
Combinatorial Structures for
Distributed Computing

Petr Kuznetsov, Telecom ParisTech
Kyoto University, 2018

2

Roadmap
§  Distributed computing primer

ü Read-write memory basics
ü IIS model and iterated subdivisions
ü Distributed tasks, consensus, set consensus

§  Combinatorial topology for distributed computing
ü Asynchronous Computability Theorem for colorless

tasks
ü Adversarial models and general tasks

Slides and exercises:
https://perso.telecom-paristech.fr/kuznetso/

Kyoto2018

© 2018 P. Kuznetsov

3

Literature

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAA

Distributed Computing
Through Combinatorial Topology
Maurice Herlihy, Dmitry Kozlov, Sergio Rajsbaum
Morgan Kaufman, 2013, available online (TPT library

•  Distributed Computing: Fundamentals, Simulations
and Advanced Topics H. Attiya, J. Welch. (2nd
edition). Addison Wesley. 2006

•  Distributed Algorithms. N. Lynch. Morgan Kaufmann
Publishers. 1996

Lecture notes on Concurrent Computing
R. Guerraoui, P. Kuznetsov, 2018 (constantly
under construction)

Concurrent Computing

Rachid Guerraoui Petr Kuznetsov

January 21, 2018

4

This course is about distributed
computing:

independent sequential processes
that communicate

©	2018	P.	Kuznetsov		

5

Concurrency is everywhere!

§  Multi-core processors
§  Sensor networks
§  Internet
§  …

©	2018	P.	Kuznetsov		

6

Communication models
§  Shared memory

ü Processes apply operations on
shared variables

ü Failures and asynchrony
§  Message passing

ü Processes send and receive
messages

ü Communication graphs
ü Message delays

©	2018	P.	Kuznetsov		

7

Moore’s	Law	and	CPU	speed	

©	2018	P.	Kuznetsov		

8

§  Single-processor performance does
not improve

§  But we can add more cores
§  Run concurrent code on multiple

processors

Can we expect a proportional
speedup? (ratio between sequential
time and parallel time for executing
a job)

©	2018	P.	Kuznetsov		

9

Amdahl’s Law

§  p – fraction of the work that can be done in
parallel (no synchronization)

§  n - the number of processors
§  Time one processor needs to complete the

job = 1

10

Challenges

§  What is a correct implementation?
ü Safety and liveness

§  What is the cost of synchronization?
ü Time and space lower bounds

§  Failures/asynchrony
ü Fault-tolerant concurrency?

§  How to distinguish possible from impossible?
ü Impossibility results

©	2018	P.	Kuznetsov		

11

Distributed ≠ Parallel

§  The main challenge is synchronization

§  “you know you have a distributed system
when the crash of a computer you’ve never
heard of stops you from getting any work
done” (Lamport)

12

History	
§  Dining	philosophers,	mutual	exclusion	
(Dijkstra)~60’s	

§  Distributed	computing,	logical	clocks	(Lamport),	
distributed	transactions	(Gray)	~70’s	

§  Consensus	(Lynch)	~80’s	
§  Distributed	programming	models,		since	~90’s	
§  Link	b/w	distributed	computing	and	topology,	90’s	
§  Multicores	and	large-scale	distributed	services	
now	

13

t-resilience	

CAS	

Locks	

Transactional	
memory	

Message-
passing	

	Shared-
memory	

Which features matter?
Matter for what?

Synchronization jungle

	Adversaries	

©	2018	P.	Kuznetsov	
	

Kyoto University, 2018

Combinatorial Structures for
Distributed Computing

Shared memory basics

15

Shared memory model
§  Processes communicate by applying operations on

and receiving responses from shared objects
§  A shared object is a state machine

ü States
ü Operations/Responses
ü Sequential specification

§  Examples: read-write registers, TAS,CAS,LLSC,…

P1

P2

P3

O1 Oj OM … …

16

Read-write registers

§  Stores values (in a value set V)
§  Exports two operations: read and write

ü Write takes an argument in V and returns ok
ü Read takes no arguments and returns a value

in V

We assume that registers are atomic:
operations take place in indivisible instants

17

Atomic snapshot: sequential specification

§  Each process pi is provided with operations:
ü updatei(v), returns ok
ü snapshoti(), returns [v1,…,vN]

§  In a sequential execution:
For each [v1,…,vN] returned by snapshoti(),

vj (j=1,…,N) is the argument of the last updatej(.)
(or the initial value if no such update)

©	2018	P.	Kuznetsov		

Can be implemented
from atomic registers!

