
1

©	
 2014	
 P.	
 Kuznetsov	
 and	
 M.	
 Vukolic	

	

 
Back to Message Passing  
Eventual and Strong Consistency 

Paxos"

INF346,	
 	
 2014	

	

2 ©	
 2012	
 P.	
 Kuznetsov	
 	

So far…"
"
Read-write registers cannot solve:"
§  Wait-free consensus"
§  Wait-free set agreement"
§  1-resilient consensus"

ü Can be generalized to k-resilient k-set agreement"
§  Consensus is universal"

3 ©	
 2012	
 P.	
 Kuznetsov	
 	

Message-passing"
"
§  Consider a network where every two

processes are connected via a reliable
channel "
ü no losses, no creation, no duplication"

§  Which shared-memory results translate into
message-passing?"

§  Implementing a distributed service"

4 ©	
 2012	
 P.	
 Kuznetsov	
 	

Implementing message-passing"
"
Theorem 1 A reliable message-passing

channel between two processes can be
implemented using two 1W1R registers "

"
Corollary 1 Consensus is impossible to solve in

an asynchronous message-passing system if
at least one process may crash"

5 ©	
 2012	
 P.	
 Kuznetsov	
 	

Implementing shared memory"
!
Theorem 2 A 1W1R regular register can be

implemented in a (reliable) message-passing
model where a majority of processes are
correct"

"
 !

6

Implementing a 1W1R register"
Upon write(v)"
"t++"
"send [v,t] to all"
"wait until received [ack,t] from a majority"
"return ok"
"
Upon read()"
"r++"

 "send [?,r] to all"
"wait until received {(t’,v’,r)} from a majority"
"return v’ with the highest t’"

©	
 2012	
 P.	
 Kuznetsov	
 	

2

7

Implementing a 1W1R register, contd."
Upon receive [v,t]"
"if t>ti then"
" "vi := v"
" "ti := t"
" "send [ack,t] to the writer"
"
Upon receive [?,r] ""
"send [vi,ti,r] to the reader"
"
"

What register is it? Regular? Atomic?"

©	
 2012	
 P.	
 Kuznetsov	
 	
 8 ©	
 2012	
 P.	
 Kuznetsov	
 	

A correct majority is necessary"
Otherwise, the reader may miss the latest written value "
"
The quorum (set of involved processes) of any write

operation must intersect with the quorum of any read
operation: "

W	
 writes	
 v	
 R	
 reads	
 v	

9

How to build  
a consistent and reliable system?"

Service accepts requests
from clients and returns
responses"

§  Liveness: every persistent
client receives a response"

§  Safety: responses
constitute a total order
w.r.t. a sequential
specification!

Service

Clients

debit($100) ok

10

How to build a fault-tolerant system?"

Replication:"
"
§  Service = collection of

servers !
§  Some servers may fail!

Service

Clients

debit($100) ok

11

CAP theorem [Brewer 2000]"
No system can combine:"
§  Consistency: all servers observe the same

evolution of the system state"
§  Availability: every client’s request is eventually

served"
§  Partition-tolerance: the system operates

despite a partial failure or loss of
communication"

Sounds familiar, no?"

©	
 2014	
 P.	
 Kuznetsov	
 	
 12

Strongly consistent  
replicated state machine"

Universal construction in message-passing:"
§  Clients access the service via a standard

interface"
§  Servers run replicas of the (sequential)

service"
§  (A subset of) faulty servers do not affect

consistency and availability"

Leslie Lamport: The Part-Time Parliament.
ACM Trans. Comput. Syst. 16(2): 133-169
(1998)"

©	
 2014	
 P.	
 Kuznetsov	
 	

3

13

Paxos: some history"
§  Late 80s: a three-phase

consensus algorithm"
ü A Greek parliament reaching

agreement"
§  1989: a Paxos-based fault-

tolerant distributed database "
§  1990: rejected from TOCS"

 “All three referees said that the
paper was mildly interesting, though
not very important, but that all the

Paxos stuff had to be removed.” "
""

