Shared memory basics

INF346, 2015

© 2015 P. Kuznetsov

Shared memory model

» Processes communicate by applying operations on
and receiving responses from shared objects

= A shared object is a state machine

v States
v'Operations/Responses
v'Sequential specification

« Examples: read-write registers, TAS,CAS,LLSC,...

P2

P1

O1 | .. Oj -~ OM

Read-write register

« Stores values (in a value set V)

« Exports two operations: read and write
v'"Write takes an argument in V and returns ok

v'Read takes no arguments and returns a value
inV

Shared memory guarantees

Processes invoke operations on the shared
objects and:

= Liveness: the operations eventually return
something

« Safety: the operations never return anything
Incorrect

Liveness

« An operation is complete if its invocation is
followed by a matching response

v'write(v) -> ok
vread() -> a value in V

= A process invoking an operation may fail (stop
taking steps) before receiving a response

= A process is correct (in a given run) if it never
fails

Under which condition a correct process makes
progress? 5

Wait-freedom: unconditional progress

Every operation invoked by a correct process
eventually completes

All objects considered in this class are wait-free

We consider well-formed runs: a process never
invokes an operation before returning from the
previous invocation

A shared memory run

write(0) ok write(l) ok

read) O write(2)

p3__'|—_|—'><

A shared memory run

write(0) ok write(l) ok

read) ? read() ?

p—t—t T

Operation precedence

« Operation op1 precedes operation op2 in a
run R if the response of op1 precedes (in
global time) the invocation of op2 in R

= |f neither op1 precedes op2 nor op2 precedes
op1 than op1 and op2 are concurrent

Operation precedence

10

Safety (registers)

Informally, every read operation returns the
“last” written value (the argument of the
“last” write operation)
v'What does the “last” mean?
v'"What if operations overlap?

11

Safety criteria

» Safe registers: every read that does not overlap with
a write returns the last written value

« Regqular registers: every read returns the last written
value, or the concurrently written value

(assuming one writer)

= Atomic reqgisters: the operations can be totally
ordered, preserving legality and precedence
(linearizability)

v~ if read1 returns v, read2 returns v’ , and read1 precedes
read2, then write(v’) cannot precede write(v)

12

Safe register

write(0) ok write(l) ok

read)) 3 read() 2

p—t—t T

13

write(0)

ok

Regqgular register

write(l) ok

14

Atomic register

write(0) ok write(1) ok

read) O read() 1

P ———————————

15

Space of registers

» Values: from binary (V={0,1}) to multi-valued

= Number of readers and writers: from 1-writer

1-reader (1W1R) to multi-writer multi-reader
(NWNR)

» Safety criteria: from safe to atomic

1W1R binary safe registers can be used to
iImplement

an NWNR multi-valued atomic registers!

16

Transformations

From 1W1R binary safe to TWNR multi-valued atomic

. From safe to regular (1W1R)

. From one-reader to multiple-reader (regular
binary or multi-valued)

. From binary to multi-valued (1WNR regular)
Iv. From regular to atomic (1W1R)
v. From 1W1R to 1TWNR (multi-valued atomic)

17

1WNR binary safe -> 1TWNR binary regular
Let p1 be the only writer and O be the initial value

Code for process p1:

initially:
shared 1WNR safe register R := 0
lv := 0 \\ last written wvalue

upon write (v)
1f v # 1v then
v = v
R.write (v)
return ok

upon read ()
return R.read()

18

1WNR binary safe -> 1TWNR binary regular

» Correctness:
v'R is touched only to change its value

v both 0 and 1 are legal values in case of
concurrency!

write(1) write(1) write(0)

19

Transformations

From 1W1R binary safe to TWNR multi-valued atomic

. From safe to regular (1W1R)

. From one-reader to multiple-reader (regular
binary or multi-valued)

. From binary to multi-valued (1WNR regular)
Iv. From regular to atomic (1W1R)
v. From 1W1R to 1TWNR (multi-valued atomic)

20

1W1R (binary regular) -> TWNR (binary

regular)
Let p1 be the only writer and O be the initial value

Code for process pi:

initially:
shared R[1..N] (1WlR binary regular registers) := OV
// R[i] is written by pl and read by pi

upon read()
return R[i].read()

upon write(v) // if i=1

for all j do R[j].write(V)
return ok

21

1W1R (binary regular) -> TWNR (binary
regular)

» Correctness:

v’enough to consider a read that does not overlap
with any write

v'the last written value cannot be missed
= Works also for multi-valued and safe registers

What if 1W1R reqisters are atomic?

