INF346: Shared-memory computing

Correctness of algorithms:
safety and liveness

INF346, 2014

© 2013 P. Kuznetsov

How to treat a (computing) system
formally

= Define models (tractability, realism)

= Devise abstractions for the system design
(convenience, efficiency)

= Devise algorithms and determine complexity bounds

I © 2013 P. Kouznetsov

Basic abstractions

= Process abstraction — an entity performing
independent computation

= Communication
v'Message-passing: channel abstraction
v'Shared memory: objects

s ©2013 P. Kuznetsov

Processes
= Automaton P; (i=1,...,N): _
v'States
v'Inputs '
v Outputs g
v'Sequential specification I

Communication
Algorithm = {P1,...,PN} _1",.)
= Deterministic algorithms

= Randomized algorithms

s © 2012 P. Kouznetsov

Shared memory
= Processes communicate by applying operations on
and receiving responses from shared objects
= A shared object instantiates a state machine
v'States

v'Operations/Responses
v'Sequential specification

= Examples: read-write registers, TAS,CAS,LL/SC,...

~

R © 2012 P. Kouznetsov

Implementing an object

Using base objects, create an illusion that an object O
is available

enq(x) A%, deq()
g By
X : Base :
° : D{i&ts : X

" Queue
deq()] l empty

%

R © 2012 P. Kuznetsov

Correctness

What does it mean for an implementation to be
correct?

= Safety = nothing bad ever happens

v'Can be violated in a finite execution, e.g., by
producing a wrong output or sending an incorrect
message

v'What the implementation is allowed to output

= Liveness = something good eventually happens
v'Can only be violated in an infinite execution, e.g.,
by never producing an expected output
v'Under which condition the implementation outputs

© 2012 P. Kuznetsov 7

In our context

Processes access an (implemented) abstraction
(e.g., bounded buffer, a queue, a mutual
exclusion) by invoking operations

= An operation is implemented using a sequence
of accesses to base objects

= E.g.: a bounded-buffer using reads, writes, TAS, etc.
= A process that never fails (stops taking steps) in

the middle of its operation is called correct

= We typically assume that a correct process invokes

infinitely many operations, so a process is correct if it
takes infinitely many steps

© 2012 P. Kuznetsov 8

Runs

A system run is a sequence of events
v'E.g., actions that processes may take

2 — event alphabet
v E.g., all possible actions
>*U=} js the set all finite and infinite runs

A property P is a subset of Z*U{<}

An implementation satisfies P if every its run is
in P

s © 2012 P. Kuznetsov

Safety properties
P is a safety property if:

= Pis prefix-closed: if o is in P, then each prefix of
gisinP

= Pis limit-closed: for each infinite sequence of

traces o, 0y, 0,,..., such that each o; is a prefix
of o;,; and each g; is in P, the limit trace o is in P

(Enough to prove safety for all finite traces of an
algorithm)

s © 2012 P. Kuznetsov

Liveness properties

P is a liveness property if every finite o in 2* has
an extension in P

(Enough to prove liveness for all infinite runs)

A liveness property is dense: intersects with
extensions of every finite trace

R © 2012 P. Kuznetsov

Safety? Liveness?

= Processes propose values and decide on values:

Z=Ui'v{proposei(v) ,decide; (v)}U{base-object accesses}

v'Every decided value was previously proposed
v'"No two processes decide differently

v'Every correct (taking infinitely many steps)
process eventually decides

v'No two correct processes decide differently

R © 2013 P. Kouznetsov

Quiz: safety

1. Let S be a safety property. Show that if all finite
runs of an implementation | are safe (belong to
S) that all runs of | in are safe

2. Show that every unsafe run o has an unsafe
finite prefix o’ : every extension of o’ is unsafe

3. Show that every property is a mixture of a safety
property and a liveness property

I © 2013 P. Kouznetsov

How to distinguish safety and liveness:
rules of thumb

Let P be a property (set of runs)
= If every run that violates P is infinite
v'Pis liveness
= If every run that violates P has a finite prefix that
violates P
v'Pis safety
= Otherwise, P is a mixture of safety and liveness

I ©2014 P. Kuznetsov

Example: implementing a
concurrent queue

What is a concurrent FIFO queue?

v'FIFO means strict temporal order
v'Concurrent means ambiguous temporal order

s

When we use a lock...

shared
items[];
tail, head := 0

deq()

lock.lock() ;
if (tail = head)
X := empty;
else
x := items[head];
head++;
lock.unlock() ;
return x;

o Ni
——] Nir Shavit 16

Intuitively...

All modifications
of queue are done
in mutual exclusion

- © Nir Shavit 17

We describe

the concurrent via the sequential

.d
a-eq lock unlock()
deq’
q.enq P

lock() :ean unlacl?(()

Behavior is
“Sequential”

enq deq .

© Nir Shavit 18

R

Linearizability (atomicity):
A Safety Property

= Each complete operation should
v “take effect”
¥'Instantaneously
v'Between invocation and response events

= A concurrent execution is correct if its
“sequential equivalent” is correct

(To be defined formally later)

I i

Why not using one lock?

= Simple — automatic transformation of the

sequential code

= Correct — linearizability for free
= In the best case, starvation-free: if the lock is

“fair” and every process cooperates, every
process makes progress

= Not robust to failures/asynchrony

v' Cache misses, page faults, swap outs

= Fine-grained locking?

v" Complicated/prone to deadlocks

I © 2012 P. Kuznetsov 20

Liveness properties

= Deadlock-free:

vIf every process cooperates (takes enough steps), some
process makes progress

= Starvation-free:

vIf every process cooperates, every process makes
progress

= Lock-free (sometimes called non-blocking):
v'Some active process makes progress

= Wait-free:
v'Every active process makes progress

= Obstruction-free:
v'Every process makes progress if it executes in isolation

s © 2012 P. Kuznetsov 21

Periodic table of liveness properties
[© 2013 Herlihy&Shavit]

p p dependent
non-blocking non-blocking blocking
every process wait-freedom obstruction- starvation-freedom
makes progress freedom
some process lock-freedom ? deadlock-freedom

makes progress

What are the relations (weaker/stronger) between these
progress properties?

s ©2013 Kuznetsov 22

