
More than You Ever Wanted to Know about Synchronization
Synchrobench, Measuring the Impact of the Synchronization on Concurrent Algorithms

Vincent Gramoli
NICTA and University of Sydney, Australia

vincent.gramoli@sydney.edu.au

Abstract
In this paper, we present the most extensive comparison of syn-
chronization techniques. We evaluate 5 different synchronization
techniques through a series of 31 data structure algorithms from the
recent literature on 3 multicore platforms from Intel, Sun Microsys-
tems and AMD. To this end, we developed in C/C++ and Java a
new micro-benchmark suite, called Synchrobench, hence helping
the community evaluate new data structures and synchronization
techniques. The main conclusion of this evaluation is threefold: (i) al-
though compare-and-swap helps achieving the best performance on
multicores, doing so correctly is hard; (ii) optimistic locking offers
varying performance results while transactional memory offers more
consistent results; and (iii) copy-on-write and read-copy-update suf-
fer more from contention than any other technique but could be
combined with others to derive efficient algorithms.

Categories and Subject Descriptors D.1. Programming Tech-
niques [Concurrent Programming]: Parallel programming

Keywords Benchmark; data structure; reusability; lock-freedom

1. Introduction
The increasing core count raises new challenges in the development
of efficient algorithms that allow concurrent threads to access shared
resources. Not only have developers to choose among a large set of
thread synchronizations, including locks, read-modify-write, copy-
on-write, transactions and read-copy-update, but they must select
dedicated data structure algorithms that leverage each synchroniza-
tion under a certain workload. These possibilities have led to an
increase in the number of proposed concurrent data structures, each
being shown efficient in “some” settings. Unfortunately, it is almost
impossible to predict their performance given the hardware and OS
artifacts. A unique framework is thus necessary to evaluate their
performance on a common ground before recommending developers
to choose a specific synchronization technique.

On the one hand, synchronization techniques are usually tested
with standard macro-benchmarks [8] whose workloads alternate
realistically between various complex patterns. These macro-
benchmarks are however of little help when it comes to nailing
down the bottleneck responsible of performance drops. On the other
hand, profiling tools that measure cache traffic [18] and monitor
memory reclamation can be extremely useful in tuning the im-
plementation of an algorithm to a dedicated hardware platform,
however, they are of little help in optimizing the algorithm itself.

This is the reason why micro-benchmarks have been so popular
to evaluate new algorithms. They are invaluable tools that comple-
ment macro evaluations and profiling tool boxes in order to evaluate
novel concurrent algorithms. In particular, they are instrumental
in confirming how an algorithm can improve the performance of
data structures even though the same algorithm negligibly boosts a

particular application on a specific hardware or OS. Unfortunately,
these micro-benchmarks are often developed specifically to illus-
trate the performance of one algorithm and are usually tuned for
this purpose. More importantly, they are poorly documented as it
is unclear whether updates comprise operations that return unsuc-
cessfully without modifying, or whether the reported performance
of a concurrent data structure are higher than the performance of its
non-synchronized counterpart running sequentially.

Our contribution is the most extensive comparison of synchro-
nization techniques. We focus on the performance of copy-on-write,
mutual exclusion (e.g., spinlocks), read-copy-update, read-modify-
write (e.g., compare-and-swap) and transactional memory to syn-
chronize concurrent data structures written in Java and C/C++, and
evaluated on AMD Opteron, Intel Xeon and UltraSPARC T2 mul-
ticore platforms. We also propose Synchrobench, an open source
micro-benchmark suite written in Java and C/C++ for multi-core
machines to help researchers evaluate new algorithms and synchro-
nization techniques. Synchrobench is not intended to measure over-
all system performance or mimic a given application but is aimed
at helping programmers understand the cause of performance prob-
lems of their structures. Its Java version executes on top of the JVM
making it possible to test algorithms written in languages producing
JVM-compatible bytecode, like Scala. Its C/C++ version allows for
more control on the memory management.

Our evaluation includes 31 algorithms taken from the literature
and summarized in Table 1. It provides a range of data structures
from simple ones (e.g., linked lists) and fast ones (e.g., queues and
hash tables) to sorted ones (e.g., trees, skip lists). These structures
implement classic abstractions (e.g., collection, dictionary and set)
but Synchrobench also features special operations to measure the
reusability of the data structure in a concurrent library.

This systematic evaluation of synchronization techniques leads
to interesting conclusions, including three main ones:

1. Compare-and-swap is a double-edge sword. Data structures
are typically faster when synchronized exclusively with compare-
and-swap than any other technique, regardless of the multicore
machines we tested. However, the lock-free use of compare-and-
swap makes the design of these data structures, and especially
the ones with non-trivial mutations, extremely difficult. In
particular, we observed that there are only few existing full-
fledged binary search trees using single-word compare-and-swap
and we identified a bug in one of them.

2. Transactions offer more consistent performance than locks.
We observed that optimistic locking techniques that consist of
traversing the structure and locking before revalidating help
reducing the number of locks used but also present great vari-
ations of performance depending on the considered structure
and the amount of contention. Transactional memory provides
more consistent performance, it features an efficient contention

1 2014/12/12

Algorithm Ref. Synchronization Strategy Authors Data structures Language
1 Practical binary tree [7] lock optimistic Stanford U. binary tree Java
2 Contention-friendly tree [15] lock pessimistic INRIA&NICTA&U. Sydney binary tree Java
3 Logical ordering tree [22] lock pessimistic Technion & ETHZ binary tree Java
4 Lock-free tree [24] read-modify-write optimistic Toronto U.&FORTH&York U. binary tree Java
5 Fast lock-free tree [58] read-modify-write optimistic U. of Texas, Dallas binary tree C/C++
6 Speculation-friendly tree [14] transaction optimistic EPFL & INRIA binary tree C/C++
7 Transactional red black tree [8] transaction optimistic Sun (Oracle) binary tree Java&C/C++
8 Citrus tree [4] read-copy-update optimistic Technion binary tree C/C++
9 j.u.c.copyOnWriteArraySet [32] copy-on-write optimistic Oracle dynamic array Java
10 java.util.Vector [1] lock pessimistic Oracle dynamic array Java
11 ReusableVector [34] transaction optimistic EPFL & U. Sydney dynamic array Java
12 j.u.c.ConcurrentHashMap [49] lock pessimistic SUNY hash table Java
13 Michael’s hash table [54] read-modify-write optimistic IBM hash table C/C++
14 Cliff Click’s hash map [12] read-modify-write optimistic Azul Systems hash table Java
15 Contention-friendly hash table [13] read-modify-write optimistic INRIA & EPFL hash table Java
16 Resizable hash table [51] read-modify-write optimistic Lehigh U. & Tianjin U. hash table Java
17 Elastic hash table [26] transaction optimistic EPFL & UniNE hash table Java&C/C++
18 Lazy linked list [41] lock optimistic Sun&Brown U.&Rochester U. linked list Java&C/C++
19 Lock-coupling linked list [47] lock pessimistic Brown U. & MIT linked list Java&C/C++
20 j.u.Collections.synchronizedSet [32] lock pessimistic Oracle linked list Java
21 Harris’ linked list [39] read-modify-write optimistic Cambridge U. linked list Java&C/C++
22 Reusable linked list [34] transaction optimistic EPFL & U. Sydney linked list Java
23 Elastic linked list [27] transaction optimistic EPFL & UniNE linked list Java&C/C++
24 j.u.c.ConcurrentLinkedQueue [56] read-modify-write optimistic IBM & Rochester U. queue Java
25 ReusableLinkedQueue [34] transaction optimistic EPFL & U. Sydney queue Java
26 Optimistic skip list [43] lock optimistic Sun&Brown U.&Rochester U. skip list C/C++
27 Fraser skip list [30] read-modify-write optimistic Cambridge U. skip list C/C++
28 j.u.c.ConcurrentSkipListMap [49] read-modify-write optimistic SUNY skip list Java
29 No hot spot skip list [16] read-modify-write optimistic INRIA & U. Sydney skip list Java&C/C++
30 Rotating skip list [21] read-modify-write optimistic U. Sydney skip list C/C++
31 Elastic skip list [26] transaction optimistic EPFL & UniNE skip list Java&C/C++

