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Dealing with concurrency!
§  Locks:!

ü Coarse-grained: inefficient!
ü Fine-grained: deadlock-prone !
ü Do not compose!

§  Non-blocking:!
ü Difficult!
ü Inefficient?!
ü Still an active research area!

§  Experts are needed!!
ü (took 2 years to include a non-blocking queue to 

java.until.concurrency)!
§  Needed: efficient and simple concurrency control!
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Historical perspective !
§   Eswaran et al (CACM’76) Databases!
§   Papadimitriou (JACM’79) Theory!
§   Liskov/Sheifler (TOPLAS’83) Language !
§   Knight (ICFP’86) Architecture!
§   Herlihy/Moss (ISCA’93)  Hardware!
§   Shavit/Touitou (PODC’95) Software!
§   Herlihy et al (PODC’03) Software – Dynamic!
§  Intel, AMD, … (2012) – hardware TM!
§  Now: PODC/POPL/PLDI/OOPSLA…CAV!
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Transactional memory!
§  Mark sequences of instructions as an atomic transaction:!
!
atomic {!

!if (tail-head == MAX){!
!return full;!
!}!
!items[tail%MAX]=item; !
!tail++;!

}!
return ok;!

§  A transaction can be either committed or aborted!
ü Committed transactions are appear sequential!
ü Transactional memory (TM) resolves conflicts by aborting transactions  !
ü Easy to use: think sequential and program concurrent!

!

© 2013 P. Kuznetsov !

Invariant:!
every item consumed, !
no item consumed twice!
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What do we expect from TM?!
§  Safety:!

ü  Committed transactions make sense !
§  Liveness/progress!

ü A transaction eventually commits or aborts!
ü Some transactions commit!

§  Performance!
ü Enough transactions commit!
ü Underlying concurrency exploited!
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Safety of TM!
§  How to say that a TM history is correct!

ü Equivalent to a legal sequential obe!

§  What is a TM history?!
§  What is legal?!
§  What is sequential?!
§  What is equivalent!
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Transactions and objects!

§  Transactions invoke operations on shared 
objects!

§  Every operation invocation is expected to 
return a reply !

§  Every transaction is expected either to 
abort or commit (disclaimer for liveness)!

8 

Transactions and objects!

T1 

T2 

T3 

operation 

operation 

operation 

commit 

abort 

commit 
operation 
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Transactions and shared objects!

T1 

T2 

T3 

operation 

operation 

operation 

commit 

abort 

commit 
operation 

O1 

O1 

O2 

O2 

10 

Transactions!

!  Transactions are sequential units of 
computations!

!
!  Transactions are asynchronous !
   (pre-emption, page faults, crashes)!

11 

Histories!

§  The execution of a set of transactions on a 
set of objects is modeled by a history!

!
§  A history is a total order of invocation and 

responses of operations, commit and abort 
events!
ü H = (E,<)!

The history depicts what the user sees!
12 

History H1!

T1 

T2 

read(0) write(1) 

read(0) 

commit 

commit 
write(1) 

O2 

O1 O2 

O1 
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13 

Histories!
§  Two transactions are sequential (in a history) if one 

invokes its first operation after the other one commits 
or aborts; they are concurrent otherwise!

§  A history is sequential if it has only sequential 
transactions; it is concurrent otherwise !

§  Two histories are equivalent if they agree on the 
the set of transactions !

14 

Sequential history H2 ≈ H1!

read(0) write(1) 

read(0) write(1) 

O2 

O1 O2 

O1 

T1 

T2 

commit 

commit 

15 

!
A history is atomic if its restriction to committed 
transactions is serializable !
!
A history H of committed transactions is 
serializable if there is a history S(H) such that:!

!!
1. !  S is equivalent to H!
2.  S is sequential !
3.  in S, every read returns the last value written!
!

Classical trensactional safety [Pap79] !

16 

Atomic history?!

T1 

T2 

read->0 write(1) 

read->0 

commit 

commit 
write(1) 

O2 

O1 O2 

O1 

17 

Sequential history?!

T1 

T2 

read->0 write(1) 

read->0 write(1) 

O2 

O1 O2 

O1 

18 

Sequential history?!

T1 

T2 

read->0 write(1) 

read->0 write(1) 

O2 

O1 O2 

O1 
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Atomic history?!

