
©	
 2015	
 P.	
 Kuznetsov	

	

INF346: Distributed Systems 
 

Theory and Practice"

Telecom	
 ParisTech,	
 2015	

	

2 ©	
 2015	
 P.	
 Kuznetsov	
 	

Administrivia"
§  Langue	
 –	
 français	
 ou	
 anglais?	
 	
 	

§  Lectures:	
 Mon	
 (8:30-­‐11:45),	
 Wed	
 (8:30-­‐11:45),	
 	
 Fri	

(13:30-­‐16:45),	
 check	
 EOLE	
 for	
 exact	
 Qme/place	

§  Exercises	
 (TDs	
 and	
 TPs):	
 	
 	
 6.03,	
 23.03,	
 27.03	

§  Paper	
 presentaQons:	
 22.04	

§  Exam:	
 24.04"
§  Two parts: algorithms (Petr Kuznetsov) and systems (Remi

Sharrock)"
§  Web page: http://perso.telecom-paristech.fr/~kuznetso/

INF346-2015/"
§  Office hours: "

ü Petr Kuznetsov: C213-2, appointment by email:
petr.kuznetsov@telecom-paristech.fr "

§  Credit = 2/3 exam + 1/3 bibliographic project"
ü Papers to present on the course web page"
ü Bonus for participation and lecture notes bugs"

3

Literature"
"
§  Lecture notes: Concurrent computing"

http://perso.telecom-paristech.fr/~kuznetso/MPRI13/book-ln.pdf"
§  M. Herlihy and N. Shavit. The art of multiprocessor

programming. Morgan Kaufman, 2008"
§  Lynch, N: Distributed Algorithms. Morgan Kaufmann

Publishers, 1996."
§  H. Attiya, J. Welch. Distributed Computing: Fundamentals,

Simulations and Advanced Topics (2nd edition). Wiley. 2004"

© 2015 P. Kuznetsov !

4

"

"
What is computing?"

"

©	
 2015	
 P.	
 Kuznetsov	
 	

5

"
"

What is done by a Turing machine"
"
"
"

 Alan Turing"
 1912 – 1954"

"
©	
 2015	
 P.	
 Kuznetsov	
 	

6

"
Not well adjusted to concurrency? "

"
Computation as interaction"

"
Robin Milner"

1934-2010"

©	
 2015	
 P.	
 Kuznetsov	
 	

7

"
"

This course is about distributed
computing:"

independent sequential processes
that communicate"

"
"

©	
 2015	
 P.	
 Kuznetsov	
 	

8

Concurrency is everywhere!"

§  MulQ-­‐core	
 processors	

§  Sensor	
 networks	

§  Internet	

§  Basically	
 everything	

related	
 compuQng	

	
 ©	
 2015	
 P.	
 Kuznetsov	
 	

9

Communication models"
§  Shared memory"

ü Processes apply (read–write)
operations on shared variables"

ü Failures and asynchrony"
§  Message passing"

ü Processes send and receive
messages "

ü Communication graphs"
ü Message delays"

©	
 2015	
 P.	
 Kuznetsov	
 	

10

Moore’s Law and CPU speed"

©	
 2015	
 P.	
 Kuznetsov	
 	

11

Clock speed deadend"

§  Memory wall"
ü Performance gap between memory

and CPU"
§  ILP wall"

ü Not enough work to spend the
cycles"

§  Power wall"
ü Thermal problems caused by higher

clock speeds "

©	
 2015	
 P.	
 Kuznetsov	
 	

12

 
The case against the

“washing machine science”"
§  Single-processor performance does

not improve"
§  But we can add more cores"
§  Run concurrent code on multiple

processors"

Can we expect a proportional speedup?
(ratio between sequential time and
parallel time for executing a job)"

©	
 2015	
 P.	
 Kuznetsov	
 	

13

Example: painting in parallel"
§  5 friends want to paint 5 equal-size rooms,

one friend per room"
ü Speedup = 5"

"
§  What if one room is twice as big?"