22

Transformations

From 1W1R binary safe to TWNR multi-valued atomic

. From safe to regular (1W1R)

. From one-reader to multiple-reader (regular
binary or multi-valued)

. From binary to multi-valued (1WNR regular)
Iv. From regular to atomic (1W1R)
v. From 1W1R to 1TWNR (multi-valued atomic)

© 2015 P. Kuznetsov 23

Binary -> M-valued (1WNR regular)
Code for process pi:

initially:
shared array R[0,..M-1] of 1IWNR registers := [1,0,..,0]

upon read/()
for 3 = 0 to M-1 do

1f R[J].read() = 1 then return j

upon write(v) // if i=1
R[v].write (1)
for j=v-1 down to 0 do R[J].write (0)
return ok

© 2015 P. Kuznetsov 24

Binary -> M-valued (1WNR regular)

= Correctness:

v'only the last or concurrently written value can be
returned

v'every operation returns in O(M) steps

© 2015 P. Kuznetsov 25

Quiz 1: what if?

Code for process pi:
initially:
shared array R[0,..M-1] of 1WNR registers :=[1,0,...,0]

upon read()
forj =0 to M-1 do

if R[j].read() = 1 then return j

upon write(v) //if i=1
R[v].write(1)
for j=0 to v-1 do R[j].write(0)
return ok

© 2015 P. Kuznetsov

26

Quiz 2: what if?

Code for process pi:
initially:
shared array R[0,..M-1] of 1WNR registers :=[1,0,...,0]

upon read()
forj =0 to M-1 do

if R[j].read() = 1 then return j

upon write(v) //if i=1
for j=v-1 down to 0 do R[j].write(0)
R[v].write(1)
return ok

© 2015 P. Kuznetsov

27

Quiz 3: why not atomic?

« Can we find an execution that is not atomic?
v“new-old” inversion:
v'R1 precedes R2

v'R1 returns the new value, and R2 returns the old
value

© 2015 P. Kuznetsov 28

Transformations

From 1W1R binary safe to TWNR multi-valued atomic

. From safe to regular (1W1R)

. From one-reader to multiple-reader (regular
binary or multi-valued)

. From binary to multi-valued (1WNR regular)
Iv. From regular to atomic (1W1R)
v. From 1W1R to 1TWNR (multi-valued atomic)

© 2015 P. Kuznetsov 29

Histories

A history is a sequence of invocation and
responses

E.g., p1-write(0), p2-read(),p1-ok,p2-0,...

A history is sequential if every invocation is
immediately followed by a corresponding
response

E.qg., p1-write(0), p1-ok, p2-read(),p2-0,...

(A sequential history has no concurrent operations)

© 2015 P. Kuznetsov 30

Histories

write(O) - ok write(1) - ok

pl

read() - 1

p2

read()-3 read()

p3

History:
pl-write(0); pl-ok; p3-read(); pl-write(1); p3-3; p3-read(); pl-ok;
p2-read(); p2-1

© 2015 P. Kuznetsov 31

Histories

write(O) - ok write(1) - ok

pl

read() - 1

p2

read()-3 read()

p3

History:
pl-write(0); pl-ok; p3-read(); p3-3; pl-write(1); pl-ok; p2-read();
p2-1; p3-read();

© 2015 P. Kuznetsov 32

Legal histories

A sequential history is /egal if it satisfies the
sequential specification of the shared object

Read-write reqisters:

Every read returns the argument of the last
write

(well-defined for sequential histories)