Table 1. Algorithms of Synchrobench

manager that avoids repeatedly restarting the same operations, a
phenomenon observable in optimistic lock-based data structures
that lack this contention management.

3. Copy-on-write-based structures are still in their infancy.
Copy-on-write-like techniques (including read-copy-update)
provide impressively high performance for read-only workloads
but very low performance for update workloads. Software
transactional memory, which is known to be badly-suited for
heavily contended applications, may even handle conflicts more
effectively than this technique. As most shared data structures get
updated by multiple threads, more research effort is necessary for
structures to fully exploit copy-on-write, probably by combining
it with other synchronization techniques.

In Section 2 we describe the internals of Synchrobench and how
the hardware and system can impact its results, and in Section 3
we indicate how Synchrobench is used. In Section 4 we present a
thorough evaluation of all data structures of Table 1. In Section 5
we discuss the related work and we conclude in Section 6.

2. Synchronizing Algorithms
In this section, we present the different synchronizations, architec-
tures, languages and structures of Synchrobench and mention how
the hardware and operating system may affect its results.

2.1 Synchronization techniques
Mutual exclusion is perhaps the most common technique to syn-
chronize the concurrent accesses to shared data: acquiring a lock
prevents any other thread from accessing the same lock until it

gets released. Some implementations of locks like traditional OS
implementations of mutex are not well-suited for multi-threaded en-
vironment as they trigger context switches whose overhead becomes
predominant in an in-memory context. Test-and-set spinlocks are
prone to the bouncing problem where acquiring a lock invalidates
the cache of all threads reading the lock as they are waiting for
its release. Ticket locks are sometimes detrimental [6], sometimes
favorable [18]. Algorithms 1–3, 10, 12, 18–20 and 26 of Table 1 are
lock-based and use macros to easily select a lock implementation.

Lock-freedom often refers to the non-blocking progress prop-
erty, ensuring that the system as a whole always makes progress.
This property, offered by some algorithms synchronized exclusively
with read-modify-write primitives, like compare-and-swap (CAS),
guarantees that one slow thread does not affect the overall system
performance, making it appealing for modern heterogeneous ma-
chines. Algorithms 4, 5, 13–16, 21, 24 and 27–30 use exclusively
CAS for synchronization. They all execute optimistically as they
read the value at location x that may get stale by the time they
execute a CAS to compare the value of x they observed against the
current value of x. If the value has indeed been overridden then
the CAS fails and must be retried later on (these algorithms do not
implement a lock with CAS).

Transactional memory [46] (TM) is appealing for simplifying
concurrent programming. TM offers transactions used to delimit
a region of code that should execute atomically. A dedicated con-
tention manager detects race conditions to abort one of the conflict-
ing transactions or let some transaction commit. Algorithms 6, 7,
11, 17, 22, 23, 25 and 31 are based on transactions. Synchrobench
uses the standardized TM interface so that several TM algorithms

2 2014/12/12

can be evaluated in each of these algorithms, in particular it was suc-
cessfully tested with 7 software TMs: E-STM [27], SwissTM [23],
LSA [61], NOrec [17], PSTM [34], TinySTM [25] and TL2 [20].
(In the reminder we evaluate transactions with E-STM and PSTM.)

Copy-on-write [32], in the context of concurrent libraries, is
an optimistic execution strategy that stems from the immutability
property in functional programming and consists of letting multiple
threads of execution share the same reference to a memory location
as long as this location is not updated. It makes reads particularly
fast by adding overhead to the writes that have to create a copy.
Algorithm 9 uses copy-on-write, it acquires a lock to create a copy
of the entire array hence leading to performance losses upon updates
but does not access any lock during read-only operations. Similarly,
read-copy-update [53] provides a read-only fast path. It is popular
for its use in the Linux kernel. The key idea is to let read-only
operations access the data structures even when it is being modified.
This is achieved through atomic updates so that pending readers
observe the data before its modification while subsequent readers
observe the data after modification. Algorithm 8 uses a user-level
read-copy-update library to synchronize a binary search tree that
accepts concurrent updates.

2.2 Data structures
A linked list is a simple data structure organizing elements into a list.
To avoid race conditions, the pessimistic lock-based technique of
Algorithm 19, called hand-over-hand locking, consists of traversing
the list by locking each element and then its successor before
unlocking the element. Optimistic lock-based alternatives consist
of traversing the list without locking, but locking only the part to
be modified before validating that no data races occurred, as in
Algorithm 18. The lock-free technique used by Algorithm 21 uses a
logical deletion mark to make sure that a remove operation can be
executed atomically with a single-word CAS. Algorithms 22 and 23
use different transaction models while Algorithm 20 wraps a linked
list into a synchronizedSet wrapper.

A hash table data structure uses a hash function to map a key to
a bucket implemented as a sorted linked list in which the associated
value is stored to ensure constant access time. The lock-free hash
table of Algorithm 13 uses the same logical deletion of the lock-
free linked list [54]. The lock-based hash table is taken from the
java.util.concurrent library of the JDK 7. The interesting aspect
of the transaction-based hash table (Algorithm 17) is that it can be
reused (i.e., extended with a new operation or existing operations
can compose). Reusability is discussed in Section 4.6.

Skip lists are typically probabilistic data structures that provide
an average complexity of O(logn). They organize nodes as towers
that point towards their successor towers depending on their level,
hence allowing to jump over small towers to obtain the desired
complexity [60]. Algorithms 27 and 30 are concurrent skip lists
that use a low-order bit as a logical deletion mark as in the lock-
free linked list. In Java and in particular in the java.util.concurrent
package of the JDK, this logical deletion mark was implemented
using a special reference as in Algorithms 28 and 29. Other non-
blocking skip lists [29, 63] that were proposed before multi-core
became mainstream are not part of Synchrobench. One implements
a dictionary [63] while the other always removes a logically deleted
towers [29]. Both Algorithms 29 and 30 of Synchrobench are
deterministic skip lists as opposed to classic ones.

