Consensus and Universal Construction

INF346, 2015

© 2015 P. Kuznetsov

So far...

Shared-memory communication:

- safe bits => multi-valued atomic registers
- atomic registers => atomic/immediate snapshot

Today

Reaching agreement in shared memory:

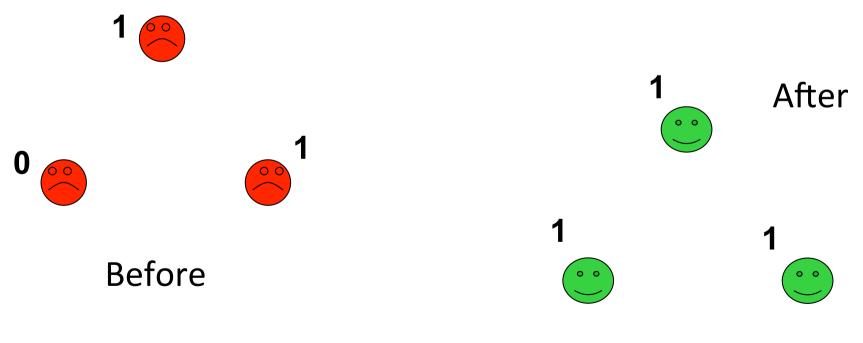
- Consensus
 - ✓ Impossibility of wait-free consensus
- 1-resilient consensus impossibility
- Universal construction

System model

- N asynchronous (no bounds on relative speeds) processes p₀,...,p_{N-1} (N≥2) communicate via atomic read-write registers
- Processes can fail by crashing
 - ✓ A crashed process takes only finitely many steps (reads and writes)
 - ✓ Up to t processes can crash: t-resilient system
 - ✓t=N-1: wait-free

Consensus

Processes *propose* values and must *agree* on a common decision value so that the decided value is a proposed value of some process



Consensus: definition

A process *proposes* an *input* value in V (IVI≥2) and tries to *decide* on an *output* value in V

- *Agreement:* No two processes decide on different values
- *Validity:* Every decided value is a proposed value
- Termination: No process takes infinitely many steps without deciding

(Every correct process decides)

Optimistic (O-resilient) consensus

Consider the case t=0, no process fails

Shared: 1WNR register D, initially T (default value not in V)

Upon propose(v) by process p_i : if i = 0 then D.write(v) // if p_0 decide on v wait until D.read() \neq T // wait until p_0 decides return D

(every process decides on p₀'s input)

Impossibility of wait-free consensus [FLP85,LA87]

Theorem 1 No wait-free algorithm solves consensus

We give the proof for N=2, assuming that p_0 proposes 0 and p_1 proposes 1

Implies the claim for all N \geq 2

Proof of Theorem 1

- We show that no 2-process wait-free solution exists for iterated read-write memory: R₀[], R₁[]
- Code for p_i in round r: write to R_i[r] and read R_{1-i}[r]:

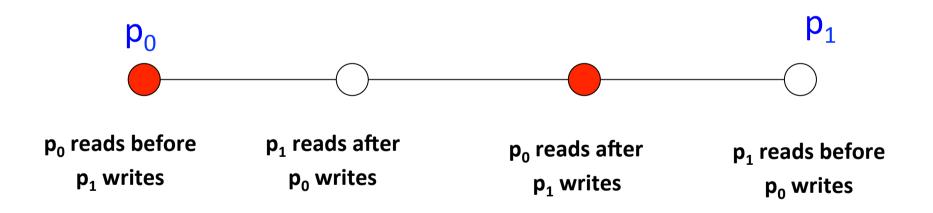
```
\label{eq:rescaled} \begin{split} r &:= 0 \\ repeat \\ r &:= r+1; \\ R_{i[}r].write(v_i); \\ v_i &:= R_{i-1}[r].read(); \\ until not $decided(v_i)$ \end{split}
```

(until the current state does not map to a decision)

 The iterated memory is equivalent to non-iterated one for solving consensus

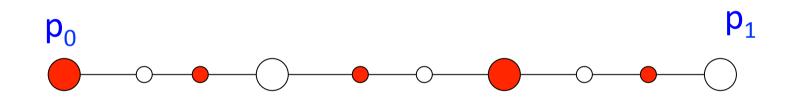
Proof of Theorem 1

Initially each p_i only knows its input One round of IIS:



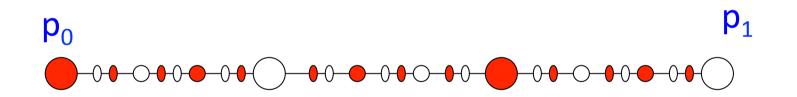
Proof sketch for Theorem 1

Two rounds:



Proof of Theorem 1

And so on...



