
©	
 2015	
 P.	
 Kuznetsov	

	

 
Shared memory basics"

INF346,	
 	
 2015	

	

2

Shared memory model"
§  Processes communicate by applying operations on

and receiving responses from shared objects!
§  A shared object is a state machine"

ü States"
ü Operations/Responses"
ü Sequential specification"

§  Examples: read-write registers, TAS,CAS,LLSC,…"

P1

P2

P3

O1 Oj OM … …

3

Read-write register"
"
§  Stores values (in a value set V)"
§  Exports two operations: read and write"

ü Write takes an argument in V and returns ok"
ü Read takes no arguments and returns a value

in V"

4

Shared memory guarantees"
"
Processes invoke operations on the shared

objects and:"
"
§  Liveness: the operations eventually return

something!
§  Safety: the operations never return anything

incorrect !

5

Liveness"
§  An operation is complete if its invocation is

followed by a matching response"
ü write(v) -> ok"
ü read() -> a value in V"

§  A process invoking an operation may fail (stop
taking steps) before receiving a response"

§  A process is correct (in a given run) if it never
fails"

Under which condition a correct process makes
progress?"

6

Wait-freedom: unconditional progress "
"
Every operation invoked by a correct process

eventually completes"
"
All objects considered in this class are wait-free"
"
We consider well-formed runs: a process never

invokes an operation before returning from the
previous invocation "

"
"

7

A shared memory run"

p1

p2

p3

 write(1) ok

read() 1

 read() 0

 write(0) ok

write(2)

8

A shared memory run"

p1

p2

p3

 write(1) ok

read() ?

 read() ?

 write(0) ok

 read() ?

9

Operation precedence"

§  Operation op1 precedes operation op2 in a
run R if the response of op1 precedes (in
global time) the invocation of op2 in R"

§  If neither op1 precedes op2 nor op2 precedes
op1 than op1 and op2 are concurrent"

10

Operation precedence"

p1

p2

p3

op5

op1 op3

op2 op4

11

Safety (registers)"
"
Informally, every read operation returns the
“last” written value (the argument of the
“last” write operation)"
ü What does the “last” mean?"
ü What if operations overlap?"

12

Safety criteria"

§  Safe registers: every read that does not overlap with
a write returns the last written value "

§  Regular registers: every read returns the last written
value, or the concurrently written value "

(assuming one writer)"
"
§  Atomic registers: the operations can be totally

ordered, preserving legality and precedence
(linearizability)"
ü ≈ if read1 returns v, read2 returns v’, and read1 precedes

read2, then write(v’) cannot precede write(v) "

13

Safe register"

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 3 read() 2

14

Regular register"

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 1 read() 0

15

Atomic register"

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 0 read() 1

16

Space of registers"

§  Values: from binary (V={0,1}) to multi-valued"
§  Number of readers and writers: from 1-writer

1-reader (1W1R) to multi-writer multi-reader
(NWNR) "

§  Safety criteria: from safe to atomic"
"
"1W1R binary safe registers can be used to

implement "
an NWNR multi-valued atomic registers!"

17

Transformations"
From 1W1R binary safe to 1WNR multi-valued atomic"

I.  From safe to regular (1W1R)"
II.  From one-reader to multiple-reader (regular

binary or multi-valued)"
III.  From binary to multi-valued (1WNR regular)"
IV.  From regular to atomic (1W1R)"
V.  From 1W1R to 1WNR (multi-valued atomic)"

18

1WNR binary safe -> 1WNR binary regular"
Let p1 be the only writer and 0 be the initial value"
"
Code for process p1:"
""
"initially:
 shared 1WNR safe register R := 0
 lv := 0 \\ last written value

 upon write(v)
 if v ≠ lv then
 lv := v
 R.write(v)
 return ok

 upon read()
 return R.read()

19

1WNR binary safe -> 1WNR binary regular"

§  Correctness: "
ü R is touched only to change its value"
ü  both 0 and 1 are legal values in case of

concurrency!"

p1

p2

write(1)

read() 1

write(1) write(0)

read() 0

p3
read() 1 read() 0

20

Transformations"
From 1W1R binary safe to 1WNR multi-valued atomic"

I.  From safe to regular (1W1R)"
II.  From one-reader to multiple-reader (regular

binary or multi-valued)"
III.  From binary to multi-valued (1WNR regular)"
IV.  From regular to atomic (1W1R)"
V.  From 1W1R to 1WNR (multi-valued atomic)"

21

1W1R (binary regular) -> 1WNR (binary
regular)"

Let p1 be the only writer and 0 be the initial value"
"
Code for process pi:"
""

initially:!
!shared R[1..N] (1W1R binary regular registers) := 0N !
! !// R[i] is written by p1 and read by pi !

