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So far…"
Shared-memory communication:"

§  safe bits => multi-valued atomic registers"
§  atomic registers => atomic/immediate snapshot"
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Today"
"
Reaching agreement in shared memory: "
"
§  Consensus"

ü Impossibility of wait-free consensus"
§  1-resilient consensus impossibility"
§  Universal construction"
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System model"

§  N asynchronous (no bounds on relative speeds) 
processes p0,…,pN-1 (N≥2) communicate via atomic 
read-write registers"

§  Processes can fail by crashing "
ü A crashed process takes only finitely many steps (reads 

and writes)"
ü Up to t processes can crash: t-resilient system "
ü t=N-1: wait-free "

"
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Consensus"
Processes propose values and must agree on a 

common decision value so that the decided value 
is a proposed value of some process"

Before	  

A=er	  
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1 

1 

1 

1 

1 



6 

Consensus: definition"
"
A process proposes an input value in V (|V|≥2) and tries to 

decide on an output value in V"

§  Agreement: No two processes decide on different values"
§  Validity: Every decided value is a proposed value!
§  Termination: No process takes infinitely many steps without 

deciding"
(Every correct process decides)"
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Optimistic (0-resilient) consensus"
Consider the case t=0, no process fails"
"
Shared: 1WNR register D, initially T (default value not 

in V)"
"
Upon propose(v) by process pi:"
"if i = 0 then D.write(v) "// if p0 decide on v ""
"wait until D.read() ≠ T "// wait until p0 decides "
"return D"

"
(every process decides on p0’s input)"
"
"
"
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Impossibility of wait-free consensus [FLP85,LA87]"

Theorem 1 No wait-free algorithm solves consensus"
"
We give the proof for N=2, assuming that "
"p0 proposes 0 and p1 proposes 1"

"
"

Implies the claim for all N≥2 "
"



9 

Proof of Theorem 1"
§  We show that no 2-process wait-free solution exists for 

iterated read-write memory: R0[], R1[]"
§  Code for pi in round r: write to Ri[r] and read R1-i[r]:"

" " " "r := 0"
" " " "repeat"
" " " " "r := r+1;"
" " " " "Ri[r].write(vi); " ""
" " " " "vi := Ri-1[r].read();"
" " " "until not decided(vi)!

"
(until the current state does not map to a decision)"
§   The iterated memory is equivalent to non-iterated one 

for solving consensus"
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Proof of Theorem 1"

p0	   p1	  

p0	  reads	  before	  	  
p1	  writes	  

p0	  reads	  a0er	  	  
p1	  writes	  

p1	  reads	  a0er	  	  
p0	  writes	  

p1	  reads	  before	  	  
p0	  writes	  

Initially each pi only knows its input"
One round of IIS:"
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Proof sketch for Theorem 1"

p0	   p1	  

Two rounds:"
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Proof of Theorem 1"

p0	   p1	  

And so on…"

Solo	  runs	  remain	  connected	  -‐	  no	  way	  
to	  decide!	  	  
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Proof of Theorem 1"

p0	   p1	  

Suppose pi (i=0,1) proposes i"
§  pi must decide i in a solo run!"
Suppose by round r every process decides"
"

There	  exists	  a	  run	  with	  conflicNng	  
decisions!	  

0	   0	   0	   0	   0	   1	  1	  0	   0	   0	   0	   0	   1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  1	  
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So…"
§  No algorithm can wait-free (N-resiliently) solve 

consensus"
"

§  We cannot tolerate N-1 failures: can we tolerate 
less?"
ü E.g., can we solve consensus 1-resiliently?"
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1-resilient consensus?"
"

What if we have 1000000 processes and one of them 
can crash?"

