-models)	of	RW	were	considered	

§  Adversarial	models	specifying	the	possible	
correct	sets	[DFGT,2009]	

●  Non-uniform/correlated	faults
●  For colorless tasks, a superset-closed adversaries is 

characterized by its core size   
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Model as a task [KR16,KR18]

§  A (long-lived, non-compact) model can be 
matched by a (one-shot, compact) task

§  Any fair adversary has a matching task
ü  also holds for adversaries
ü “natural” models

§  E.g., k-concurrency:

(a) Complex R1 (b) Complex R2

Figure 3: R1 and R2 (in blue) for 3 processes.

and IS2, has only three singleton as contending sets. All other simplices include a contention set of
two processes which consists of the vertices at the boundary.

Now Rk is defined as the set of all simplices in Chr2 s, in which the contention sets of have
cardinalities at most k:

Definition 2 (Complex Rk).

Rk = {� 2 Chr2 s, 8S 2 Cont(�), |S|  k}.

It is immediate that the set of simplices in Rk indeed constitutes a simplicial complex: every
face ⌧ of � 2 Rk is also in Rk.

Examples of R1 and R2 for a 3-process system is shown in Figure 3. Obviously, for the
unrestricted 3-set consensus case, R3 = Chr2 s. Note that R1 only contains six “total order”
simplices, while R2 consists of all simplices of Chr2 s that touch the boundary.

4 From k-set consensus to R
⇤

k
and back

We show that any task solvable with k-set consensus (and read-write shared memory) can be solved
in R

⇤

k, and vice versa. The result is established via simulations: a run of an algorithm solving a
task in one model is simulated in the other.

4.1 From k-set consensus to R
⇤

k

To simulate R
⇤

k it is enough to “solve the Rk task”, i.e., to solve the simplex agreement task on Rk.
By iterating this solution m times we get a solution of the simplex agreement task on R

m
k . Thus, if

a task is solvable in R
⇤

k, it is solvable in the model where Rk can be “solved”.
First we briefly recall how read-write memory and k-set-consensus objects can be used to simulate

a k-concurrent run of any given algorithm. Then we simply use the classical implementation of IS2

(two-rounds of immediate snapshots) as the k-concurrently simulated algorithm, which results in a
subset of IS2 runs that precisely matches Rk.

Simulating k processes using generalized state machine replication. The k-state-machines
simulation was introduced in [12] as a generalization of the classical state machine replication [19,28].
Processes issue k-vectors of commands that they seek to execute on the k state-machines: a
command issued at entry j is to be executed on machine sm[j]. Informally, the construction
proposed in [12] ensures that the local copies of state machine sm[i] (i = 1, . . . , k) progress in the

6



IS as a task (sN,X(sN),X)
A process starts at its corner…

p0	 p1	

p2	



Chromatic simplex agreement on χ(I)  

IS as a task (sN,X(sN),X)
and outputs a vertex of it color (carrier-preserving) 

p0	

p1	

p2	



IS - the task for wait-freedom
Read-write	model	(RW)	and	IIS	are	equivalent	
[BG93,BG97,GR10]	
§  a	task	is	solvable	in	IIS	iff	it	is	solvable	in	RW	

Asynchronous computability theorem[HS93]:
A	task	(I,O,Δ)	is	wait-free	read-write	solvable	if	and	
only	if	there	is	a	chromatic	simplicial	map	from	a	
subdivision	χr(I)	to	O	carried	by	Δ	
	
	
	
	
	



Model as a task?

