Combinatorial Structures for
Distributed Computing

=
O. "cpres(’ﬂtﬂtin (3 ‘;
. N
()% XY e \ A
S, . o8 Orpeg ORIy &
’J/,{ Q\'O\’ w(} [’Ond omplext 1ty S 3, { & &
£y . 2% \
S : 2 : b 13 Q disg
% execution® Q)q, 5. com mator $ 8
‘ \,“.5») (}?r;(7 4{ S 1y 9 \
st t : Cls oD, . € N > : \
9 . o) & xF
g % 0, S (3
g w p N QQ
~Q N ’b\“
1

Petr Kuznetsov, Telecom ParisTech
Kyoto University, 2018

Roadmap

= Distributed computing primer
v'Read-write memory basics
v IIS model and iterated subdivisions
v Distributed tasks, consensus, set consensus

« Combinatorial topology for distributed computing

v Asynchronous Computability Theorem for colorless
tasks

v'Adversarial models and general tasks

Slides and exercises:
https://perso.telecom-paristech.fr/kuznetso/
Kyoto2018

© 2018 P. Kuznetsov

Literature

Distributed Computing

brary

Lecture notes on Concurrent Computing

R. Guerraoui, P. Kuznetsov, 2018 (constantly
under construction)

Distributed Computing: Fundamentals, Simulations

and Advanced Topics H. Attiya, J. Welch. (2nd
edition). Addison Wesley. 2006

Distributed Algorithms. N. Lynch. Morgan Kaufmann

Publishers. 1996

EEET

Through Combinatorial Topology
Maurice Herlihy, Dmitry Kozlov, Sergio
l}/lor an Kaufman, 2013, available online (TPT

ajsbaum

Concurrent Computing

Rachid Guerraoui

This course Is about distributed
computing:

independent sequential processes
that communicate

EEEEEEE
ParisTech

=524 4t | © 2018 P. Kuznetsov

Concurrency is everywhere!

<€ > |=
T ¢

Multi-core processors
Sensor networks
Internet

© 2018 P. Kuznetsov 5

Communication models

= Shared memory

v'Processes apply operations on
shared variables

v'Failures and asynchrony
= Message passing
v'Processes send and receive
messages .
v'Communication graphs

v'Message delays

© 2018 P. Kuznetsov

Moore’s Law and CPU speed

1000000

100000 : 1

10000

1000

100

10 4

1 5= + Clock Speed (RMHz)

= Transistors [(000)

0.1 | | | |

1371 1875 1373 1983 1387 19391 13385 1333 2003 2007

TELECOM

ParisTech
EHE © 2018 P. Kuznetsov 7

= Single-processor performance does
not improve

= But we can add more cores

» Run concurrent code on multiple
processors

Can we expect a proportional
speedup? (ratio between sequential
time and parallel time for executing
a job)

© 2018 P. Kuznetsov 8

Amdahl’ s Law %\

« p — fraction of the work that can be done In
parallel (no synchronization)

» n - the number of processors

« Time one processor needs to complete the
job =1

B 1
l-p+pl/n

S

Challenges

What is a correct implementation?
v'Safety and liveness

What is the cost of synchronization?
v'Time and space lower bounds

Failures/asynchrony
v'Fault-tolerant concurrency?

How to distinguish possible from impossible?
v’ Impossibility results

© 2018 P. Kuznetsov 10

Distributed # Parallel

= The main challenge is synchronization

= “you know you have a distributed system
when the crash of a computer you've never
heard of stops you from getting any work
done” (Lamport)

11

History

Dining philosophers, mutual exclusion

(Dijkstra)~60’ s

Distributed computing, logical clocks (Lamport),
distributed transactions (Gray) ~70 s

Consensus (Lynch) ~80" s

Distributed programming models, since ~90’ s
Link b/w distributed computing and topology, 90’s

Multicores and large-scale distributed services
now

12

Synchronization jungle

Transactional .
memory t-resilience

Message-
passing

Shared-
memory
Adversaries
(o)

