
©	 2015	 P.	 Kuznetsov	
	

 
Consensus and Universal Construction"

INF346,	 	 2015	
	

2

So far…"
Shared-memory communication:"

§  safe bits => multi-valued atomic registers"
§  atomic registers => atomic/immediate snapshot"

©	 2015	 P.	 Kuznetsov	 	

3

Today"
"
Reaching agreement in shared memory: "
"
§  Consensus"

ü Impossibility of wait-free consensus"
§  1-resilient consensus impossibility"
§  Universal construction"

©	 2015	 P.	 Kuznetsov	 	

4

System model"

§  N asynchronous (no bounds on relative speeds)
processes p0,…,pN-1 (N≥2) communicate via atomic
read-write registers"

§  Processes can fail by crashing "
ü A crashed process takes only finitely many steps (reads

and writes)"
ü Up to t processes can crash: t-resilient system "
ü t=N-1: wait-free "

"

5

Consensus"
Processes propose values and must agree on a

common decision value so that the decided value
is a proposed value of some process"

Before	

A=er	

0

1

1

1

1

1

6

Consensus: definition"
"
A process proposes an input value in V (|V|≥2) and tries to

decide on an output value in V"

§  Agreement: No two processes decide on different values"
§  Validity: Every decided value is a proposed value!
§  Termination: No process takes infinitely many steps without

deciding"
(Every correct process decides)"

7

Optimistic (0-resilient) consensus"
Consider the case t=0, no process fails"
"
Shared: 1WNR register D, initially T (default value not

in V)"
"
Upon propose(v) by process pi:"
"if i = 0 then D.write(v) "// if p0 decide on v ""
"wait until D.read() ≠ T "// wait until p0 decides "
"return D"

"
(every process decides on p0’s input)"
"
"
"

©	 2015	 P.	 Kuznetsov	 	

8

Impossibility of wait-free consensus [FLP85,LA87]"

Theorem 1 No wait-free algorithm solves consensus"
"
We give the proof for N=2, assuming that "
"p0 proposes 0 and p1 proposes 1"

"
"

Implies the claim for all N≥2 "
"

9

Proof of Theorem 1"
§  We show that no 2-process wait-free solution exists for

iterated read-write memory: R0[], R1[]"
§  Code for pi in round r: write to Ri[r] and read R1-i[r]:"

" " " "r := 0"
" " " "repeat"
" " " " "r := r+1;"
" " " " "Ri[r].write(vi); " ""
" " " " "vi := Ri-1[r].read();"
" " " "until not decided(vi)!

"
(until the current state does not map to a decision)"
§  The iterated memory is equivalent to non-iterated one

for solving consensus"

©	 2015	 P.	 Kuznetsov	 	

10 	 	

Proof of Theorem 1"

p0	 p1	

p0	 reads	 before	 	
p1	 writes	

p0	 reads	 a0er	 	
p1	 writes	

p1	 reads	 a0er	 	
p0	 writes	

p1	 reads	 before	 	
p0	 writes	

Initially each pi only knows its input"
One round of IIS:"

11 	 	

Proof sketch for Theorem 1"

p0	 p1	

Two rounds:"

12 	 	

Proof of Theorem 1"

p0	 p1	

And so on…"

Solo	 runs	 remain	 connected	 -‐	 no	 way	
to	 decide!	 	

13 	 	

Proof of Theorem 1"

p0	 p1	

Suppose pi (i=0,1) proposes i"
§  pi must decide i in a solo run!"
Suppose by round r every process decides"
"

There	 exists	 a	 run	 with	 conflicNng	
decisions!	

0	 0	 0	 0	 0	 1	 1	 0	 0	 0	 0	 0	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	

14

So…"
§  No algorithm can wait-free (N-resiliently) solve

consensus"
"

§  We cannot tolerate N-1 failures: can we tolerate
less?"
ü E.g., can we solve consensus 1-resiliently?"

©	 2015	 P.	 Kuznetsov	 	

15

1-resilient consensus?"
"

What if we have 1000000 processes and one of them
can crash?"

