
1

1

!
!
!

Transactional Memory 
 
 
 
"

INF346,	
 	
 2014	

	

© 2014 P. Kuznetsov & R. Guerraoui! 2

Dealing with concurrency!
§  Locks:!

ü Coarse-grained: inefficient!
ü Fine-grained: deadlock-prone !
ü Do not compose!

§  Non-blocking:!
ü Difficult!
ü Inefficient?!
ü Still an active research area!

§  Experts are needed!!
ü (took 2 years to include a non-blocking queue to

java.until.concurrency)!
§  Needed: efficient and simple concurrency control!

©	
 2014	
 P.	
 Kuznetsov	
 	

3

Historical perspective !
§  Eswaran et al (CACM’76) Databases!
§  Papadimitriou (JACM’79) Theory!
§  Liskov/Sheifler (TOPLAS’83) Language !
§  Knight (ICFP’86) Architecture!
§  Herlihy/Moss (ISCA’93) Hardware!
§  Shavit/Touitou (PODC’95) Software!
§  Herlihy et al (PODC’03) Software – Dynamic!
§  Intel, AMD, … (2012) – hardware TM!
§  Now: PODC/POPL/PLDI/OOPSLA…CAV!

4

Transactional memory!
§  Mark sequences of instructions as an atomic transaction:!
!
atomic {!

!if (tail-head == MAX){!
!return full;!
!}!
!items[tail%MAX]=item; !
!tail++;!

}!
return ok;!

§  A transaction can be either committed or aborted!
ü Committed transactions are appear sequential!
ü Transactional memory (TM) resolves conflicts by aborting transactions !
ü Easy to use: think sequential and program concurrent!

!

© 2013 P. Kuznetsov !

Invariant:!
every item consumed, !
no item consumed twice!

5

What do we expect from TM?!
§  Safety:!

ü  Committed transactions make sense !
§  Liveness/progress!

ü A transaction eventually commits or aborts!
ü Some transactions commit!

§  Performance!
ü Enough transactions commit!
ü Underlying concurrency exploited!

©	
 2014	
 P.	
 Kuznetsov	
 	
 6

Safety of TM!
§  How to say that a TM history is correct!

ü Equivalent to a legal sequential obe!

§  What is a TM history?!
§  What is legal?!
§  What is sequential?!
§  What is equivalent!

©	
 2014	
 P.	
 Kuznetsov	
 	

2

7

Transactions and objects!

§  Transactions invoke operations on shared
objects!

§  Every operation invocation is expected to
return a reply !

§  Every transaction is expected either to
abort or commit (disclaimer for liveness)!

8

Transactions and objects!

T1

T2

T3

operation

operation

operation

commit

abort

commit
operation

9

Transactions and shared objects!

T1

T2

T3

operation

operation

operation

commit

abort

commit
operation

O1

O1

O2

O2

10

Transactions!

!  Transactions are sequential units of
computations!

!
!  Transactions are asynchronous !
 (pre-emption, page faults, crashes)!

11

Histories!

§  The execution of a set of transactions on a
set of objects is modeled by a history!

!
§  A history is a total order of invocation and

responses of operations, commit and abort
events!
ü H = (E,<)!

The history depicts what the user sees!
12

History H1!

T1

T2

read(0) write(1)

read(0)

commit

commit
write(1)

O2

O1 O2

O1

3

13

Histories!
§  Two transactions are sequential (in a history) if one

invokes its first operation after the other one commits
or aborts; they are concurrent otherwise!

§  A history is sequential if it has only sequential
transactions; it is concurrent otherwise !

§  Two histories are equivalent if they agree on the
the set of transactions !

14

Sequential history H2 ≈ H1!

read(0) write(1)

read(0) write(1)

O2

O1 O2

O1

T1

T2

commit

commit

15

!
A history is atomic if its restriction to committed
transactions is serializable !
!
A history H of committed transactions is
serializable if there is a history S(H) such that:!

!!
1. ! S is equivalent to H!
2.  S is sequential !
3.  in S, every read returns the last value written!
!

Classical trensactional safety [Pap79] !

16

Atomic history?!

T1

T2

read->0 write(1)

read->0

commit

commit
write(1)

O2

O1 O2

O1

17

Sequential history?!

T1

T2

read->0 write(1)

read->0 write(1)

O2

O1 O2

O1

18

Sequential history?!