Concurrent binary search trees usually offer a logarithmic access
time complexity but are typically intricate as they require rotations to
maintain the tree balanced, modifying potentially the root of the tree.
Algorithm 4 uses a single-word CAS to implement a non-blocking
binary search tree, however, it cannot rotate. A recent lock-based bi-
nary search tree (Algorithm 2) was proposed to rotate the tree when
it gets unbalanced offering to check the presence of an element with-

out acquiring any lock. Algorithm 3 combines this lock-free lookup
with on-time removal during deletes. Algorithm 7 uses transactions
to provide a concurrent red-black tree that rotates, however, aborting
a rotation also means aborting the update operation that triggered
it. Algorithm 6 copes with this issue by splitting each update into
multiple transactions.

The queue is an abstraction that offers to enqueue and dequeue
element in a first-in-first-out order and can be implemented using a
linked list or an array. Algorithm 24 relies on a linked list structure
and uses CAS while Algorithm 25 exploits transactions to offer a
library that can be reused by someone who ignores the implementa-
tion details [34]. Again note that the list of algorithms we evaluate is
far from being exhaustive, in particular efficient double ended queue
algorithms [44, 64] have not been tested yet. Vectors are dynam-
ically sized arrays (Algorithm 10) while copyOnWriteArraySet
(Algorithm 9) is a wrapper from the java.util.concurrent package
to convert any Set implementation into an array with fast read-only
traversals.

2.3 Languages and memory management
Synchrobench is written in C/C++ and Java. This corresponds to
two versions that are not intended to be directly compared but
rather provide implementations highly tuned by their authors to
run efficiently on the JVM or as native code. Both versions offer
similar parameters to measure performance in terms of operations
executed per second, the reusability cost in terms of the cost related
to the use of composite operations, more detailed statistics in terms
of the commit-abort ratio of transaction-based workloads, etc. It
also offers similar ways of making the ratio of injected updates
attempted or effective to avoid misinterpretation of results. The Java
version allows, however, to choose whether iterations are part of the
same JVM instance and to set a warmup. This warmup is a period
where the benchmark runs before the statistics starts being collected
and is particularly useful to let the JIT compiler of the server JVM
optimize selected code regions.

Implementing memory reclamation correctly is a difficult task in
unmanaged languages [55] especially when considering optimistic
concurrency control. The crux of the problem lies in allowing
threads to access data that are to be freed. In optimistic executions,
for example when using CAS, some transactional memories or
RCU, the garbage collector should deallocate memory locations
only after these threads are done accessing the to-be-deleted data.
The garbage collector has the difficult task of choosing the right
time that minimizes efficiently memory usage without producing
inconsistencies. Algorithms 8 and 13, and the C/C++ versions of
Algorithms 21, 26 and 29 do not reclaim memory mainly because we
did not implement it ourselves (Algorithms 13, 26 and 29) or because
the source code from the authors did not include it (Algorithms 8
and 21). All other algorithms reclaim memory.

Memory management can also dramatically affect performance.
It was recently shown in particular for hardware transactions that
writing the same application in Java and C could lead to different
performance results [59]. The authors did not use a memory man-
ager optimized for concurrent execution for C-based programs and
showed that the performance could suffer from this lack of opti-
mization hence recommending the use of more advanced memory
allocators in concurrent applications. We actually observed that
Java can be more efficient than C even when TCMalloc is used, as
detailed in Section 4.4.

2.4 Hardware
Comparing synchronizations on different multicore machines is vi-
tal to ensure that hardware characteristics (e.g., hyperthreading [23])
are not the cause of the performance observed. Some architectures
like our SPARC and x86-64 use distinct memory models (e.g., TSO-

3 2014/12/12

limited-RMO vs. x86-TSO). Implementing the same algorithm on
both machines may thus require to come up with two implementa-
tions with different memory barriers.

While there exist some exceptions [31], algorithms should often
be tuned to leverage appropriately the underlying specific hardware.
For example, if two machines have different cache line sizes, false-
sharing scenarios may occur for the same implementation on only
one of the two machines. False-sharing may be dramatic if, for
example, the structure representing a node uses a storage space that
is not a multiple of the cache line size. In this case, a thread reading
a node would typically store another data on one of the cache line
partially occupied by the node. The modification to this latter data
would invalidate the cache line shared by the node data even though
the node data has not been modified, hence producing unnecessary
off-chip traffic to re-fetch the memory.

Given that for an Intel Xeon like the one we used, the latency
to access the L1D cache is 4 cycles whereas the latency to access
the DRAM goes up to 400 cycles, such a false-sharing scenario may
slow down accesses by two orders of magnitude. This problem can
be easily addressed with a cache-padding technique in C [59] that is
tuned to the cache line size of the machine, however, there are other
subtleties to consider as even machines with the same architecture
(x86-64) and cache line size (64 bytes), like our AMD and Intel ones,
do not offer the same cache coherence (e.g., MOESI vs. MESIF).

2.5 Operating systems
Operating systems also impact the performance for the way they
place and migrate thread among cores or strands. Thread placement
or thread pinning is known to greatly impact performance by either
minimizing conflicts or maximizing sharing, typically on TLB and
caches. In particular, thread pinning can have a higher impact on
AMD Opteron than on Sun UltraSPARC [3] and in general the
strategy differs depending on the programming language and the
operating system used. For example, thread can be bound to Solaris
lightweight processes (LWP) on the HotSpot JVM. When a LWP for
a thread is created, the kernel assigns a thread to a locality group (or
lgroup). In Solaris 10 the scheduler balances threads over dies, then
over cores, then over pipelines whereas in Solaris 11 the scheduler
groups the threads of a unique process on the same lgroup until the
workload exhausts half of the resources of this lgroup.1

Since we used Solaris 10 (cf. Section 4), our Java application
threads on UltraSPARC T2 are bound (by default by the HotSpot
JVM) to lightweight processes (LWP) that are evenly scattered
across the cores: for example, if Synchrobench uses 8 threads,
one would be bound to each separate core. On Solaris, our C/C++
application threads are also scattered evenly among cores. On Linux,
our Java application threads would be scattered across NUMA nodes
both on AMD and Intel, however, in C/C++ the Intel machine
(Figure 1) would not necessarily scatter threads across NUMA nodes,
presumably for power efficiency. We present the performance of
explicit thread pinning on Linux/AMD in Section 4.7.

3. The Synchrobench User Interface
In its simplest form, Synchrobench produces binaries/classes that
correspond to data structures like arrays, binary trees, hash tables,
linked lists, queues and skip lists, each written in C/C++ or Java
and synchronized using copy-on-write, mutual exclusion, read-copy-
update, read-modify-write or transactions. All these data structures
export a simple default API with add, remove, contains/get that
implement a set and a dictionary abstractions. This simple program-
ming interface is extended with composite functions that are costly
to execute but that guarantee that when provided as a library the

1 https://blogs.oracle.com/dave/entry/thread_
placemet_policies_on_numa.

algorithm can be reused by another programmer who does not nec-
essarily understand the implementation internals, as discussed in
Section 4.6.