"
NO"
"

We present a direct proof now"
(an indirect proof by reduction to the wait-free

impossibility also exists)"

©	 2015	 P.	 Kuznetsov	 	

16

Impossibility of 1-resilient consensus [FLP85,LA87]"

Theorem 2 No 1-resilient (assuming that one process
might fail) algorithm solves consensus in read-write"

"
Proof"
By contradiction, suppose that an algorithm A solves 1-

resilient binary consensus among p0,…pN-1 "
"
"
"

17

Proof"
A run of A is a sequence of atomic steps (reads or

writes) applied to the initial state"
A run of A can be seen as and initial input

configuration (one input per process) and a
sequence of process ids i1,i2,…ik,… (all registers are
atomic)"

 "
Every correct (taking sufficiently many steps) process

decides!"
"

18

Proof: valence"
"
Let R be a finite run"

§  We say that R is v-valent (for v in {0,1}) if v is decided in
every infinite extension of R"

§  We say that R is bivalent if R is neither 0-valent nor "
"1-valent"
"(there exists a 0-valent extension of R and a 1-valent
extension of R)"
""

19 ©	 2015	 P.	 Kuznetsov	 	

Proof: valence claims"
Claim 1 Every finite run is 0-valent, or 1-valent, or bivalent."

(by Termination) "
"
Claim 2 Any run in which some process decides v is "
"v-valent "

(by Agreement)"
"

Corollary 1: No process can decide in a bivalent run (by
Agreement)."

20

Bivalent input"
!
Claim 3 There exists a bivalent input configuration (empty

run)"
"
Proof!
Suppose not"
Consider sequence of input configurations C0,…,CN:"
"
Ci: p0,..,pi-1 propose 1, and pi,..,pN-1 propose 0"
"
§  All Ci‘s are univalent"
§  C0 is 0-valent (by Validity)"
§  CN is 1-valent (by Validity)"
"
" ©	 2015	 P.	 Kuznetsov	 	

21

Bivalent input"
There exists i in {0,…N-2} such that Ci is 0-valent and

Ci+1 is 1-valent! "
"
Ci and Ci+1 differ only in the input value of pi (it proposes 1 in Ci and 0 in Ci+1)"
"
Consider a run R starting from Ci in which pi takes no

steps (crashes initially): eventually all other
processes decide 0"

"
Consider R’ that is like R except that it starts from Ci+1"
§  R and R’ are indistinguishable!"
§  Thus, every process decides 0 in R’ --- contradiction

(Ci+1 is 1-valent) "
"

©	 2015	 P.	 Kuznetsov	 	

22 ©	 2015	 P.	 Kuznetsov	 	

Critical run"
Claim 4 There exists a finite run R and two

processes pi and pj such that R.i is 0-valent
and R.j.i is 1-valent (or vice versa)"

(R is called critical)"
Proof of Claim 4: By construction, take the

bivalent empty run C (by Claim 3 it exists)"
We construct an ever-extending fair (giving

each process enough steps) run which
results in R"

C	

pi	 pj	

pi	
0-‐valent	

1-‐valent	

R	

23 ©	 2015	 P.	 Kuznetsov	 	

Proof of Claim 4: critical run"
repeat forever !
"take the next process pi (in round-robin fashion)"
"if for some R’, an extension of R, R’.i is

"bivalent then R:=R’.i"
"else stop"

 ""
§  If never stops – ever extending (infinite)

bivalent runs in which every process is correct
(takes infinitely many steps – contradiction
with termination"

§  If stops – (suppose R.i is 0-valent) – consider
a 1-valent extension"
ü There is a critical configuration between R and

R’ "

C	

i	
j	

i	 0-‐valent	

1-‐valent	

i	

0-‐valent	

i	

R	

R’	

1-‐valent	

24 ©	 2015	 P.	 Kuznetsov	 	

Proof (contd.)"
Take a critical run R (exists by Claim 4) such that:"

§  R.0 is 0-valent"
§  R.1.0 is 1-valent"

(without loss of generality, we can always rename
processes or inputs appropriately J)"

 "
"

25 ©	 2015	 P.	 Kuznetsov	 	

Proof (contd.): the next steps in R"

"
Four cases, depending on the next steps of p0 and p1

in R"
"
§  p0 and p1 are about to access different objects in R"
§  p1 reads X and p0 reads X"
§  p0 writes in X"
§  p1 reads X"

"

26

©	 2015	 P.	 Kuznetsov	 	

Proof (contd.): cases and contradiction"

§  p0 and p1 are about to access different objects in R"
ü R.0.1 and R.1.0 are indistinguishable"

R	

p1-‐>	 Y	 p0-‐>	 X	

p0-‐>	 X	 p1-‐>	 Y	

27 ©	 2015	 P.	 Kuznetsov	 	

Proof (contd.): cases and contradiction"

§  p0 and p1 are about to read the same object X"
"R.0.1 and R.1.0 are indistinguishable"

R	

p0	 reads	 X	 p1	 reads	 	 X	

p0	 reads	 X	 p1	 reads	 	 X	

28 ©	 2015	 P.	 Kuznetsov	 	

Proof (contd.): cases and contradiction"