©	
 2015	
 P.	
 Kuznetsov	
 	

14

Amdahl’s Law"

§  p – fraction of the work that can be done in
parallel (no synchronization)"

§  n - the number of processors"
§  Time one processor needs to complete the

job = 1"

15

Painting in parallel"
"
§  Assigning one painter to one room, 5/6 of the work can be

performed in parallel."
§  Parallel execution time = 1-5/6+1/6 = 1/6+1/6 = 2/6 = 1/3"

S = 1/(1/3) = 3"

§  Can be worse: 10 rooms, 10 painters, one room twice bigger"

S = 1/ (1-10/11+1/11) = 11/2 = 5.5"
§  But >90% of the work can be parallelized!"
"

Cannot be better than 11, regardless of the number of
processors!"

©	
 2015	
 P.	
 Kuznetsov	
 	

16

A better solution"
§  When done, help the others "

ü All 5 paint the remaining half-room in parallel "
§  Communication and agreement is required!"
§  This is a hard task!

§  And this is exactly what synchronization algorithms
try to achieve!"

"

©	
 2015	
 P.	
 Kuznetsov	
 	

17

Challenges"

§  What is a correct implementation?"
ü Safety and liveness"

§  What is the cost of synchronization?"
ü Time and space lower bounds"

§  Failures/asynchrony"
ü Fault-tolerant concurrency?"

§  How to distinguish possible from impossible? "
ü Impossibility results"

"

©	
 2015	
 P.	
 Kuznetsov	
 	

18

Distributed ≠ Parallel"

§  The main challenge is synchronization"

§  “you know you have a distributed system
when the crash of a computer you’ve never
heard of stops you from getting any work
done” (Leslie Lamport)"

19

History	

§  Dining	
 philosophers,	
 mutual	
 exclusion	

(Dijkstra	
)~60’s	

§  Distributed	
 compuQng,	
 logical	
 clocks	
 (Lamport),	

distributed	
 transacQons	
 (Gray)	
 ~70’s	

§  Consensus	
 (Lynch)	
 ~80’s	

§  Distributed	
 programming	
 models,	
 	
 since	
 ~90’s	

§  MulQcores	
 now	

20

Why theory of distributed computing?"

§  Every computing system is distributed"
§  Computing getting mission-critical"

ü Understanding fundamentals is crucial"
§  Intellectual challenge "

ü A distinct math domain?"

©	
 2014	
 P.	
 Kuznetsov	
 	

21

Outline "
I.  Synchronization problems"
II.  Correctness: safety and liveness"
III.  Read-write and snapshot memory"
IV.  Consensus"
V.  Transactional memory"
VI.  CAP theorem, synchrony assumptions"
VII.  Strong consistency: Paxos"
VIII. Semantic-aware consistency: operational

transformation"
IX.  Advanced topics in distributed computing

(SDN,…)"
"

"

©	
 2015	
 P.	
 Kuznetsov	
 	

22

Real concurrency--in which one program actually
continues to function while you call up and use
another--is more amazing but of small use to the
average person. How many programs do you have that
take more than a few seconds to perform any task?"
"

"New York Times, 25 April 1989, in an article on
!new operating systems for IBM PC!

© 2015 P. Kuznetsov !

©	
 2015	
 P.	
 Kuznetsov	

	

Synchronization,  
blocking and non-blocking"

INF346,	
 2015	

	

24 © 2015 P. Kuznetsov !

25 © 2015 P. Kuznetsov !

26 © 2015 P. Kuznetsov !

27

Why synchronize ?"
§  Concurrent access to a shared resource may lead to an

inconsistent state "
ü E. g., concurrent file editing"
ü Non-deterministic result (race condition): the resulting

state depends on the scheduling of processes "

§  Concurrent accesses need to be synchronized!
ü E. g., decide who is allowed to update a given part of the

file at a given time"

§  Code leading to a race condition is called critical
section!
ü Must be executed sequentially"

§  Synchronization problems: mutual exclusion, readers-
writers, producer-consumer, …"

© 2015 P. Kuznetsov !

28

Dining philosophers 
(Dijkstra, 1965)"

© 2015 P. Kuznetsov !