Synchrobench runs a loop during ` milliseconds that executes
a set of operations determined by multiple parameters. It starts
spawning t threads that will all execute the same benchmark
algorithm b by executing, in expectation, u% updates operations
(whose effectiveness is given by f) and 100 − u% read-only
operations that take a key in range r as an argument, picked with
the U distribution. Among the operations u− a% (with a < u) are
basic updates (add/remove) and 100− u− s% (with s < 100− u)
are basic read-only operations (contains/get) in that they access a
local part of the shared data structure whereas the remaining a% and
s% operations are composite operations (e.g., move/containsAll)
that comprise sub-operations accessing different locations of the
benchmark. The parameters are described below.
• t ∈ N∗, the number of application threads to be spawned. Note

that this does not necessarily represent all threads, as it excludes
JVM implicit threads and extra maintenance threads spawned by
Algorithms 6, 15, 29 and 30.

• i ∈ N, the initial size of the benchmark. This corresponds to the
number of elements the data structure is initially fed with before
the benchmark starts collecting statistics on the performance of
operations.

• r ∈ N∗, the range of possible keys from which the parameters of
the executed operations are taken from, not necessarily uniformly
at random. This parameter is useful to adjust the evolution of the
size of the data structure.

• u ∈ [0..100], the update ratio that indicates the amount of update
operations among all operations (be they effective or attempted
updates).

• f ∈ {0, 1}, indicates whether the update ratio is effective (1)
or attempted (0). An effective update ratio tries to match the
update ratio to the portion of operations that effectively modified
the data structure by writing, excluding failed updates (e.g., a
remove(k) fails because key k is absent).

• A ∈ {0, 1}, indicates whether the benchmark alternates between
inserting and removing the same value to maximize effective
updates. This parameter is important to reach a high effective
update ratio.

• U ∈ [0..100], the unbalance parameter that indicates the extent
to which the workload is skewed towards smaller or larger values.
This parameter is useful to test balanced structure like trees under
unbalancing workloads.

• d ∈ N∗, the duration of the benchmark in milliseconds.
• a ∈ [0..100], the ratio of write-all operations that correspond to

composite operations. Note that this parameter has to be smaller
or equal to the update ratio given by parameter u.

• s ∈ [0..100], the ratio of snapshot operations that scan multiple
elements of the data structure. Note that this parameter has to be
set to a value lower than or equal to 100− u.

• W ∈ N, the warmup of the benchmark corresponds to the time
in seconds it runs before the statistics start being collected, this
option is used in Java to give time to the JIT compiler to compile
selected bytecode to native code.

• n ∈ N∗, the number of iterations run within the same JVM, this
option is similar to the aforementioned warmup option except
that performance statistics are collected during all iterations.

• b ∈ [1..31], the benchmark to use. These numbers represent the
indices listed in the left-column of Table 1.

• x ∈ N, the alternative synchronization technique for the same
algorithm. In the case of transactional data structures, this
represents the transactional model used (relaxed or strong) while
it represents the type of locks used in the context of lock-based
data structures (optimistic or pessimistic).

4 2014/12/12

https://blogs.oracle.com/dave/entry/thread_placemet_policies_on_numa
https://blogs.oracle.com/dave/entry/thread_placemet_policies_on_numa

4. Experimental Results
In this section we present a thorough comparison of the differently
synchronized data structures against the performance of their cor-
responding non-synchronized data structures running sequentially.
We used three different chip multiprocessors:
• A 64-way x86-64 AMD Opteron 6378 machine with 4 sockets

of 16 cores each running at 1.4GHz Fedora 18, Java 1.7.0_09
IcedTea and gcc 4.7.2.

• A 32-way x86-64 Intel Xeon E5-2450 machine with 2 sockets of
8 hyperthreaded cores each running at 2.1GHz Ubuntu 12.04.4
LTS, Java 1.7.0_65 IcedTea and gcc 4.8.1.

• A 64-way UltraSPARC T2 with 8 cores of up to 8 hardware
threads running at 1.165GHz Solaris 10, Java 1.7.0_05-b05
HotSpot and sparc-sun-solaris2.10-gcc 4.0.4

Each value (both in C/C++ and Java) is averaged over 5 iterations
of the same benchmark running for 5 seconds. All our C/C++
benchmarks were compiled with the -O3 optimization flag, the
-fno-strict-aliasing flag, linked with the HP atomic operations
library2 and we used TCMalloc on the Intel machine, and the glibc
v2.16 malloc on the AMD machine. All our Java benchmarks used
the server VMs: in 32 bits for SPARC for efficiency, 64 bits for
AMD to exploit additional registers and 64 bits for Intel, which may
introduce some overhead. Below we report the performance of all
algorithms presented in Table 1.

First, we describe the performance obtained on the Intel machine
with most concurrent algorithms, then we discuss reusability
of synchronizations and the impact of thread pinning on the
performance. For each data structure, the performance of the bare
code (without synchronization) running sequentially is actually
represented as a horizontal black line to be used as a baseline.
Figure 1 reports the performance results on the 32-way Intel
Xeon machine of Algorithms 1–4, 6–8, 12–19, 21–23, 26–31 of
Table 1. The list of parameters used for these benchmarks includes
-u[0..50]-f1-l5000-s0-a0-i[16384..65536]-r[32768..132072]-W0-
b{1–4, 6–8, 12–19, 21–23, 26–31}.

4.1 Read-modify-write
Interestingly, all CAS-based data structures provide relatively good
performance under read-only workloads but they also handle con-
tention better than counterparts synchronized with locks, transac-
tions or RCU. Note that these data structures result from a large
body of research work and are genuinely tuned for performance.
More simplistic approaches are possible: for example comparing-
and-swapping a reference from a version of the structure to a new
copy as long as the original version was not modified during the
copy is valid as well [47] but this would penalize performance. We
discuss the difficulty of designing efficient CAS-based structures in
Section 4.5 below.

Interestingly, the same CAS-based linked list algorithm (Algo-
rithm 21) performs differently in Java and C/C++. Actually, the
C/C++ version corresponds to Harris’ pseudocode [39] whose con-
tains operation physically removes the logically deleted nodes it
traverses whereas the Java version corresponds to the Java vari-
ant presented in Herlihy and Shavit’s book [47, Chapter 9] whose
contains operation is wait-free and never removes. Although the C
implementation uses a low order bit to store the mark directly in the
reference, the Java AtomicMarkableReference stores the mark and
reference separately, requiring an extra read to return the reference.
Algorithm 13 is a variant of Michael’s hash table that implements
each bucket with a Harris’ linked list: the aforementioned difference
is less visible on hash tables than linked lists due to their lower time
complexity.

2 http://www.hpl.hp.com/research/linux/atomic_ops.