"
13	
 14

 This submission was recently discovered behind a
filing cabinet in the TOCS editorial office.
Despite its age, the editor-in-chief felt that it
was worth publishing. Because the author is
currently doing field work in the Greek isles and
cannot be reached, I was asked to prepare it for
publication.
 The author appears to be an archeologist with
only a passing interest in computer science. This
is unfortunate; even though the obscure ancient
Paxon civilization he describes is of little
interest to most computer scientists, its
legislative system is an excellent model for how
to implement a distributed computer system in an
asynchronous environment.
…

! ! ! !Keith Marzullo"
" " " "University of California, San Diego"
" " " "(preface for the TOCS 1998 paper) "

14	

15

Paxos today"
"
§  Underlies a large number of practical system

when strong consistency is needed"
ü Google Megastore, Google Spanner"
ü Yahoo Zookeeper"
ü Microsoft Azure "
ü …."

§  ACM SIGOPS Hall of Fame Award in 2012"
§  Turing award 2013"

15	
 16

Consensus: recall the definition"
"
A process proposes an input value in V (|V|≥2) and tries to

decide on an output value in V"

§  Agreement: No two process decide on different values"
§  Validity: Every decided value is a proposed value!
§  Termination: No process takes infinitely many steps without

deciding"
(Every correct process decides)"

17

Model"

§  Asynchronous system"
§  Reliable communication channels"
§  Processes fail by crashing "
§  A majority of correct processes"

"
But we proved that 1-resilient consensus is
impossible even with shared memory!"
“CAP theorem” is violated! "

Where is the trick?"

©	
 2014	
 P.	
 Kuznetsov	
 	
 18

Ω: an oracle"
§  Eventual leader failure detector"
§  Produces (at every process) events:"

ü ‹Ω, leader, p› "
ü We also write p=leader() "

§  Eventually, all correct processes output the same
correct process as the leader"

"
Can be implemented in eventually synchronous
system:"

ü There is a bound on communication delays and
processing that holds only eventually"

ü There is an a priori unknown bound in every run"

4

19 ©	
 2011	
 P.	
 Kouznetsov	
 	

Leader	
 elecFon	
 Ω:	
 example	

There	
 is	
 a	
 Fme	
 aNer	
 which	
 the	
 same	
 correct	
 process	

is	
 considered	
 leader	
 by	
 everyone.	

(Sufficient	
 to	
 output	
 a	
 binary	
 flag	
 leader/not	
 leader)	

p1

p2

p3

p4

p1

p2

p4

p4

p2

p4

p1

p3

p1

p4

p3

p3

p3

p3

p3

p3

p3

20

Paxos/Synod algorithm"

§  Let’s try to decouple liveness (termination)
from safety (agreement)"

§  Synod made out of two components:"
ü Ω - the eventual leader oracle"
ü (ofcons) obstruction-free consensus"

21

Obstruction-free Consensus (ofcons)"
§  Very similar to consensus "

ü except for Termination "
ü ability to abort"

§  Request: "
ü ‹ofcons, propose, v› "

§  Indications: "
ü ‹ofcons,decide, v’› "
ü ‹ofcons,abort› "

21	
 22

Obstruction-free Consensus"
§  C1. Validity: "

ü Any value decided is a value proposed "
§  C2. Agreement: "

ü No two correct processes decide differently "
§  C3. Obstruction-Free Termination: "

ü If a correct process p proposes, it eventually
decides or aborts."

ü If a correct process decides, no correct process
aborts infinitely often."

ü If a single correct process proposes a value
infinitely many times, p eventually decides.!

22	

23

Consensus vs. OF-Consensus"

cons

ofcons

25 11

54

25 25

25

25 11
abort

abort

24

Consensus vs. OF-Consensus"

cons

ofcons

25 11

54

25 25

25

11
25 25

25

5

25

Consensus using Ω and ofcons"
§  Straightforward"

ü Assume that in cons everybody proposes"
"

upon ‹cons, propose, v› !
!while not(decided)!
! if ! self=leader() then!
! !result = ofcons.propose(v› !
! !if !result=(decide,v’) then ! ! !
! ! !return v’!

26

Link to Paxos/Synod"

§  External cons.propose events come in a state
machine replication algorithm as requests
from clients"
ü As in universal construction"
"

§  Focus now on implementing OFCons"

27

OFCons"
§  Not subject to FLP impossibility!"
§  Can be implemented in fully asynchronous

system "
ü Using the correct-majority assumption"
ü Or read-write "

§  Synod OFCons: a 2-phase algorithm"

28

Synod OFCons I"
Code of every process pi:!
!
Initially: !
!ballot:=i-n; proposal:=nil; readballot:=0; imposeballot:=0;
estimate:= nil; states:=[nil,0]n!