!
upon read()!
!return R[i].read()!

upon write(v) // if i=1 !
!for all j do R[j].write(v)!
!return ok!

22

1W1R (binary regular) -> 1WNR (binary
regular)"

"
§  Correctness: "

ü enough to consider a read that does not overlap
with any write"

ü the last written value cannot be missed"

§  Works also for multi-valued and safe registers"

What if 1W1R registers are atomic?"
"

23 ©	
 2015	
 P.	
 Kuznetsov	
 	

Transformations"
From 1W1R binary safe to 1WNR multi-valued atomic"

I.  From safe to regular (1W1R)"
II.  From one-reader to multiple-reader (regular

binary or multi-valued)"
III.  From binary to multi-valued (1WNR regular)"
IV.  From regular to atomic (1W1R)"
V.  From 1W1R to 1WNR (multi-valued atomic)"

24 ©	
 2015	
 P.	
 Kuznetsov	
 	

Binary -> M-valued (1WNR regular) "
Code for process pi:"
""

initially:
 shared array R[0,..M-1] of 1WNR registers := [1,0,…,0]

upon read()
 for j = 0 to M-1 do

 if R[j].read() = 1 then return j

upon write(v) // if i=1
 R[v].write(1)
 for j=v-1 down to 0 do R[j].write(0)
 return ok

25 ©	
 2015	
 P.	
 Kuznetsov	
 	

Binary -> M-valued (1WNR regular)"

§  Correctness: "
ü only the last or concurrently written value can be

returned"
ü every operation returns in O(M) steps "

26

Quiz 1: what if?"
Code for process pi:"
"initially:"
" "shared array R[0,..M-1] of 1WNR registers := [1,0,…,0] "

"
"upon read()"
" "for j = 0 to M-1 do"
" " "if R[j].read() = 1 then return j "

"
"upon write(v) // if i=1 "
" "R[v].write(1) "

"for j=0 to v-1 do R[j].write(0)"
" "return ok"

©	
 2015	
 P.	
 Kuznetsov	
 	

27

Quiz 2: what if?"
Code for process pi:"
"initially:"
" "shared array R[0,..M-1] of 1WNR registers := [1,0,…,0] "

"
"upon read()"
" "for j = 0 to M-1 do"
" " "if R[j].read() = 1 then return j "

 upon write(v) // if i=1 "
" "for j=v-1 down to 0 do R[j].write(0)"
" "R[v].write(1) "
" "return ok"

©	
 2015	
 P.	
 Kuznetsov	
 	

28

Quiz 3: why not atomic? "

§  Can we find an execution that is not atomic?"
ü “new-old” inversion:"
ü R1 precedes R2"
ü R1 returns the new value, and R2 returns the old

value "

©	
 2015	
 P.	
 Kuznetsov	
 	

29 ©	
 2015	
 P.	
 Kuznetsov	
 	

Transformations"
From 1W1R binary safe to 1WNR multi-valued atomic"

I.  From safe to regular (1W1R)"
II.  From one-reader to multiple-reader (regular

binary or multi-valued)"
III.  From binary to multi-valued (1WNR regular)"
IV.  From regular to atomic (1W1R)"
V.  From 1W1R to 1WNR (multi-valued atomic)"

30 ©	
 2015	
 P.	
 Kuznetsov	
 	

Histories"
"
A history is a sequence of invocation and

responses"
"E.g., p1-write(0), p2-read(),p1-ok,p2-0,…"

"
A history is sequential if every invocation is

immediately followed by a corresponding
response"
"E.g., p1-write(0), p1-ok, p2-read(),p2-0,…"

"
(A sequential history has no concurrent operations)"
"

31 ©	
 2015	
 P.	
 Kuznetsov	
 	

Histories"

p1

p2

p3

 write(1) - ok

read() - 1

 write(0) - ok

 read()-3 read()

	
 History:	
 	

p1-­‐write(0);	
 p1-­‐ok;	
 p3-­‐read();	
 p1-­‐write(1);	
 p3-­‐3;	
 	
 	
 	
 p3-­‐read();	
 p1-­‐ok;	

p2-­‐read();	
 p2-­‐1	

32 ©	
 2015	
 P.	
 Kuznetsov	
 	

Histories"

p1

p2

p3

 write(1) - ok

read() - 1

 write(0) - ok

 read()-3 read()

	
 History:	
 	

p1-­‐write(0);	
 p1-­‐ok;	
 p3-­‐read();	
 p3-­‐3;	
 p1-­‐write(1);	
 	