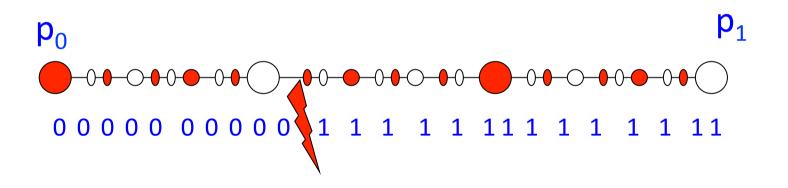
Solo runs remain connected - no way to decide!

Proof of Theorem 1

Suppose p_i (i=0,1) proposes i

• p_i must decide i in a solo run!

Suppose by round r every process decides



There exists a run with conflicting decisions!

So...

- No algorithm can wait-free (N-resiliently) solve consensus
- We cannot tolerate N-1 failures: can we tolerate less?

✓ E.g., can we solve consensus 1-resiliently?

1-resilient consensus?

What if we have 1000000 processes and one of them can crash?

NO

We present a direct proof now (an indirect proof by reduction to the wait-free impossibility also exists) Impossibility of 1-resilient consensus [FLP85,LA87]

Theorem 2 No 1-resilient (assuming that one process might fail) algorithm solves consensus in read-write

Proof

By contradiction, suppose that an algorithm A solves 1resilient binary consensus among $p_0, \dots p_{N-1}$

Proof

- A run of A is a sequence of atomic *steps* (reads or writes) applied to the initial state
- A run of A can be seen as and initial input configuration (one input per process) and a sequence of process ids $i_1, i_2, ..., i_k, ...$ (all registers are atomic)

Every correct (taking sufficiently many steps) process decides!

Proof: valence

Let R be a finite run

- We say that R is *v-valent* (for v in {0,1}) if v is decided in every infinite extension of R
- We say that R is *bivalent* if R is neither 0-valent nor 1-valent

(there exists a 0-valent extension of R and a 1-valent extension of R)

Proof: valence claims

Claim 1 Every finite run is 0-valent, or 1-valent, or bivalent. (by Termination)

Claim 2 Any run in which some process decides v is v-valent (by Agreement)

Corollary 1: No process can decide in a bivalent run (by Agreement).

Bivalent input

Claim 3 There exists a bivalent input configuration (empty run)

Proof

Suppose not

Consider sequence of input configurations C_0, \ldots, C_N :

 C_i : $p_0,...,p_{i-1}$ propose 1, and $p_i,...,p_{N-1}$ propose 0

- All C_i's are univalent
- C₀ is 0-valent (by Validity)
- C_N is 1-valent (by Validity)

Bivalent input

There exists i in $\{0, \dots, N-2\}$ such that C_i is 0-valent and C_{i+1} is 1-valent!

- C_i and C_{i+1} differ only in the input value of p_i (it proposes 1 in C_i and 0 in C_{i+1})
- Consider a run R starting from C_i in which p_i takes no steps (crashes initially): eventually all other processes decide 0

Consider R' that is like R except that it starts from C_{i+1}

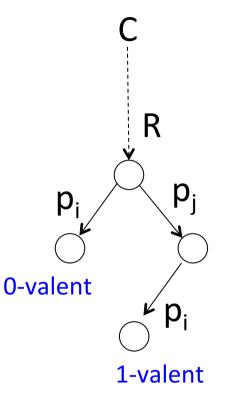
- R and R' are indistinguishable!
- Thus, every process decides 0 in R' --- contradiction (C_{i+1} is 1-valent)

Critical run

Claim 4 There exists a finite run R and two processes p_i and p_j such that R.i is 0-valent and R.j.i is 1-valent (or vice versa)

(R is called critical)

Proof of Claim 4: By construction, take the bivalent empty run C (by Claim 3 it exists)We construct an ever-extending fair (giving each process enough steps) run which results in R



