INF346: Shared-memory computing

Introduction

Petr Kuznetsov, 2014

© 2013 P. Kuznetsov

What is computing?

I © 2012 P. Kuznetsov

What is done by a Turing machine

Alan Turing
1912 - 1954

s © 2012 P. Kuznetsov

Not well adjusted to concurrency?

Computation as interaction

Robin Milner
1934-2010

s © 2012 P. Kuznetsov

This course is about distributed
computing:
independent sequential processes that
communicate

R © 2012 P. Kuznetsov

Concurrency is everywhere!

m '\ %:ZE

e

= Multi-core processors
= Sensor networks

= Internet
= Basically everything
related computing

R © 2012 P. Kuznetsov

Communication models

= Shared memory

v'Processes apply (read—write) operations
on shared variables

v'Failures and asynchrony
= Message passing
v'Processes send and receive messages
v'Communication graphs
v'Message delays bl

I © 2012 P. Kuznetsov

Moore’s Law and CPU speed

1000000

100000

10000

1000

|

+ Clock Speed (MHz)
= Transistors (000)

o1
1971 1975 1973 1983 1387 1991 1995 1393 2003 2007

I © 2012 P. Kuznetsov

Clock speed deadend

= Memory wall

v'Performance gap between memory
and CPU

= |LP wall
v'Not enough work to spend the cycles
= Power wall

v'Thermal problems caused by higher
clock speeds

s © 2012 P. Kuznetsov

The case against the “washing
machine science” €

= Single-processor performance does not
improve
= But we can add more cores

= Run concurrent code on multiple
processors

Can we expect a proportional speedup?
(ratio between sequential time and
parallel time for executing a job)

s © 2012 P. Kuznetsov

Example: painting in parallel
= 5 friends want to paint 5 equal-size rooms, one

friend per room
v'Speedup =5

EEEEN

= What if one room is twice as big?

Wi

R © 2012 P. Kuznetsov

Amdahl’ s Law

= p —fraction of the work that can be done in
parallel (no synchronization)

= n- the number of processors

= Time one processor needs to complete the job
=1

B 1
l-p+pln

R

Painting in parallel

= Assigning one painter to one room, 5/6 of the work can be
performed in parallel.

= Parallel execution time = 1-5/6+1/6 = 1/6+1/6 =2/6 = 1/3
S=1/(1/3)=3

= Can be worse: 10 rooms, 10 painters, one room twice bigger

S=1/(1-10/11+1/11) = 11/2 =5.5
= But >90% of the work can be parallelized!

Cannot be better than 11, regardless of the number of processors!

I © 2012 P. Kuznetsov 13

A better solution

= When done, help the others
v'All 5 paint the remaining half-room in parallel

= Communication and agreement is required!
= This is a hard task

= And this is exactly what synchronization algorithms try to

achieve! =
| % # ;é

I © 2012 P. Kuznetsov 4

Challenges

= What is a correct implementation?
v'Safety and liveness
= What is the cost of synchronization?
v'Time and space lower bounds
= Failures/asynchrony
v'Fault-tolerant concurrency?
= How to distinguish possible from impossible?
v'Impossibility results

s © 2012 P. Kuznetsov

Distributed # Parallel

= The main challenge is synchronization

= ‘‘you know you have a distributed system when
the crash of a computer you’ ve never heard of
stops you from getting any work done” (Lamport)

s

History

= Dining philosophers, mutual exclusion
(Dijkstra)~60" s
= Distributed computing, logical clocks (Lamport),
distributed transactions (Gray) ~70’ s
= Consensus (Lynch) ~80 s
= Distributed programming models, since ~90’ s
= Multicores now

R

Why theory of distributed systems?

= Every computing system is distributed
= Computing getting mission-critical
v’Understanding fundamentals is crucial
= Intellectual challenge
YA distinct math domain?

R

Shared memory computing, outline:

Correctness: safety and liveness
= Synchronization: blocking and non-blocking
= Linearizability and wait-freedom
I. Read-write memory
= Safe, regular, atomic memory and transformations
= Snapshot memory
. General memory
= Consensus and universal construction
= Object hierarchy
Iv. Transactional memory
v. From shared-memory to message passing
v’ Strong consistency and Paxos

I © 2013 P. Kuznetsov 19

Real concurrency--in which one program actually
continues to function while you call up and use
another--is more amazing but of small use to the

average person. How many programs do you have that

take more than a few seconds to perform any task?

New York Times, 25 April 1989, in an article on
new operating systems for IBM PC

I ©2013 P. Kuznetsov 20

Synchronization,
blocking and non-blocking

INF346, 2014

© 2013 P. Kuznetsov

e

I ©2013 P. Kuznetsov il

i ©2013 P. Kuznetsov el

EsI ©2013 P. Kuznetsov 24

Why synchronize ?