§  M	model,	a	set	of	(infinite)	runs	
ü Alternating	writes	and	snapshots	

§  T	task,	a	one-shot	distributed	function	(I,O,Δ):	
ü Set	of	input	vectors	I (input complex)	
ü Set	of	output	vectors	O	(output	complex)	
ü Task	specification	Δ:	I è	2O	(carrier	map)	

	
§  T*,	iterations	of	T,	have	the	same	task	computability	as	M		
	
(Solving	a	task	in	M	is	equivalent	to	solving	T)	



Affine tasks
	
(sN,L,¢):		
	
§  sN	–	N-dimensional	simplex	
§  L	µ	X k(sN)	
§  ¢(¾)=X k(¾)\	L	
	
L=X k(sN):	IS	
	

(a) Complex R1 (b) Complex R2

Figure 3: R1 and R2 (in blue) for 3 processes.
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Model as a task

§  IS	is	the	matching	affine	task	for	wait-free	runs	
ü What	about	restrictions	of	wait-free?	

	
§  k-concurrency?	

ü a	subset	of	RW	runs	where	at	most	k	process	are	
concurrently	active		



Concurrency levels [Gaf09]

n-concurrency = wait-freedom ≅ IS

A matching affine task for k-concurrency (0<k<n)?

1-concurrent: at most one process 
makes progress at a time

(global lock) 

k-concurrent: at most k processes 
make progress concurrently

(k-resource semaphore)



Defining Rk

Contention sets: all the processes that share 
a carrier (≈ see each other):

Include all simplices in X 2(sN) of contention k 
or less 

Figure 2: Contention sets (simplices in red) in a 3-process system.

processes seen by p in this run, possibly through the views of other processes: it is the smallest face
of s that contains v in its geometric realization [20] (Appendix A).

Simplex agreement. As we show in this paper, the model of k-concurrency can be captured by
an iterated simplex agreement task [4, 22].

Let L be a subcomplex of Chr2 s, in the simplex agreement task, every process starts with the
vertex of s of its color as an input and outputs a vertex of Chrm s, so that all outputs constitute a
simplex of Chrm s contained in the face of s constituted by the participating processes.

Formally, the task is defined as (s, L,�), where �(t) = L \ Chr2 t for any face t ✓ s. By
running m iterations of this task, we obtain L

m, a subcomplex of Chrm s, corresponding to a subset
of IS2m runs (each iteration includes two IS rounds).

3 The complex of k-set consensus

We define here Rk, a subcomplex of Chr2 s, that precisely captures the ability of k-set consensus
(and read-write memory) to solve tasks. The definition of Rk is expressed via a restriction on
the simplex of Chr2 s that bounds the size of contention sets. Informally, a contention set of a
simplex � 2 Chr2 s (or, equivalently, of an IS2 run) is a set of processes that “see each other”.
When a process pi starts its IS

2 execution after another process pj terminates, pi must observe pj ’s
input, but not vice versa. Thus, a set of processes that see each others’ inputs must have been
concurrently active at some point. Note that processes can be active at the same time but the
immediate snapshots outputs might not permit to detect it.

Topologically speaking, a contention set of a simplex � 2 Chr2 s is a set of processes in � sharing
the same carrier, i.e., a minimal face t ✓ s that contains their vertices. Thus, for a given simplex
� 2 Chr2 s, the set of contention sets is defined as follows:

Definition 1 (Contention sets).

Cont(�) = {S ✓ ⇧, 8p, p
0
2 S, carrier(p,�) = carrier(p0,�)}.

Contention sets for simplices of Chr2 s in a 3-process system are depicted in Figure 2: for each
simplex � 2 Chr2 s, every face of � that constitutes a red simplex is a contention set of �. In an
interior simplex, every set of processes are contention sets. Every “total order” simplex (shown
in blue in Figure 3a), matching a run in which processes proceed in the same order in both IS1
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(a) Complex R1 (b) Complex R2

Figure 3: R1 and R2 (in blue) for 3 processes.

and IS2, has only three singleton as contending sets. All other simplices include a contention set of
two processes which consists of the vertices at the boundary.

Now Rk is defined as the set of all simplices in Chr2 s, in which the contention sets of have
cardinalities at most k:

Definition 2 (Complex Rk).

Rk = {� 2 Chr2 s, 8S 2 Cont(�), |S|  k}.