T1 

T2 

read->0 write(0) 

read->0 

commit 

commit 
write(1) 

O2 

O1 O2 

O1 

20 

Sequential history!

read->0 write(0) 

read->0 write(1) 

O2 

O1 O2 

O1 

T1 

T2 

21 

Operation atomicity (linearizability)!

T1 

T2 

T3 

operation 

operation 

operation 

22 

Transaction atomicity!

T1 

T3 

operation operation 

operation 

commit 

commit 
operation 

O1 

O1 O2 

O2 

23 

Serializability!
§  A history H of committed transactions is 

serializable if there is a history S(H) such 
that:!

!!
1.  S is equivalent to H!
2.  S is sequential !
3.  in S, every read returns the last value 

written!

©	
  2014	
  P.	
  Kuznetsov	
  	
   24 

Atomic history!

T1 

T2 

read->0 write(1) 

read->0 

commit 

abort 
write(1) 

O2 

O1 O2 

O1 
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Serializability!
§  A history H of committed transactions is 

serializable if there is a history S(H) such 
that:!

!!
1. ! S is equivalent to H!
2.  S is sequential !
3.  in S, every read returns the last value 

written!
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write(1) 

read(0) 

O1 

O1 

commit 

commit 

T1 

T2 

Real-time!

27 

Preserving real-time order!
§  (T,T’) is in HRT if T terminates before T’ 

begins!

§  S preserves the real-time order of H if!
ü HRT is a subset of SRT!

●  If T precedes T’ in H, T precedes T’ in H !

28 

Strict serializability!
A history H of committed transactions is 
strictly serializable if there is a history S such 
that:!
1.  S is equivalent to H!
2.  S is sequential !
3.  S is legal (with respect to each object)!
4.  S preserves the real-time order of H!
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Is it enough?!

§  Committed transactions stricly serializable!
§  Aborted transactions ignored!

Is it safe?!
(in a practical sense) !
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Simple algorithm  
(a la DSTM [Herlihy et al. 2003])!

!
§  To write O, T requires a write-lock on O; !
T aborts T’ if some T’ holds ownership on O (using CAS)!
!
!
§  To read O, T checks if all objects read remain valid 

(keep the value read)- else abort!
!
§  Before committing, T checks if all objects read remain 

valid and changes its status to committed!

Aggressive write, careful read!
(obstruction-free writes, progressive progress)!
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DSTM: write, read, tryCommit!
write(x,v)!
   (owner,ov,nv)=tvar[x].read()!
    curr=getValue(owner,ov,nv) !!
   if curr=live and !status[owner].cas(live,aborted) then return abort!
   if tvar[x].cas([owner,ov,nv],[myself,curr,v]) then!
         return ok!
   else !
         return abort!

!!
             !!
read(x)!
   (owner,ov,nv)=tvar[x]!
   curr=getValue(owner,ov,nv) !
   if curr != live and valid() then!
       rset = rset U {(x,[owner,ov,nv])}    !
       return curr!
   else !
         return abort!
!
!
tryCommit()!
   if valid() and status[myself].cas(live,committed) then!
       return commit !
   else !
       return abort ! !

New value of x, if the owner committed, !
old value of x if aborted or live, !
abort if live  !

Check if all previously 
read objects keep the 
same values!

Grab the ownership on 
the object and set 
value v!

Set status to committed!

try aborting the 
concurrent transaction!

32 

DSTM: getValue() and valid()!
getValue(owner,ov,nv)!
   if status[owner]=committed!
         return nv!
    else if status[owner]=committed!
         return ov !
    else!

!return live!
!
valid()!
    for each (x,[owner,ov,nv]) in rset do!
        (owner’,ov’,nv’)= tvar[x].read()!
        if (owner’,ov’,nv’)!=(owner,ov,nv) then!
          return false!
    return true  !
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The value of x  is not 
known (a concurrent 
transaction is writing to it)!

x has been  overwritten!

Check every object in 
the “read set” !

33 

More efficient?!

§  Why validating all the time?!
ü “Apologizing vs. asking permission”!

§  Only validate at commit time!
ü Abort if did not succeed!

!
Aggressive write, optimistic read!
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Example: run-time error!
Initially: x=1, y=2!
Invariants: 0<x<y!
!
1/(y-x) is not supposed to give division-by-zero!
!
But:!

T1: x := x+1; y:= y+1!
T2: z := 1 / (y - x)!