= Concurrent access to a shared resource may lead to an
inconsistent state

v'E. g., concurrent file editing
v'Non-deterministic result (race condition): the resulting

state depends on the scheduling of processes

= Concurrent accesses need to be synchronized

v'E. g., decide who is allowed to update a given part of the
file'at a given time

= Code leading to a race condition is called critical
section
v'Must be executed sequentially

= Synchronization problems: mutual exclusion, readers-
writers, producer-consumer, ...

I ©2013 P. Kuznetsov 25

Dining philosophers
(Dijkstra, 1965)

Edsger Dijkstra
1930-2002

= To make progress (to eat) each process
(philosopher) needs two resources (forks)
= Mutual exclusion: no fork can be shared
= Progress conditions:
v'Some philosopher does not starve (deadlock-
freedom)
v'No philosopher starves (starvation-freedom)

26

I ©2014 P. Kuznetsov

Mutual exclusion

= No two processes are in their critical sections (CS) at the same
time

Deadlock-freedom: at least one process eventually enters its CS
Starvation-freedom: every process eventually enters its CS
v’ Assuming no process blocks in CS or Entry section

Originally: implemented by reading and writing
v Peterson’s lock, Lamport’s bakery algorithm
Currently: in hardware (mutex, semaphores)

s ©2013 P. Kuznetsov 27

Peterson’s lock: 2 processes

bool flag[0] = false;

bool flag[l] = false;

int turn;
PO: Pl:
flag[0] = true; flag[l] = true;
turn = 1; turn = 0;
while (flag[l] and turn==1) while (flag[0] and turn==0)
{ {

// busy wait // busy wait
} }
// critical section // critical section
// end of critical section // end of critical section
flag[0] = false; flag[l] = false;
ESI ©2013 P. Kuznetsov 28

Peterson’s lock: N = 2 processes

// initialization

level[N] = -1; // current level of processes 0...N-1
waiting[N-1] = -1; // the waiting process of each level
0...N-2

// code for process i
for (1 = 0; 1 < N-1; ++1) {
level[i] = 1;
waiting[l] =
while(waiting[l] == i &&(exists k # i: level[k] = 1)) {
// busy wait

i;

}
}
// critical section
level[i] = -1; // exit section

EsI ©2013 P. Kuznetsov 29

Readers-writers problem

= Writer updates a file
= Reader keeps itself up-to-date
= Reads and writes are non-atomic!

Why synchronization? Inconsistent values might be read

Writer Reader
T=0: write(“sell the cat”)

=
]

1: read(“sell ..”)
T=2: write(“wash the dog”)

T=3: read(“.. the dog”)

Sell the dog?

EsI ©2013 P. Kuznetsov 30

Producer-consumer (bounded buffer) problem

= Producers put items in the buffer (of bounded size)

= Consumers get items from the buffer

= Every item is consumed, no item is consumed twice
(Client-server, multi-threaded web servers, pipes, ...)

Why synchronization? ltems can get lost or consumed twice:

Producer Consumer
/* produce item */ /* to consume item */

while (counter==MAX); while (counter==0);

buffer[in] = item item=buffer[out];
in = (in+l) % MAX; out=(out+l) % MAX;
counter++; ‘ counter--;

Race! /* consume item */

©2013 P. Kuznetsov

Synchronization tools

= Busy-waiting (TAS)

= Semaphores (locks), monitors
= Nonblocking synchronization
= Transactional memory

©2013 P. Kuznetsov 32

Busy-wait: Test and Set

= TAS(X) tests if X = 1, sets X to 1 if not, and returns the old value of X
v Instruction available on almost all processors

TAS (X) : |
es
if X == 1 return 1; @ 1
—
- X = 1;
atomic i o, atomic l
return 0; no
|
Lo
ESI ©2013 P. Kuznetsov 33

Busy-wait: Test and Set

shared X:=0
| Producer Consumer
es while(counter==MAX)|; while (counter==0);
1
. buffer[in] = item; item = buffer[out];
atomic 1
o) R N
while TAS(X); while TAS(X);
I counter++; counter--;
To X:=0; X:=0;
Problems:
- busy waiting
+ no record of request order (for multiple
producers and consumers)
S © 2013 P. Kuznetsov 34

Semaphores [Dijkstra 1968]: specification

= A semaphore S is an integer variable (apart from initialization) with two
atomic operations P(S) and V(S)

v Stands for “passeren” (to pass) and “vrijgeven” (to release) in Dutch

The value of S indicates the number of resource elements available (if positive), or
the number of processes waiting to acquire a resource element (if negative)