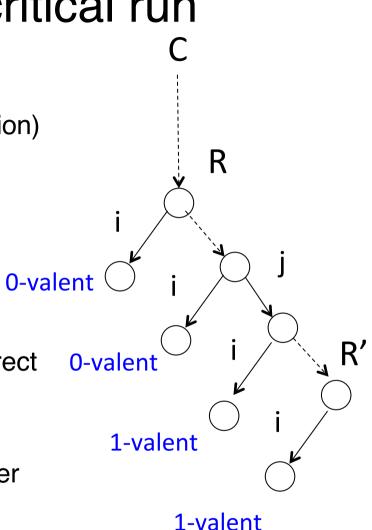
Proof of Claim 4: critical run

repeat forever

take the next process p_i (in round-robin fashion) if for some R', an extension of R, R'.i is bivalent **then** R:=R'.i

else stop

- If never stops ever extending (infinite) bivalent runs in which every process is correct (takes infinitely many steps – contradiction with termination
- If stops (suppose R.i is 0-valent) consider a 1-valent extension
 - There is a critical configuration between R and R'



Proof (contd.)

Take a critical run R (exists by Claim 4) such that:

- R.0 is 0-valent
- R.1.0 is 1-valent

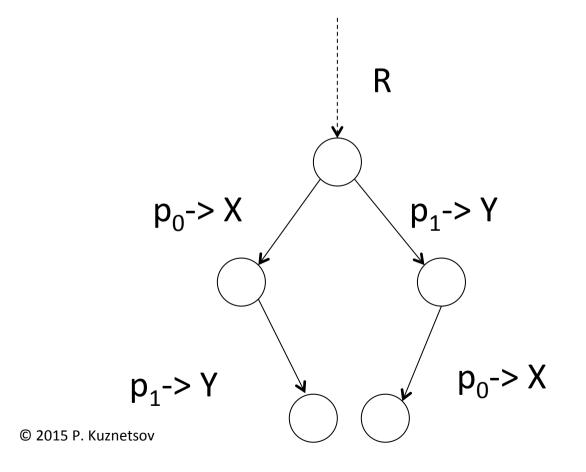
(without loss of generality, we can always rename processes or inputs appropriately ③)

Proof (contd.): the next steps in R

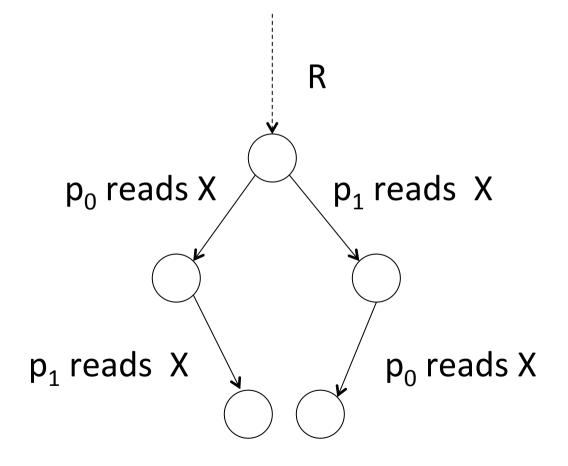
Four cases, depending on the next steps of p_0 and p_1 in R

- p₀ and p₁ are about to access different objects in R
- p₁ reads X and p₀ reads X
- p₀ writes in X
- p₁ reads X

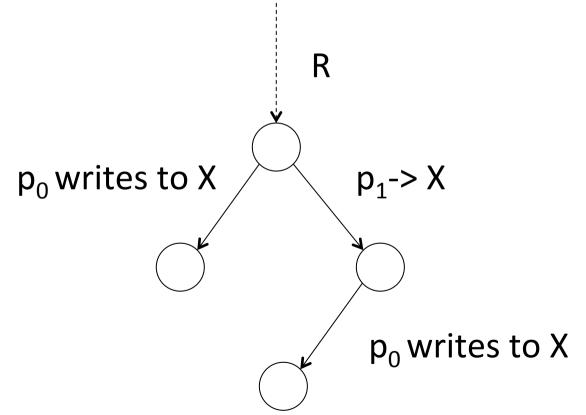
p₀ and p₁ are about to access different objects in R
 ✓ R.0.1 and R.1.0 are indistinguishable