 	
 	
 p1-­‐ok;	
 p2-­‐read();	

p2-­‐1;	
 p3-­‐read();	
 	

33

Legal histories"
"
A sequential history is legal if it satisfies the

sequential specification of the shared object"
"
Read-write registers:"
"Every read returns the argument of the last
write"

"
(well-defined for sequential histories)"

34

Complete operations and completions"
"
Let H be a history"
An operation op is complete in H if H contains

both the invocation and the response of op"
A completion of H is a history H’ that includes

all complete operations of H and a subset of
incomplete operations of H followed with
matching responses "
"

35

Complete operations and completions"

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 3 read()

 p1-write(0); p1-ok; p3-read(); p1-write(1); p3-3;
p3-read(); p1 –ok; p2-read(); p2-1;

36

Complete operations and completions"

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 3 read()

 p1-write(0); p1-ok; p3-read(); p1-write(1); p3-3;
p3-read(); p1 –ok; p2-read(); p2-1;

 100

p3->100

37

Complete operations and completions"

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 3

	
 p1-­‐write(0);	
 p1-­‐ok;	
 p3-­‐read();	
 p1-­‐write(1);	
 p3-­‐3;	
 	
 	
 p1-­‐ok;	
 p2-­‐read();	

p2-­‐1	

38

Equivalence"
Histories H and H’ are equivalent if for all pi "

H|pi = H’|pi"
"

E.g.:"
"

H=p1-write(0); p1-ok; p3-read(); p3-3"
H’=p1-write(0); p3-read(); p1-ok; p3-3"
"
"

"

39

Linearizability (atomicity)"
"
A history H is linearizable if there exists a sequential

legal history S such that:"
§  S is equivalent to some completion of H"
§  S preserves the precedence relation of H:"
"op1 precedes op2 in H => op1 precedes op2 in S "
"

"
What if: define a completion of H as any any complete

extension of H?"

40

Sequential consistency"
A history H is linearizable if there exists a sequential

legal history S such that:"
§  S is equivalent to some completion of H"
§  S preserves the per-process order of H:"
"pi executes op1 before op2 in H => pi executes op1
before op2 in S "

"
Why (strong) linearizability and not (weak)

sequential consistency? "
"

"
"
"

©	
 2015	
 P.	
 Kuznetsov	
 	

41

Linearizability is compositional!"
§  Any history on two linearizable objects A and B is a

history of a linearizable composition (A,B)"

§  A composition of two registers A and B is a two-field
register (A,B)"

"

p1

p2

 write(B,1) ok

read(A) 1

 write(A,1) ok

 read(B) 1

42

Sequential consistency is not!"
§  A composition of sequential consistent objects

is not always sequentially consistent!"
"

p1

p2

 write(B,1) ok

read(A) 0

 write(A,1) ok

 read(B) 1

43

Linearizability is nonblocking"
Every incomplete operation in a finite history
can be independently completed"

"
What safety property is blocking?"

"
©	
 2015	
 P.	
 Kuznetsov	
 	

p1

p2

enq(2) ok

 enq(1) ok deq()

44

Linearizability as safety"
§  Prefix-closed: every prefix of a linearizable

history is linearizable"
§  Limit-closed: the limit of a sequence of

linearizable histories is linearizable"
"
(see Chapter 2 of the lecture notes)"
"
An implementation is linearizable if and only if
all its finite histories are linearizable"
"
" ©	
 2015	
 P.	
 Kuznetsov	
 	

45 ©	
 2015	
 P.	
 Kuznetsov	
 	

Atomic registers"
A register is atomic if every history it produces

is linearizable"
"
Informally, the complete operations (and some

incomplete operations) are seen as taking
effect instantaneously at some time between
their invocations and responses"

"
(The operations are atomic)"

46 ©	
 2015	
 P.	
 Kuznetsov	
 	

Atomic?"

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 0 read() 1

47 ©	
 2015	
 P.	
 Kuznetsov	
 	

Atomic?"

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 0 write(3) ok Incorrect value!

48 ©	
 2015	
 P.	
 Kuznetsov	
 	

Atomic?"

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 0 write(3) ok

49 ©	
 2015	
 P.	
 Kuznetsov	
 	

Atomic?"

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 0 write(3) ok Incorrect value!

50

Atomic?"

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 1 write(3)

51 ©	
 2015	
 P.	
 Kuznetsov	
 	

Atomic?"

p1

p2

p3

 write(1) ok

read() 3

 write(0) ok

 read() 1 write(3)

52 ©	
 2015	
 P.	
 Kuznetsov	
 	

Atomic?"

p1

p2

p3

write(1) ok

read() 0

 write(0) ok

 read() 1

53

From 1W1R regular to 1W1R atomic"

p1

p2

 write(1) ok

read() 0

 write(0) ok

read() 1

Write a timestamp?"

