Combinatorial Structures for
Distributed Computing
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Roadmap

= Distributed computing primer
v'Read-write memory basics
v IIS model and iterated subdivisions
v Distributed tasks, consensus, set consensus

« Combinatorial topology for distributed computing

v Asynchronous Computability Theorem for colorless
tasks

v'Adversarial models and general tasks

Slides and exercises:
https://perso.telecom-paristech.fr/kuznetso/
Kyoto2018
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This course Is about distributed
computing:

independent sequential processes
that communicate
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Concurrency is everywhere!
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Multi-core processors
Sensor networks
Internet
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Communication models

= Shared memory

v'Processes apply operations on
shared variables

v'Failures and asynchrony
= Message passing
v'Processes send and receive
messages .
v'Communication graphs

v'Message delays
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Moore’s Law and CPU speed
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= Single-processor performance does
not improve

= But we can add more cores

» Run concurrent code on multiple
processors

Can we expect a proportional
speedup? (ratio between sequential
time and parallel time for executing
a job)
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Amdahl’ s Law %\

« p — fraction of the work that can be done In
parallel (no synchronization)

» n - the number of processors

« Time one processor needs to complete the
job =1

B 1
l-p+pl/n
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Challenges

What is a correct implementation?
v'Safety and liveness

What is the cost of synchronization?
v'Time and space lower bounds

Failures/asynchrony
v'Fault-tolerant concurrency?

How to distinguish possible from impossible?
v’ Impossibility results
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Distributed # Parallel

= The main challenge is synchronization

= “you know you have a distributed system
when the crash of a computer you've never
heard of stops you from getting any work
done” (Lamport)
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History

Dining philosophers, mutual exclusion

(Dijkstra )~60’ s

Distributed computing, logical clocks (Lamport),
distributed transactions (Gray) ~70 s

Consensus (Lynch) ~80" s

Distributed programming models, since ~90’ s
Link b/w distributed computing and topology, 90’s

Multicores and large-scale distributed services
now
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Synchronization jungle

Transactional .
memory t-resilience

Message-
passing

Shared-
memory
Adversaries
(o)




Combinatorial Structures for
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Shared memory basics
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Shared memory model

Processes communicate by applying operations on
and receiving responses from shared objects

A shared object is a state machine

v States
v'Operations/Responses
v'Sequential specification

« Examples: read-write registers, TAS,CAS,LLSC,...

P2

P1

O1 | .. Oj -~ OM
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Read-write registers

« Stores values (in a value setV)

« Exports two operations: read and write
v'"Write takes an argument in V and returns ok

v'Read takes no arguments and returns a value
inV

We assume that registers are atomic:
operations take place in indivisible instants
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Atomic snapshot: sequential specification

= Each process p. is provided with operations:

v'update(v), returns ok

v'snapshoty(), returns [v,,...,V\]

« In a sequential execution:

For each [v,,...,v\] returned by snapshot(),
v; (]=1,...,N) is the argument of the last update(.)

(or the initial value if no/such update)

© 2018 P. Kuznetsov k

Can be implemented
from atomic registers!
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One-shot atomic snapshot (AS)

Each process p;:
update;(v;)
S; := snapshot()

S, = S{1],...,S[N]

(one position per
pProcess)

© 2015 P. Kuznetsov

Vectors S, satisfy:
= Self-inclusion: for alli: v, isin S,

= Containment: for alliand j: S, is
subset of S;or S; is subset of S,
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“Unbalanced” snapshots

P, sees p, but misses
its snapshot

update (1) ok snapshot() [1,1,0]
Pi E E g
update,(1) ok snapshot() [1,1,1]

p, —HF—————H—

snapshot() [1,1,1]

133—$_$_>

update,(1) ok
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Enumerating possible runs:
two processes

Each process p; (i=1,2):
update;(v;)
S; := snapshot()

Three cases to consider:
(a) p, reads before p, writes
(b) p, reads before p, writes