33

Complete operations and completions

Let H be a history

An operation op is complete in H if H contains
both the invocation and the response of op

A completion of H is a history H" that includes
all complete operations of H and a subset of
iIncomplete operations of H followed with
matching responses

34

Complete operations and completions

write(0) ok write(l1) ok

pl

read() 1

p2

read() 3 read()

p3

pl-write(0); pl-ok: p3-read(); pl-write(1); p3-3;
p3-read(); pl -ok; p2-read(); p2-1:

35

Complete operations and completions

write(0) ok write(l1) ok

pl

read() 1

p2

read) 3 read() 100

p3

pl-write(0). pl-ok:; p3-read(). pl-write(1); p3-3:;
p3-read(); pl -ok: p2-read(); p2-1; p3->100

36

Complete operations and completions

write(0) ok write(l1) ok

pl

read() 1

p2

read() 3

p3

pl-write(0); pl-ok; p3-read(); pl-write(1); p3-3; pl-ok; p2-read();
p2-1

37

Equivalence

Histories H and H' are equivalent if for all pi

E.Q.:

H=p1-Write(O); p1'0k; p3-read(); p3-3
H' =p,-write(0); p5-read(); p;-ok; ps-3

38

Linearizability (atomicity)

A history H is linearizable if there
legal history S such that:

exists a sequential

= S is equivalent to some completion of H

« S preserves the precedence re
op1 precedes op2 in H => op1

ation of H:

orecedes op2 in S

What if: define a completion of H as any any complete

extension of H?

39

Sequential consistency

A history H is linearizable if there exists a sequential
legal history S such that:

= S is equivalent to some completion of H
« S preserves the per-process order of H:

pi executes op1 before op2 in H => pi executes op1
before op2 in S

Why (strong) linearizability and not (weak)
sequential consistency?

© 2015 P. Kuznetsov 40

Linearizability is compositional!

= Any history on two linearizable objects Aand B is a
history of a linearizable composition (A,B)

= A composition of two registers A and B is a two-field
register (A,B)

write(A,1) ok write(B,1) ok

pl

read(B) 1 read(A) 1

p2

41

Sequential consistency is not!

« A composition of sequential consistent objects
IS not always sequentially consistent!

write(A,1) ok write(B,1) ok

pl

read(B) 1 read(A) 0

p2

42

Linearizability is nonblocking

Every incomplete operation in a finite history
can be independently completed

enq(2) ok

pl

eng(1) ok deq()

p2

What safety property is blocking?

© 2015 P. Kuznetsov 43

Linearizability as safety

« Prefix-closed: every prefix of a linearizable
history is linearizable

« Limit-closed: the limit of a sequence of
linearizable histories is linearizable

(see Chapter 2 of the lecture notes)

An implementation is linearizable if and only if
all its finite histories are linearizable

© 2015 P. Kuznetsov 44

Atomic registers

A register is atomic if every history it produces
IS linearizable

Informally, the complete operations (and some
incomplete operations) are seen as taking
effect instantaneously at some time between
their invocations and responses

(The operations are atomic)

© 2015 P. Kuznetsov 45

Atomic?

write(0) ok write(1) ok

read) O read() 1

P ———————————

© 2015 P. Kuznetsov 46

Atomic?

write(0) ok write(l1) ok

pl—l—o—l—l—o—l—v

read() 1

N A

read() O write(3) ok TIncorrect valuel

p34|_°‘|—|—"|—’

© 2015 P. Kuznetsov 47

Atomic?

write(0) ok write(l1) ok

read() O write(3) ok

P —————1—————

© 2015 P. Kuznetsov 48

Atomic?

write(0) ok write(l) ok

R e

read() 1

Y E—

read() O write(3) ok TIncorrect valuel

p34|_|—|_|—’

© 2015 P. Kuznetsov 49

Atomic?

write(0) ok write(1) ok

read() 1 write(3)

50

Atomic?

write(0) ok write(l1) ok

read) 1 write(3)

© 2015 P. Kuznetsov 51

Atomic?

write(0) ok write(1) ok

© 2015 P. Kuznetsov 52

From 1TW1R regular to TW1R atomic

write(0) ok write(1) ok

R

read) 1 read() O

P

Write a timestamp?