4.2 Read-copy-update
RCU-based write operations are typically costly due to their copying
strategy. In addition, RCU does not protect updates against each
other and Algorithm 8 does not scale to 32 threads under contention
precisely because it uses additional fine-grained locks to avoid race
condition among concurrent updates. Also, note that Algorithm 8
is a recent RCU-based tree and one of the first to allow concurrent
updates. It uses a user-level library but no memory reclamation
or rebalancing technique, as opposed to the transactional tree
(Algorithm 6) it is compared against. Although we did not report it
here, we also tested the balanced Bonsai tree [11] with kernel-level
RCU support, however, it does not tolerate concurrent updates and
encapsulating each update operation in a critical section protected by
a single global lock would make the algorithm significantly slower
even under read-dominated workloads.

4.3 Locks
Under read-only workloads, the performance of lock-based algo-
rithms depends typically on the number of locks acquired/released:
the JDK hash table (Algorithm 12) uses lock-stripping so that one
lock is acquired for multiple nodes whereas the lazy linked list (Al-
gorithm 18) acquires and releases only 2 locks and the lock-coupling
one (Algorithm 19) acquires Ω(n) locks per operation. In case of
contention, locks tend to slow down the algorithm as they block.
One exception is however the lock-based tree (Algorithm 2) because
it postpones costly restructuring. Finally the lock-based skip list
(Algorithm 26) is slower than other skip lists under high contention.
The reason is that update operations optimistically execute before
validating that the predecessor has not changed in the meantime,
which typically occurs frequently under heavy contention, where
performance drops due to repetitive restarts. In particular, to avoid a
potentially infinite number of restarts under heavy contention, we
implemented an exponential backoff waiting time between succes-
sive restarts. Note that all locks used here are Pthread spinlocks as
we noticed generally higher performance than with mutexes/futexes,
the study of other lock implementations is left for future work.

4.4 Language effects
On the one hand, hash tables are fast regardless of the synchro-
nization techniques due to its low contended nature. On the other
hand, the performance of hash tables under read-only workloads
depends heavily on the programming language used. Although pre-
vious results showed that the higher performance of Java can be
explained by a thread-local memory allocator that is better suited
than the malloc from the GNU C library [59], all C/C++-based al-
gorithms presented in Figure 1 use the TCMalloc library based on
fine-grained spinlocks to minimize thread contention.3 We believe
that Java better optimizes memory management (both placement
and allocation) than our C/C++ implementations as to favor cache
hits. The linked list, whose access complexity is linear, heavily de-
pends on the synchronization used so that Algorithm 19, performs
particularly bad as it acquires/releases Ω(n) locks per operation.

In C/C++, volatile accesses cannot be reordered or optimized out
within a single thread of execution. There is however no guarantee
in a concurrent environment. In particular, a volatile access is not
part of the atomic operations, as defined by C++11, and is not
sequentially consistent. In Java, a volatile access is different as it
synchronizes all cached copies of the volatile variable with the one
in shared memory and creates a memory barrier (since Java 5). It
can typically be useful in multi-threaded programs as it is ordered
with most atomic operations via the happens-before relation.

3 http://goog-perftools.sourceforge.net/doc/
tcmalloc.html.

5 2014/12/12

http://www.hpl.hp.com/research/linux/atomic_ops
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

Figure 1. Synchrobench performance results for 1, 2, 4, 8, 16 and 32 threads on the 32-way Intel machine with data structures written in
C/C++ and Java, and synchronized with read-modify-write (CAS), locks (LK), read-copy-update (RCU), and transactions (TX), and with
sequential performance of non-synchronized data structures as the performance baseline (SEQ)

6 2014/12/12

4.5 On the difficulty of designing correct lock-free trees
We investigated various solutions that implement lock-free binary
search trees and we realized the difficulty of implementing a full-
fledged implementation. In particular, we identified four interesting
concurrent tree algorithms [24, 30, 50, 58]. We could not integrate
all of them into Synchrobench as some require a double-word CAS
not always available [30], some source code showed unexpected
behavior unveiling a bug in the implementation [58], and some
proprietary code was not disclosed [50].

The difficulty in designing a tree that is lock-free stems from
the difficulty of modifying multiple references atomically. Skip lists
consist of towers linked to each other through successor pointers and
in which each node points to the node immediately below it. They are
often considered similar to trees because each node has a successor
in the successor tower and below it, however, a major distinction is
that the downward pointer is generally immutable hence simplifying
the atomic modification of a node. This distinction is probably
the reason why skip lists outperform trees under heavy contention
as observed in Figure 1. We successfully tested Algorithm 4. Its
Java implementation does not require explicit memory reclamation,
which simplifies lock-free implementations [55]. Unfortunately, this
tree is not balanced.

We also tested Algorithm 5 but observed a problem while
benchmarking it. This algorithm implements a balanced tree and
is written in C++, thus it aims at solving two difficult problems at
once: memory reclamation and rotation. We obtained the code from
the authors and observed a problem: after initializing the tree with a
given size k, the benchmark would insert i nodes successfully and
would remove j nodes successfully while the final size would be
different from k + i − j. This was only noticeable under heavy
contention, (i.e., ≤ 1024 elements and ≥ 20% updates). We
contacted the authors who updated the code by declaring node
children as volatile, however, the use of volatile is subtle (cf.
Section 4.4) and we did not have enough time to evaluate the new
version.

4.6 Reusability of libraries depending on the synchronization
Reusability is an appealing property encompassing compositionality
and extensibility that lets a programmer, say Bob, reuse Alice’s con-
current library without understanding how it is synchronized [33].
Compositionality guarantees that Bob can combine existing func-
tions of Alice’s concurrent library into a new one [40]. Extensibility
guarantees that Bob can extend Alice’s abstract data type with a new
function [34]. Most concurrent libraries are not reusable because
the synchronization techniques of Alice and Bob’s functions risk to
deadlock or experience data races: a programmer must first under-
stand and sometimes modify the way the library is synchronized to
be able to use it.

To illustrate reusability violations, consider Alice offering a
Collection library where one can put and remove x and checks the
presence of y, and Bob would like to reuse Alice’s library (without
understanding its synchronization internals) to implement a spe-
cific object with a function that puts x only if y is absent. If Bob
does not use a synchronization technique to prevent others from
inserting x while he inserts y, then his function would violate its
sequential specification. If both Alice and Bob use locks as their
synchronization technique then deadlock may occur. If Alice and
Bob use CAS in a lock-free manner, then Bob may not be able to
implement his function without loosing concurrency. A similar prob-
lem arises if Bob would like a function containsAll that checks the
presence of multiple elements in the Collection at some indivisible
point of the execution. These two problems are at the heart of the in-
consistent values returned by the GetOrAdd and AddOrUpdate
functions in the C# System.Concurrent.Dictionary and the

Figure 2. Synchrobench performance results for 1, 2, 4, 8, 16, 32
and 64 threads on the 64-way UltraSPARC-T2 machine with data
structures written in Java and synchronized with read-modify-write
(CAS), copy-on-write (COW), locks (LK) and transactions (TX)
and with sequential data structures as the baseline (SEQ)

ConcurrentLinkedQueue.size() of the java.util.concurrent but
can be easily solved with TM [34].