 !
! ©	
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Example: infinite loop!
!
!
T1: x := 3; y:= 6!

   T2: a := y; b:= x;  
  repeat  b:= b + 1 until a = b 
!

!
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More refined safety needed!
!
We need a theory that restricts all transactions: 
this is what critical sections give us!
!
Every transaction sees a consistent state!
§  sees?!
§  consistent?!
!
A la critical sections (locks)!
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Histories!
§  Let H be any history (made of commited, 

aborted and pending transactions)!

§  Complete(H) is the history made of all 
transactions of H by completing pending ones 
with abort events !
ü And some of pending commits with 

commits!

38 

Opacity [GK’08]!
A history H of opaque if there is a history S 
such that:!
1.  S is equivalent to (some history in)  

complete(H)!
2.  S is sequential !
3.  S is legal wrt committed transactions!
4.  S preserves the real-time order of H!
!
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Opacity?!

T1 

T2 

read->0 

write(1) 

commit 

abort 
read->0 

O2 

O2 

O1 

write(1) 
O1 

40 

Not legal!

T1 

T2 

read->0 

write(1) 

commit 

read->0 

O2 

O2 

O1 

write(1) 
O1 

41 

Legal!

T1 

T2 
write(1) 

commit 

O2 

O2 

O1 

write(1) 
O1 

read->0 

read->0 

42 

Recoverable (no dirty reads)!

T1 

T2 

read->0 

write(1) 

commit 

abort 

O2 

O2 

O1 

write(1) 
O1 

read->0 
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43 

!
!
!

Opacity < rigorous scheduling!

T1 

T2 

write(0) 

write(1) 

commit 

abort 
write(1) 

O2 

O2 

O1 

write(0) 
O1 

44 

   Simple algorithm (DSTM)!

!

§  Aggressive write (ownership) !

§  Careful read (validation)!

45 

Visible Read  
(SXM; RSTM)!

!
§  Write is mega killer: to write an object, a 

transaction aborts any live one which has 
read or written the object!

§  Visible but not so careful read: when a 
transaction reads an object, it says so!

46 

Visible Read !

§  A visible read invalidates cache lines!
!
§  For read-dominated workloads, this means a 

lot of traffic on the bus between processors!

§  This would reduce the throughput!

47 

Unavoidable (in some sense)!
§  Theorem [GK’08]!
In an opaque TM, reads are either visible or 
careful !
!
NB. Modulo a weak progress property 
(progressiveness) and the assumption of a 
single versions!
Progressiveness: commit if no read-write or 
write-write conflicts !
!
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!
!
!

Intuition of the proof!

T1 

T2 

read() 

write() 
commit 

I1,I2,..,Im 

O1,O2,..,On 
read() 
Ik 
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Read invisibility!

§  The fact that the read is invisible means T1 
cannot inform T2, which would in turn abort 
T1 if it accessed similar objects (SXM, RSTM)!

§  NB. Another way out is the use of multi-
versions (maintain multiple copies of each 
object)!

§  The theorem does not hold for database 
(strictly serializable) transactions! Why?!

50 

Verifying Opacity!
§  How to tell that a given history is opaque?!

§  Check that the conflict poly-graph is acyclic!
ü NP-Complete problem (equivalent to SAT)!
ü [Pap 79] for SR (serializability), holds for Opacity 

too. Why?!

§  But the space of verification can be reduced!
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Abstracting the problem!

Program 
R/W/C 

Scheduler 

TM 
R/W/C/A 

52 

Reduce the space of 
verification!

§  Symmetric system !
(all transactions are treated equally)!

ü  Transaction names does not matter!
ü  Variable names does not matter!

53 

TM verification theorem 
(GHS’08)!

§  A TM either violates opacity with 2 
transactions and 3 variables or 
satisfies it with any number of variables 
and transactions!

54 

Reference implementation!

§  A finite-state transition system (12.500 states) 
which generates all possible TM safe 
histories for 2 transactions and 3 variables!
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Model checking TM!

§  A TM is correct if the histories it 
generates could also be generated by 
the reference implementation !

!
§  Simulation relation between the TM 

(e.g., TL2 4500 states) and the 
reference implementation!

56 

Examples!

§  It takes 15mn to check the correctness 
of TL2 and DSTM!

§  Reverse two lines in TL2: bug found in 
10mn - a history not permitted by the 
reference implementation!

