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Roadmap
§  Distributed computing primer

ü Read-write memory basics
ü IIS model and iterated subdivisions
ü Distributed tasks, consensus, set consensus

§  Combinatorial topology for distributed computing
ü Asynchronous Computability Theorem for colorless 

tasks
ü Adversarial models and general tasks

Slides and exercises: 
https://perso.telecom-paristech.fr/kuznetso/

Kyoto2018
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This course is about distributed 
computing:

independent sequential processes 
that communicate

©	2018	P.	Kuznetsov		
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Concurrency is everywhere!

§  Multi-core processors
§  Sensor networks
§  Internet
§  …

©	2018	P.	Kuznetsov		
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Communication models
§  Shared memory

ü Processes apply operations on 
shared variables

ü Failures and asynchrony
§  Message passing

ü Processes send and receive 
messages 

ü Communication graphs
ü Message delays

©	2018	P.	Kuznetsov		
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Moore’s	Law	and	CPU	speed	

©	2018	P.	Kuznetsov		
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§  Single-processor performance does 
not improve

§  But we can add more cores
§  Run concurrent code on multiple 

processors

Can we expect a proportional 
speedup? (ratio between sequential 
time and parallel time for executing 
a job)

©	2018	P.	Kuznetsov		
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Amdahl’s Law

§  p – fraction of the work that can be done in 
parallel (no synchronization)

§  n -  the number of processors
§  Time one processor needs to complete the 

job = 1
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Challenges

§  What is a correct implementation?
ü Safety and liveness

§  What is the cost of synchronization?
ü Time and space lower bounds

§  Failures/asynchrony
ü Fault-tolerant concurrency?

§  How to distinguish possible from impossible? 
ü Impossibility results

©	2018	P.	Kuznetsov		
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Distributed ≠ Parallel

§  The main challenge is synchronization

§  “you know you have a distributed system 
when the crash of a computer you’ve never 
heard of stops you from getting any work 
done” (Lamport)
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History	
§  Dining	philosophers,	mutual	exclusion	
(Dijkstra	)~60’s	

§  Distributed	computing,	logical	clocks	(Lamport),	
distributed	transactions	(Gray)	~70’s	

§  Consensus	(Lynch)	~80’s	
§  Distributed	programming	models,		since	~90’s	
§  Link	b/w	distributed	computing	and	topology,	90’s	
§  Multicores	and	large-scale	distributed	services	
now	
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t-resilience	

CAS	

Locks	

Transactional	
memory	

Message-
passing	

	Shared-
memory	

Which features matter?
Matter for what?

Synchronization jungle

	Adversaries	



©	2018	P.	Kuznetsov	
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Shared memory model
§  Processes communicate by applying operations on 

and receiving responses from shared objects
§  A shared object is a state machine

ü States
ü Operations/Responses
ü Sequential specification

§  Examples: read-write registers, TAS,CAS,LLSC,…

P1 

P2 

P3 

O1 Oj OM … … 
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Read-write registers

§  Stores values  (in a value set V)
§  Exports two operations: read and write

ü Write takes an argument in V and returns ok
ü Read takes no arguments and returns a value 

in V

We assume that registers are atomic: 
operations take place in indivisible instants
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Atomic snapshot: sequential specification

§  Each process pi is provided with operations:
ü updatei(v), returns ok
ü snapshoti(), returns [v1,…,vN]

§  In a sequential execution:
For each [v1,…,vN] returned by snapshoti(),             

vj (j=1,…,N) is the argument of the last updatej(.) 
(or the initial value if no such update)  

©	2018	P.	Kuznetsov		

Can be implemented 
from atomic registers!
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One-shot atomic snapshot (AS)
Each process pi:

updatei(vi)
Si := snapshot()

Si = Si[1],…,Si[N]
(one position per 

process)

©	2015	P.	Kuznetsov		

Vectors	Si	satisfy:	
§  Self-inclusion:	for	all	i:	vi	is	in	Si	
§  Containment:	for	all	i	and	j:	Si	is	
subset	of	Sj	or	Sj	is	subset	of	Si	

		



19 ©	2018	P.	Kuznetsov		

“Unbalanced” snapshots

p1 

p2 

p3 

	snapshot()					[1,1,0]		update1(1)			ok	

	update3(1)	ok	

	update2(1)			ok	 	snapshot()					[1,1,1]	

	snapshot()					[1,1,1]	

p1	sees	p2	but	misses		
its	snapshot			
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Enumerating possible runs:  
two processes

Each process pi (i=1,2):
updatei(vi)
Si := snapshot()