Figure 2 reports the reusability tests performed on SPARC
with parameters -u[0..10]-f1-W20-l5000-s10-a0-i1024-r2048
-b{9, 20, 22–25} indicating that 10% operations are snapshot
containsAll operations (s10). Algorithms 9 and 20 are lists encapsu-
lated in the copyOnWriteArraySet (COW) and synchronizedSet
wrappers (LK), respectively, whereas the methods of Algorithm 22
are encapsulated in relaxed transactions (TX). Algorithms 24 and
25 are the lock-free java.util.concurrent.ConcurrentLinkedQueue
of the JDK (CAS) and the reusable alternative linked queue that
synchronizes with PSTM (TX). Copy-on-write is significantly
faster than TM without contention but slower than TM with only
10% effective updates. Note that the copy-on-write wrapper in
Java copies all elements in a new array upon modification that
makes its performance even more sensitive to contention than the
read-copy-update technique. The lock-based wrapper of the linked
list performs particularly bad as it acts as a coarse-grained lock.
Finally, the lock-free queue (CAS) is much faster than the reusable
queue (TX) but may succeed in unexpected cases: it does not
guarantee that the containsAll returns false if the parameters are
not all present at some point of the execution (as we would have to
recode other methods or annihilate concurrency). This performance
difference is the price to pay for reusability.

4.7 Effect of contention and thread pinning
Figure 3 depicts the performance impact of thread pin-
ning and contention on AMD. The list of parameters is
-u10-f1-l5000-s0-a0-i[16384..65536]-r[32768..132072]-W20-
b{6–8, 10, 11}, indicating 10% effective updates, a duration of
5 seconds, no snapshot/write-all operations, 16384 (resp. 65536)
values taken out of 32768 (resp. 132072), a 20 s warmup, running

7 2014/12/12

Figure 3. Synchrobench performance results for 1, 2, 4, 8, 16, 32
and 64 threads on the 64-way AMD machine with thread pinning
compact (COMP) and scatter (SCAT) of Java and C/C++ data
structures synchronized with locks (LK), read-copy-update (RCU)
and transactions (TX), and with sequential performance of non-
synchronized data structures as the performance baseline (SEQ)

Algorithms 6–8, 10 and 11. Although we do not report CAS
performance, we observed that CAS generally outperforms others.
On the left we evaluate 3 binary trees using 2 explicit thread
pinning schedulers for each: the first one is compact (COMP)
and places threads on the same NUMA nodes first whereas the
second one is scatter (SCAT) and places threads on separate
NUMA nodes first. We observed that the compact scheduler favors
rapid peak performance whereas scatter favors scalability except
for the RCU-based program that suffers contention more than
transaction-based programs. On the right we observe that vector
data structures be they synchronized with locks or transactions
are outperformed by the bare sequential vector running on a
single thread, at only 10% effective updates, confirming recent
observations [34].

5. Related Work
There exist macro-benchmarks and micro-benchmarks to test per-
formance of hardware features or specific data structures but there
is no tool to compare the impact of the synchronization choices.

Transaction benchmark suites. Cao Minh et al. proposed
STAMP [8] a benchmark suite that offers 8 application-like bench-
marks and propose default parameters for each of these applications.
It is dedicated to evaluate transactional memory but does not eval-
uate other synchronization techniques. In particular, its vacation
application that uses a transactional red-black tree cannot be made
lock-free easily. STAMP was ported in Java by the University of Cali-
fornia, Irvine and is available as part of Deuce [48] or ByteSTM [57].
STAMP was instrumental in showing that algorithms written in C

could scale well due to adequate padding whereas the Java ones
could scale due to the thread-locality of the memory allocator [59].

Guerraoui et al. developed STMBench7 [36], an extended adap-
tation of the OO7 database benchmark for software transactional
memory. Besides transactions one can specify three different work-
loads and a coarse-grained lock but no fine-grained locks or other
synchronizations. Zyulkyarov et al. developed Wormbench [68] to
represent applications by a series of complex atomic operations,
but provided limited control to the user. Harmanci et al. designed
TMunit [37], a framework to write reproducible transactional tests
using a high level language that was later extended to support 6 TM
libraries [38]. More recently, Zyulkyarov et al. [69] proposed a pro-
filing and visualization tool for very large pre-existing transaction-
based applications to easily identify its bottleneck data structures.

Micro-benchmark suites. In the last decade micro-benchmarks
have been instrumental in the understanding of performance of
transactional memory. In particular, the red-black trees proposed by
Dice, Shavit and Shalev in C and by Herlihy in Java (Algorithm 7
of Table 1) have been extensively used to evaluate the performance
of various transactional memory algorithms [14, 20, 23, 42, 45, 67].
In addition, Felber et al. released a linked list, a skip list and
a bank benchmark written in C to measure the performance of
TinySTM [25] from which Synchrobench was initially derived.
Deuce [48] offers an integer set IntSet and the bank benchmark
written in Java to test the performance of TL2, E-STM and LSA.

Fraser [30] developed the lock-free library under the BSD licence
to benchmark three types of data structures, including trees and
skip lists with various-size compare-and-swaps. This library was
carefully tuned to architectures SPARC, x86, IA_64 and PowerPC.
It was proposed more than a decade ago and does not include the
latest achievements in concurrent data structures. The only data
structure in common with ours is Fraser’s skip list.

Sundell and Tsigas [62] proposed the NOBLE library that of-
fers queue, stack, linked list, register and snapshot objects to be
tested on SPARC, Mips and x86-Intel. Unfortunately, it does not
offer logarithmic data structures that reduce the contention of
stacks/queues/registers and offer better asymptotic complexity than
linked lists. Nbds4 offers a transactional dictionary, Fraser’s skip list
and a port in C of Cliff Click’s hash table. Liblfds5 is a library with
lock-free data structures, however, the provided binary tree does
not support delete operations and the skip list only supports logical
deletions.

Java concurrent libraries and benchmarks. Apart from C/C++,
there are also Java-specific concurrent libraries that can be used
for benchmarking. The Guava library [5] is a Java-based library
that offers collections, caching, primitive support, string process-
ing and I/O tools. The JSR 166 specification group6 designed the
java.util.concurrent package that provides an invaluable set of low-
level atomic tools as well as various lock-based and lock-free data
structures. It does not leverage transactions but offers alternative
copyOnWrite wrappers to make some objects reusable. In partic-
ular, it offers three data structures also provided in Synchrobench:
Algorithms 9, 24 and 28 of Table 1. SPECjbb is a benchmark based
on the emulation of a three-tier client/server system using an in-
memory database backed by Java collections to stress the JVM. It
performs BigDecimal computations, XML processing and accesses
collections. Unfortunately these collections are all thread-local and
not accessed concurrently. SPECjbb code has to be modified to test
a data structure algorithm under contention [9, 16].

4 https://code.google.com/p/nbds/.
5 http://www.liblfds.org.
6 http://gee.cs.oswego.edu/dl/
concurrency-interest/.