§  To make progress (to eat) each process
(philosopher) needs two resources (forks)"

§  Mutual exclusion: no fork can be shared "
§  Progress conditions:"

ü Some philosopher does not starve (deadlock-
freedom)"

ü No philosopher starves (starvation-freedom)"

Edsger Dijkstra"
1930-2002"

29

Mutual exclusion"
"
§  No two processes are in their critical sections (CS) at the same

time"
+"
§  Deadlock-freedom: at least one process eventually enters its CS"
§  Starvation-freedom: every process eventually enters its CS"

ü Assuming no process blocks in CS or Entry section!

§  Originally: implemented by reading and writing"
ü Peterson’s lock, Lamport’s bakery algorithm"

§  Currently: in hardware (mutex, semaphores)"

© 2015 P. Kuznetsov !

30

Peterson’s lock: 2 processes"

P0: !
!
flag[0] = true;!
turn = 1;!
while (flag[1] and turn==1)!
{ !

!// busy wait!
}!
// critical section!
…!
// end of critical section!
flag[0] = false;!

© 2015 P. Kuznetsov !

P1: !
!
flag[1] = true;!
turn = 0;!
while (flag[0] and turn==0)!
{ !

!// busy wait!
}!
// critical section!
…!
// end of critical section!
flag[1] = false;!

bool flag[0] = false;!
bool flag[1] = false;!
int turn;!

31

Peterson’s lock: N ≥ 2 processes"
// initialization!
level[N] = -1; // current level of processes 0...N-1!
waiting[N-1] = -1; // the waiting process of each level 0...N-2!
 !
// code for process i that wishes to enter CS!
for (m = 0; m < N-1; ++m) { !
 level[i] = m;!
 waiting[m] = i;!
 while(waiting[m] == i &&(exists k ≠ i: level[k] ≥ m)) {!
 // busy wait!
 }!
} !
// critical section!
level[i] = -1; // exit section!

© 2015 P. Kuznetsov !

32

Bakery [Lamport’74,simplified]!
// initialization!
flag: array [1..N] of bool = {false};!
label: array [1..N] of integer = {0}; //assume no bound!
!
// code for process i that wishes to enter CS!
!
flag[i] = true; //enter the “doorway”!
label[i] = 1 + max(label[1], ..., lebel[N]); //pick a ticket!
while (for some k ≠ i: flag[k] and (label[k],k)<<(label[i],i));!
// wait until all processes “ahead” are served!
…!
// critical section!
…!
flag[i] = false; // exit section!

© 2015 P. Kuznetsov !

Processes are served in the “ticket order”: first-come-first-serve"

33

Readers-writers problem"

§  Writer updates a file"
§  Reader keeps itself up-to-date"
§  Reads and writes are non-atomic! "
"
Why synchronization? Inconsistent values might be read"

Writer

T=0: write(“sell the cat”)

T=2: write(“wash the dog”)

Reader

T=1: read(“sell …”)

T=3: read(“… the dog”)

Sell the dog?

© 2015 P. Kuznetsov !

34

Producer-consumer (bounded buffer) problem"

§  Producers put items in the buffer (of bounded size)"
§  Consumers get items from the buffer"
§  Every item is consumed, no item is consumed twice"

"(Client-server, multi-threaded web servers, pipes, …)"
Why synchronization? Items can get lost or consumed twice:"
"

Producer!
/* produce item */!
while (counter==MAX);!
buffer[in] = item; !
in = (in+1) % MAX;!
counter++; !!

Consumer!
/* to consume item */!
while (counter==0); !
item=buffer[out];!
out=(out+1) % MAX;!
counter--; !
/* consume item */!
!

Race!

© 2015 P. Kuznetsov !

35

Synchronization tools"

§  Busy-waiting (TAS) "
§  Semaphores (locks), monitors"
§  Nonblocking synchronization"
§  Transactional memory"

© 2015 P. Kuznetsov !

36

Busy-wait: Test and Set"
§  TAS(X) tests if X = 1, sets X to 1 if not, and returns the old value of X"

ü Instruction available on almost all processors "

"

TAS(X):!
!