It is immediate that the set of simplices in Rk indeed constitutes a simplicial complex: every
face ⌧ of � 2 Rk is also in Rk.

Examples of R1 and R2 for a 3-process system is shown in Figure 3. Obviously, for the
unrestricted 3-set consensus case, R3 = Chr2 s. Note that R1 only contains six “total order”
simplices, while R2 consists of all simplices of Chr2 s that touch the boundary.

4 From k-set consensus to R
⇤

k
and back

We show that any task solvable with k-set consensus (and read-write shared memory) can be solved
in R

⇤

k, and vice versa. The result is established via simulations: a run of an algorithm solving a
task in one model is simulated in the other.

4.1 From k-set consensus to R
⇤

k

To simulate R
⇤

k it is enough to “solve the Rk task”, i.e., to solve the simplex agreement task on Rk.
By iterating this solution m times we get a solution of the simplex agreement task on R

m
k . Thus, if

a task is solvable in R
⇤

k, it is solvable in the model where Rk can be “solved”.
First we briefly recall how read-write memory and k-set-consensus objects can be used to simulate

a k-concurrent run of any given algorithm. Then we simply use the classical implementation of IS2

(two-rounds of immediate snapshots) as the k-concurrently simulated algorithm, which results in a
subset of IS2 runs that precisely matches Rk.

Simulating k processes using generalized state machine replication. The k-state-machines
simulation was introduced in [12] as a generalization of the classical state machine replication [19,28].
Processes issue k-vectors of commands that they seek to execute on the k state-machines: a
command issued at entry j is to be executed on machine sm[j]. Informally, the construction
proposed in [12] ensures that the local copies of state machine sm[i] (i = 1, . . . , k) progress in the
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R1
Process	proceed	in	the	same	total	order	in	two	IS	
rounds:	

Lord: total order task for s2

(a) Complex R1 (b) Complex R2

Figure 3: R1 and R2 (in blue) for 3 processes.
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k . Thus, if
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(two-rounds of immediate snapshots) as the k-concurrently simulated algorithm, which results in a
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R2
All simplices that touch 1-dimenional faces 

(a) Complex R1 (b) Complex R2

Figure 3: R1 and R2 (in blue) for 3 processes.
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k-concurrency = Rk* 
T	is	solvable	in	Rk*	iff	T	is	solvable	k-concurrently:		

1.  k-concurrency	simulates	Rk*			
2.  Rk*		simulates	k-concurrency		

(a) Complex R1 (b) Complex R2

Figure 3: R1 and R2 (in blue) for 3 processes.

and IS2, has only three singleton as contending sets. All other simplices include a contention set of
two processes which consists of the vertices at the boundary.
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1. From k-concurrency to Rk* 

Rk	can	be	solved	k-concurrently:	
k-concurrent	chromatic	simplex	agreement	on	Rk		

...	

N+1	

N	

2	

1	

See	<	N+1	

See	<	N	

See	1	or	2	

See	1	

Two rounds of k-concurrent IS implementation [BG93] give Rk



2. From to Rk*  to k-concurrency
§  Rk	can	be	used	to	solve	k-set	
agreement:	
ü Decide	on	the	value	of	(up	to	k)	
“leaders”	processes	(chosen	by	the	size	
of	IS1	output)		

§  IIS	(and	thus	Rk*)	can	simulate	RW	
[BG97,GR10]	

		
Simulate	a	protocol	that	uses	read-
write	and	k-set	consensus	objects?		
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Simulating k-concurrency
§  Adaptive	k-set	consensus	

ü k-commit-adopt:	commit	(decide)	if	among	k	“fastest”	
non-terminated	processes,	adopt	otherwise	

§  RW	+	(adaptive)	k-set	consensus	=>	k	state	
machines	
ü Generalized	universality	[GG11]	
ü m	active	simulators:	machines	1..min(m,k)	are	active	
ü Any	RW	protocol	on	up	to	k	state	machines	can	be	
simulated	