(c) p; and p, go “lock-step™:
first both write, then both
read

© 2018 P. Kuznetsov
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Topological representation: one-shot AS

pz Sees {pz} BalanCEd run:
two steps of p,,
then p,, then
p, sees {p,,p} P1
Ps3
P; sees {p,,pPs}
P, sees {p,,p,} P, sees {p,,Ps}
. 2\
\/

p, sees {p,} P, sees {53}



Topological representation: one-shot AS

“unbalanced”

P,

run

P, sees {p,,p,}

P sees {p,,ps}

P, sees {p,,p,} P, sees {p,,ps}

o
O
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One-shot immediate snapshot (IS)

One operation:
WriteRead(v)

Each process p;:

© 2015 P. Kuznetsov

Vectors S,,...,Sy satisfy:
= Self-inclusion: for alli: v, isin S,

= Containment: for alliand j: S, is
subset of S;or S; is subset of S,

= Immediacy: for alliand j: if v, is
in S;, then is S, is a subset of S,
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Topological representation: one-shot IS

D A subdivision!
2 [Koz14,Lin09]
P, sees {p,,p,}
P sees {p,,ps}
()
P, sees {p,,p,} P, sees {p,,ps}
O O
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IS is equivalent to AS (one-shot)

= |S is a restriction of one-shot AS => IS is stronger
than one-shot AS

v'Every run of IS is a run of one-shot AS

« Show that a few (one-shot) AS objects can be used
to implements IS

v'One-shot ReadWrite() can be implemented using a series
of update and snapshot operations

© 2015 P. Kuznetsov 25



IS from AS

shared variables:
A,,...,Ay — atomic snapshot objects, initially [T,...,T]

Upon WriteRead,(v;)

r .= N+1

while true do
r:=r-1 // drop to the lower level
A..update;(v;)

S = A.snapshot()
if ISI=r then [/ 1Sl is the number of non-T values in S
return S

© 2015 P. Kuznetsov 26
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Drop levels: two processes, N>3

} See < N
} See < N-1
} See 1 or?2
} See 1l
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Correctness

The outcome of the algorithm satisfies Self-Inclusion,
Snapshot, and Immediacy

= By induction on N: for all N>1, if the algorithm is
correct for N-1, then it is correct for N

= Base case N=1: trivial

© 2015 P. Kuznetsov 28



Correctness, contd.

Suppose the algorithm is correct for N-1 processes

N processes come to level N

v'At most N-1 go to level N-1 or lower

v (At least one process returns in level N)

v'Why?

Self-inclusion, Containment and Immediacy hold for
all processes that return in levels N-1 or lower

The processes returning at level N return all N
values
v'The properties hold for all N processes! Why?

© 2015 P. Kuznetsov 29



lterated Immediate Snapshot (lIS)

Shared variables:
1S,, 1S,, 1S,,... // a series of one-shot IS

Each process p; with input v;:
r==0
while true do

r=r+1

v, := I1S,.WriteRead(v))

© 2015 P. Kuznetsov
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lterated standard chromatic subdivision (ISDS)

P,

31



X(s?) : one-shot IS for 3 processes

P,

Po sees {py,P,}

p, sees {p,,p,}

P S€

p, sees {p,,p,}
P, sees {py,P,}

o
O
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IS is equivalent to (multi-shot) AS

« AS can be used to implement IIS (wait-free)

v'"Multiple instances of the construction above (one per
iteration)

« IS can be used to implement multi-shot AS in the
lock-free manner [BG93,GR10]:

v'At least one correct process performs infinitely many read
or write operations

v"Good enough for protocols solving distributed tasks!

