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So far…"
Shared-memory communication:"

§  safe bits => multi-valued atomic registers"
§  atomic registers => atomic/immediate snapshot"
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Today"
"
Reaching agreement in shared memory: "
"
§  Consensus"

ü Impossibility of wait-free consensus"
§  1-resilient consensus impossibility"
§  Universal construction"
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System model"

§  N asynchronous (no bounds on relative speeds) 
processes p0,…,pN-1 (N≥2) communicate via atomic 
read-write registers"

§  Processes can fail by crashing "
ü A crashed process takes only finitely many steps (reads 

and writes)"
ü Up to t processes can crash: t-resilient system "
ü t=N-1: wait-free "

"
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Consensus"
Processes propose values and must agree on a 

common decision value so that the decided value 
is a proposed value of some process"
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Consensus: definition"
"
A process proposes an input value in V (|V|≥2) and tries to 

decide on an output value in V"

§  Agreement: No two process decide on different values"
§  Validity: Every decided value is a proposed value!
§  Termination: No process takes infinitely many steps without 

deciding"
(Every correct process decides)"
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Optimistic (0-resilient) consensus"
Consider the case t=0, no process fails"
"
Shared: 1WNR register D, initially T (default value not 

in V)"
"
Upon propose(v) by process pi:"
"if i = 0 then D.write(v) "// if p0 decide on v ""
"wait until D.read() ≠ T "// wait until p0 decides "
"return D"

"
(every process decides on p0’s input)"
"
"
"
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Impossibility of wait-free consensus [FLP85,LA87]"

Theorem 1 No wait-free algorithm solves consensus"
"
We give the proof for N=2, assuming that "
"p0 proposes 0 and p1 proposes 1"

"
"

Implies the claim for all N≥2 "
"
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Proof of Theorem 1"
§  We show that no 2-process wait-free solution exists 

for iterated read-write memory"
" " " "r := 0"
" " " "repeat"
" " " " "r := r+1;"
" " " " "Ri.write(vi); " ""
" " " " "vi := Ri-1.read();"
" " " "until not decided (vi)"

"

§   The iterated memory is equivalent to non-iterated 
one for solving tasks "
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Proof of Theorem 1"

p0	
   p1	
  

p0	
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  writes	
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p1	
  writes	
  

p1	
  reads	
  a0er	
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  writes	
  

Initially each pi only knows its input"
One round of IIS:"
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Proof sketch for Theorem 1"

p0	
   p1	
  

Two rounds:"

12 	
  	
  

Proof of Theorem 1"

p0	
   p1	
  

And so on…"

Solo	
  runs	
  remain	
  connected	
  -­‐	
  no	
  way	
  
to	
  decide!	
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Proof of Theorem 1"

p0	
   p1	
  

Suppose pi (i=0,1) proposes i"
§  pi must decide i in a solo run!"
Suppose by round r every process decides"
"

There	
  exists	
  a	
  run	
  with	
  conflicMng	
  
decisions!	
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So…"
§  No algorithm can wait-free (N-resiliently) solve 

consensus"
"

§  We cannot tolerate N-1 failures: can we tolerate 
less?"
ü E.g., can we solve consensus 1-resiliently?"
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1-resilient consensus?"
"

What if we have 1000000 processes and one of them 
can crash?"

"
NO"
"

We present a direct proof now"
(an indirect proof by reduction to the wait-free 

impossibility also exists)"
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Impossibility of 1-resilient consensus [FLP85,LA87]"

Theorem 2 No 1-resilient (assuming that one process 
might fail) algorithm solves consensus in read-write"

"
Proof"
By contradiction, suppose that an algorithm A solves 1-

resilient binary consensus among p0,…pN-1 "
"
"
"
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Proof"

By contradiction, suppose that an algorithm A solves 
wait-free binary consensus among p0,…pN-1 "

A run of A is a sequence of atomic steps (reads or 
writes) applied to the initial state"

A run of A can be seen as and initial input 
configuration (one input per process) and a 
sequence of process ids i1,i2,…ik,… (all registers are 
atomic)"

 "
Every correct (taking sufficiently many steps) process 

decides!"
"
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Proof: valence"
"
Let R be a finite run"

§  We say that R is v-valent (for v in {0,1}) if v is decided in 
every infinite extension of R"

§  We say that R is bivalent if R is neither 0-valent nor "
"1-valent"
"(there exists a 0-valent extension of R and a 1-valent 
extension of R)"
""
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Proof: valence claims"
Claim 1 Every finite run is 0-valent,  or 1-valent, or bivalent."

(by Termination) "
"
Claim 2 Any run in which some process decides v is "
"v-valent "

(by Agreement)"
"

Corollary 1: No process can decide in a bivalent run (by 
Agreement)."