§  k	processes	simulate	a	k-concurrent	system	
ü Extended	BG	simulation	[Gaf09]		
ü Let	state	machines	be	(EBG)	simulators	

RW	+	k-set	agreement	simulate	k-concurrency	



k-concurrency = Rk* 
T	is	solvable	in	Rk*	iff	T	is	solvable	k-concurrently:		

1.  k-concurrency	simulates	Rk*			
2.  Rk*		simulates	k-concurrency		

(a) Complex R1 (b) Complex R2

Figure 3: R1 and R2 (in blue) for 3 processes.
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Other models?
§  Adversarial	models	[DFGT09]	

ü Non-uniform/correlated	faults	
ü [SHG16]:	t-resilience	

§  Set-consensus collections [DFGK16]
ü RW + set-consensus objects in {(s1,t1),…,(sm,tm)}
ü k-concurrency ≅ k-set consensus

§  Affine tasks are in X 2(sN)	
ü Sometimes even in X 1(sN)	

p r	 s	

write value is simply changed (line 30), a dummy write thus consists in re-writing the same value. 2

Lemma 5 In R
⇤

k, Algorithm 2 provides a non-blocking simulation of any shared memory algorithm
with access to k-set-agreement objects.

The proof of Lemma 5 is delegated to Appendix B. The main aspects of the proof are taken
from the base algorithm from [17], while the liveness of the agreement objects simulation relies on
the restriction provided by R

⇤

k and the maximal size of contention sets.
Lemma 5 implies the following result:

Theorem 6 Any task solvable in the k-set-consensus model can be solved in R
⇤

k

Proof. To solve in R
⇤

k a task solvable in the k-set-consensus model, we can simply use Algorithm 2,
simulating any given algorithm solving the task in the k-set-consensus model.

The non-blocking simulation provided by Algorithm 2 ensures, at each point, that at least one
live process eventually terminates. As there are only finitely many processes, every live process
eventually terminates. ⇤
Lemma 2, Theorem 4, and Theorem 6 imply the following equivalence result:

Corollary 7 The k-concurrency model, the k-set-consensus model, and R
⇤

k are equivalent regarding
task solvability.

5 Concluding remarks: on minimality of Chr
2
s for k-set consensus

Figure 5: Fully ordered sub-
Chr s

This paper shows that the models of k-set consensus and k-concurrency
are captured by the same a�ne task Rk, defined as a subcomplex of
Chr2 s. One may wonder if there exists a simpler equivalent a�ne task,
defined as a subcomplex of Chr s, the 1-degree of the standard chromatic
subdivision. To see that this is in general not possible, consider the case
of k = 1 (consensus) in a 3-process system. We can immediately see
that the corresponding subcomplex of Chr s must contain all “ordered”
simplexes depicted in Figure 5. Indeed, we must account for a wait-free
1-concurrent IS1 run in which, say, p1 runs first until it completes (and
it must outputs its corner vertex in Chr s), then p2 runs alone until it
outputs its vertex in the interior of the face (p1, p2) and, finally, p3 must
output its interior vertex.

The derived complex is connected. Moreover, any number of its iterations still results in a
connected complex. The simple connectivity argument implies that consensus cannot be solved in
this iterated model and, thus, the complex cannot capture 1-concurrency.

Interestingly, the complex in Figure 5 precisely captures the model in which, instead of consensus,
weaker test-and-set (TS) objects are used: (1) using TS, one easily make sure that at most one
process terminates at an IS level, and (2) in IS runs defined by this subcomplex, any pair of

2Note that our agreement algorithm is far from e�cient for multiple reasons. Progress could be validated at every
round and not only when a write is validated. Moreover, processes could also preventively decide the output for
objects not yet accessed. Lastly, processes could also adopt proposals from non-leaders when no visible leader has a
proposition.
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2-consensus 
(TAS)

A:16 Gafni et al.