18

One-shot atomic snapshot (AS)
Each process pi:

updatei(vi)
Si := snapshot()

Si = Si[1],…,Si[N]
(one position per

process)

©	2015	P.	Kuznetsov		

Vectors	Si	satisfy:	
§  Self-inclusion:	for	all	i:	vi	is	in	Si	
§  Containment:	for	all	i	and	j:	Si	is	
subset	of	Sj	or	Sj	is	subset	of	Si	

		

19 ©	2018	P.	Kuznetsov		

“Unbalanced” snapshots

p1

p2

p3

	snapshot()					[1,1,0]		update1(1)			ok	

	update3(1)	ok	

	update2(1)			ok	 	snapshot()					[1,1,1]	

	snapshot()					[1,1,1]	

p1	sees	p2	but	misses		
its	snapshot			

20

Enumerating possible runs:  
two processes

Each process pi (i=1,2):
updatei(vi)
Si := snapshot()

Three cases to consider:
(a) p1 reads before p2 writes
(b) p2 reads before p1 writes
(c) p1 and p2 go “lock-step”:

first both write, then both
read

©	2018	P.	Kuznetsov		

p1

p2

(a)

p1

p2

(b)

p1

p2

(с)

21

Topological representation: one-shot AS

p1	sees	{p1}		 p3	sees	{p3}		

p2	sees	{p2}		

p3	sees	{p2,p3}	

p2	sees	{p2,p3}	p2	sees	{p1,p2}	

p1	sees	{p1,p2}	

p3	sees	{p1,p2,p3}	

Balanced	run:	
two	steps	of	p2,	

then	p1,	then	
p3	

22

Topological representation: one-shot AS

p1	 p3	

p2	

p2	sees	{p1,p2}	

p1	sees	{p1,p2}	

p3	sees	{p2,p3}	

p2	sees	{p2,p3}	

“unbalanced”	
run		

p3	sees	{p1,p2,p3}	

23

One-shot immediate snapshot (IS)
One operation:

WriteRead(v)

Each process pi:
Si := WriteReadi(vi)

©	2015	P.	Kuznetsov		

Vectors	S1,…,SN	satisfy:	
§  Self-inclusion:	for	all	i:	vi	is	in	Si	
§  Containment:	for	all	i	and	j:	Si	is	
subset	of	Sj	or	Sj	is	subset	of	Si	

§  Immediacy:	for	all	i	and	j:	if	vi	is	
in	Sj,	then	is	Si	is	a	subset	of	Sj	

	

		

24

Topological representation: one-shot IS

p1	 p3	

p2	

p2	sees	{p1,p2}	

p1	sees	{p1,p2}	

p3	sees	{p2,p3}	

p2	sees	{p2,p3}	

A	subdivision!	
[Koz14,Lin09]	

	

25

IS is equivalent to AS (one-shot)

§  IS is a restriction of one-shot AS => IS is stronger
than one-shot AS
ü Every run of IS is a run of one-shot AS

§  Show that a few (one-shot) AS objects can be used
to implements IS
ü One-shot ReadWrite() can be implemented using a series

of update and snapshot operations

©	2015	P.	Kuznetsov		

26

IS from AS
shared variables:

A1,…,AN – atomic snapshot objects, initially [T,…,T]

Upon WriteReadi(vi)
r := N+1
while true do

r := r-1 // drop to the lower level

Ar.updatei(vi)
S := Ar.snapshot()
if |S|=r then // |S| is the number of non-T values in S

return S

©	2015	P.	Kuznetsov		

27

Drop levels: two processes, N>3

©	2015	P.	Kuznetsov		

...	

N	

N-1	

2	

1	

See	<	N	

See	<	N-1	

See	1	or	2	

See	1	

28

Correctness
The outcome of the algorithm satisfies Self-Inclusion,

Snapshot, and Immediacy

§  By induction on N: for all N>1, if the algorithm is
correct for N-1, then it is correct for N

§  Base case N=1: trivial

©	2015	P.	Kuznetsov		

29

Correctness, contd.
§  Suppose the algorithm is correct for N-1 processes
§  N processes come to level N

ü At most N-1 go to level N-1 or lower
ü (At least one process returns in level N)
ü Why?

§  Self-inclusion, Containment and Immediacy hold for
all processes that return in levels N-1 or lower

§  The processes returning at level N return all N
values
ü The properties hold for all N processes! Why?

©	2015	P.	Kuznetsov		

30

Iterated Immediate Snapshot (IIS)
Shared variables:

IS1, IS2, IS3,… // a series of one-shot IS

Each process pi with input vi:
r := 0
while true do

r := r+1
vi := ISr.WriteReadi(vi)

©	2015	P.	Kuznetsov		

31

Iterated standard chromatic subdivision (ISDS)

p1	 p3	

p2	

32

Χ(s2) : one-shot IS for 3 processes

p0	 p1	

p2	

p2	sees	{p0,p2}	

p0	sees	{p0,p2}	

p1	sees	{p0,p1,p2}	

p2	sees	{p1,p2}	

p1	sees	{p1,p2}	

33

ISDS: two rounds of IIS

p1	 p3	

p2	

34

IIS is equivalent to (multi-shot) AS

§  AS can be used to implement IIS (wait-free)
ü Multiple instances of the construction above (one per

iteration)

§  IIS can be used to implement multi-shot AS in the
lock-free manner [BG93,GR10]:
ü At least one correct process performs infinitely many read

or write operations
ü Good enough for protocols solving distributed tasks!