!
upon ‹ofcons, propose, v› !
!proposal := v; ballot:=ballot + n; states:=[nil,0]n!
!send [READ, ballot] to all!

!
upon receive [READ,ballot’] from pj !
!if readballot ≥ ballot’ or imposeballot ≥ ballot’ then!
! !send [ABORT, ballot’] to pj!
!else!
! !readballot:=ballot’!
! !send [GATHER, ballot’, imposeballot, estimate] to pj!

!
upon receive [ABORT, ballot] from some process!
!return abort"

29

Synod OFCons II"
upon receive [GATHER, ballot, estballot, est] from pj!
!states[pj]:=[est,estballot] !

!
upon #states ≥ majority!
!if ∃ states[pk]≠[nil,0] then!
! select states[pk]=(est,estballot) with highest estballot!
! proposal:=est; !
!states:=[nil,0]n!

!send [IMPOSE, ballot, proposal] to all!

!
upon receive [IMPOSE,ballot’,v] from pj !
! if readballot > ballot’ or imposeballot > ballot’ then!
! ! send [ABORT, ballot’] to pj !
!else!
! !estimate := v; imposeballot:=ballot’!

 !send [ACK, ballot’] to pj !!

30

Synod OFCons III"
!

!

upon received [ACK, ballot] from majority!

!send [DECIDE, proposal] to all!

!

upon receive [DECIDE, v] !

! send [DECIDE, proposal] to all!

 return [decide, v]!

6

31

Correctness"
§  Validity"

§  Agreement (try to do it yourselves)"
ü When is the decided value determined? "

§  OF Termination"
ü Show that a correct process that proposes either decides

or aborts"
ü If a single process keeps going"

●  It will eventually propose with a highest ballot number not seen so
far"

●  This process will not abort with such a ballot number"

32

Original Synod algorithm [Lamport 98]"

§  Further optimizations"
ü Less modular"

§  Misses explicit aborts of SynodOFC"
ü Process simply do not answer to old ballots"

§  Assumes eventually reliable links"
ü Messages are not retransmitted"
ü Cannot assume that a majority will be gathered in

every ballot"

33

Synod I"
Code of every process pi!
!
Initially: !
!ballot:=i-n; proposal:=nil; readballot:=0; imposeballot:=0;
estimate:= nil; decided:=false; states:=[nil,0]n!

!
upon ‹cons, propose, v› !
!repeat periodically!
! !if self=leader() then!
! ! !proposal := v; ballot:=ballot + n; states:=[nil,0]n!
! ! !trigger ‹bebBroadcast, [READ, ballot]›!
!until decided!

!
upon ‹bebDeliver, pj, [READ,ballot’]› !
!if readballot < ballot’ and imposeballot < ballot’ then!
! !readballot:=ballot’!
! !send [GATHER, ballot’, imposeballot, estimate] to pj!

!
!
!

34

Synod II"
upon receive [GATHER, ballot, estballot, est] from pj!
!states[pj]:=[est,estballot] !

!
upon #states ≥ majority!
!if ∃ states[pk]≠[nil,0] then!
! !select states[pk]=(est,estballot) with highest
estballot!

! !proposal:=est; !
!states:=[nil,0]n!

!trigger ‹bebBroadcast, [IMPOSE, ballot, proposal]›!
!

upon ‹bebDeliver, pj, [IMPOSE,ballot’,v]› !
! if readballot ≤ ballot’ and imposeballot < ballot’ then!
! !estimate := v; imposeballot:=ballot’!

 !send ‹[ACK, ballot’, v]› to ALL!
!
!!

34

35

Synod III"
!