20 

Bivalent input"
!
Claim 3 There exists a bivalent input configuration (empty 

run)"
"
Proof!
Suppose not"
Consider sequence of input configurations C0,…,CN:"
"
Ci: p0,..,pi-1 propose 1, and pi,..,pN-1 propose 0"
"
§  All Ci‘s are univalent"
§  C0 is 0-valent (by Validity)"
§  CN is 1-valent (by Validity)"
"
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Bivalent input"
There exists i in {0,…N-2} such that Ci is 0-valent and 

Ci+1 is 1-valent! "
"
Ci and Ci+1 differ only in the input value of pi (it proposes 1 in Ci and 0 in Ci+1)"
"
Consider a run R starting from Ci in which pi takes no 

steps (crashes initially): eventually all other 
processes  decide 0"

"
Consider R’ that is like R except that it starts from   Ci+1"
§  R and R’ are indistinguishable!"
§  Thus, every process decides 0 in R’ --- contradiction 

(Ci+1 is 1-valent) "
"
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Critical run"
Claim 4 There exists a critical (bivalent) finite 

run R and two processes pi and pj such that 
R.i is 0-valent and R.j.i is 1-valent (or vice 
versa)"

"
Proof of Claim 4: By construction, take the 

bivalent empty run C (by Claim 3 it exists)"
We construct an ever-extending  fair (giving 

each process enough steps) run which 
results in R"

C	
  

pi	
   pj	
  

pi	
  
0-­‐valent	
  

1-­‐valent	
  

R	
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Proof of Claim 4: critical run"
repeat forever !
"take the next process pi (in round-robin fashion)"
"if for some R’, an extension of R, R.i is 

"bivalent then R:=R’.i"
"else  stop"

 ""
§  If never stops – ever extending (infinite) 

bivalent runs  in which every process is correct 
(takes infinitely many steps – contradiction 
with termination"

§  If stops – (suppose R.i is 0-valent) – consider 
a 1-valent extension"
ü There is a critical configuration between R and 

R’ "

C	
  

i	
  
j	
  

i	
  0-­‐valent	
  

1-­‐valent	
  

i	
  

0-­‐valent	
  

i	
  

R	
  

R’	
  

1-­‐valent	
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Proof (contd.)"
Take a critical run R (exists by Claim 4) such that:"

§  R.0 is 0-valent"
§  R.1.0 is 1-valent"

(without loss of generality, we can always rename 
processes or inputs appropriately J)"

 "
"
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Proof (contd.): the next steps in R"

"
Four cases, depending on the next steps of p0 and p1 

in R"
"
§  p0 and p1 are about to access different objects in R"
§  p1 reads X and p0 reads X"
§  p0 writes in X"
§  p1 reads  X"

"

26 
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Proof (contd.): cases and contradiction"

§  p0 and p1 are about to access different objects in R"
ü R.0.1 and R.1.0 are indistinguishable"

R	
  

p1-­‐>	
  Y	
   p0-­‐>	
  X	
  

p0-­‐>	
  X	
   p1-­‐>	
  Y	
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Proof (contd.): cases and contradiction"

§  p0 and p1 are about to read the same object X"
"R.0.1 and R.1.0 are indistinguishable"

R	
  

p0	
  reads	
  X	
   p1	
  reads	
  	
  X	
  

p0	
  reads	
  X	
  p1	
  reads	
  	
  X	
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Proof (contd.): cases and contradiction"

§  p0 is about to write to X"
ü Extensions of R.0 and R.1.0 are indistinguishable for all 

except p1 (assuming p1 takes no more steps)"

R	
  

p0	
  writes	
  to	
  X	
   p1-­‐>	
  X	
  

p0	
  writes	
  to	
  X	
  

29 ©	
  2012	
  P.	
  Kouznetsov	
  	
  

Proof (contd.): cases and contradiction"

§  p0 is about to read to X"
ü Extensions of R.0.1 and R.1.0 are indistinguishable for all 

but p0 (assuming p0 takes no more steps)"

R	
  

p0	
  reads	
  X	
   p1	
  -­‐>	
  X	
  

p1	
  -­‐>	
  X	
   p0	
  reads	
  X	
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Thus"
§  No critical run exists"
§  A contradiction with Claim 4!