54

1W1R regular -> 1W1R atomic"
Code for process pi:"
"
"initially:
 shared 1W1R regular register R := 0
 local variables t := 0, x := 0

 upon read()
 (t’,x’) := R.read()
 if t’ > t then t:=t’; x:=x’;
 return(x)

 upon write(v) // if i=1
 t:=t+1
 R.write(t,v)

55 ©	
 2015	
 P.	
 Kuznetsov	
 	

Transformations"
From 1W1R binary safe to 1WNR multi-valued atomic"

I.  From safe to regular (1W1R)"
II.  From one-reader to multiple-reader (regular

binary or multi-valued)"
III.  From binary to multi-valued (1WNR regular)"
IV.  From regular to atomic (1W1R)"
V.  From 1W1R to 1WNR (multi-valued atomic)"

56 ©	
 2015	
 P.	
 Kuznetsov	
 	

Transformations-I"

From safe to regular (binary 1W1R)!
§  Writer touches shared memory only to change"
§  A concurrent read is allowed to return any

value (0 or 1) "

57 ©	
 2015	
 P.	
 Kuznetsov	
 	

Transformations-II"
!
From one-reader to multiple-reader (regular

binary or multi-valued)!
§  Every reader is assigned a dedicated register

to read"
§  Writer writes in all"
§  Reader reads its own register"

58 ©	
 2015	
 P.	
 Kuznetsov	
 	

Transformations-III"

From binary to M-valued (1WNR regular)!
§  Every value in {0,…,M-1} is assigned a

dedicated 1WNR register "
§  Write(v) sets R[v] to 1 and sets R[v-1] … R[0]

to 0"
§  Read returns the smallest v such that R[v]=1"

59 ©	
 2015	
 P.	
 Kuznetsov	
 	

Transformation IV"
"
From regular to atomic (1W1R multi-valued)!
§  Write a timestamp with a value"
§  The reader returns the latest value and

ignores the old one"
""
"

60 ©	
 2015	
 P.	
 Kuznetsov	
 	

Transformation IV"
From regular to atomic (1W1R multi-valued)!
§  Write a timestamp with a value"
§  The reader returns the latest value and ignores the

old one"

p1

p2

 write([v’,1]) ok

read() [v,0]

 write([v,0]) ok

read() [v’,1]

read v’ read v’

write v write v’

61 ©	
 2015	
 P.	
 Kuznetsov	
 	

Multiple readers?"

p1

p2

 write2([v’,1])

read2() [v’,1]

read v’

write v write v’

p3

?

read3() [v,0]

 write3([v’,1]) write2([v,0]) write3([v,0])

62 ©	
 2015	
 P.	
 Kuznetsov	
 	

Multiple readers?"
Does not work either!"

p1

p2

 write2([v’,1])

read2() [v,0]

read v

write v write v’

p3

?

read3() [v,0]

 write3([v’,1]) write2([v,0]) write3([v,0])

63 ©	
 2015	
 P.	
 Kuznetsov	
 	

Transformation V"
"
shared:
 matrix RR[1..N][1..N] of 1W1R atomic registers := 0NxN
 // for all i,j, RR[i][j] is read by pi and written by pj

 array WR[1..N] of 1W1R atomic registers := 0N
 // for all i WR[i] is written by p1 and read by pi

upon write(v) // code for p1
 ts:=ts+1
 for all j do WR[j].write([v,ts])
 return ok

64 ©	
 2015	
 P.	
 Kuznetsov	
 	

Transformation V"
"
upon read() // code for pi

for all j=1,…,N do (t[j],x[j]) := RR[i][j].read()

(t[0],x[0]) := WR[i].read()
 (tmax,xmax) := highest(t,x)
 for all j do RR[j][i].write([tmax,xmax]);

 return(xmax)"
"
"
"
(Here highest(t,x) computes the value x[j] written with the highest

timestamp t[j])"

65 ©	
 2015	
 P.	
 Kuznetsov	
 	

Transformation V: correctness"
"
If read1 returns v and read1 precedes read2

then read2 cannot return a value that is older
than v – sufficient for proving that a one-writer
regular register is linearizable"

"
§  What if the reader does not write?"
§  What about multiple writers?"

"

66

Quiz 4: atomic with safe? "

§  Does 2-process Peterson’s lock work if we
use regular registers instead of atomic? "

§  Does Lamport’s Bakery algorithm work with
safe registers?"

©	
 2015	
 P.	
 Kuznetsov	
 	