57 

1. Safety of a TM    

A. Do we need a new correctness 
criteria? Yes: opacity 

B. How can we check it? 
Reduction  

58 

Why do we care?   

 
What should we expect?   

- Modern computing is concurrent 
- TM promises simplicity and efficiency   

- Safety: opacity (can be checked) 

59 

2. Liveness of a TM   !

What progress can we expect? !

60 

What is progress?!

§  Operations eventually return?!

§  Transactions eventually terminate?!
!
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61 

What is progress?!

!

§  We want transactions to commit, including 
long ones:!
ü rehashing the table, !
ü rebalancing the tree!

62 

What is progress?!

§  We cannot require a TM to commits 
transactions:!
ü from a dead process; i.e., dead 

transactions!
ü that infinitely loop!

63 

Progress? 

T2 
? 

O2 crash 

T1 
read->0 ? 

O2 O2 O2 O2 
read->0 read->0 read->0 

read->0 

64 

Progress!

§  We can only expect progress for correct 
transactions !

§  How to define a correct transaction? !
!

65 

Correctness depends on the 
scheduler and the program!

Program!
R/W/TC/A! Scheduler!

TM!
R/W/C&S/T&S/LL&SC/C/A!

66 

History!

§  A history (as seen by the user) does not 
say what the scheduler does and whether 
the program behaves correctly!

"
§  We need a refined notion of history!
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Low-level history!

§  A low-level history depicts the events of the 
implementation !

"
§  A history is a total order of invocation, 

reply, try-commit, commit and abort events!
ü H = (S,<)!

!

68 

Low-level history!

!
§  The invocations and replies include also 

low-level objects used in the 
implementation!

!
§   The low-level history is a refinement of 

the high-level one (seen by the user)!

69 

Low-level history!

§  Well-formed (low-level) history: !
ü Every transaction that aborts is immediately 

repeated until it commits, i.e., :!
!
Every process executes: !
!T1:op1; T1.op2; ..; T1:tryCommit; T1:abort; 
T1:op1;..; T1:commit; T1:op3…!

!

70 

Low-level history!

§  A transaction T is correct if !
ü  (a) try-commit is invoked after a finite 

number of invocation/reply events of T and !
ü  (b) either T commits or T performs an 

infinite number of steps!

§   (a) depends on the program!
§   (b) depends on the scheduler !

71 

Ideal progress?!
§  No correct transaction aborts !

!
§  NB. This is not a liveness property!
§  Can we achieve this?!

72 

T1 

T2 

read() 

write() 

commit 

O1 

O1 
write() 

O2 

Aborting is a fatality!

read() 

O2 

abort 
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Global progress 
- wait-freedom -!

§  Every correct transaction eventually commits!

§  NB. We allow the possibility for a transaction to 
abort a finite number of times as long as it 
eventually commits!
 !

!

74 

Global progress 
- wait-freedom -!

T1 

T2 

read() 

write() 

commit 

O1 

O1 
write() 

O2 

read() 

O2 

abort 

75 

Impossible global progress 
- wait-freedom -!

!
§  Wait-freedom is impossible in an 

asynchronous system!

!

!  NB. This impossibility is fundamentally 
different from the impossibility of (wait-free) 
consensus [FLP85]: It holds for any underlying 
objects 
  

 

76 

Conditional progress  
- obstruction-freedom - !

§  A correct transaction that eventually does not 
encounter contention eventually commits!

!

§  Obstruction-freedom seem reasonable and 
is indeed possible!

77 

OF DSTM!
!

§  To write O, T requires a write-lock on O (use 
CAS); !

T aborts T’ if some T’ acquired a write-lock on O 
(use CAS)!

!
§  To read O, T checks if all objects read remain 

valid - else abort (use CAS to abort a process 
holding locks on O)!

§  Before committing, T releases all its locks (use 
CAS)!

78 

DSTM: write, read, tryCommit!
write(x,v)!
   (owner,ov,nv)=tvar[x].read()!
    curr=getValue(owner,ov,nv) !!
   if curr=live and !status[owner].cas(live,aborted) then return abort!
   if tvar[x].cas([owner,ov,nv],[myself,curr,v]) then!
         return ok!
   else !
         return abort!

