INF346: Shared-memory computing

Correctness of algorithms:
safety and liveness

INF346, 2015

© 2015 P. Kuznetsov



How to treat a (computing) system
formally

« Define models (tractability, realism)

= Devise abstractions for the system design
(convenience, efficiency)

= Devise algorithms and determine complexity bounds

© 2015 P. Kouzne tsov



Basic abstractions

= Process abstraction — an entity performing
iIndependent computation

« Communication
v'Message-passing: channel abstraction
v'Shared memory: objects

© 2015 P. Kuznetsov



Processes
= Automaton P, (i=1,...,N):

/States Application
v'Inputs

v Outputs "
v'Sequential specification |

Communication
Algorlthm = {P‘I,...,PN} ‘\’fd;')

= Deterministic algorithms
- Randomized algorithms

© 2015 P. Kouzne tsov



Shared memory

» Processes communicate by applying operations on
and receiving responses from shared objects

« A shared object instantiates a state machine

v States

v'Operations/Responses

v'Sequential specification
- Examples: read-write registers, TAS,CAS,LL/SC,...

P2

P1

T~ /Ps

O1 | .. Oj -~ OM

© 2015 P. Kouznetsov



Implementing an object

Using base objects, create an illusion that an object O
IS available

_____________________________________________________________

— Base
kblect/

ParisTech
=524 4t | © 2015 P. Kuznetsov



Correctness

What does it mean for an implementation to be
correct?

« Safety = nothing bad ever happens

v'Can be violated in a finite execution, e.g., by
producing a wrong output or sendlng an incorrect
message

v'"What the implementation is allowed to output

= Liveness = something good eventually happens
v'Can only be violated in an infinite execution, e.g.,
by never producing an expected output
v'"Under which condition the implementation outputs

ParisTech
ST © 2015 P. Kuznetsov 7



In our context

Processes access an (implemented) abstraction
(e.g., bounded buffer, a queue, a mutual
exclusion) by invoking operations

= An operation is implemented using a sequence
of accesses to base objects
» E£.g.: a bounded-buffer using reads, writes, TAS, etc.

= A process that never fails (stops taking steps) in
the middle of its operation is called correct
» We typically assume that a correct process invokes

infinitely many operations, so a process is correct if it
takes infinitely many steps

© 2015 P. Kuznetsov



Runs

A system run is a sequence of events
v'E.g., actions that processes may take

2 — event alphabet
v E.g., all possible actions

> *U=} is the set all finite and infinite runs

A property P is a subset of *U}

An implementation satisfies P if every its run is
in P

© 2015 P. Kuznetsov



Safety properties
P is a safety property if:

» P is prefix-closed: if ois in P, then each prefix of
oisin P

« P is limit-closed: for each infinite sequence of
traces o,, 04, O,,..., Such that each o; is a prefix
of 0.,, and each o; is in P, the limit trace g is in P

(Enough to prove safety for all finite traces of an
algorithm)

TELECOM
A © 2015 P. Kuznetsov 10



Liveness properties

P is a liveness property if every finite o in 2* has
an extensionin P

(Enough to prove liveness for all infinite runs)

A liveness property is dense: intersects with
extensions of every finite trace

© 2015 P. Kuznetsov 11



Safety? Liveness?

» Processes propose values and decide on values:

2 =U; ,{propose,;(v),decide;(v)}U{base-object accesses}

v'Every decided value was previously proposed
v'"No two processes decide differently

v'Every correct (taking infinitely many steps)
process eventually decides

v'No two correct processes decide differently

© 2015 P. Kouznetsov 12



Quiz: safety

1. Let S be a safety property. Show that if all finite
runs of an implementation | are safe (belong to
S) that all runs of | in are safe

2. Show that every unsafe run o has an unsafe
finite prefix o’ : every extension of ¢’ is unsafe

3. Show that every property is a mixture of a safety
property and a liveness property

ParisTech 73
=524 4t | © 2015 P. Kouzne tsov



How to distinguish safety and liveness:
rules of thumb

Let P be a property (set of runs)

= |f every run that violates P is infinite
v'P is liveness

= |f every run that violates P has a finite prefix
that violates P
v'P is safety

« Otherwise, P is a mixture of safety and
liveness

EEEEEEE
ParisTech

ﬁﬁsl © 2015 P. Kuznetsov 14



Example: implementing a
concurrent queue

What is a concurrent FIFO queue?

v FIFO means strict temporal order
v'Concurrent means ambiguous temporal order

15



When we use a lock...

shared
items|[];
tail, head := 0

deq ()

lock.lock () ;
if (tail = head)

X = empty;

else
X := items[head];
head++;

lock.unlock () ;
return x;

© Nir Shavit




Intuitively...

deq()
All modifications

lock.lock () ; = —
Lfl (tall_ﬁj= ead) of queue are done
X = empty;

else

in mutual exclusion

© Nir Shavit 17




We describe
the concurrent via the sequential

q.deq

lock unlock()
E'I de%
q.enq é? | l l i )
lock() enq unloclﬁft() g )
g ; 5 . | Behavioris

“Sequential”

J

ParisTech © . .
=TT Nir Shavit 18



Linearizability (atomicity):
A Safety Property

« Each complete operation should
v “take effect”
v'Instantaneously
v'Between invocation and response events

» A concurrent execution is correct If its
“sequential equivalent” is correct

(To be defined formally later)

EEEEEEE

ParisTech 79



Why not using one lock?

Simple — automatic transformation of the
sequential code

Correct — linearizability for free

In the best case, starvation-free: if the lock is
“fair” and every process cooperates, every
process makes progress

Not robust to failures/asynchrony

v' Cache misses, page faults, swap outs
Fine-grained locking?

v" Complicated/prone to deadlocks

© 2015 P. Kuznetsov 20



Liveness properties

Deadlock-free:

v'If every process cooperates (takes enough steps), some
process makes progress

Starvation-free:

v'If every process cooperates, every process makes
progress

Lock-free (sometimes called non-blocking):
v"Some active process makes progress

Wait-free:
v'Every active process makes progress

Obstruction-free:
v'Every process makes progress if it executes in isolation

21

© 2015 P. Kuznetsov



Periodic table of liveness properties
[© 2013 Herlihy&Shavit]

independent dependent dependent
non-blocking non-blocking blocking
every process wait-freedom obstruction- starvation-freedom
makes progress freedom
some process lock-freedom ? deadlock-freedom

makes progress

What are the relations (weaker/stronger) between these
progress properties?

© 2015 Kuznetsov 22