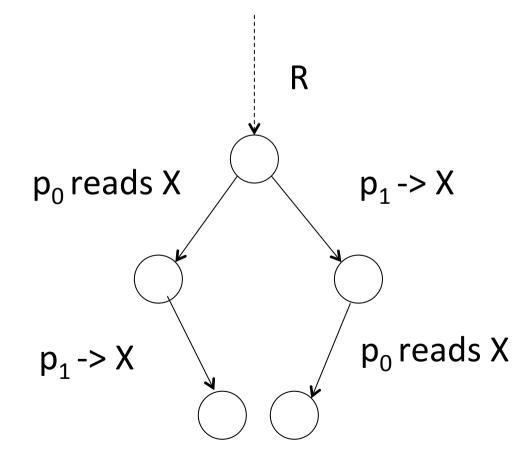
p₀ and p₁ are about to read the same object X
 R.0.1 and R.1.0 are indistinguishable



- p₀ is about to write to X
 - ✓ Extensions of R.0 and R.1.0 are indistinguishable for all except p₁ (assuming p₁ takes no more steps)



- p₀ is about to read to X
 - ✓ Extensions of R.0.1 and R.1.0 are indistinguishable for all but p₀ (assuming p₀ takes no more steps)



Thus

- No critical run exists
- A contradiction with Claim 4

 \Rightarrow 1-resilient consensus is impossible in read-write

Next

- Combining registers with stronger objects
 ✓ Consensus and test-and-set (T&S)
 ✓ Consensus and queues
- Universality of consensus

✓Consensus can be used to implement any object

Test&Set atomic objects

Exports one operation test&set() that returns a value in {0,1}

Sequential specification:

The first atomic operation on a T&S object returns 0, all other operations return 1

2-process consensus with T&S

Shared objects:

- T&S TS
- Atomic registers R[0] and R[1]

Upon propose(v) by process p_i (i=0,1): R[i] := v if TS.test&set()=0 then return R[i] else

return R[1-i]

FIFO Queues

Exports two operations enqueue() and dequeue()

- enqueue(v) adds v to the end of the queue
- dequeue() returns the first element in the queue

(LIFO queue returns the last element)

2-process consensus with queues

Shared:

Queue Q, initialized (winner,loser) Atomic registers R[0] and R[1]

Upon propose(v) by process p_i (i=0,1):

R[i] := v if Q.dequeue()=winner then return R[i]

else

return R[1-i]

But why consensus is interesting? Because it is universal!

 If we can solve consensus among N processes, then we can *implement* any object shared by N processes

✓T&S and queues are universal for 2 processes

 A key to implement a generic fault-tolerant service (replicated state machine)

What is an *object*?

Object O is defined by the tuple (Q,O,R,σ) :

- Set of states Q
- Set of operations O
- Set of outputs R
- Sequential specification σ, a subset of OxQxRxQ:
 - ✓ (o,q,r,q') is in σ ⇔ if operation o is applied to an object in state q, then the object *can* return r and change its state to q'
 - \checkmark Total on OxQ (defined for all o and q)

Deterministic objects

- An operation applied to a *deterministic* object results in exactly one (output,state) in RxQ, i.e., σ can be seen a function OxQ -> RxQ
- E.g., queues, counters, T&S are deterministic
- Unordered set (put/get) non-deterministic

Example: queue

- Let V be the set of possible elements of the queue
 - Q=V* (all sequences with elements in V)
 - $O=\!\{enq(v)_{v \text{ in } V}, deq()\}$
 - R=V U {Ø} U {ok}
 - $\sigma(enq(v),q)=(ok,q.v)$
 - $\sigma(deq(), v.q) = (v,q)$
 - $\sigma(deq(), \emptyset) = (\emptyset, \emptyset)$

