Atomic snapshots

INF346, 2015

© 2015 P. Kuznetsov

The space of registers

« Nb of writers and readers:
from 1W1R to NWNR # readers/writers

« Size of the value set: from !
binary to multi-valued

« Safety properties: safe,

regular, atomic /\

safety property

value set

All registers are (computationally) equivalent!

© 2015 P. Kuznetsov 2

Transformations

From 1W1R binary safe to TWNR multi-valued atomic

VII.

From safe to regular (1W1R)

From one-reader to multiple-reader (regular
binary or multi-valued)

From binary to multi-valued (1WNR regular)

From regu
From 1W1

ar to atomic (1W1R)
R to TWNR (multi-valued atomic)

From 1WN

R to NWNR (multi-valued atomic)

From safe bit to atomic bit (optimal, coming later)

© 2015 P. Kuznetsov

3

This class

= Atomic snapshot: reading multiple locations
atomically

v'"Write to one, read all

Atomic snapshot: sequential specification

= Each process p. is provided with operations:
v'update(v), returns ok
v'snapshoty(), returns [v,,...,V\]

« In a sequential execution:

For each [v,,...,v\] returned by snapshot(), V, (j=1,

...,N) is the argument of the last update;(.)
(or the initial value if no such update)

© 2015 P. Kuznetsov

Snapshot for free?

Code for process p;:

initially:
shared 1W1R atomic register R, :=0

upon snapshot()
[X4,...,Xy] i=sCan(R,,...,Ry) /“read R,,...R*/
return [X,,...,Xy]

upon update;(v)
R.write(v)

© 2015 P. Kuznetsov

Snapshot for free?

update,(1) ok update,(2) ok
p Hfp—————————
snapshot() [1,1,2]
update,(1) ok

n—Hg————

read;()1 read,()1 read;()2

p——H———H——

update,(1) ok update,(2) ok

© 2015 P. Kuznetsov

Snapshot for free?
[1,1,1] [2,1,1] [2,1,2]

update, (1) ok update,(2) ok
p Hfp————9¥—
snapshot() [1,1,2]

update,(1) ok

n—Hg— i ———

read;()1 read,()1 read;()2

p—H——H——

update,(1) ok update,(2) ok

© 2015 P. Kuznetsov

« What about 2 processes?

« What about lock-free snapshots?

v' At least one correct process makes
progress (completes infinitely many
operations)

© 2015 P. Kuznetsov

Lock-free snapshot

Code for process p; (all written value are unique, e.g.,
equipped with a sequence number)

Initially:
shared TW1R atomic register R, := 0
upon snapshot() upon update;(v)
[Xq,...,Xp]:= scan(R,,...,Ry) R.write(v)
repeat

[y]_l"‘lyN] .= [X]_I"‘IXN]
[Xy,..., X\]:= scan(Ry,...,Ry)
until [yq,...,yn] = [Xg-0 Xyl

return [X,,...,Xy]

© 2015 P. Kuznetsov 10

Linearization

Assign a linearization point
to each operation
= update;(v) update;(1) ok

v'R..write(v) if present _E_’

v'Otherwise remove the op

= shapshot;() snapshot,() [1,1,2]
v'if complete — any point [1.1,2] [1,1,2]
between identical scans

v'Otherwise remove the op scan() scan()

Build a sequential history S
in the order of
linearization points

© 2015 P. Kuznetsov 11

Correctness: linearizability

S is legal: every snapshot,() returns the last written value for
every p

Suppose not: snapshot() returns [x;,...,xy] and some x;is not
the the argument of the last update;(v) in S preceding
snapshot()

Let C, and C, be two scans that returned [X,,...,Xy]

readi() x; readi() x
C, C,

No update(.)

Returns the linearized here!

argument of the
last update(.)!

© 2015 P. Kuznetsov 12

Correctness: lock-freedom

An update;() operation is wait-free (returns in a finite
number of steps)

Suppose process p; executing snapshot() eventually
runs in isolation (no process takes steps

concurrently)
= All scans received by p, are distinct
« At least one process performs an update between

« There are only finitely many processes => at least
one process executes infinitely many updates

What if base registers are regular?

© 2015 P. Kuznetsov 13

General case: helping?