⇒ 1-resilient consensus is impossible in read-write"
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Next"
§  Combining registers with stronger objects"

ü Consensus and test-and-set (T&S)"
ü Consensus and queues"

§  Universality of consensus"
ü Consensus can be used to implement any object "

§  Сonsensus number"
§  Message-passing in shared memory"

"
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Test&Set atomic objects"
"
Exports one operation test&set() that returns a 

value in {0,1}"
"
Sequential specification:"
The first atomic operation on a T&S object 

returns 1, all other operations return 0"
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2-process consensus with T&S"
Shared objects:!
"T&S TS"
"Atomic registers R[0] and R[1]"

"
Upon propose(v) by process pi (i=0,1):"
"R[i] :=  v"
"if TS.test&set()=1 then"
" "return R[i]"
"else "
" "return R[1-i]"

34 ©	
  2012	
  P.	
  Kuznetsov	
  	
  

3-process consensus with T&S?"
Assume A solves consensus  among three-processes 

p0, p1, p2, using registers and T&S objects"
"
Consider the critical bivalent run R of A: every one-

step extension of R is univalent (HW: show that it 
exists)"

 "
W.L.O.G., assume that "
§  R.p0 is 0-valent"
§  R.p1 is 1-valent"
"
We establish a case where some process cannot 

distinguish a 0-valent state from a 1-valent one"
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3-process consensus with T&S?"
If p0 and p1 access different objects at the end of R, or 

p0 and p1 access the same register in R, then we 
come back to the read-write case (p0 or p1 cannot 
decide in some solo extension)"

Thus, p0 and p1 are about to access the same T&S 
object  "

"
"
 "

R	
  

p0	
   p1	
  

0-­‐valent	
   1-­‐valent	
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3-process consensus with T&S"
Suppose p0 and p1 access the same T&S object "

ü p2 cannot distinguish R.p0 and R.p1 in a solo 
extension (T&S returns 0 and all other  objects 
have the same states) => p2 can never decide"

"
=> T&S and registers cannot (wait-free) solve           

3-process consensus"
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FIFO Queues"
Exports two operations enqueue() and 

dequeue() "

§  enqueue(v) adds v to the end of the queue"
§  dequeue() returns the first element in the 

queue"
(LIFO queue returns the last element)"
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2-process consensus with queues"
Shared:"
"Queue Q, initialized (winner,loser) "
"Atomic registers R[0] and R[1]"

"
Upon propose(v) by process pi (i=0,1):!
"R[i] :=  v"
"if Q.dequeue()=winner then"
" "return R[i]"
"else "
" "return R[1-i]"
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3-process consensus with queues?"
§  Let A solve consensus among p0, p1, p2, using registers 

and queues "

§  Similarly, there exists a critical run R in which the same 
queue is about to be accessed by p0, p1, p2"

§  Suppose R. p0 is 0-valent, R. p1 is 1-valent, and p0 and p1 access the same queue"
ü The decision is “encoded” in the queue "
ü But the queue can only be accessed with dequeue() and 

enqueue()"
ü At least one process is confused "

=> Consensus power of a queue is 2 (similar for stacks)"
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But why consensus is interesting?"
Because it is universal!"

§  If we can solve consensus among N 
processes, then we can implement any object 
shared by N processes"
ü T&S and queues are universal for  2 processes"

"
§  A key to implement a generic fault-tolerant 

service (replicated state machine)"
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What is an object ?"
Object O is defined by the tuple (Q,O,R,σ):"
§  Set of states Q"
§  Set of operations O"
§  Set of outputs R"
§  Sequential specification σ, a subset of 

OxQxRxQ:"
ü (o,q,r,q’) is in σ ó if operation o is applied to an 

object in state q, then the object can return r and 
change its state to q’"

ü Total on OxQ (defined for all o and q)"
"
"
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Deterministic objects"
"
§  An operation applied to a deterministic object 

results in exactly one (output,state) in RxQ, 
i.e., σ can be seen a function OxQ -> RxQ "

§  E.g., queues, counters, T&S are deterministic"
§  Unordered set (put/get) – non-deterministic"
"



8 

43 

Example: queue""
Let V be the set of possible elements of the 

queue"
Q=V* (all sequences with elements in V)"
O={enq(v)v in V,deq()}"
R=V U {Ø} U {ok}"
σ(enq(v),q)=(ok,q.v)"
σ(deq(),v.q)=(v,q)"
σ(deq(), Ø)=(Ø, Ø)"

"
"
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Implementation: definition"
A distributed algorithm A that, for each 

operation o in O and for every pi, describes a 
concurrent procedure oi using base objects"

"
"
"
A run of A is well-formed if no process invokes a new 

operation on the implemented object before 
returning from the old one (we only consider well-
formed runs)"
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Implementation: correctness"
A (wait-free) implementation A is correct if in 

every well-formed run of A"
§  Wait-freedom: every operation run by pi 

returns in a finite number of steps of pi "
§  Linearizability ≈ operations “appear” 

instantaneous (the corresponding history is 
linearizable)"
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Linearization"

p1	
  

p2	
  

p3	
  

	
  enq(y)	
  	
  	
  	
  	
  ok	
  

deq()	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  y	
  

	
  enq(x)	
  	