©	2015	P.	Kuznetsov		

35

IIS=AS for wait-free task solutions
§  Suppose we simulate a wait-free protocol for solving

a task:
ü Every process starts with an input
ü Every process taking sufficiently many steps (of the full-

information protocol) eventually decides (and thus stops
writing new values, but keeps writing the last one)

ü Outputs match inputs (we’ll see later how it is defined)
§  If a task can be solved in AS, then it can be solved in

IIS
ü We consider IIS from this point on

©	2015	P.	Kuznetsov		

Combinatorial Structures for
Distributed Computing  

 
Distributed tasks and consensus

Kyoto University, 2018

37

System model

§  N asynchronous (no bounds on relative speeds)
processes p0,…,pN-1 (N≥2) communicate via atomic
read-write registers

§  Processes can fail by crashing
ü A crashed process takes only finitely many steps (reads

and writes)
ü Up to t processes can crash: t-resilient system
ü t=N-1: wait-free

38

Consensus
Processes propose values and must agree on a

common decision value so that the decided value
is a proposed value of some process

Before	

After	

0

1

1

1

1

1

39

Consensus: definition

A process proposes an input value in V (|V|≥2) and tries to
decide on an output value in V

§  Agreement: No two processes decide on different values
§  Validity: Every decided value is a proposed value
§  Termination: No process takes infinitely many steps without

deciding
(Every correct process decides)

40

Optimistic (0-resilient) consensus
Consider the case t=0, no process fails

Shared: 1WNR register D, initially T (default value not
in V)

Upon propose(v) by process pi:
if i = 0 then D.write(v) // if p0 decide on v

wait until D.read() ≠ T // wait until p0 decides

return D

(every process decides on p0’s input)

© 2018 P. Kuznetsov

41

Impossibility of wait-free consensus

Theorem 1 No wait-free algorithm solves consensus
using read-write memory

We give the proof for N=2, assuming that
p0 proposes 0 and p1 proposes 1

Implies the claim for all N≥2

Consider the IIS
model

42

Proof of Theorem 1

p0	 p1	

p0	reads	before		
p1	writes	

p0	reads	after		
p1	writes	

p1	reads	after		
p0	writes	

p1	reads	before		
p0	writes	

Initially each pi only knows its input
One round of IIS:

43

Proof sketch for Theorem 1

p0	 p1	

Two rounds:

44

Proof of Theorem 1

p0	 p1	

And so on…

Solo	runs	remain	connected	-	no	way	
to	decide!		

45

Proof of Theorem 1

p0	 p1	

Suppose pi (i=0,1) proposes i
§  pi must decide i in a solo run!
Suppose by round r every process decides

There	exists	a	run	with	conflicting	
decisions!	

0	 0	 0	 0	 0	 1	1	0	 0	 0	 0	 0	 1	1	1	1	1	1	1	1	1	1	1	1	

46

1-resilient consensus?

What if we have 1000000 processes and one of them
can crash?

NO

A more sophisticated proof is needed [FLP85,LA87]

© 2018 P. Kuznetsov

47 ©	2018	P.	Kuznetsov		

But why consensus is interesting?
Because it is universal!

§  If we can solve consensus among N
processes, then we can implement any object
shared by N processes
ü T&S and queues are universal for 2 processes

§  A key to implement a generic fault-tolerant
service (replicated state machine)

48 ©	2018	P.	Kuznetsov		

Universal construction

Theorem 1 [Herlihy, 1991] If N processes can
solve consensus, then N processes can (wait-
free) implement any object O=(Q,O,R,σ)

49 © 2018 P. Kuznetsov

Consensus number
An object O has consensus number k (we write

cons(O)=k) if
§  k-process consensus can be solved using registers

and any number of copies of O but (k+1)-consensus
cannot

If no such number k exists for O, then cons(O)=∞

(k=cons(O) is the maximal number of processes that
can be synchronized using copies of O and
registers)

50 © 2018 P. Kuznetsov

Consensus power

§  cons(register)=1
§  cons(T&S)=cons(queue)=2
§  …
§  cons(N-consensus)=N

ü N-consensus is N-universal!
§  …
§  cons(CAS)=∞

51

Set consensus

Processes start with private inputs

52

Set consensus

Outputs should form a bounded
subset of inputs

53

Set consensus

2-set consensus
~ two replicated state machines:

one making progress

k-set consensus ~ k replicated state machines [GG10]

54

Impossibility of wait-free set consensus

Theorem 1 No wait-free algorithm solves (N-1)-set
consensus in IIS (and, thus, in read-write memory)

Reduces to Sperner lemma: impossibility of Sperner
coloring on a manifold

55

In at least one IIS
run, N values
are decided

E.g.: suppose
processes
decide in one
round

P0	
P1	

P2	

56

Takeaways
§  The read-write model can be represented as a

standard chromatic subdivision
ü RW ´ IIS (for tasks)
ü IIS ´ standard chromatic subdivision [BG97,Lin09,Koz14]

§  Wait-free set consensus is impossible
ü Equivalent to Sperner coloring of a subdivided simplex

§  Next: topological characterization of task
computability
ü Wait-free and beyond