!if X == 1 return 1;!
!X = 1;!
!return 0;!

!

atomic"

© 2015 P. Kuznetsov !

X == 1?!

X := 1!
no!

yes!

atomic!

1!

0!

37

Busy-wait: Test and Set"

X == 1?!

X := 1!
no!

yes!

atomic!

shared X:=0"

Producer" Consumer"

while(counter==MAX);!
. . . !

buffer[in] = item; !
. . .!

while TAS(X);!
counter++; !

X:=0;!
. . .!
!

while (counter==0);!
. . .!

item = buffer[out];!
. . .!

while TAS(X);!
counter--; !

X:=0;!
...!"

Problems: "
•  busy waiting "
•  no record of request order (for multiple

producers and consumers)"

1!

0!

© 2015 P. Kuznetsov !

38

Semaphores [Dijkstra 1968]: specification"
§  A semaphore S is an integer variable accessed (apart from initialization) with two

atomic operations P(S) and V(S)"
ü  Stands for “passeren” (to pass) and “vrijgeven” (to release) in Dutch"

§  The value of S indicates the number of resource elements available (if positive), or
the number of processes waiting to acquire a resource element (if negative)"
"
 
Init(S,v){ S := v; }"
"
P(S){"

"while S<=0; "/* wait until a resource is available */"
"S--; "/* pass to a resource */"

}"
"
V(S){"

"S++;" "/* release a resource */"
}"

© 2015 P. Kuznetsov !

39

Semaphores: implementation"

S is associated with a composite
object:"

ü S.counter: the value of the
semaphore"

ü S.wq: the waiting queue,
memorizing the processes
having requested a resource
element"

Init(S,R_nb) {"
S.counter=R_nb;"
S.wq=empty;"

}"
P(S) { "

S.counter--;"
if S.counter<0{"
 put the process in S.wq and wait until
READY;}"

}"
V(S) { "

S.counter++"
if S.counter>=0{ "

"mark 1st process in S.wq as
"READY;}"

}"

40

Lock"
§  A semaphore initialized to 1, is called a lock (or mutex)!

§  When a process is in a critical section, no other process can come in"

shared semaphore S := 1"

Producer" Consumer"

while (counter==MAX);!
. . . !
buffer[in] = item; !
. . .!
P(S);!
counter++; !
V(S)!
. . .!
!

while (counter==0);!
. . .!
item = buffer[out];!
. . .!
P(S);!
counter--; !
V(S);!
...!

"
Problem: still waiting until the buffer is ready"

© 2015 P. Kuznetsov !

41

Semaphores for producer-consumer"
§  2 semaphores used :"

ü empty: indicates empty slots in the buffer (to be used by the producer)"
ü full: indicates full slots in the buffer (to be read by the consumer)"

shared semaphores empty := MAX, full := 0;!

Producer" Consumer"

P(empty)!
buffer[in] = item; !
in = (in+1) % MAX;!
V(full)!
!
!

P(full);!
item = buffer[out];!
out=(out+1) % MAX; !
V(empty);!

© 2015 P. Kuznetsov !

42

Potential problems with semaphores/locks"
§  Blocking: progress of a process is conditional (depends on other processes)"
§  Deadlock: no progress ever made!

"
!

§  Starvation: waiting in the waiting queue forever"

X1:=1; X2:=1!

Process 1! Process 2!

...!
P(X1)!
P(X2)!
critical section!
V(X2)!
V(X1)!
...!

...!
P(X2)!
P(X1)!
critical section!
V(X1)!
V(X2)!
...!

© 2015 P. Kuznetsov !

43

Other problems of blocking synchronization"

§  Priority inversion"
ü High-priority threads blocked"

§  No robustness"
ü Page faults, cache misses etc. "

§  Not composable"
"
"

Can we think of anything else?"

© 2015 P. Kuznetsov !

44

Non-blocking algorithms"
A process makes progress, regardless of the other processes"

shared buffer[MAX]:=empty; head:=0; tail:=0;"

Producer put(item)! Consumer get()!

if (tail-head == MAX){!
!return(full);!