  	
  	
  	
  ok	
  

	
  deq()	
  	
  	
  x	
  

	
  p1-­‐enq(x);	
  p1-­‐ok;	
  p3-­‐deq();	
  p3-­‐x;	
  	
  
p1-­‐enq(y);	
  p1	
  –ok;	
  p2-­‐dequeue();	
  p2-­‐y	
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Universal construction"
!
!
Theorem 1 [Herlihy, 1991] If N processes can 

solve consensus, then N processes can (wait-
free) implement every object O=(Q,O,R,σ)"

48 

A moment of meditation"
"
Suppose you are given an unbounded number 

of consensus objects and atomic read-write 
registers"
"

You want to implement an object O=(Q,O,R,σ)"
"

How would you do it?"
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Universal construction: idea"
Every process that has a pending operation 

does the following:"
"
§  Publish the corresponding request "
§  Collect published requests and use 

consensus instances to serialize them: the 
processes agree on the order in which the 
requests are executed"

§  Processes agree on the order in which the 
published requests are executed "
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Universal construction: variables"
Shared abstractions:"
"N atomic registers R[0,…,N-1], initially Ø"
"N-process consensus instances C[1], C[2], …"

"
Local variables for each process pi:"
"integer seq, initially 0  "
" " "// the number of pi’s requests executed so 
far"
"integer k, initially 0 "
" " "// the number of batches of " " ""
" " "// all requests executed so far"
"sequence linearized, initially empty "
" " "//the serial order  of executed requests"

"
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Universal construction: algorithm"
Code for each process pi:  implementation of operation op"
"
"seq++"
"R[i] := (op,i,seq)  " " "// publish the request"
"repeat"
" "V := read R[0,…,N-1] " "// collect all requests"
" "requests := V-{linearized} "//choose not yet linearized requests"
" "if requests≠Ø then"
" " "k++"
" " "decided:=C[k].propose(requests) ""
" " "linearized := linearized.decided "
" " "//append decided request in some deterministic order"
"until (op,i,seq) is in linearized"
"return the result of (op,i,seq) in linearized "
" " "// using the sequential specification σ"
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Universal construction: correctness"

§  Linearization of a given run: the order in which 
operations are put in the linearized  list!
ü  Agreement of consensus: all linearized lists are 

related by containment (one is a prefix of the 
other)"

§  Real-time order: if op1 precedes op2, then 
op2 cannot be linearized before op1"
ü Validity of consensus: a value cannot be decided 

unless it was previously proposed"

"
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Universal construction: correctness"

§  Wait-freedom:"
ü Termination and validity of consensus: there 

exists k such that the request of pi gets into req list 
of every processes that runs C[k].propose(req)"

"
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Another universal abstraction: CAS"
Compare&Swap (CAS) stores a value and exports 

operation CAS(u,v) such that:"
§  If the current value is u, CAS(u,v) replaces it with v 

and returns u"
§  Otherwise, CAS(u,v) returns the current value"

A variation: CAS returns a boolean (whether the 
replacement took place) and an additional operation 
read() returns the value"
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N-process consensus with CAS"
Shared objects:"
"CAS CS initialized Ø  "
"// Ø cannot be an input value "
""

Code for each process pi (i=0,…,N-1):"
"vi := input value of pi"
"v :=CS.CAS(Ø,vi) "
"if v = Ø "
" "return vi"
"else "
" "return v"
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M-consensus object"
M-consensus stores a value in {Ø} U V and exports operation 

propose(v), v in V:"
"
For 1st to Mth propose() operations:   "
§  If the value is Ø, then propose(v) sets the value to v and 

returns v"
§  Otherwise, returns the value  "
"
All other operations do not change the value and return Ø"
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M-process consensus with M-consensus"
"
Immediate: every process pi simply invokes 

C.propose(input of pi) and returns the result of it"
"
(M+1)-consensus using M-consensus?"
"
Impossible: (M+1)-th process is confused"
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Consensus number"
An object O has consensus number k (we write cons(O)=k) if "
§  k processes can solve consensus using registers and any 

number of copies of O "
§  but k+1 processes cannot"
If no such number k exists for O, then cons(O)=∞ "
"
(k=cons(O) is the maximal number of processes that can be 

perfectly synchronized using copies of O and registers)"
""
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Consensus numbers"

§  cons(register)=1"
§  cons(T&S)=cons(queue)=2"
§  …"
§  cons(N-consensus)=N "

ü N-consensus is N-universal!"
§  …"
§  cons(CAS)=∞"
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Open questions"
§  Robustness"
"Suppose we have two objects A and B, 
cons(A)=cons(B)=k"
"Can we solve (k+1)-consensus using registers 
and copies of A and B?"

§  Can we implement an object of consensus 
power k shared by N processes (N>k) using 
k-consensus objects?"