"
NO"
"

We present a direct proof now"
(an indirect proof by reduction to the wait-free 

impossibility also exists)"
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Impossibility of 1-resilient consensus [FLP85,LA87]"

Theorem 2 No 1-resilient (assuming that one process 
might fail) algorithm solves consensus in read-write"

"
Proof"
By contradiction, suppose that an algorithm A solves 1-

resilient binary consensus among p0,…pN-1 "
"
"
"
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Proof"
A run of A is a sequence of atomic steps (reads or 

writes) applied to the initial state"
A run of A can be seen as and initial input 

configuration (one input per process) and a 
sequence of process ids i1,i2,…ik,… (all registers are 
atomic)"

 "
Every correct (taking sufficiently many steps) process 

decides!"
"
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Proof: valence"
"
Let R be a finite run"

§  We say that R is v-valent (for v in {0,1}) if v is decided in 
every infinite extension of R"

§  We say that R is bivalent if R is neither 0-valent nor "
"1-valent"
"(there exists a 0-valent extension of R and a 1-valent 
extension of R)"
""
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Proof: valence claims"
Claim 1 Every finite run is 0-valent,  or 1-valent, or bivalent."

(by Termination) "
"
Claim 2 Any run in which some process decides v is "
"v-valent "

(by Agreement)"
"

Corollary 1: No process can decide in a bivalent run (by 
Agreement)."
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Bivalent input"
!
Claim 3 There exists a bivalent input configuration (empty 

run)"
"
Proof!
Suppose not"
Consider sequence of input configurations C0,…,CN:"
"
Ci: p0,..,pi-1 propose 1, and pi,..,pN-1 propose 0"
"
§  All Ci‘s are univalent"
§  C0 is 0-valent (by Validity)"
§  CN is 1-valent (by Validity)"
"
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Bivalent input"
There exists i in {0,…N-2} such that Ci is 0-valent and 

Ci+1 is 1-valent! "
"
Ci and Ci+1 differ only in the input value of pi (it proposes 1 in Ci and 0 in Ci+1)"
"
Consider a run R starting from Ci in which pi takes no 

steps (crashes initially): eventually all other 
processes  decide 0"

"
Consider R’ that is like R except that it starts from   Ci+1"
§  R and R’ are indistinguishable!"
§  Thus, every process decides 0 in R’ --- contradiction 

(Ci+1 is 1-valent) "
"
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Critical run"
Claim 4 There exists a finite run R and two 

processes pi and pj such that R.i is 0-valent 
and R.j.i is 1-valent (or vice versa)"

(R is called critical)"
Proof of Claim 4: By construction, take the 

bivalent empty run C (by Claim 3 it exists)"
We construct an ever-extending  fair (giving 

each process enough steps) run which 
results in R"

C	  

pi	   pj	  

pi	  
0-‐valent	  

1-‐valent	  

R	  
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Proof of Claim 4: critical run"
repeat forever !
"take the next process pi (in round-robin fashion)"
"if for some R’, an extension of R, R’.i is 

"bivalent then R:=R’.i"
"else  stop"

 ""
§  If never stops – ever extending (infinite) 

bivalent runs  in which every process is correct 
(takes infinitely many steps – contradiction 
with termination"

§  If stops – (suppose R.i is 0-valent) – consider 
a 1-valent extension"
ü There is a critical configuration between R and 

R’ "

C	  

i	  
j	  

i	  0-‐valent	  

1-‐valent	  

i	  

0-‐valent	  

i	  

R	  

R’	  

1-‐valent	  
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Proof (contd.)"
Take a critical run R (exists by Claim 4) such that:"

§  R.0 is 0-valent"
§  R.1.0 is 1-valent"

(without loss of generality, we can always rename 
processes or inputs appropriately J)"

 "
"
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Proof (contd.): the next steps in R"

"
Four cases, depending on the next steps of p0 and p1 

in R"
"
§  p0 and p1 are about to access different objects in R"
§  p1 reads X and p0 reads X"
§  p0 writes in X"
§  p1 reads  X"

"
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Proof (contd.): cases and contradiction"

§  p0 and p1 are about to access different objects in R"
ü R.0.1 and R.1.0 are indistinguishable"

R	  

p1-‐>	  Y	   p0-‐>	  X	  

p0-‐>	  X	   p1-‐>	  Y	  
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Proof (contd.): cases and contradiction"

§  p0 and p1 are about to read the same object X"
"R.0.1 and R.1.0 are indistinguishable"