Three cases to consider:
(a) p1 reads before p2 writes
(b) p2 reads before p1 writes
(c) p1 and p2 go “lock-step”: 

first both write, then both 
read

©	2018	P.	Kuznetsov		

p1 

p2 

(a) 

p1 

p2 

(b) 

p1 

p2 

(с) 
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Topological representation: one-shot AS

p1	sees	{p1}		 p3	sees	{p3}		

p2	sees	{p2}		

p3	sees	{p2,p3}	

p2	sees	{p2,p3}	p2	sees	{p1,p2}	

p1	sees	{p1,p2}	

p3	sees	{p1,p2,p3}	

Balanced	run:	
two	steps	of	p2,	

then	p1,	then	
p3	
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Topological representation: one-shot AS

p1	 p3	

p2	

p2	sees	{p1,p2}	

p1	sees	{p1,p2}	

p3	sees	{p2,p3}	

p2	sees	{p2,p3}	

“unbalanced”	
run		

p3	sees	{p1,p2,p3}	
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One-shot immediate snapshot (IS)
One operation: 

WriteRead(v)

Each process pi:
Si := WriteReadi(vi)

©	2015	P.	Kuznetsov		

Vectors	S1,…,SN	satisfy:	
§  Self-inclusion:	for	all	i:	vi	is	in	Si	
§  Containment:	for	all	i	and	j:	Si	is	
subset	of	Sj	or	Sj	is	subset	of	Si	

§  Immediacy:	for	all	i	and	j:	if	vi	is	
in	Sj,	then	is	Si	is	a	subset	of	Sj	
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Topological representation: one-shot IS

p1	 p3	

p2	

p2	sees	{p1,p2}	

p1	sees	{p1,p2}	

p3	sees	{p2,p3}	

p2	sees	{p2,p3}	

A	subdivision!	
[Koz14,Lin09]	
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IS is equivalent to AS (one-shot)

§  IS is a restriction of one-shot AS => IS is stronger 
than one-shot AS
ü Every run of IS is a run of one-shot AS

§  Show that a few (one-shot) AS objects can be used 
to implements IS
ü One-shot ReadWrite() can be implemented using a series 

of update and snapshot operations

©	2015	P.	Kuznetsov		
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IS from AS
shared variables:

A1,…,AN – atomic snapshot objects, initially [T,…,T]

Upon WriteReadi(vi)
r := N+1
while true do

r := r-1  // drop to the lower level

Ar.updatei(vi)     
S :=  Ar.snapshot()
if |S|=r then      // |S| is the number of non-T values in S

return S

©	2015	P.	Kuznetsov		
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Drop levels: two processes, N>3

©	2015	P.	Kuznetsov		

...	

N	

N-1	

2	

1	

See	<	N	

See	<	N-1	

See	1	or	2	

See	1	
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Correctness
The outcome of the algorithm satisfies Self-Inclusion, 

Snapshot, and Immediacy

§  By induction on N: for all N>1, if the algorithm is 
correct for N-1, then it is correct for N

§  Base case N=1: trivial

©	2015	P.	Kuznetsov		
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Correctness, contd. 
§  Suppose the algorithm is correct for N-1 processes
§  N processes come to level N 

ü At most N-1 go to level N-1 or lower
ü (At least one process returns in level N)
ü Why?

§  Self-inclusion, Containment and Immediacy hold for 
all processes that return in levels N-1 or lower

§  The processes returning at level N return all N 
values
ü The properties hold for all N processes! Why?

©	2015	P.	Kuznetsov		
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Iterated Immediate Snapshot (IIS)
Shared variables:

IS1, IS2, IS3,…   // a series of one-shot IS 

Each process pi with input vi:
r := 0
while true do

r := r+1
vi := ISr.WriteReadi(vi)

©	2015	P.	Kuznetsov		
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Iterated standard chromatic subdivision (ISDS)

p1	 p3	

p2	
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Χ(s2) : one-shot IS for 3 processes

p0	 p1	

p2	

p2	sees	{p0,p2}	

p0	sees	{p0,p2}	

p1	sees	{p0,p1,p2}	

p2	sees	{p1,p2}	

p1	sees	{p1,p2}	
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ISDS: two rounds of IIS

p1	 p3	

p2	
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IIS is equivalent to (multi-shot) AS

§  AS can be used to implement IIS (wait-free)
ü Multiple instances of the construction above (one per 

iteration)

§  IIS can be used to implement multi-shot AS in the 
lock-free manner [BG93,GR10]:
ü At least one correct process performs infinitely many read 

or write operations
ü Good enough for protocols solving distributed tasks!