§  p0 is about to write to X"
ü Extensions of R.0 and R.1.0 are indistinguishable for all

except p1 (assuming p1 takes no more steps)"

R	

p0	 writes	 to	 X	 p1-‐>	 X	

p0	 writes	 to	 X	

29 ©	 2015	 P.	 Kuznetsov	 	

Proof (contd.): cases and contradiction"

§  p0 is about to read to X"
ü Extensions of R.0.1 and R.1.0 are indistinguishable for all

but p0 (assuming p0 takes no more steps)"

R	

p0	 reads	 X	 p1	 -‐>	 X	

p1	 -‐>	 X	 p0	 reads	 X	

30

Thus"
§  No critical run exists"
§  A contradiction with Claim 4!

⇒ 1-resilient consensus is impossible in read-write"

©	 2015	 P.	 Kuznetsov	 	

31

Next"
§  Combining registers with stronger objects"

ü Consensus and test-and-set (T&S)"
ü Consensus and queues"

§  Universality of consensus"
ü Consensus can be used to implement any object "

"

©	 2015	 P.	 Kuznetsov	 	

32 ©	 2015	 P.	 Kuznetsov	 	

Test&Set atomic objects"
"
Exports one operation test&set() that returns a

value in {0,1}"
"
Sequential specification:"
The first atomic operation on a T&S object

returns 0, all other operations return 1"

33 ©	 2015	 P.	 Kuznetsov	 	

2-process consensus with T&S"
Shared objects:!
"T&S TS"
"Atomic registers R[0] and R[1]"

"
Upon propose(v) by process pi (i=0,1):"
"R[i] := v"
"if TS.test&set()=0 then"
" "return R[i]"
"else "
" "return R[1-i]"

34 ©	 2015	 P.	 Kuznetsov	 	

FIFO Queues"
Exports two operations enqueue() and

dequeue() "

§  enqueue(v) adds v to the end of the queue"
§  dequeue() returns the first element in the

queue"
(LIFO queue returns the last element)"

35 ©	 2015	 P.	 Kuznetsov	 	

2-process consensus with queues"
Shared:"
"Queue Q, initialized (winner,loser) "
"Atomic registers R[0] and R[1]"

"
Upon propose(v) by process pi (i=0,1):!
"R[i] := v"
"if Q.dequeue()=winner then"
" "return R[i]"
"else "
" "return R[1-i]"

36 ©	 2015	 P.	 Kuznetsov	 	

But why consensus is interesting?"
Because it is universal!"

§  If we can solve consensus among N
processes, then we can implement any object
shared by N processes"
ü T&S and queues are universal for 2 processes"

"
§  A key to implement a generic fault-tolerant

service (replicated state machine)"

37 ©	 2015	 P.	 Kuznetsov	 	

What is an object ?"
Object O is defined by the tuple (Q,O,R,σ):"
§  Set of states Q"
§  Set of operations O"
§  Set of outputs R"
§  Sequential specification σ, a subset of

OxQxRxQ:"
ü (o,q,r,q’) is in σ ó if operation o is applied to an

object in state q, then the object can return r and
change its state to q’"

ü Total on OxQ (defined for all o and q)"
"
"

38 ©	 2015	 P.	 Kuznetsov	 	

Deterministic objects"
"
§  An operation applied to a deterministic object

results in exactly one (output,state) in RxQ,
i.e., σ can be seen a function OxQ -> RxQ "

§  E.g., queues, counters, T&S are deterministic"
§  Unordered set (put/get) – non-deterministic"
"

39

Example: queue""
Let V be the set of possible elements of the

queue"
Q=V* (all sequences with elements in V)"
O={enq(v)v in V,deq()}"
R=V U {Ø} U {ok}"
σ(enq(v),q)=(ok,q.v)"
σ(deq(),v.q)=(v,q)"
σ(deq(), Ø)=(Ø, Ø)"

"
"

©	 2015	 P.	 Kuznetsov	 	

40 ©	 2015	 P.	 Kuznetsov	 	

Implementation: definition"
A distributed algorithm A that, for each

operation o in O and for every pi, describes a
concurrent procedure oi using base objects"

"
"
"
A run of A is well-formed if no process invokes a new

operation on the implemented object before
returning from the old one (we only consider well-
formed runs)"

41 ©	 2015	 P.	 Kuznetsov	 	

Implementation: correctness"
A (wait-free) implementation A is correct if in

every well-formed run of A"
§  Wait-freedom: every operation run by pi

returns in a finite number of steps of pi "
§  Linearizability ≈ operations “appear”

instantaneous (the corresponding history is
linearizable)"