What if an update interferes with a snapshot?
« Make the update do the work!

upon snapshot() upon update(v)

[y1,--yn] i=scan(Ry,...,.Ry)

if [yq,...,¥n] = [Xq5--0,X5] then
return [X,...,Xy]

S := snapshot()
R..write(v,S)

else | If two scans

let | be such that differ - some
xzy;and x.=(u,U) update succeeded

return lJ to snapshot!

Would this work?

© 2015 P. Kuznetsov 4

Not that easy!

update,(1) ok
Pi o | : ﬁl =
snapshot() [0,0,0] write,(1,[0,0,
snapshot,() [0,0,0]
[0,0,1] [1,0,1]
P>
scan() scan()

update;(1) ok

~

write;(1,10,0,

© 2015 P. Kuznetsov 15

General case: wait-free atomic snapshot

upon snapshot() upon update.(v)
[Xq,...,X\]:= scan(Ry,...,Ry) S := snapshot()
while true do R..write(v,S)

[y]_l"‘lyN] = [X]_I"'IXN]
[Xq,...,Xp]:= scan(Ry,...,Ry)

It 1ygesyn] = Xy, xy] then If a process moved
return [X,,...,X\] twice: its last
else if moved,and x; # y; then snapshot is valid!
let x; = (u,U)
return U

for each j: moved; := moved; Vx #y,

© 2015 P. Kuznetsov 16

Correctness: wait-freedom

Claim 1 Every operation (update or snapshot) returns
in O(N?) steps (bounded wait-freedom)

shapshot: does not return after a scan if a concurrent
process moved and no process moved twice

« At most N-1 concurrent processes, thus
(pigeonhole), after N scans:
v Either at least two consecutive identical scans
v'Or some process moved twice!

update: snapshot() + one more step

© 2015 P. Kuznetsov 17

Correctness: linearization points

update;(v): linearize at the R..write(v,S)
complete snapshot()
» |f two identical scans: between the scans

- Otherwise, if returned U of p;: at the linearization
point of p;" s snapshot

snapshot() [0,1,0]
[0,0,0] [0.1,0] [0,2,0]
P
scan() scan()

update,(1) ok update,(2) ok

y —

© 2015 P. Kuznetsov 18

The linearization Is:

« Legal: every snapshot operation returns the
most recent value for each process

« Consistent with the real-time order: each
linearization point is within the operation’ s
Interval

= Equivalent to the run (locally
indistinguishable)

(Full proof in the lecture notes, Chapter 6)

© 2015 P. Kuznetsov 19

One-shot atomic snapshot (AS)

Each process p;:
update (v,
S; := shapshot()

(one position per
process)

© 2012 P. Kuznetsov

Vectors S, satisfy:

= Self-inclusion: for all i: v, is in
S.

= Containment: for all i and j:
S;is subset of S;or §; is
subset of S,

20

“Unbalanced” snapshots

p, sees p, but misses
its snapshot

update (1) ok snapshot() [1,1,0]
Pi E E g
update,(1) ok snapshot() [1,1,1]

p, —HF—————H—

snapshot() [1,1,1]

133—$_$_>

update,(1) ok

© 2012 P. Kuznetsov 21

Enumerating possible runs:
two processes

Each process p; (i=1,2):
update;(v;)
S; := snapshot()

Three cases to consider:
(a) p, reads before p, writes
(b) p, reads before p, writes

(c) p; and p, go “lock-step™:

first both write, then both
read

© 2012 P. Kuznetsov

P . . g (a)
p, — 9§

P . .' (b)
p, §——

P . . g ©)
p, §—

22

Quiz: atomic snapshots

Prove that one-shot atomic snapshot satisfies
self-inclusion and containment:

= Self-inclusion: for all i: v, isin S,

= Containment: for alliand j: §; is subset of S;or S; is
subset of S,

© 2015 P. Kuznetsov 23

Bibliographic project

= 15 mins presentation of a research paper + 5 mins
discussion

v'"What is the problem? What is its motivation?
v'"What is the idea of the solution?

v'"What is new and what is interesting here?
e Technical details: less necessary

» Final grade = 1/3 for the presentation (April 22) + 2/3 exam
(April 24)

= The list of papers (with pdfs) and the link to a form to
submit your choice:

v'http://perso.telecom-paristech.fr/~kuznetso/INF346-2015/
v'By March, 2015

© 2015 P. Kuznetsov 24

Algorithms for Concurrent
Systems

Implementing an atomic bit

MPRI, period 1, 2015

© 2015 P. Kuznetsov

The space of registers

« Nb of writers and readers:
from 1W1R to NWNR # readers/writers

« Size of the value set: from !
binary to multi-valued

« Safety properties: safe,

regular, atomic /\

safety property

value set

All registers are (computationally) equivalent!