T1

T2

read->0 write(1)

read->0 write(1)

O2

O1 O2

O1

4

19

Atomic history?!

T1

T2

read->0 write(0)

read->0

commit

commit
write(1)

O2

O1 O2

O1

20

Sequential history!

read->0 write(0)

read->0 write(1)

O2

O1 O2

O1

T1

T2

21

Operation atomicity (linearizability)!

T1

T2

T3

operation

operation

operation

22

Transaction atomicity!

T1

T3

operation operation

operation

commit

commit
operation

O1

O1 O2

O2

23

Serializability!
§  A history H of committed transactions is

serializable if there is a history S(H) such
that:!

!!
1.  S is equivalent to H!
2.  S is sequential !
3.  in S, every read returns the last value

written!

©	
 2014	
 P.	
 Kuznetsov	
 	
 24

Atomic history!

T1

T2

read->0 write(1)

read->0

commit

abort
write(1)

O2

O1 O2

O1

5

25

Serializability!
§  A history H of committed transactions is

serializable if there is a history S(H) such
that:!

!!
1. ! S is equivalent to H!
2.  S is sequential !
3.  in S, every read returns the last value

written!

©	
 2014	
 P.	
 Kuznetsov	
 	
 26

write(1)

read(0)

O1

O1

commit

commit

T1

T2

Real-time!

27

Preserving real-time order!
§  (T,T’) is in HRT if T terminates before T’

begins!

§  S preserves the real-time order of H if!
ü HRT is a subset of SRT!

●  If T precedes T’ in H, T precedes T’ in H !

28

Strict serializability!
A history H of committed transactions is
strictly serializable if there is a history S such
that:!
1.  S is equivalent to H!
2.  S is sequential !
3.  S is legal (with respect to each object)!
4.  S preserves the real-time order of H!

©	
 2014	
 P.	
 Kuznetsov	
 	

29

Is it enough?!

§  Committed transactions stricly serializable!
§  Aborted transactions ignored!

Is it safe?!
(in a practical sense) !

©	
 2014	
 P.	
 Kuznetsov	
 	
 30

Simple algorithm  
(a la DSTM [Herlihy et al. 2003])!

!
§  To write O, T requires a write-lock on O; !
T aborts T’ if some T’ holds ownership on O (using CAS)!
!
!
§  To read O, T checks if all objects read remain valid

(keep the value read)- else abort!
!
§  Before committing, T checks if all objects read remain

valid and changes its status to committed!

Aggressive write, careful read!
(obstruction-free writes, progressive progress)!

6

31

DSTM: write, read, tryCommit!
write(x,v)!
 (owner,ov,nv)=tvar[x].read()!
 curr=getValue(owner,ov,nv) !!
 if curr=live and !status[owner].cas(live,aborted) then return abort!
 if tvar[x].cas([owner,ov,nv],[myself,curr,v]) then!
 return ok!
 else !
 return abort!

!!
 !!
read(x)!
 (owner,ov,nv)=tvar[x]!
 curr=getValue(owner,ov,nv) !
 if curr != live and valid() then!
 rset = rset U {(x,[owner,ov,nv])} !
 return curr!
 else !
 return abort!
!
!
tryCommit()!
 if valid() and status[myself].cas(live,committed) then!
 return commit !
 else !
 return abort ! !

New value of x, if the owner committed, !
old value of x if aborted or live, !
abort if live !

Check if all previously
read objects keep the
same values!

Grab the ownership on
the object and set
value v!

Set status to committed!

try aborting the
concurrent transaction!

32

DSTM: getValue() and valid()!
getValue(owner,ov,nv)!
 if status[owner]=committed!
 return nv!
 else if status[owner]=committed!
 return ov !
 else!

!return live!
!
valid()!
 for each (x,[owner,ov,nv]) in rset do!
 (owner’,ov’,nv’)= tvar[x].read()!
 if (owner’,ov’,nv’)!=(owner,ov,nv) then!
 return false!
 return true !

©	
 2014	
 P.	
 Kuznetsov	
 	

The value of x is not
known (a concurrent
transaction is writing to it)!

x has been overwritten!

Check every object in
the “read set” !

33

More efficient?!

§  Why validating all the time?!
ü “Apologizing vs. asking permission”!

§  Only validate at commit time!
ü Abort if did not succeed!

!
Aggressive write, optimistic read!