Init(S,v){ S := v; }

P(s){
while S<=0; /*waituntil aresource is available */
S—-; /* pass to a resource */

}

vs){
S++; /* release a resource */

}

EsI ©2013 P. Kuznetsov 35

Semaphores: implementation

Init(S,R_nb) {

. . . . S.counter=R_nb;
S is associated with a composite

object:
v'S.counter: the value of the
semaphore
v'S.wq: the waiting queue,
memorizing the processes
having requested a resource
element

S.wg=empty;
}
P(s) {
S.counter--;
if S.counter<0{
put the process in S.wg
until READY;}
}
v(s) {
S.counter++
if S.counter>=0{
mark lst process in
S.wq as READY;}

R %

Lock Semaphores for producer-consumer

= 2 semaphores used :
v empty: indicates empty slots in the buffer (to be used by the producer)
* When a process is in a critical section, no other process can come in v full: indicates full slots in the buffer (to be read by the consumer)

= A semaphore initialized to 1, is called a lock (or mutex)

shared semaphore S =1

Producer Consumer shared semaphores empty := MAX, full := 0;
while (counter==MAX); while (counter==0); Producer Consumer
P R P(empty) P(full);
buffer[in] = item; item = buffer[out]; buffer[in] = item; item = buffer[out];
... ... in = (in+l) % MAX; out=(out+l) % MAX;
P(S); P(S); V(£full) V(empty);
counter++; counter--;

V(S) v(s);

Problem: still waiting until the buffer is ready

38

©2013 P. Kuznetsov 37 ©2013 P. Kuznetsov

Potential problems with semaphores/locks Other problems of blocking synchronization
= Blocking: progress of a process is conditional (depends on other processes) - Priority inversion
= Deadlock: no progress ever made . L.
v'High-priority threads blocked
X1:=1; X2:=1 = No robustness
Process 1 Process 2 v'Page faults, cache misses etc.

= Not composable

P(X1) P(X2)

P(X2) P(X1)

critical section critical section

v(x2) V(x1) Can we think of anything else?

V(X1) V(X2)

= Starvation: waiting in the waiting queue forever

e ©2013 P. Kuznetsov % g © 2013 P. Kuznetsov

Non-blocking algorithms Transactional memory

= Mark sequences of instructions as an atomic transaction, e.g., the resulting
producer code:
shared buffer[MAX]:=empty; head:=0; tail:=0; atomic {

A process makes progress, regardless of the other processes

if (tail-head == MAX){

return full;

Producer put (item) Consumer get ()

if (tail-head == MAX){ if (tail-head == 0){ items[tail%MAX]=item;

return(full); return(empty);
) } tail++;
buffer[tail¥MAX]=item; item=buffer[head$MAX]; }
tail++; head++; return ok;
return(ok); return(item);

= Atransaction can be either committed or aborted

Problems: v Committed transactions are serializable
- works for 2 processes but hard to say why it works © v Let the transactional memory (TM) care about the conflicts
- multiple producers/consumers? Other synchronization pbs? v Easy to program, but performance may be problematic

(stay in class to learn more)

st ©2013 P. Kuznetsov 4 st ©2013 P. Kuznetsov

Summary

Concurrency is indispensable in programming:
v Every system is now concurrent
v Every parallel program needs to synchronize
¥ Synchronization cost is high (“Amdahl’s Law”)

Tools:
v’ Synchronization primitives (e.g., monitors, TAS, CAS, LL/SC)
v/ Synchronization libraries (e.9., java.util.concurrent)
v Transactional memory, also in hardware (Intel Haswell, IBM Blue Gene,...)

Coming next:
¥ Nonblocking synchronization using read-write memory
v Read-write transformations and snapshot memory

©2014 P. Kuznetsov o

Quiz

= What if we reverse the order of the first two lines the 2-
process Peterson’s algorithm

PO: Pl:
turn = 1; turn = 0;
flag[0] = true; flag[l] = true;

Would it work?

= Prove that Peterson’s N-process algorithm ensures:
v'mutual exclusion: no two processes are in the critical section at
atime
v'starvation freedom: every process in the trying section
eventually reaches the critical section (assuming no process
fails in the trying, critical, or exit sections)

©2013 P. Kuznetsov

Literature

= Lecture notes: Robust concurrent computing

http://perso.telecom-paristech.fr/~kuznetso/MPRI13/
book-1n.pdf

= Lynch, N: Distributed Algorithms. Morgan Kaufmann
Publishers, 1996.

= H. Attiya, J. Welch. Distributed Computing: Fundamentals,
Simulations and Advanced Topics (2nd edition). Wiley. 2004

= M. Herlihy and N. Shavit. The art of multiprocessor
programming. Morgan Kaufman, 2008

s ©2013 P. Kuznetsov