© 2015 P. Kuznetsov 26

Transformations

From 1W1R binary safe to TWNR multi-valued atomic

. From safe to regular (1W1R)

. From one-reader to multiple-reader (regular
binary or multi-valued)

. From binary to multi-valued (1WNR regular)

Iv. From 1TW1R regular to TW1R atomic
(unbounded)

V. From 1TW1R atomic to 1TWNR atomic
(unbounded)

v Can be turned into bounded using bounded (in n) sequence numbers

27

This class

= The problem: implement a binary 1W1R
atomic register (atomic bit) from binary 1W1R
safe ones (safe bits)
v'From a few safe bits only
v"No unbounded multi-valued registers
v'No ever-growing timestamps

28

An optimal solution

« No sequence numbers?
» Bounded number of safe bits, O(1)?
» Bounded number of base actions, O(1)?

Can we do it if the reader does not write?

29

Safe bit to regular bit? Easy

= the writer is allowed only to change the value

write(1) write(1)
__________________ |
P ‘ ‘ :_' _________________ ,'
read()=>1

, T — T

Can we get an atomic bit this way?

30

Impossible if the reader does not write
for bounded # of regular bits!

Proof sketch (by contradiction):

= Suppose only the writer executes writes on the
base (regular) bits.

« Every write operation W(1) is a sequence of writes
actions w,, ...w, on base regular bits

v'Corresponds to the sequence of shared-memory states
So,S1,---,S¢ (defined for sequential runs)

© 2015 P. Kuznetsov 31

Proof (contd): digests

There are only finitely many states!

(bounded # of base registers)

Each sequence s,,s,,...,S, of states (though possibly

unbounded) defines a bounded digest d,,d,...,d,,

v’ dg=S,, d.,=S, (same global state transition)

v dy=s, => i=j (all digest elements are distinct)

v for all (d;,d,,,), exists (s;s;,1) such that s;=d; and s;,;=d,,
7,4,8,4,2,8,3 =>7,4,8,3

Each write operation “looks” like its digest

There are only finitely many digests!

© 2015 P. Kuznetsov 32

Proof (contd.): counter-example

« Consider a run with infinitely many alternating writes:
W, (1),W(0),W,(1),... (no reads)
v'Writes W,,W.,,... give an infinite sequence of digests D,,D.,

= At least one digest D=d,,d,,...,d, appears infinitely
often in D,,D.,,...

v'Why?

« We can amend our run with a sequence of reads
R,,R;,...,R,, (in that order), each R, “sees” state
dm-i

v'How?

© 2015 P. Kuznetsov 33

Proof (contd.): the “switch”

- R, “sees” d,, and, thus, returns 1
v'Could have happened right after W(1)

- R, “sees” d, and, thus, returns 0
v'Could have happened right before W(1)

= There exists | such that R, returns 1 and R,
returns O (by induction on i=0,...,m)

© 2015 P. Kuznetsov 34

Proof (contd.): contradiction

= The (sequential) execution of R, and R, is
indistinguishable (to the reader) from a
concurrent one

write(1) write to a base bit ok

New-old inversion!

© 2015 P. Kuznetsov

35

The reader must write

» And the writer must read
« But how the writer would tell what it read?
v'The writer needs at least two bits!
v'Why?
» Suppose the writer writes to one bit only
v there are exactly two digests 0,1 and 1,0
v’ suppose infinitely many W(1) operations export digests 0,1
v'new-old inversion:

write(1) change the base bit ok
| , fromOto1l : |
p]_ I | | I
read() 1 read() 0

| | | |
P> I I I I

© 2015 P. Kuznetsov

36

Optimal construction?

= Two bits for the writer
v' REG: for storing the current value
v" WR: for signaling to the reader

= One bit for the reader
v'RR: for signaling to the writer

Necessary, but is it also sufficient?