8 2014/12/12

https://code.google.com/p/nbds/
http://www.liblfds.org
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/

Low-level benchmark suites. Ferdman et al. proposed Cloud-
Suite [28] to illustrate the mismatch between scale-out applications
and modern processors. They studied typically large distributed ap-
plications, including data stores, map reduce, streaming, solvers and
web services and monitored the behavior at a fine granularity using
hardware profilers like VTune. They report on the cache-misses,
the instruction-level and data-level parallelism, and on-chip/off-chip
traffic. These tools could complement Synchrobench.

The Intel Threading Building Blocks (TBB) library7 provides
concurrent data structures written in C++. The TBBench was
proposed to specifically measure the performance of this library
when compiled with different compilers [52]. This is orthogonal to
our work as it does not aim at comparing the same data structure
with different synchronization techniques. Wicht [66] proposed an
empirical evaluation on a multicore machine of four trees and a skip
list implemented in C++. Recently, Cederman et al. showed that
lock-free structures may be fairer and more efficient than lock-based
ones on x86-64 [10] by considering constant-time data structures.
Finally, David et al. [18] proposed a benchmark in C for locks on
x86-64, SPARC and Tilera architectures but did not explore other
programming languages or lock-free synchronizations.

Synchrobench in the literature. First, Synchrobench helped mea-
suring the performance of relaxed, strong and distributed TM mod-
els. Felber et al. used Synchrobench (and its Algorithm 23) to il-
lustrate the performance of relaxed transactions on pointer-based
structures [27]. Dragojević et al. used Synchrobench (and its Algo-
rithms 17, 23 and 31) to evaluate the scalability of software trans-
actional memory with compiler support on SPARC and x86 [23].
Gramoli et al. used Synchrobench (Algorithms 17 and 23) to com-
pare the performance of distributed TM on multicore machines and
manycore machines without cache-coherence [35].

Second, preliminary versions have been used to test the perfor-
mance of trees, deterministic and probabilistic skip lists. Crain et
al. used Synchrobench and Algorithms 6 and 7 (resp. Algorithm 2)
to show that reshaping a classic binary search tree is beneficial
to optimistic synchronization techniques [14] (resp. pessimistic
techniques [15]). Crain et al. [16] and Dick et al. [21] used Al-
gorithms 27, 29 and 30 to show that deterministic skip lists could
outperform probabilistic ones. Umar et al. [65] used Algorithms 6
and 7 to show that a locality-aware k-ary tree could achieve higher
performance than concurrent binary trees. Alistarh et al. used Syn-
chrobench to compare the performance of their SprayList [2]. Re-
cently, Drachsler et al. [22] used Algorithm 2 of Synchrobench to
show that deleting immediately nodes does not necessarily induce
high contention whereas Arbel and Attiya [4] used Algorithm 26 to
show that their RCU-based tree was offering higher performance, an
observation that we confirmed in Section 4. David et al. are currently
testing the scalability of Synchrobench structures [19].

6. Conclusion
Our work encompasses multiple hardware platforms, 31 data struc-
ture algorithms from the recent literature to measure the performance
one could expect from 5 synchronization techniques, hence offering
the most extensive comparison of synchronization techniques. Our
conclusion is threefold. First, CAS allows to develop the fastest al-
gorithms for multicores at the expense of great complexity. Second,
TM is a mature synchronization technique offering performance
that are more consistent across update ratios and programs than
locks. Finally, copy-on-write and read-copy-update are more sen-
sitive to contention than other techniques, yet they help achieving
high performance under read-only workloads. More research is thus
necessary to develop efficient RCU-based contended structures.

7 https://www.threadingbuildingblocks.org.

Availability
Synchrobench is publicly available online at https://github.
com/gramoli/synchrobench.

Acknowledgments
I wish to thank Tim Harris, the shepherd of this paper, the anony-
mous reviewers for their comments and the persons who gave feed-
back and helped improve Synchrobench including Tyler Crain, Dave
Dice, Ian Dick, Alexandar Dragojević, Pascal Felber, Rachid Guer-
raoui, Maurice Herlihy, Konrad Lai, Doug Lea, Patrick Marlier,
Mark Moir, Di Shang and Vasileios Trigonakis. NICTA is funded by
the Australian Government through the Department of Communica-
tions and the Australian Research Council through the ICT Centre
of Excellence Program.

References
[1] JSE-7. http://docs.oracle.com/javase/7/docs/api/.
[2] D. Alistarh, J. Kopisky, J. Li, and N. Shavit. The SprayList: A scalable

relaxed priority queue. Technical Report TR-2014-16, MSR, 2014.
[3] J. Antony, P. P. Janes, and A. P. Rendell. Exploring thread and

memory placement on NUMA architectures: Solaris and Linux, Ul-
traSPARC/FirePlane and Opteron/Hypertransport. In HiPC, pages
338–352, 2006.

[4] M. Arbel and H. Attiya. Concurrent updates with RCU: Search tree as
an example. In PODC, pages 196–205, 2014.

[5] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect of Java
without data races. In OOPSLA, pages 382–400, 2000.

[6] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. Non-
scalable locks are dangerous. In Proceedings of the Linux Symposium,
Ottawa, Canada, 2012.

[7] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A practical
concurrent binary search tree. In PPoPP, pages 257–268, 2010.

[8] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC,
pages 35–46, 2008.

[9] B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis, and K. Oluko-
tun. Transactional collection classes. In PPoPP, pages 56–67, 2007.

[10] D. Cederman, B. Chatterjee, N. Nguyen, Y. Nikolakopoulos, M. Papa-
triantafilou, and P. Tsigas. A study of the behavior of synchronization
methods in commonly used languages and systems. In IPDPS, pages
1309–1320, 2013.

[11] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. Scalable address
spaces using RCU balanced trees. In ASPLOS, pages 199–210, 2012.

[12] C. Click. A lock-free hash table, 2007. http://www.
azulsystems.com/events/javaone_2007/2007_
LockFreeHash.pdf.

[13] T. Crain, V. Gramoli, and M. Raynal. A contention-friendly methodol-
ogy for search structures. Technical Report RR-1989, INRIA, 2012.

[14] T. Crain, V. Gramoli, and M. Raynal. A speculation-friendly binary
search tree. In PPoPP, pages 161–170, 2012.

[15] T. Crain, V. Gramoli, and M. Raynal. A contention-friendly binary
search tree. In Euro-Par, pages 229–240, 2013.

[16] T. Crain, V. Gramoli, and M. Raynal. No hot spot non-blocking skip
list. In ICDCS, pages 196–205, 2013.

[17] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: streamlining
STM by abolishing ownership records. In PPoPP, pages 67–78, 2010.

[18] T. David, R. Guerraoui, and V. Trigonakis. Everything you always
wanted to know about synchronization but were afraid to ask. In SOSP,
pages 33–48, 2013.

[19] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency:
the secret of scaling concurrent search structures. In ASPLOS, 2015.
To appear.

[20] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC,
pages 194–208, 2006.

9 2014/12/12

https://www.threadingbuildingblocks.org
https://github.com/gramoli/synchrobench
https://github.com/gramoli/synchrobench
http://docs.oracle.com/javase/7/docs/api/
http://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf
http://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf
http://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf

[21] I. Dick, A. Fekete, and V. Gramoli. Logarithmic data structures for
multicores. Technical Report 697, University of Sydney, 2014.