Combinatorial Structures for
Distributed Computing

Shared memory basics

—
=
O representat;ve C <
. L) o w ‘e
>4 QF 2, 3 - ANE
» C (SR A0
" % ory. . N5 T
N (S[)() . itV & 2p - Y &
J/(, ’Q“O\ w@ ndlngco“\?\bxx, i O 2 & ,‘;
o) v
%Q/ eXCcut'lU“S 5 ///J/ m 1nat0r1a o :}3 ‘f
> & . S &
oty \l:f'(/é_ CO RS . :71
7“ s, Vo & g }
structuresygSets 2%, S) ¥
X

Kyoto University, 2018

© 2018 P. Kuznetsov

Shared memory model

Processes communicate by applying operations on
and receiving responses from shared objects

A shared object is a state machine

v States
v'Operations/Responses
v'Sequential specification

« Examples: read-write registers, TAS,CAS,LLSC,...

P2

P1

O1 | .. Oj -~ OM

15

Read-write registers

« Stores values (in a value setV)

« Exports two operations: read and write
v'"Write takes an argument in V and returns ok

v'Read takes no arguments and returns a value
inV

We assume that registers are atomic:
operations take place in indivisible instants

16

Atomic snapshot: sequential specification

= Each process p. is provided with operations:

v'update(v), returns ok

v'snapshoty(), returns [v,,...,V\]

« In a sequential execution:

For each [v,,...,v\] returned by snapshot(),
v; (]=1,...,N) is the argument of the last update(.)

(or the initial value if no/such update)

© 2018 P. Kuznetsov k

Can be implemented
from atomic registers!

~

J

One-shot atomic snapshot (AS)

Each process p;:
update;(v;)
S; := snapshot()

S, = S{1],...,S[N]

(one position per
pProcess)

© 2015 P. Kuznetsov

Vectors S, satisfy:
= Self-inclusion: for alli: v, isin S,

= Containment: for alliand j: S, is
subset of S;or S; is subset of S,

18

“Unbalanced” snapshots

P, sees p, but misses
its snapshot

update (1) ok snapshot() [1,1,0]
Pi E E g
update,(1) ok snapshot() [1,1,1]

p, —HF—————H—

snapshot() [1,1,1]

133—$_$_>

update,(1) ok

© 2018 P. Kuznetsov 19

Enumerating possible runs:
two processes

Each process p; (i=1,2):
update;(v;)
S; := snapshot()

Three cases to consider:
(a) p, reads before p, writes
(b) p, reads before p, writes

(c) p; and p, go “lock-step™:
first both write, then both
read

© 2018 P. Kuznetsov

Pi . . g (a)
p, — &

pn —4—&

(b)
p, 4 —

p —§——
Pz_'_'_>

20

(c)

Topological representation: one-shot AS

pz Sees {pz} BalanCEd run:
two steps of p,,
then p,, then
p, sees {p,,p} P1
Ps3
P; sees {p,,pPs}
P, sees {p,,p,} P, sees {p,,Ps}
. 2\
\/

p, sees {p,} P, sees {53}

Topological representation: one-shot AS

“unbalanced”

P,

run

P, sees {p,,p,}

P sees {p,,ps}

P, sees {p,,p,} P, sees {p,,ps}

o
O

22

One-shot immediate snapshot (IS)

One operation:
WriteRead(v)

Each process p;:

© 2015 P. Kuznetsov

Vectors S,,...,Sy satisfy:
= Self-inclusion: for alli: v, isin S,

= Containment: for alliand j: S, is
subset of S;or S; is subset of S,

= Immediacy: for alliand j: if v, is
in S;, then is S, is a subset of S,

23

Topological representation: one-shot IS

D A subdivision!
2 [Koz14,Lin09]
P, sees {p,,p,}
P sees {p,,ps}
()
P, sees {p,,p,} P, sees {p,,ps}
O O

24

IS is equivalent to AS (one-shot)