!!
             !!
read(x)!
   (owner,ov,nv)=tvar[x]!
   curr=getValue(owner,ov,nv) !
   if curr=live and !status[owner].cas(live,aborted) then return abort!
   if curr != live and valid() then!
       rset = rset U {(x,[owner,ov,nv])}    !
       return curr!
   else !
         return abort!
!
!
tryCommit()!
   if valid() and status[myself].cas(live,committed) then!
       return commit !
   else !
       return abort ! !

Read aborts the 
concurrent transaction!
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DSTM uses CAS!

§  CAS is the strongest synchronization 
primitive!

!

!  Is OFTM possible with R/W objects? 
 

80 

OF-TM!

Program!
R/W/TC/A! Scheduler!

!
TM!
!!Low-level objects?!
!

81 

Compare&Swap!

Register!

Queue! Test&Set!

…!

Fetch&Add!

Snapshot!(1)!

(2)!

(∞)!

(..)!

Consensus number of OF-TM?!

82 

FO-consensus!

A process can decide or abort !
§   No two different values can be decided!
§   A value decided was proposed !

!  If abort is returned from propose(v) 
then (1) there is contention and (2) v 
cannot be returned 

83 

OF-TM <=> FO-consensus!

!
§  From OF-TM to FO-consensus: propose() is 

performed within a transaction!

§  From FO-consensus to OF-TM: slightly more 
tricky - as for DSTM but using a one shot 
object instead of C&S!

84 

OF-consensus vs consensus!

§  OF-consensus can implement consensus 
among exactly 2 processes                   !

!                           Algorithm!
!  P1 writes its value and keeps proposing until it 

decides a value!
!  P2 either decides or reads the value  !
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The consensus number of 
OF-TM is 2!

§  OF-TM cannot be implemented with R/W 
objects only!

But OF-TM does not need CAS! 

86 

OF-TM vs. OF objects!
!
§  Every OF object can be implemented with R/W 

objects !

§  Where is the bug?!

§  Abort really means the operation did not take place 
[AGHK’07] !

87 

TM Liveness !
§  Global progress (wait-freedom) is impossible!
§  Conditional progress (obstruction-freedom) is 

not trivial!
Boosting OF?!
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88 

Contention management!

§  Conflict resolution delegated to a 
contention manager!

§  Responsible solely for progress (liveness)!
(different from a DB concurrency control)!

89 

!
§  If a transaction T wants to write an object O 

owned by another transaction T’, T calls a 
contention manager !

§  The contention manager can decide to wait, 
retry or abort T’!

Progress!

90 

Contention managers!
§  Aggressive: always aborts the victim!
!
§  Backoff: wait for some time (exponential backoff) and 

then abort the victim!
!
§  Karma: priority = cumulative number of shared objects 

accessed – work estimate. Abort the victim when number 
of retries exceeds difference in priorities. !

!
§  Polka: Karma + backoff waiting!
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Greedy contention manager!
§  State!

ü Priority (based on start time)!
ü Waiting flag (set while waiting)!

§  Wait if other has!
ü Higher priority AND not waiting!

§  Abort other if!
ü Lower priority OR waiting!

92 

From OF to WF 

!
OF-TM!

!

!
CM!
!

!
WF-TM!

!
Every correct transaction eventually commits, !
(after finitely many aborts) !

93 

From OF-TM to WF-TM!

T1 

T2 

read() 

write() 

commit 

O1 

O1 
write() 

O2 

read() 

O2 

abort 

94 

 
OF-TM 

 

 
CM: <>P 

 
 

WF-TM 
 

The weakest synchrony assumption 
to implement WF-TM [GKK’06] 

95 

Why do we care?  !

 
What is it?  !

- Modern computing is concurrent 
- TM promises simplicity and efficiency  "

- Safety: opacity, … 
-Liveness: progressiveness, obstruction-
freedom,… "

96 

Concluding!
§  TM does not replace locks: it hides them!

ü Can also be non-blocking!
§   TM only looks like db transactions and 

memory objects, but is quite different 
ü Safety, Liveness, Progress, … 

§  TM is another proof of the irrelevance of the 
notion of relevance … 
ü Like garbage collection in the old days 
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97 

Take-aways!

§  Transactions (software and hardware) 
conquer concurrent computing!
ü Programmers are happy!

§  Making TM efficient is in fact tricky, there are 
inherent costs and trade-offs!

©	
  2014	
  P.	
  Kuznetsov	
  	
  