©	
 2014	
 P.	
 Kuznetsov	
 	
 34

Example: run-time error!
Initially: x=1, y=2!
Invariants: 0<x<y!
!
1/(y-x) is not supposed to give division-by-zero!
!
But:!

T1: x := x+1; y:= y+1!
T2: z := 1 / (y - x)!

 !
! ©	
 2014	
 P.	
 Kuznetsov	
 	

35

Example: infinite loop!
!
!
T1: x := 3; y:= 6!

 T2: a := y; b:= x;
 repeat b:= b + 1 until a = b
!

!

©	
 2014	
 P.	
 Kuznetsov	
 	
 36

More refined safety needed!
!
We need a theory that restricts all transactions:
this is what critical sections give us!
!
Every transaction sees a consistent state!
§  sees?!
§  consistent?!
!
A la critical sections (locks)!

©	
 2014	
 P.	
 Kuznetsov	
 	

7

37

Histories!
§  Let H be any history (made of commited,

aborted and pending transactions)!

§  Complete(H) is the history made of all
transactions of H by completing pending ones
with abort events !
ü And some of pending commits with

commits!

38

Opacity [GK’08]!
A history H of opaque if there is a history S
such that:!
1.  S is equivalent to (some history in)

complete(H)!
2.  S is sequential !
3.  S is legal wrt committed transactions!
4.  S preserves the real-time order of H!
!

©	
 2014	
 P.	
 Kuznetsov	
 	

39

Opacity?!

T1

T2

read->0

write(1)

commit

abort
read->0

O2

O2

O1

write(1)
O1

40

Not legal!

T1

T2

read->0

write(1)

commit

read->0

O2

O2

O1

write(1)
O1

41

Legal!

T1

T2
write(1)

commit

O2

O2

O1

write(1)
O1

read->0

read->0

42

Recoverable (no dirty reads)!

T1

T2

read->0

write(1)

commit

abort

O2

O2

O1

write(1)
O1

read->0

8

43

!
!
!

Opacity < rigorous scheduling!

T1

T2

write(0)

write(1)

commit

abort
write(1)

O2

O2

O1

write(0)
O1

44

 Simple algorithm (DSTM)!

!

§  Aggressive write (ownership) !

§  Careful read (validation)!

45

Visible Read  
(SXM; RSTM)!

!
§  Write is mega killer: to write an object, a

transaction aborts any live one which has
read or written the object!

§  Visible but not so careful read: when a
transaction reads an object, it says so!

46

Visible Read !

§  A visible read invalidates cache lines!
!
§  For read-dominated workloads, this means a

lot of traffic on the bus between processors!

§  This would reduce the throughput!

47

Unavoidable (in some sense)!
§  Theorem [GK’08]!
In an opaque TM, reads are either visible or
careful !
!
NB. Modulo a weak progress property
(progressiveness) and the assumption of a
single versions!
Progressiveness: commit if no read-write or
write-write conflicts !
!

©	
 2014	
 P.	
 Kuznetsov	
 	
 48

!
!
!

Intuition of the proof!

T1

T2

read()

write()
commit

I1,I2,..,Im

O1,O2,..,On
read()
Ik

9

49

Read invisibility!

§  The fact that the read is invisible means T1
cannot inform T2, which would in turn abort
T1 if it accessed similar objects (SXM, RSTM)!

§  NB. Another way out is the use of multi-
versions (maintain multiple copies of each
object)!

§  The theorem does not hold for database
(strictly serializable) transactions! Why?!

50

Verifying Opacity!
§  How to tell that a given history is opaque?!

§  Check that the conflict poly-graph is acyclic!
ü NP-Complete problem (equivalent to SAT)!
ü [Pap 79] for SR (serializability), holds for Opacity

too. Why?!

§  But the space of verification can be reduced!

©	
 2014	
 P.	
 Kuznetsov	
 	

51

Abstracting the problem!

Program
R/W/C

Scheduler

TM
R/W/C/A

52

Reduce the space of
verification!

§  Symmetric system !
(all transactions are treated equally)!

ü  Transaction names does not matter!
ü  Variable names does not matter!

53

TM verification theorem
(GHS’08)!

§  A TM either violates opacity with 2
transactions and 3 variables or
satisfies it with any number of variables
and transactions!

54

Reference implementation!

§  A finite-state transition system (12.500 states)
which generates all possible TM safe
histories for 2 transactions and 3 variables!

10

55

Model checking TM!