R	  

p0	  reads	  X	   p1	  reads	  	  X	  

p0	  reads	  X	  p1	  reads	  	  X	  
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Proof (contd.): cases and contradiction"

§  p0 is about to write to X"
ü Extensions of R.0 and R.1.0 are indistinguishable for all 

except p1 (assuming p1 takes no more steps)"

R	  

p0	  writes	  to	  X	   p1-‐>	  X	  

p0	  writes	  to	  X	  
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Proof (contd.): cases and contradiction"

§  p0 is about to read to X"
ü Extensions of R.0.1 and R.1.0 are indistinguishable for all 

but p0 (assuming p0 takes no more steps)"

R	  

p0	  reads	  X	   p1	  -‐>	  X	  

p1	  -‐>	  X	   p0	  reads	  X	  
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Thus"
§  No critical run exists"
§  A contradiction with Claim 4!

⇒ 1-resilient consensus is impossible in read-write"
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Next"
§  Combining registers with stronger objects"

ü Consensus and test-and-set (T&S)"
ü Consensus and queues"

§  Universality of consensus"
ü Consensus can be used to implement any object "

"
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Test&Set atomic objects"
"
Exports one operation test&set() that returns a 

value in {0,1}"
"
Sequential specification:"
The first atomic operation on a T&S object 

returns 0, all other operations return 1"
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2-process consensus with T&S"
Shared objects:!
"T&S TS"
"Atomic registers R[0] and R[1]"

"
Upon propose(v) by process pi (i=0,1):"
"R[i] :=  v"
"if TS.test&set()=0 then"
" "return R[i]"
"else "
" "return R[1-i]"
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FIFO Queues"
Exports two operations enqueue() and 

dequeue() "

§  enqueue(v) adds v to the end of the queue"
§  dequeue() returns the first element in the 

queue"
(LIFO queue returns the last element)"
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2-process consensus with queues"
Shared:"
"Queue Q, initialized (winner,loser) "
"Atomic registers R[0] and R[1]"

"
Upon propose(v) by process pi (i=0,1):!
"R[i] :=  v"
"if Q.dequeue()=winner then"
" "return R[i]"
"else "
" "return R[1-i]"
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But why consensus is interesting?"
Because it is universal!"

§  If we can solve consensus among N 
processes, then we can implement any object 
shared by N processes"
ü T&S and queues are universal for  2 processes"

"
§  A key to implement a generic fault-tolerant 

service (replicated state machine)"



37 ©	  2015	  P.	  Kuznetsov	  	  

What is an object ?"
Object O is defined by the tuple (Q,O,R,σ):"
§  Set of states Q"
§  Set of operations O"
§  Set of outputs R"
§  Sequential specification σ, a subset of 

OxQxRxQ:"
ü (o,q,r,q’) is in σ ó if operation o is applied to an 

object in state q, then the object can return r and 
change its state to q’"

ü Total on OxQ (defined for all o and q)"
"
"
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Deterministic objects"
"
§  An operation applied to a deterministic object 

results in exactly one (output,state) in RxQ, 
i.e., σ can be seen a function OxQ -> RxQ "

§  E.g., queues, counters, T&S are deterministic"
§  Unordered set (put/get) – non-deterministic"
"
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Example: queue""
Let V be the set of possible elements of the 

queue"
Q=V* (all sequences with elements in V)"
O={enq(v)v in V,deq()}"
R=V U {Ø} U {ok}"
σ(enq(v),q)=(ok,q.v)"
σ(deq(),v.q)=(v,q)"
σ(deq(), Ø)=(Ø, Ø)"

"
"
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Implementation: definition"
A distributed algorithm A that, for each 

operation o in O and for every pi, describes a 
concurrent procedure oi using base objects"

"
"
"
A run of A is well-formed if no process invokes a new 

operation on the implemented object before 
returning from the old one (we only consider well-
formed runs)"
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Implementation: correctness"
A (wait-free) implementation A is correct if in 

every well-formed run of A"
§  Wait-freedom: every operation run by pi 

returns in a finite number of steps of pi "
§  Linearizability ≈ operations “appear” 

instantaneous (the corresponding history is 
linearizable)"