©	2015	P.	Kuznetsov		
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IIS=AS for wait-free task solutions
§  Suppose we simulate a wait-free protocol for solving 

a task:
ü Every process starts with an input
ü Every process taking sufficiently many steps (of the full-

information protocol) eventually decides (and thus stops 
writing new values, but keeps writing the last one)

ü Outputs match inputs (we’ll see later how it is defined)
§  If a task can be solved in AS, then it can be solved in 

IIS
ü We consider IIS from this point on

©	2015	P.	Kuznetsov		
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System model

§  N asynchronous (no bounds on relative speeds) 
processes p0,…,pN-1 (N≥2) communicate via atomic 
read-write registers

§  Processes can fail by crashing 
ü A crashed process takes only finitely many steps (reads 

and writes)
ü Up to t processes can crash: t-resilient system 
ü t=N-1: wait-free 
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Consensus
Processes propose values and must agree on a 

common decision value so that the decided value 
is a proposed value of some process

Before	

After	

0 

1 

1 

1 

1 

1 
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Consensus: definition

A process proposes an input value in V (|V|≥2) and tries to 
decide on an output value in V

§  Agreement: No two processes decide on different values
§  Validity: Every decided value is a proposed value
§  Termination: No process takes infinitely many steps without 

deciding
(Every correct process decides)



40 

Optimistic (0-resilient) consensus
Consider the case t=0, no process fails

Shared: 1WNR register D, initially T (default value not 
in V)

Upon propose(v) by process pi:
if i = 0 then D.write(v) // if p0 decide on v

wait until D.read() ≠ T // wait until p0 decides 

return D

(every process decides on p0’s input)

© 2018 P. Kuznetsov 
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Impossibility of wait-free consensus

Theorem 1 No wait-free algorithm solves consensus 
using read-write memory

We give the proof for N=2, assuming that 
p0 proposes 0 and p1 proposes 1

Implies the claim for all N≥2 

Consider the IIS 
model  
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Proof of Theorem 1

p0	 p1	

p0	reads	before		
p1	writes	

p0	reads	after		
p1	writes	

p1	reads	after		
p0	writes	

p1	reads	before		
p0	writes	

Initially each pi only knows its input
One round of IIS:
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Proof sketch for Theorem 1

p0	 p1	

Two rounds:
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Proof of Theorem 1

p0	 p1	

And so on…

Solo	runs	remain	connected	-	no	way	
to	decide!		
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Proof of Theorem 1

p0	 p1	

Suppose pi (i=0,1) proposes i
§  pi must decide i in a solo run!
Suppose by round r every process decides

There	exists	a	run	with	conflicting	
decisions!	

0	 0	 0	 0	 0	 1	1	0	 0	 0	 0	 0	 1	1	1	1	1	1	1	1	1	1	1	1	
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1-resilient consensus?

What if we have 1000000 processes and one of them 
can crash?

NO

A more sophisticated proof is needed [FLP85,LA87]

© 2018 P. Kuznetsov 
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But why consensus is interesting?
Because it is universal!

§  If we can solve consensus among N 
processes, then we can implement any object 
shared by N processes
ü T&S and queues are universal for  2 processes

§  A key to implement a generic fault-tolerant 
service (replicated state machine)
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Universal construction

Theorem 1 [Herlihy, 1991] If N processes can 
solve consensus, then N processes can (wait-
free) implement any object O=(Q,O,R,σ)
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Consensus number
An object O has consensus number k (we write 

cons(O)=k) if 
§  k-process consensus can be solved using registers 

and any number of copies of O but (k+1)-consensus 
cannot

If no such number k exists for O, then cons(O)=∞ 

(k=cons(O) is the maximal number of processes that 
can be synchronized using copies of O and 
registers)
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Consensus power

§  cons(register)=1
§  cons(T&S)=cons(queue)=2
§  …
§  cons(N-consensus)=N 

ü N-consensus is N-universal!
§  …
§  cons(CAS)=∞
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Set consensus

  

Processes start with private inputs 
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Set consensus

  

Outputs should form a bounded 
subset of inputs
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Set consensus

  

2-set consensus
~ two replicated state machines:

one making progress 

k-set consensus ~ k replicated state machines [GG10]
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Impossibility of wait-free set consensus

Theorem 1 No wait-free algorithm solves (N-1)-set 
consensus in IIS (and, thus, in read-write memory)

Reduces to Sperner lemma: impossibility of Sperner 
coloring on a manifold
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In at least one IIS 
run,  N values 
are decided

E.g.: suppose 
processes 
decide in one 
round

P0	
P1	

P2	
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Takeaways
§  The read-write model can be represented as a 

standard chromatic subdivision
ü RW ´ IIS (for tasks) 
ü IIS ´ standard chromatic subdivision [BG97,Lin09,Koz14]

§  Wait-free set consensus is impossible
ü Equivalent to Sperner coloring of a subdivided simplex

§  Next: topological characterization of task 
computability
ü Wait-free and beyond