§  A TM is correct if the histories it
generates could also be generated by
the reference implementation !

!
§  Simulation relation between the TM

(e.g., TL2 4500 states) and the
reference implementation!

56

Examples!

§  It takes 15mn to check the correctness
of TL2 and DSTM!

§  Reverse two lines in TL2: bug found in
10mn - a history not permitted by the
reference implementation!

57

1. Safety of a TM

A. Do we need a new correctness
criteria? Yes: opacity

B. How can we check it?
Reduction

58

Why do we care?

What should we expect?

- Modern computing is concurrent
- TM promises simplicity and efficiency

- Safety: opacity (can be checked)

59

2. Liveness of a TM !

What progress can we expect? !

60

What is progress?!

§  Operations eventually return?!

§  Transactions eventually terminate?!
!

11

61

What is progress?!

!

§  We want transactions to commit, including
long ones:!
ü rehashing the table, !
ü rebalancing the tree!

62

What is progress?!

§  We cannot require a TM to commits
transactions:!
ü from a dead process; i.e., dead

transactions!
ü that infinitely loop!

63

Progress?

T2
?

O2 crash

T1
read->0 ?

O2 O2 O2 O2
read->0 read->0 read->0

read->0

64

Progress!

§  We can only expect progress for correct
transactions !

§  How to define a correct transaction? !
!

65

Correctness depends on the
scheduler and the program!

Program!
R/W/TC/A! Scheduler!

TM!
R/W/C&S/T&S/LL&SC/C/A!

66

History!

§  A history (as seen by the user) does not
say what the scheduler does and whether
the program behaves correctly!

"
§  We need a refined notion of history!

12

67

Low-level history!

§  A low-level history depicts the events of the
implementation !

"
§  A history is a total order of invocation,

reply, try-commit, commit and abort events!
ü H = (S,<)!

!

68

Low-level history!

!
§  The invocations and replies include also

low-level objects used in the
implementation!

!
§  The low-level history is a refinement of

the high-level one (seen by the user)!

69

Low-level history!

§  Well-formed (low-level) history: !
ü Every transaction that aborts is immediately

repeated until it commits, i.e., :!
!
Every process executes: !
!T1:op1; T1.op2; ..; T1:tryCommit; T1:abort;
T1:op1;..; T1:commit; T1:op3…!

!

70

Low-level history!

§  A transaction T is correct if !
ü  (a) try-commit is invoked after a finite

number of invocation/reply events of T and !
ü  (b) either T commits or T performs an

infinite number of steps!

§  (a) depends on the program!
§  (b) depends on the scheduler !

71

Ideal progress?!
§  No correct transaction aborts !

!
§  NB. This is not a liveness property!
§  Can we achieve this?!

72

T1

T2

read()

write()

commit

O1

O1
write()

O2

Aborting is a fatality!

read()

O2

abort

13

73

Global progress 
- wait-freedom -!

§  Every correct transaction eventually commits!

§  NB. We allow the possibility for a transaction to
abort a finite number of times as long as it
eventually commits!
 !

!

74

Global progress 
- wait-freedom -!

T1

T2

read()

write()

commit

O1

O1
write()

O2

read()

O2

abort

75

Impossible global progress 
- wait-freedom -!

!
§  Wait-freedom is impossible in an

asynchronous system!

!

!  NB. This impossibility is fundamentally
different from the impossibility of (wait-free)
consensus [FLP85]: It holds for any underlying
objects

76

Conditional progress  
- obstruction-freedom - !

§  A correct transaction that eventually does not
encounter contention eventually commits!

!

§  Obstruction-freedom seem reasonable and
is indeed possible!

77

OF DSTM!
!

§  To write O, T requires a write-lock on O (use
CAS); !

T aborts T’ if some T’ acquired a write-lock on O
(use CAS)!

!
§  To read O, T checks if all objects read remain

valid - else abort (use CAS to abort a process
holding locks on O)!

§  Before committing, T releases all its locks (use
CAS)!

78

DSTM: write, read, tryCommit!
write(x,v)!
 (owner,ov,nv)=tvar[x].read()!
 curr=getValue(owner,ov,nv) !!
 if curr=live and !status[owner].cas(live,aborted) then return abort!
 if tvar[x].cas([owner,ov,nv],[myself,curr,v]) then!
 return ok!
 else !
 return abort!