42 ©	  2015	  P.	  Kuznetsov	  	  

Linearization"

p1	  

p2	  

p3	  

	  enq(y)	  	  	  	  	  ok	  

deq()	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  y	  

	  enq(x)	  	  	  	  	  ok	  

	  deq()	  	  	  x	  

	  p1-‐enq(x);	  p1-‐ok;	  p3-‐deq();	  p3-‐x;	  	  
p1-‐enq(y);	  p1	  –ok;	  p2-‐dequeue();	  p2-‐y	  	  
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Universal construction"
!
!
Theorem 1 [Herlihy, 1991] If N processes can 

solve consensus, then N processes can (wait-
free) implement every object O=(Q,O,R,σ)"
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"
Suppose you are given an unbounded number 

of consensus objects and atomic read-write 
registers"
"

You want to implement an object O=(Q,O,R,σ)"
"

How would you do it?"
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Universal construction: idea"
Every process that has a pending operation 

does the following:"
"
§  Publish the corresponding request "
§  Collect published requests and use 

consensus instances to serialize them: the 
processes agree on the order in which the 
requests are executed"

§  Processes agree on the order in which the 
published requests are executed "
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Universal construction: variables"
Shared abstractions:"
"N atomic registers R[0,…,N-1], initially Ø"
"N-process consensus instances C[1], C[2], …"

"
Local variables for each process pi:"
"integer seq, initially 0  "
" " "// the number of pi’s requests executed so 
far"
"integer k, initially 0 "
" " "// the number of batches of " " ""
" " "// all requests executed so far"
"sequence linearized, initially empty "
" " "//the serial order  of executed requests"

"
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Universal construction: algorithm"
Code for each process pi:  implementation of operation op"
"
"seq++"
"R[i] := (op,i,seq)  " " "// publish the request"
"repeat"
" "V := read R[0,…,N-1] " "// collect all requests"
" "requests := V-{linearized} "//choose not yet linearized requests"
" "if requests≠Ø then"
" " "k++"
" " "decided:=C[k].propose(requests) ""
" " "linearized := linearized.decided "
" " "//append decided request in some deterministic order"
"until (op,i,seq) is in linearized"
"return the result of (op,i,seq) in linearized "
" " "// using the sequential specification σ"
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Universal construction: correctness"

§  Linearization of a given run: the order in which 
operations are put in the linearized  list!
ü  Agreement of consensus: all linearized lists are 

related by containment (one is a prefix of the 
other)"

§  Real-time order: if op1 precedes op2, then 
op2 cannot be linearized before op1"
ü Validity of consensus: a value cannot be decided 

unless it was previously proposed"

"
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Universal construction: correctness"

§  Wait-freedom:"
ü Termination and validity of consensus: there 

exists k such that the request of pi gets into req list 
of every processes that runs C[k].propose(req)"

"
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Another universal abstraction: CAS"
Compare&Swap (CAS) stores a value and exports 

operation CAS(u,v) such that:"
§  If the current value is u, CAS(u,v) replaces it with v 

and returns u"
§  Otherwise, CAS(u,v) returns the current value"

A variation: CAS returns a boolean (whether the 
replacement took place) and an additional operation 
read() returns the value"
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N-process consensus with CAS"
Shared objects:"
"CAS CS initialized Ø  "
"// Ø cannot be an input value "
""

Code for each process pi (i=0,…,N-1):"
"vi := input value of pi"
"v :=CS.CAS(Ø,vi) "
"if v = Ø "
" "return vi"
"else "
" "return v"
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Quiz: consensus power"
Show that T&S has consensus power at most 2, 
i.e., it cannot be, combined with atomic regosters, 
used to solve 3-process consensus"
"
Possible outline:"
§  Consider the critical bivalent run R of A: every 

one-step extension of R is univalent  (show first 
that it exists)"

§  Show that all steps enabled at R are on the same 
T&S object"

§   Show that there are two extensions of opposite 
valences that some process cannot distinguish"
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