53

1WA1R reqgular -> 1W1R atomic

Code for process pi:

initially:
shared 1W1R regular register R := 0
local wvariables t := 0, x := 0

upon read ()
(t’,x") := R.read()
1f t7 > t then t:=t’; :=x";

return (x)

upon write (v) // if 1i=1
t:=t+1
R.write(t,v)

54

Transformations

From 1W1R binary safe to TWNR multi-valued atomic

. From safe to regular (1W1R)

. From one-reader to multiple-reader (regular
binary or multi-valued)

. From binary to multi-valued (1WNR regular)
Iv. From regular to atomic (1W1R)
v. From 1W1R to TWNR (multi-valued atomic)

© 2015 P. Kuznetsov 55

Transformations-I

From safe to regular (binary 1TW1R)
= Writer touches shared memory only to change

= A concurrent read is allowed to return any
value (O or 1)

© 2015 P. Kuznetsov 56

Transformations-l|

From one-reader to multiple-reader (regular
binary or multi-valued)

= Every reader is assigned a dedicated register
to read

= Writer writes in all
» Reader reads its own register

© 2015 P. Kuznetsov 57

Transformations-ll|

From binary to M-valued (1WNR regular)

= Every value in {0,...,M-1}is assighed a
dedicated 1TWNR register

« Write(v) sets R[v] to 1 and sets R[v-1] ... R[0]
to O

« Read returns the smallest v such that R[v]=1

© 2015 P. Kuznetsov 58

Transformation IV

From regular to atomic (1W1R multi-valued)
= Write a timestamp with a value

= The reader returns the latest value and
ignores the old one

© 2015 P. Kuznetsov 59

Transformation IV

From regular to atomic (1W1R multi-valued)
= Write a timestamp with a value

= The reader returns the latest value and ignores the
old one

write v write V'
write([v,0]) ok write([Vv',1]) ok

o

read() [v',1] read() [v,0]

P

read v’ read v’

© 2015 P. Kuznetsov 60

Multiple readers?

write v write v’
write2([v,0]) write3([v,0]) write2([v’,1]) write3([v'.1])

pl

read2() [v',1]

P

read v’ read3() [v,0]

e — — —

?

© 2015 P. Kuznetsov o7

Multiple readers?

Does not work either!

write v write v’
write2([v,0]) write3([v,0]) write2([v’,1]) write3([v'.1])

pl

read2() [v,0]

P

read v read3() [v,0]

e — — —

?

© 2015 P. Kuznetsov o

Transformation V

shared:
matrix RR[1..N][1..N] of 1WIR atomic registers := QNN
// for all i,3, RR[1][j] is read by pi and written by p]

array WR[1l..N] of 1WIR atomic registers := 0N
// for all 1 WR[1i] is written by pl and read by pi

upon write(v) // code for pl
ts:=ts+l
for all j do WR[J].write([v,ts])
return ok

© 2015 P. Kuznetsov 63

Transformation V

upon read() // code for pi

for all 3=1,.,N do (t[3],x[73]) := RR[i][]].read()
(t[0], x[0]) := WR[i].read()
(tmax, xmax) := highest (t, x)

for all 7 do RR[]J][1].write([tmax,xmax]);

return (xmax)

(Here highest(t,x) computes the value x[j] written with the highest
timestamp t[j])

© 2015 P. Kuznetsov 64

Transformation V: correctness

If read1 returns v and read1 precedes read?2
then read2 cannot return a value that is older
than v — sufficient for proving that a one-writer
regular register is linearizable

« What if the reader does not write?
« What about multiple writers?

© 2015 P. Kuznetsov 65

Quiz 4: atomic with safe?

« Does 2-process Peterson’s lock work if we
use regular registers instead of atomic?

= Does Lamport’s Bakery algorithm work with
safe registers?

© 2015 P. Kuznetsov 66