= |S is a restriction of one-shot AS => IS is stronger
than one-shot AS

v'Every run of IS is a run of one-shot AS

« Show that a few (one-shot) AS objects can be used
to implements IS

v'One-shot ReadWrite() can be implemented using a series
of update and snapshot operations

© 2015 P. Kuznetsov 25

IS from AS

shared variables:
A,,...,Ay — atomic snapshot objects, initially [T,...,T]

Upon WriteRead,(v;)

r .= N+1

while true do
r:=r-1 // drop to the lower level
A..update;(v;)

S = A.snapshot()
if ISI=r then [/ 1Sl is the number of non-T values in S
return S

© 2015 P. Kuznetsov 26

EEEEEEE
ParisTech

EEET

Drop levels: two processes, N>3

} See < N
} See < N-1
} See 1 or?2
} See 1l

©©©©©©©©©©©©©©©©

Correctness

The outcome of the algorithm satisfies Self-Inclusion,
Snapshot, and Immediacy

= By induction on N: for all N>1, if the algorithm is
correct for N-1, then it is correct for N

= Base case N=1: trivial

© 2015 P. Kuznetsov 28

Correctness, contd.

Suppose the algorithm is correct for N-1 processes

N processes come to level N

v'At most N-1 go to level N-1 or lower

v (At least one process returns in level N)

v'Why?

Self-inclusion, Containment and Immediacy hold for
all processes that return in levels N-1 or lower

The processes returning at level N return all N
values
v'The properties hold for all N processes! Why?

© 2015 P. Kuznetsov 29

lterated Immediate Snapshot (lIS)

Shared variables:
1S,, 1S,, 1S,,... // a series of one-shot IS

Each process p; with input v;:
r==0
while true do

r=r+1

v, := I1S,.WriteRead(v))

© 2015 P. Kuznetsov

30

lterated standard chromatic subdivision (ISDS)

P,

31

X(s?) : one-shot IS for 3 processes

P,

Po sees {py,P,}

p, sees {p,,p,}

P S€

p, sees {p,,p,}
P, sees {py,P,}

o
O

32

ISD
S.
- tw
O round
S
of
IS

[
AN

IS is equivalent to (multi-shot) AS

« AS can be used to implement IIS (wait-free)

v'"Multiple instances of the construction above (one per
iteration)

« IS can be used to implement multi-shot AS in the
lock-free manner [BG93,GR10]:

v'At least one correct process performs infinitely many read
or write operations

v"Good enough for protocols solving distributed tasks!

© 2015 P. Kuznetsov 34

[IS=AS for wait-free task solutions

« Suppose we simulate a wait-free protocol for solving
a task:
v'Every process starts with an input

v'Every process taking sufficiently many steps (of the full-
information protocol) eventually decides (and thus stops
writing new values, but keeps writing the last one)

v'Outputs match inputs (we’ Il see later how it is defined)

« |f atask can be solved in AS, then it can be solved in
IS

v'"We consider IS from this point on

© 2015 P. Kuznetsov 35

Combinatorial Structures for
Distributed Computing

Distributed tasks and consensus

-
S
O‘ representat;ve C . ‘
% ’.&\@ C (i/, o A
ks ’ "0 » D2 P e
£ .O\jb(@ l()n({' \exaty b\' g, cf % J
2 % Ing comP & 1 POk
% exeeutions Q) % atorial £
€) :) > Q
Q/,)XCC“ Q)'fl, J@ . com ln & Q8 \.A
st Yo . %% C S N
oy ($ \V oy ¥
t tures ‘S(Z;S_,_w’ (A T .\“" d{} tat;e, ~\I:\N
‘ Lo 7 * X
2} 74 3] (2 ch
S - @ S &
= //‘» o o\
rS) o

Kyoto University, 2018

System model

« N asynchronous (no bounds on relative speeds)
processes po,...,pn-1 (N=2) communicate via atomic
read-write registers

= Processes can fail by crashing

v'A crashed process takes only finitely many steps (reads
and writes)

v'Up to t processes can crash: t-resilient system
v't=N-1: wait-free

37

Consensus

Processes propose values and must agree on a
common decision value so that the decided value
IS a proposed value of some process