© 2015 P. Kuznetsov

37

Evolutionary approach: lteration 1

The reader should be able to distinguish the two
cases:

v'A new value was written: WR=RR:
v'The value is unchanged: WR=RR:

Writer: Reader:
change REG if WR#RR then change RR
if WR=RR then change WR val:= REG

return val

Does not work: the read value does not depend on RR

© 2015 P. Kuznetsov 38

lteration 2

Return the “old” value if nothing changed

(local variable val initialized to the initial value
of REG)

Writer: Reader:
change REG if WR=RR then return val
If WR=RR then change WR change RR

val:= REG

return val

© 2015 P. Kuznetsov 39

Counter-example 2

Does not work? r, reads the new value and r, reads the
old one

wi=write(1) wo=write () ws=write(1)
change REG
Writer
r1 return 1 o return O
RR #WR read 1 m REG read 0 in REG
Reader -
change RR RR #WR

© 2015 P. Kuznetsov 40

Counter-example 2, corrected

Does not work: a read finds WR#RR, a subsequent
read finds WR#RR and reads an old value in
REG (new-old inversion)

Writer

Reader

wy=write(1)

wo=write(0)

change WR change REG
[1] | |
change REG
r1 return 1 79 return 0 73 return 1
RR#WR read 1 RR#WR read 0 read 1
NN L]
change RR RR=WR change RR RR#WR

© 2015 P. Kuznetsov

41

lteration 3

Only change RR if needed

(read REG before, because otherwise we do not fix the
counter-example)

Writer: Reader:
if WR=RR then return val
change REG val:= REG
if WR=RR then change WR if WR#RR change RR
return val

Construct a counter-example?

© 2015 P. Kuznetsov 42

Counter-example 3

Does not work: a read sets RR=WR while the value
In val has been overwritten

w=write(1) wo=write(0)
Writer
1 return 1 o return 1
RRAWR RR#WR
Reader
read 1 change RR

Solution: check WR again before returning the value

© 2015 P. Kuznetsov 43

lteration 4

Read WR twice, if WR changed while the read
IS executed, return a conservative (old) value

Writer: Reader:
if WR=RR then return val
change REG Jux ‘= REG
if WR=RR then change WR if WR#RR change RR
val:= REG

if WR=RR then return val
return aux

© 2015 P. Kuznetsov 44

Counter-example 4

Still a problem: the value stored in val can be
too conservative

wy=write(1) wo=write(0)
change REG RR=WR change WR
Writer
.l return 0 79 return 1
read 0 change RR RRZAWR | | RR=WR
Reader

RR#AWR read 1
to val

Solution: evaluate val again

© 2015 P. Kuznetsov 45

Final solution [Tromp, 1989]

Writer protocol Reader protocol

change REG

it WR=RR then (1) if WR=RR then return val

change WR (2) aux = REG

3) If WR#RR then change RR
4) val :=REG
5) iIf WR=RR then return val
6) val := REG
(7)

46

Proof sketch: reading functions

A reading function 1t for each complete read operation r
(returning v), 1i(r) is a write operation w(v)

Show that for every run of the algorithm, there exists an
atomic reading function Tt

(AO) No read r precedes 11(r)
No read returns a value not yet written

(A1) w precedes r => w=r1(r) or w precedes 11(r)
No read obtains an overwritten value

(A2) ry precedes r, => T1(r,) does not precede Ti(r4)
No new/old inversion

A run is linearizable iff an atomic reading function exists
(Chapter 4.2.4 of the lecture notes)

© 2015 P. Kuznetsov 47

Proof: constructing 1t

Let r return a value v

Let p, be the read of REG that got the value of r
v If rreturns in line 7, p, is the read action in line 2 of r
v If rreturns in line 5, p, is is the read action in line 4

v If r returns in line 1, p, is is the read in line 4 or 6 of
some previous r' (depending on how r’ returns)

Let ¢, be the last write action on REG that
precedes or is concurrent to p, and writes the
value returned by r (and p,)

Define mi(r) as the write operation that contains ¢,

© 2015 P. Kuznetsov 48

Proof: show that rtis atomic

« AO is easy: by construction of 1, 1i(r) precedes or
IS concurrent to r

« A1? A2?
Hint: assume the contrary and come to absurdum

= A complete proof in lecture notes

« R. Guerraoui, Vukolic. A Scalable and Oblivious
Atomicity Assertion. CONCUR 2008

© 2015 P. Kuznetsov 49