!!
 !!
read(x)!
 (owner,ov,nv)=tvar[x]!
 curr=getValue(owner,ov,nv) !
 if curr=live and !status[owner].cas(live,aborted) then return abort!
 if curr != live and valid() then!
 rset = rset U {(x,[owner,ov,nv])} !
 return curr!
 else !
 return abort!
!
!
tryCommit()!
 if valid() and status[myself].cas(live,committed) then!
 return commit !
 else !
 return abort ! !

Read aborts the
concurrent transaction!

14

79

DSTM uses CAS!

§  CAS is the strongest synchronization
primitive!

!

!  Is OFTM possible with R/W objects?

80

OF-TM!

Program!
R/W/TC/A! Scheduler!

!
TM!
!!Low-level objects?!
!

81

Compare&Swap!

Register!

Queue! Test&Set!

…!

Fetch&Add!

Snapshot!(1)!

(2)!

(∞)!

(..)!

Consensus number of OF-TM?!

82

FO-consensus!

A process can decide or abort !
§  No two different values can be decided!
§  A value decided was proposed !

!  If abort is returned from propose(v)
then (1) there is contention and (2) v
cannot be returned

83

OF-TM <=> FO-consensus!

!
§  From OF-TM to FO-consensus: propose() is

performed within a transaction!

§  From FO-consensus to OF-TM: slightly more
tricky - as for DSTM but using a one shot
object instead of C&S!

84

OF-consensus vs consensus!

§  OF-consensus can implement consensus
among exactly 2 processes !

!   Algorithm!
!  P1 writes its value and keeps proposing until it

decides a value!
!  P2 either decides or reads the value !

15

85

The consensus number of
OF-TM is 2!

§  OF-TM cannot be implemented with R/W
objects only!

But OF-TM does not need CAS!

86

OF-TM vs. OF objects!
!
§  Every OF object can be implemented with R/W

objects !

§  Where is the bug?!

§  Abort really means the operation did not take place
[AGHK’07] !

87

TM Liveness !
§  Global progress (wait-freedom) is impossible!
§  Conditional progress (obstruction-freedom) is

not trivial!
Boosting OF?!

©	
 2014	
 P.	
 Kuznetsov	
 	

OF TM

CM

88

Contention management!

§  Conflict resolution delegated to a
contention manager!

§  Responsible solely for progress (liveness)!
(different from a DB concurrency control)!

89

!
§  If a transaction T wants to write an object O

owned by another transaction T’, T calls a
contention manager !

§  The contention manager can decide to wait,
retry or abort T’!

Progress!

90

Contention managers!
§  Aggressive: always aborts the victim!
!
§  Backoff: wait for some time (exponential backoff) and

then abort the victim!
!
§  Karma: priority = cumulative number of shared objects

accessed – work estimate. Abort the victim when number
of retries exceeds difference in priorities. !

!
§  Polka: Karma + backoff waiting!

16

91

Greedy contention manager!
§  State!

ü Priority (based on start time)!
ü Waiting flag (set while waiting)!

§  Wait if other has!
ü Higher priority AND not waiting!

§  Abort other if!
ü Lower priority OR waiting!

92

From OF to WF

!
OF-TM!

!

!
CM!
!

!
WF-TM!

!
Every correct transaction eventually commits, !
(after finitely many aborts) !

93

From OF-TM to WF-TM!

T1

T2

read()

write()

commit

O1

O1
write()

O2

read()

O2

abort

94

OF-TM

CM: <>P

WF-TM

The weakest synchrony assumption
to implement WF-TM [GKK’06]

95

Why do we care? !

 
What is it? !

- Modern computing is concurrent 
- TM promises simplicity and efficiency "

- Safety: opacity, … 
-Liveness: progressiveness, obstruction-
freedom,… "

96

Concluding!
§  TM does not replace locks: it hides them!

ü Can also be non-blocking!
§  TM only looks like db transactions and

memory objects, but is quite different
ü Safety, Liveness, Progress, …

§  TM is another proof of the irrelevance of the
notion of relevance …
ü Like garbage collection in the old days

©	
 2014	
 P.	
 Kuznetsov	
 	

17

97

Take-aways!

§  Transactions (software and hardware)
conquer concurrent computing!
ü Programmers are happy!

§  Making TM efficient is in fact tricky, there are
inherent costs and trade-offs!

©	
 2014	
 P.	
 Kuznetsov	
 	