[22] D. Drachsler, M. Vechev, and E. Yahav. Practical concurrent binary
search trees via logical ordering. In PPoPP, pages 343–356, 2014.

[23] A. Dragojević, P. Felber, V. Gramoli, and R. Guerraoui. Why STM can
be more than a research toy. Commun. ACM, 54(4):70–77, 2011.

[24] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking
binary search trees. In PODC, pages 131–140, 2010.

[25] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of
word-based software transactional memory. In PPoPP, pages 237–246,
2008.

[26] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. Technical
Report LPD-REPORT-2009-002, EPFL, 2009.

[27] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. In DISC,
pages 93–108, 2009.

[28] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. Quantifying
the mismatch between emerging scale-out applications and modern
processors. TOCS, 30(4):15:1–15:24, 2012.

[29] M. Fomitchev and E. Ruppert. Lock-free linked lists and skip lists. In
PODC, pages 50–59, 2004.

[30] K. Fraser. Practical lock freedom. PhD thesis, Cambridge University,
September 2003.

[31] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In FOCS, page 285, 1999.

[32] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes. Java
Concurrency in Practice. Addison-Wesley, 2005.

[33] V. Gramoli and R. Guerraoui. Democratizing transactional program-
ming. Commun. ACM, 57(1):86–93, 2014.

[34] V. Gramoli and R. Guerraoui. Reusable concurrent data types. In
ECOOP, pages 182–206, 2014.

[35] V. Gramoli, R. Guerraoui, and V. Trigonakis. TM2C: A software
transactional memory for many-cores. In EuroSys, pages 351–364,
2012.

[36] R. Guerraoui, M. Kapalka, and J. Vitek. STMBench7: a benchmark for
software transactional memory. In EuroSys, pages 315–324, 2007.

[37] D. Harmanci, P. Felber, V. Gramoli, and C. Fetzer. TMunit: Testing
software transactional memories. In 4th ACM SIGPLAN Workshop on
Transactional Computing, 2009.

[38] D. Harmanci, V. Gramoli, P. Felber, and C. Fetzer. Extensible trans-
actional memory testbed. J. of Parallel and Distributed Computing,
70(10):1053–1067, March 2010.

[39] T. Harris. A pragmatic implementation of non-blocking linked-lists. In
DISC, pages 300–314, 2001.

[40] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable
memory transactions. In PPoPP, pages 48–60, 2005.

[41] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer III,
and N. Shavit. A lazy concurrent list-based set algorithm. Parallel
Processing Letters, 17(4):411–424, 2007.

[42] M. Herlihy and E. Koskinen. Transactional boosting: A methodology
for highly-concurrent transactional objects. In PPoPP, pages 207–216,
2008.

[43] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit. A simple optimistic
skiplist algorithm. In SIROCCO, pages 124–138, 2007.

[44] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchroniza-
tion: Double-ended queues as an example. In ICDCS, 2003.

[45] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software
transactional memory for dynamic-sized data structures. In PODC,
pages 92–101, 2003.

[46] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In ISCA, pages 289–300, 1993.

[47] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kauffman, 2008.

[48] G. Korland, N. Shavit, and P. Felber. Deuce: Noninvasive software
transactional memory. Transactions on HiPEAC, 5(2), 2010.

[49] D. Lea. JSR-166 specification request group. http://g.oswego.
edu/dl/concurrency-interest.

[50] J. J. Levandoski and S. Sengupta. The BW-Tree: A latch-free B-tree
for log-structured flash storage. IEEE Data Eng. Bull., 36(2):56–62,
2013.

[51] Y. Liu, K. Zhang, and M. Spear. Dynamic-sized nonblocking hash
tables. In PODC, pages 242–251, 2014.

[52] A. Marowka. TBBench: A micro-benchmark suite for Intel threading
building blocks. JIPS, 8(2):331–346, 2012.

[53] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russell,
D. Sarma, and M. Soni. Read-copy update. In AUUG, 2001.

[54] M. M. Michael. High performance dynamic lock-free hash tables and
list-based sets. In SPAA, pages 73–82, 2002.

[55] M. M. Michael. The balancing act of choosing nonblocking features.
Commun. ACM, 56(9):46–53, 2013.

[56] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In PODC, pages
267–275, 1996.

[57] M. Mohamedin, B. Ravindran, and R. Palmieri. ByteSTM: Virtual
machine-level Java software transactional memory. In COORDINA-
TION, pages 166–180, 2013.

[58] A. Natarajan and N. Mittal. Fast concurrent lock-free binary search
trees. In PPoPP, pages 317–328, 2014.

[59] R. Odaira, J. G. Castaños, and T. Nakaike. Do C and Java programs
scale differently on hardware transactional memory? In IISWC, pages
34–43, 2013.

[60] W. Pugh. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM, 33, June 1990.

[61] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with
eager validation. In DISC, pages 284–298, 2006.

[62] H. Sundell and P. Tsigas. NOBLE: A non-blocking inter-process
communication library. Technical report, Chalmers University of
Technology, March 2002.

[63] H. Sundell and P. Tsigas. Scalable and lock-free concurrent dictionaries.
In SAC, pages 1438–1445. ACM, 2004.

[64] H. Sundell and P. Tsigas. Lock-free deques and doubly linked lists. J.
Parallel Distrib. Comput., 68(7):1008–1020, 2008.

[65] I. Umar, O. J. Anshus, and P. H. Ha. DeltaTree: A practical locality-
aware concurrent search tree. Technical Report 2013-74, University of
Tromso, Norway, Oct. 2013.

[66] B. Wicht. Binary trees implementations comparison for multicore
programming. Technical report, Switzerland HES-SO University of
applied science, 2012.

[67] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, and H.-H. S.
Lee. Kicking the tires of software transactional memory: why the going
gets tough. In SPAA, pages 265–274, 2008.

[68] F. Zyulkyarov, A. Cristal, S. Cvijic, E. Ayguade, M. Valero, O. Unsal,
and T. Harris. Wormbench: A configurable workload for evaluating
transactional memory systems. In MEDEA, pages 61–68, 2008.

[69] F. Zyulkyarov, S. Stipic, T. Harris, O. S. Unsal, A. Cristal, I. Hur, and
M. Valero. Profiling and optimizing transactional memory applications.
International Journal of Parallel Programming, 40(1):25–56, 2012.

10 2014/12/12

http://g.oswego.edu/dl/concurrency-interest
http://g.oswego.edu/dl/concurrency-interest

	Introduction
	Synchronizing Algorithms
	Synchronization techniques
	Data structures
	Languages and memory management
	Hardware
	Operating systems

	The Synchrobench User Interface
	Experimental Results
	Read-modify-write
	Read-copy-update
	Locks
	Language effects
	On the difficulty of designing correct lock-free trees
	Reusability of libraries depending on the synchronization
	Effect of contention and thread pinning

	Related Work
	Conclusion