}!
buffer[tail%MAX]=item; !
tail++;!
return(ok);!

if (tail-head == 0){!
!return(empty);!

}!
item=buffer[head%MAX]; !
head++;!
return(item);!

Problems: "
•  works for 2 processes but hard to say why it works J"
•  multiple producers/consumers? Other synchronization pbs?"

(stay in class to learn more)"

© 2015 P. Kuznetsov !

45

Transactional memory"
§  Mark sequences of instructions as an atomic transaction, e.g., the resulting

producer code:"
atomic {"

"if (tail-head == MAX){"
"return full;"
"}"
!items[tail%MAX]=item; "
!tail++;"

}"
return ok;"

§  A transaction can be either committed or aborted!
ü Committed transactions are serializable !
ü Let the transactional memory (TM) care about the conflicts"
ü Easy to program, but performance may be problematic"

"

© 2015 P. Kuznetsov !

46

Summary"

§  Concurrency is indispensable in programming:"
ü Every system is now concurrent"
ü Every parallel program needs to synchronize"
ü Synchronization cost is high (“Amdahl’s Law”)"

§  Tools: "
ü Synchronization primitives (e.g., monitors, TAS, CAS, LL/SC)"
ü Synchronization libraries (e.g., java.util.concurrent)"
ü Transactional memory, also in hardware (Intel Haswell, IBM Blue Gene,…)"

§  Coming next:"
ü Nonblocking synchronization using read-write memory "
ü Read-write transformations and snapshot memory"
"

"
© 2015 P. Kuznetsov !

47

Quiz"
§  What if we reverse the order of the first two lines the 2-

process Peterson’s algorithm "

"
 Would it work?"
§  Prove that Peterson’s N-process algorithm ensures:"

ü mutual exclusion: no two processes are in the critical section at
a time "

ü starvation freedom: every process in the trying section
eventually reaches the critical section (assuming no process
fails in the trying, critical, or exit sections)"

§  Show that the bounded (black-white) Bakery
algorithm in correct"

© 2015 P. Kuznetsov !

P0: !
turn = 1;!
flag[0] = true;!
…!

P1: !
turn = 0;!
flag[1] = true;!
…!

48

Bakery [Lamport’74,original]!
// initialization!
flag: array [1..N] of bool = {false};!
label: array [1..N] of integer = {0}; //assume no bound!
!
// code for process i that wishes to enter CS!
flag[i] = true; //enter the doorway!
label[i] = 1 + max(label[1], ..., lebel[N]); //pick a ticket!
flag[i] = false; //exit the doorway!
for j=1 to N do!

!while (flag[j]); //wait until j is not in the doorway!
!while (label[j]≠0 and (label[j],j)<<(label[i],i));!
!// wait until j is not “ahead”!

…!
// critical section!
…!
label[i] = 0; // exit section!

© 2015 P. Kuznetsov !

Ticket withdrawal is “protected” with flags: a very useful trick"

49

Black-White Bakery [Taubenfeld’06]!

© 2015 P. Kuznetsov !

Colored tickets => bounded variables!"

// initialization!
color: {black,white}; !
flag: array [1..N] of bool = {false};!
label[1..N]: array of type {0,…,n} = {0} //bounded ticket numbers!
mycolor[1..N]: array of type {black,white}!
!
// code for process i that wishes to enter CS!
flag[i] = true; //enter the “doorway”!
mycolor[i] =color; !
label[i] = 1 + max({label[j]| j=1,…,N: mycolor[i]=mycolor[j]}); !
flag[i] = false; //exit the “doorway”!
for j=1 to N do!
 while (flag[j]);!
 if mycolor[j]=mycolor[i] then!
 while (label[j]≠0 and (label[j],j)<<(label[i],i) and mycolor[j]=mycolor[i]);!
 else!
 while (label[j]≠0 and mycolor[i]=color and mycolor[j] ≠ mycolor[i]);!
!
// wait until all processes “ahead” of my color are served!
…!
// critical section!
…!
If mycolor[i]=black then color = white else color – black;!
label[i] = 0; // exit section!