PROOF. If T and T 0 are terminating subdivisions of s, we say that T 0 is a stable
refinement of T if |K(T )| = |K(T 0)|, and every simplex of T 0 is contained in a simplex
of T ; i.e., K(T 0) should be a subdivision of K(T ). Note that if T is admissible for a
model M , then so is T 0.

Given the continuous map f , we shall construct a simplicial, chromatic approxima-
tion � : K(T 0) ! O as needed to apply GACT; here, T 0 is a stable refinement of T .

We first construct a chromatic subdivision K 0 of K(T ), whose vertices are not nec-
essarily in the standard chromatic subdivisions of I, and a chromatic map �0 : K 0

! O

(an approximation to f ) such that �0 is carrier-preserving: �0(�) 2 �(⌧) when |�| ✓ |⌧ |.
We do this inductively on d � 0: For each d, we define the values of �0 on the simplices
that are contained in d-dimensional faces of |I|. Suppose we have defined �0 for d � 1,
and pick a d-dimensional face ⌧ of |I|. The restriction of f to |K(T )| \ |⌧ | can be ap-
proximated by a simplicial map from a subdivision of K(T ), extending the already
constructed �0 on the (d � 1)-dimensional boundary. Further, since K(T ) is locally fi-
nite (by definition) and �(⌧) is link-connected, it follows from Theorem 9.4 that we can
arrange for �0 to preserve colors.

Thus, we find a sufficiently fine stable refinement T 0 of T and a chromatic, carrier-
preserving map g : K(T 0) ! K 0. We then set � = �0 � g and apply Theorem 6.1.

Conversely, if T is solvable in M , we can apply GACT and obtain a terminating
subdivision T and a chromatic map � : K(T ) ! O. The desired continuous map f is
the geometric realization of �.

10.2. An example of GACT in action
Consider the t-resilient model Rest from Example 2.2. Let Lt be the affine task with
output complex consisting of all the simplices � in the second chromatic subdivision
Chr2 s such that no vertex of � is on an (n � t � 1)-dimensional face of s. For example,
when n = 2 and t = 1, the output complex for L1 looks like:

L1

PROPOSITION 10.2. The task Lt is solvable in the model Rest.

PROOF. Note that for each face t ✓ s = I, the complex �(t) for the task Lt is link-
connected. Therefore, it suffices to find a terminating subdivision T and a continuous
map f with the properties required in Proposition 10.1.

For n � 0, let R̃n ⇢ |s| be the union of (the geometric realizations of) all the simplices
� ⇢ Chrn+2 s such that no vertex of � is on an (n � t � 1)-dimensional face of s. Let
R0 = |Lt| and, for n > 0, let Rn be the closure of R̃n � R̃n�1. The union of all Rn’s is the
complement of the (n� t� 1)-skeleton of s:

R2

R0

R1
R2

R1

R1
R2
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What is good about it?
§  Compact representation of non-compact models

§  Conjecture: possible for all “natural models”
ü Captured by computing artifacts
ü Not 0-1-exclusion, WSB, Möbius etc.

§  Conjecture: relations between models (affine 
tasks) are decidable
ü Reduces to maps between bounded sub-complexes of 

X 2(sN)	
ü 3-process, read-write wait-free solvability of (colorless) 

tasks are undecidable [GK95,HR97] 



Decidability of tasks
§  Given a task T and a model M …
§  Is it decidable that T can be solved in M?

in general, no

§  3-process, read-write wait-free solvability of 
(colorless) tasks is undecidable [GK95,HR97] 
ü Loop agreement task is reducible [HS93] to loop 

contractibility ≅ word problem 
ü Extends to 2-resilient solvability



Concluding
§  Computability can be captured by the 

analysis of the corresponding simplicial 
complex
ü For tasks and (some) adversarial models

§  Open problems
ü Long-lived abstractions (queues, hash tables, 

TMs…)
ü Byzantine adversary: a faulty process deviates 

arbitrarily
ü Anonymous systems?
ü Partial synchrony

§  Mathematics induced by DC?
		