'®

0 s, 2y @

Before @ @

38

Consensus: definition

A process proposes an input value in V (IVI=2) and tries to
decide on an output value in V

= Agreement: No two processes decide on different values
= Validity: Every decided value is a proposed value

= Termination: No process takes infinitely many steps without
deciding

(Every correct process decides)

39

Optimistic (O-resilient) consensus

Consider the case t=0, no process fails

Shared: TWNR register D, initially T (default value not
in V)

Upon propose(v) by process p;:

if i =0 then D.write(v) /I if p, decide on v
wait until D.read() # T // wait until p, decides
return D

(every process decides on p,’s input)

© 2018 P. Kuznetsov 40

Impossibility of wait-free consensus

Theorem 1 No wait-free algorithm solves consensus
using read-write memory

We give the proof for N=2, assuming that
Py proposes 0 and p, proposes 1

Implies the claim for all N=2

4)

Consider the IIS
model

41

Proof of Theorem 1

Initially each p, only knows its input
One round of IIS:

Po

()

P4

p, reads before
p, writes

/

p, reads after
p, Writes

p, reads after
p, writes

O

p, reads before
p, Writes

42

Proof sketch for Theorem 1

Two rounds:

EEEEEEE
Pe cch

43

Proof of Theorem 1

And so on...

Solo runs remain connected - no way
to decide!

44

Proof of Theorem 1

Suppose p; (i=0,1) proposes i
= p; must decide i in a solo run!
Suppose by round r every process decides

Po P1
\

00000 O0OOOOO®%1 11 111171711 1111

There exists a run with conflicting
decisions!

45

1-resilient consensus?

What if we have 1000000 processes and one of them
can crash?

NO

A more sophisticated proof is heeded [FLP85,LA87]

© 2018 P. Kuznetsov 46

But why consensus is interesting?

Because it Is universal!

= |[f we can solve consensus among N
processes, then we can implement any object
shared by N processes

v T&S and queues are universal for 2 processes

= A key to implement a generic fault-tolerant
service (replicated state machine)

EEEEEEE
ParisTech

=524 4t | © 2018 P. Kuznetsov

47

Universal construction

Theorem 1 [Herlihy, 1991] If N processes can
solve consensus, then N processes can (wait-
free) implement any object O=(Q,0,R,0)

EEEEEEE
ParisTech

A © 2018 P. Kuznetsov 48

Consensus number

An object O has consensus number k (we write
cons(O)=K) if

« K-process consensus can be solved using registers

and any number of copies of O but (k+1)-consensus
cannot

If no such number k exists for O, then cons(O)=

(k=cons(O) is the maximal number of processes that
can be synchronized using copies of O and
registers)

© 2018 P. Kuznetsov 49

EEEEEEE
YarisTech

Consensus power

cons(register)=1
cons(T&S)=cons(queue)=2

cons(N-consensus)=N
v'"N-consensus is N-universal!

cons(CAS)=

© 2018 P. Kuznetsov

50

ParisTech
EHET

Set consensus

% -7
\

Processes start with private inputs

51

Set consensus

Outputs should form a bounded
subset of inputs

52

Set consensus

2-set consensus

~ two replicated state machines:
one making progress

k-set consensus ~ k replicated state machines [GG10]

53

Impossibility of wait-free set consensus

Theorem 1 No wait-free algorithm solves (N-1)-set
consensus in IS (and, thus, in read-write memory)

Reduces to Sperner lemma: impossibility of Sperner
coloring on a manifold

54

In at least one |IS
run, N values
are decided

E.g.: suppose
processes
decide in one
round

55

Takeaways

« The read-write model can be represented as a
standard chromatic subdivision

v'RW = IIS (for tasks)
v'IIS = standard chromatic subdivision [BG97,Lin09,Koz14]

« Wait-free set consensus is impossible
v'Equivalent to Sperner coloring of a subdivided simplex

= Next: topological characterization of task
computability
v'Wait-free and beyond

56