Implementation: definition

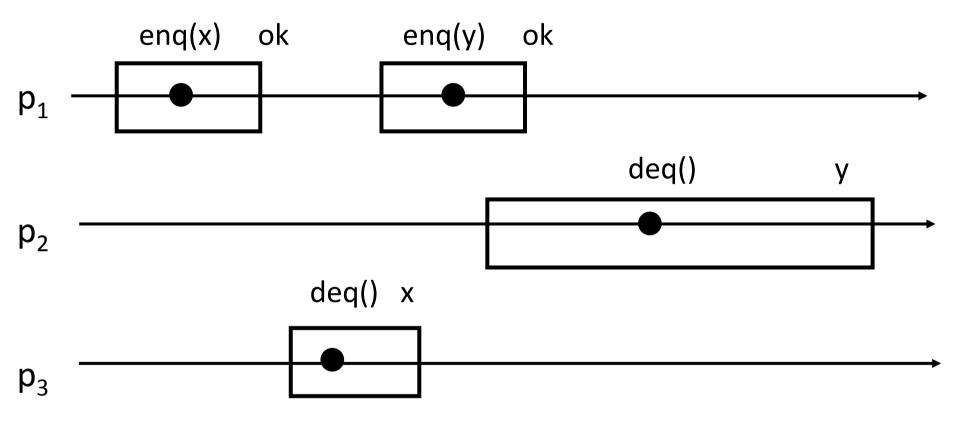
A distributed algorithm A that, for each operation o in O and for every p_i, describes a concurrent procedure o_i using base objects

A run of A is *well-formed* if no process invokes a new operation on the implemented object before returning from the old one (we only consider well-formed runs)

Implementation: correctness

- A (wait-free) implementation A is correct if in every well-formed run of A
- Wait-freedom: every operation run by p_i returns in a finite number of steps of p_i
- Linearizability ≈ operations "appear" instantaneous (the corresponding *history* is *linearizable*)

Linearization



p₁-enq(x); p₁-ok; p₃-deq(); p₃-x; p₁-enq(y); p₁ -ok; p₂-dequeue(); p₂-y

Universal construction

Theorem 1 [Herlihy, 1991] If N processes can solve consensus, then N processes can (waitfree) implement every object O=(Q,O,R,σ) Suppose you are given an unbounded number of consensus objects and atomic read-write registers

You want to implement an object $O=(Q,O,R,\sigma)$

How would you do it?

Universal construction: idea

Every process that has a pending operation does the following:

- Publish the corresponding *request*
- Collect published requests and use consensus instances to serialize them: the processes agree on the order in which the requests are executed
- Processes agree on the order in which the published requests are executed

Universal construction: variables

Shared abstractions: N atomic registers R[0,...,N-1], initially Ø N-process consensus instances C[1], C[2], ...

Local variables for each process p_i: integer *seq*, initially 0 // the number of p_i's requests executed so far integer *k*, initially 0 // the number of batches of // all requests executed so far sequence *linearized*, initially empty //the serial order of executed requests

Universal construction: algorithm

Code for each process p_i: implementation of operation op

```
seq++
R[i] := (op, i, seq)
                                       // publish the request
repeat
         V := read R[0,...,N-1]
                                               // collect all requests
         requests := V-{linearized} //choose not yet linearized requests
         if requests≠Ø then
             k++
             decided:=C[k].propose(requests)
             linearized := linearized.decided
             //append decided request in some deterministic order
until (op,i,seq) is in linearized
return the result of (op,i,seq) in linearized
             // using the sequential specification \sigma
```

Universal construction: correctness

- Linearization of a given run: the order in which operations are put in the *linearized list*
 - Agreement of consensus: all *linearized* lists are related by containment (one is a prefix of the other)
- Real-time order: if op1 precedes op2, then op2 cannot be linearized before op1

 ✓ Validity of consensus: a value cannot be decided unless it was previously proposed

Universal construction: correctness

• Wait-freedom:

✓ Termination and validity of consensus: there exists k such that the request of p_i gets into *req* list of every processes that runs C[k].*propose(req*)

Another universal abstraction: CAS

- Compare&Swap (CAS) stores a *value* and exports operation CAS(u,v) such that:
- If the current value is u, CAS(u,v) replaces it with v and returns u
- Otherwise, CAS(u,v) returns the current value
- A variation: CAS returns a boolean (whether the replacement took place) and an additional operation read() returns the value

N-process consensus with CAS

Shared objects: CAS CS initialized Ø // Ø cannot be an input value

```
Code for each process p_i (i=0,...,N-1):

v_i := input value of p_i

v :=CS.CAS(\emptyset, v_i)

if v = \emptyset

return v_i

else

return v
```

Quiz: consensus power

Show that T&S has consensus power at most 2, i.e., it cannot be, combined with atomic regosters, used to solve 3-process consensus

Possible outline:

- Consider the *critical bivalent* run R of A: every one-step extension of R is univalent (show first that it exists)
- Show that all steps enabled at R are on the same T&S object
- Show that there are two extensions of opposite valences that some process cannot distinguish