42 ©	 2015	 P.	 Kuznetsov	 	

Linearization"

p1	

p2	

p3	

	 enq(y)	 	 	 	 	 ok	

deq()	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 y	

	 enq(x)	 	 	 	 	 ok	

	 deq()	 	 	 x	

	 p1-‐enq(x);	 p1-‐ok;	 p3-‐deq();	 p3-‐x;	 	
p1-‐enq(y);	 p1	 –ok;	 p2-‐dequeue();	 p2-‐y	 	

43 ©	 2015	 P.	 Kuznetsov	 	

Universal construction"
!
!
Theorem 1 [Herlihy, 1991] If N processes can

solve consensus, then N processes can (wait-
free) implement every object O=(Q,O,R,σ)"

44

"
Suppose you are given an unbounded number

of consensus objects and atomic read-write
registers"
"

You want to implement an object O=(Q,O,R,σ)"
"

How would you do it?"

©	 2015	 P.	 Kuznetsov	 	

45 ©	 2015	 P.	 Kuznetsov	 	

Universal construction: idea"
Every process that has a pending operation

does the following:"
"
§  Publish the corresponding request "
§  Collect published requests and use

consensus instances to serialize them: the
processes agree on the order in which the
requests are executed"

§  Processes agree on the order in which the
published requests are executed "

46 ©	 2015	 P.	 Kuznetsov	 	

Universal construction: variables"
Shared abstractions:"
"N atomic registers R[0,…,N-1], initially Ø"
"N-process consensus instances C[1], C[2], …"

"
Local variables for each process pi:"
"integer seq, initially 0 "
" " "// the number of pi’s requests executed so
far"
"integer k, initially 0 "
" " "// the number of batches of " " ""
" " "// all requests executed so far"
"sequence linearized, initially empty "
" " "//the serial order of executed requests"

"

47 ©	 2015	 P.	 Kuznetsov	 	

Universal construction: algorithm"
Code for each process pi: implementation of operation op"
"
"seq++"
"R[i] := (op,i,seq) " " "// publish the request"
"repeat"
" "V := read R[0,…,N-1] " "// collect all requests"
" "requests := V-{linearized} "//choose not yet linearized requests"
" "if requests≠Ø then"
" " "k++"
" " "decided:=C[k].propose(requests) ""
" " "linearized := linearized.decided "
" " "//append decided request in some deterministic order"
"until (op,i,seq) is in linearized"
"return the result of (op,i,seq) in linearized "
" " "// using the sequential specification σ"

48 ©	 2015	 P.	 Kuznetsov	 	

Universal construction: correctness"

§  Linearization of a given run: the order in which
operations are put in the linearized list!
ü  Agreement of consensus: all linearized lists are

related by containment (one is a prefix of the
other)"

§  Real-time order: if op1 precedes op2, then
op2 cannot be linearized before op1"
ü Validity of consensus: a value cannot be decided

unless it was previously proposed"

"

49 ©	 2015	 P.	 Kuznetsov	 	

Universal construction: correctness"

§  Wait-freedom:"
ü Termination and validity of consensus: there

exists k such that the request of pi gets into req list
of every processes that runs C[k].propose(req)"

"

50 ©	 2015	 P.	 Kuznetsov	 	

Another universal abstraction: CAS"
Compare&Swap (CAS) stores a value and exports

operation CAS(u,v) such that:"
§  If the current value is u, CAS(u,v) replaces it with v

and returns u"
§  Otherwise, CAS(u,v) returns the current value"

A variation: CAS returns a boolean (whether the
replacement took place) and an additional operation
read() returns the value"

51 ©	 2015	 P.	 Kuznetsov	 	

N-process consensus with CAS"
Shared objects:"
"CAS CS initialized Ø "
"// Ø cannot be an input value "
""

Code for each process pi (i=0,…,N-1):"
"vi := input value of pi"
"v :=CS.CAS(Ø,vi) "
"if v = Ø "
" "return vi"
"else "
" "return v"

52

Quiz: consensus power"
Show that T&S has consensus power at most 2,
i.e., it cannot be, combined with atomic regosters,
used to solve 3-process consensus"
"
Possible outline:"
§  Consider the critical bivalent run R of A: every

one-step extension of R is univalent (show first
that it exists)"

§  Show that all steps enabled at R are on the same
T&S object"

§  Show that there are two extensions of opposite
valences that some process cannot distinguish"

©	 2015	 P.	 Kuznetsov	 	