!

upon received [ACK, ballot, v] from majority and not(decided)"
"trigger ‹cons, decide, v› //do not return"
"decided:=true"
"periodically send ‹[DECIDE, v]› to all"

"

35	
 36

Time Complexity"
§  Fault-free time complexity: 4 "

+ 1 communication step for decision relaible
broadcast "

§  Optimizations"
ü Getting rid of the first READ phase"

§  Allow a single process (presumed leader, say
p1) to skip the READ phase in its 1st ballot"
ü Reduces fault-free time complexity to 2"

36	

7

37

From Synod to Paxos"
§  Paxos is a state-machine replication (SMR) protocol"

ü i.e., a universal construction given a sequential object"
§  Implemented as totally-ordered broadcast:"

ü Exports one operation toBroadcast(m) and issues toDeliver(m’)
notifications"

ü Every message m (to)broadcast by a correct process pi is
eventually (to)delivered by pi"

ü Every message m delivered by a process pi is eventually
delivered by every correct process"

ü No message is delivered unless it was previously broadcast"
ü No message is delivered twice"
ü The messages are delivered in the same order at all processes"

37	
 38

From Synod to Paxos"
"

§  But consensus (Synod) is one shot…"
ü How to most efficiently transform Synod to toBroadcast

(Paxos)?"

38	

39

Paxos SMR ""
§  Clients initiate requests"
§  Servers run consensus"

ü Multiple instances of consensus (Synod)"
ü Synod instance 25 to agree on the 25th request to

be ordered"
§  Both clients and servers have the (unreliable)

estimate of the current leader (some server)"
§  Clients send requests to the leader"
§  The leader replies to the client"

39	
 40 40

Paxos Failure-Free Message Flow"

S1 S1 S1

S2

Sn

.

.

.

C

S1

S2

Sn

.

.

.

S1

S2

Sn

.

.

.

ACK	

READ	

 GATHER	

C

Read phase! Impose phase!

request	

reply	

IMPOSE	

41

Observation""
§  READ phase involves no updates/new

consensus proposals"
ü Makes the leader catch up with what happened

before"
§  Most of the time the leader will remain the

same"
ü + nothing happened before (e.g., new requests)"
"

41	
 42

Optimization"
§  Run READ phase only when the leader changes"

ü and for multiple Synod instances simultaneously"
§  Use the same ballot number for all future Synod

instances "
ü run only IMPOSE phases in future instances"
ü Each message includes ballot number (from the last

READ phase) and ReqNum, e.g., ReqNum = 11 when
we’re trying to agree what the 11th operation should be"

§  When a process increments a ballot number it
also READs"
ü e.g., when leader changes"

42	

8

43 43

Paxos Failure-Free Message Flow"

S1 S1 S1

S2

Sn

.

.

.

C

S1

S2

Sn

.

.

.

S1

S2

Sn

.

.

.

ACK	

READ	

 GATHER	

C

Read phase Impose phase

request	

reply	

IMPOSE	

44

Potential Issues?"
§  Holes/Gaps detected in the READ phase"

ü The leader detected a value in READ/GATHER
for requests 1-12, 14, and 17"

ü but not for 13, 15 and 16"
§  The leader than runs the IMPOSE phase for

instances 13, 15 and 16 with a special
proposal"
ü A noop value (“do nothing”)"

44	

45

What’s next? Handling CAP"
§  Paxos provides strong consistency"

ü All servers (replicas) witness the same state evolution "
ü Liveness assuming the eventual leader (or eventual synchrony) may

not be sartisfactory"
ü Especially for large-scale (geo) replication"

§  Eventual consistency"
ü  Assuming no more updates, all replicas eventually converge to the

same state "
ü Simple and efficient"
ü Amazon’s Dynamo "
ü Too weak?"

§  Causal consistency"
ü + Causally related [Lamport 78] events are observed in the same

(causal) order"
§  In real systems:"

ü A mixture of all this J "
"

©	
 2014	
 P.	
 Kuznetsov	
 	
 46

Bibliographic project"
§  Team of two: 10 mins presentation of a research paper

+ 5 mins discussion "
ü What is the problem? What is its motivation?"
ü What is the idea of the solution?"
ü What is new and what is interesting here?"

●  Technical details: unnecessary"

§  Final grade = 1/3 for the presentation (April 30, May 5
and 6) + 2/3 written exam (May 7)"

"
§  The list of papers (with pdfs) and the link to a form to

submit your choice:"
ü http://perso.telecom-paristech.fr/~kuznetso/INF346/"
ü Bid the papers ASAP"

©	
 2014	
 P.	
 Kuznetsov	
 	