© 2015 P. Kuznetsov 34



[IS=AS for wait-free task solutions

« Suppose we simulate a wait-free protocol for solving
a task:
v'Every process starts with an input

v'Every process taking sufficiently many steps (of the full-
information protocol) eventually decides (and thus stops
writing new values, but keeps writing the last one)

v'Outputs match inputs (we’ Il see later how it is defined)

« |f atask can be solved in AS, then it can be solved in
IS

v'"We consider IS from this point on

© 2015 P. Kuznetsov 35
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Distributed tasks and consensus
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System model

« N asynchronous (no bounds on relative speeds)
processes po,...,pn-1 (N=2) communicate via atomic
read-write registers

= Processes can fail by crashing

v'A crashed process takes only finitely many steps (reads
and writes)

v'Up to t processes can crash: t-resilient system
v't=N-1: wait-free

37




Consensus

Processes propose values and must agree on a
common decision value so that the decided value
IS a proposed value of some process

'®

0 s, 2y @

Before @ @
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Consensus: definition

A process proposes an input value in V (IVI=2) and tries to
decide on an output value in V

= Agreement: No two processes decide on different values
= Validity: Every decided value is a proposed value

= Termination: No process takes infinitely many steps without
deciding

(Every correct process decides)
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Optimistic (O-resilient) consensus

Consider the case t=0, no process fails

Shared: TWNR register D, initially T (default value not
in V)

Upon propose(v) by process p;:

if i =0 then D.write(v) /I if p, decide on v
wait until D.read() # T // wait until p, decides
return D

(every process decides on p,’s input)

© 2018 P. Kuznetsov 40



Impossibility of wait-free consensus

Theorem 1 No wait-free algorithm solves consensus
using read-write memory

We give the proof for N=2, assuming that
Py proposes 0 and p, proposes 1

Implies the claim for all N=2

4 )

Consider the IIS
model
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Proof of Theorem 1

Initially each p, only knows its input
One round of IIS:

Po

()

P4

p, reads before
p, writes

/

p, reads after
p, Writes

p, reads after
p, writes

O

p, reads before
p, Writes
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Proof sketch for Theorem 1

Two rounds:

EEEEEEE
Pe cch
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Proof of Theorem 1

And so on...

Solo runs remain connected - no way
to decide!
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Proof of Theorem 1

Suppose p; (i=0,1) proposes i
= p; must decide i in a solo run!
Suppose by round r every process decides

Po P1
\

00000 O0OOOOO®%1 11 111171711 1111

There exists a run with conflicting
decisions!
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1-resilient consensus?

What if we have 1000000 processes and one of them
can crash?

NO

A more sophisticated proof is heeded [FLP85,LA87]
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But why consensus is interesting?

Because it Is universal!

= |[f we can solve consensus among N
processes, then we can implement any object
shared by N processes

v T&S and queues are universal for 2 processes

= A key to implement a generic fault-tolerant
service (replicated state machine)

EEEEEEE
ParisTech
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Universal construction

Theorem 1 [Herlihy, 1991] If N processes can
solve consensus, then N processes can (wait-
free) implement any object O=(Q,0,R,0)

EEEEEEE
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Consensus number

An object O has consensus number k (we write
cons(O)=K) if

« K-process consensus can be solved using registers

and any number of copies of O but (k+1)-consensus
cannot

If no such number k exists for O, then cons(O)=

(k=cons(O) is the maximal number of processes that
can be synchronized using copies of O and
registers)

© 2018 P. Kuznetsov 49
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Consensus power

cons(register)=1
cons(T&S)=cons(queue)=2

cons(N-consensus)=N
v'"N-consensus is N-universal!

cons(CAS)=

© 2018 P. Kuznetsov
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Set consensus

% -7
\

Processes start with private inputs
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Set consensus

Outputs should form a bounded
subset of inputs
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Set consensus

2-set consensus

~ two replicated state machines:
one making progress

k-set consensus ~ k replicated state machines [GG10]
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Impossibility of wait-free set consensus

Theorem 1 No wait-free algorithm solves (N-1)-set
consensus in IS (and, thus, in read-write memory)

Reduces to Sperner lemma: impossibility of Sperner
coloring on a manifold
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In at least one |IS
run, N values
are decided

E.g.: suppose
processes
decide in one
round
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Takeaways

« The read-write model can be represented as a
standard chromatic subdivision

v'RW = IIS (for tasks)
v'IIS = standard chromatic subdivision [BG97,Lin09,Koz14]

« Wait-free set consensus is impossible
v'Equivalent to Sperner coloring of a subdivided simplex

= Next: topological characterization of task
computability
v'Wait-free and beyond
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