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be some point in a by which all the processes in P have already reached label
M ; note that they never thereafter drop back to any point in the code prior to
label M. Let o be a suffix of o in which all processes in P are in the final for
loop, after label M.

We claim that there is at least one process in P. Specifically, the process
with the smallest index among all the contenders is not blocked from reaching
label M.

Let i be the largest index of a process in P. We claim that eventually in
oy, any process j € @ such that j > i has flag(j) set permanently to 0. This
is because each time j executes one of the first two for loops, it discovers the
presence of a smaller index contender and returns to L. Whenever it does this,
it sets flag(j) == 0, and once it has done this, it can never progress far enough
to set flag(j) :== 1. So let o be a suffix of aq in which all processes in @ with
indices > i always have their flags equal to 0.

Now in ag, there is nothing to stop process i from reaching C: every larger-
index process j has flag(j) =0, s0¢ will complete the third for loop successfully.

Thus, i enters C, which is a contradiction. O

Theorem 10.23 BurnsME solves the mutual exclusion problem.

10.7 The Bakery Algorithm

In this section we present the Bakery algorithm for mutual exclusion. It works
somewhat the way a bakery does, where customers draw tickets when they enter

and are served in the order of their ticket numbers.

The Bakery algorithm only uses single-writer/ multi-reader shared registers.
In fact, it also works using a weaker form of register known as 2 safe register, in
which the registers are allowed to provide arbitrary responses to reads that are

performed concurrently with writes.

The Bakery algorithm guarantees lockout-freedom and a good time bound.
It guarantees bounded bypass and also a related condition—it is “FIFO after
a wait-free doorway” (to be defined below). An unattractive property of the

Bakery algorithm is that it uses unbounded size registers.

The code follows. We remark that the code given here can be simplified if
we are only interested in the usual sort of registers (and not weaker types of

registers such as safe registers). We leave this simplification for an exercise.

10.7. THE BAKERY ALGORITHM
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any processes i and j, © # j, the following is true. If i is in C and j is in
(I' = D) U C, then (number(i),i) < (number(5), 7).

We give an operational proof, since it can be extended more easily to the safe
register case.

Proof. Fix some point s in an execution in which ¢ is in C and j is in (T —
D)uU C. (Formally, s is an occurrence of a system state.) Call the values of
number(i) and number(j) at point s the correct values of these variables.

Process i must read choosing(j) = 0 in its first waitfor loop, prior to entering
C. Let 7 denote this reading event; thus, m precedes s. When 7 occurs, j
is not in the “choosing region” (i.e., the portion of the doorway after setting
choosing(j) := 1). But since j is in (T'— D) U C at point s, j must pass through
the choosing region at some point. There are two cases to consider.

1. j enters the choosing region after 7. Then the correct number(i) is chosen
before j starts choosing, ensuring that j sees the correct number(i) when

it chooses. Therefore, at point s, we have number(j) > number(i), which
suffices.

2. 7 leaves the choosing region before m. Then whenever ¢ reads j’s number
in its second waitfor loop, it gets the correct number(j) But since i decides
to enter C' anyhow, it must be that (number(z),7) < (number(j),j). This
again suffices.

O

Lemma 10.25 The Bakery algorithm satisfies mutual exclusion.

Proof. Suppose that, in some reachable state, two processes, i and j, are both
in C. Thep by Lemma 10.24 applied twice, we must have both (number(3),) <
(number(7),7) and (number(j), j) < (number(i),q). This is a contradiction. [J

Lemma 10.26 The Bakery algorithm guarantees progress.

Proof. The exit region is easy, as usual. For the trying region, we again argue
by contradiction. Suppose that progress is not guaranteed. Then eventually
a point is reached after which all processes are in T or R, and no new region
changes occur. By the code, all of the processes in T eventually complete the
doorway and reach T'— D. Then the process with the lowest (number, index)
pair is not blocked from reaching C. d

Lemma 10.24 In any reachable system state of the Bakery algorithm, and for
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Lemma 10.27 The Bakery algorithm guarantees lockout-freedom.

Proof. Consider a particular process ¢ in 1" and suppose it never reaches C.
Process i eventually completes the doorway and reaches T'— D. Thereafter, any
new process that enters the doorway sees ¢’s latest number and so chooses a
higher number. Thus, since ¢ doesn’t reach C, none of these new processes reach
C either, since each is blocked by the test of number(i) in its second wait loop.

But repeated use of Lemma 10.26 implies that there must be continuing
progress, including infinitely many crit events, which contradicts the fact that
all new entrants to the trying region are blocked. O

Theorem 10.28 The Bakery algorithm solves the mutual exclusion problem
and s lockout-free.

Complexity analysis. An upper bound for the time from when a process ¢
enters the trying region until it enters the critical region is (n—1)c+ 0O (n2£).
This is not so easy to show; we just give a brief sketch and leave the details for
an exercise.

First, it only takes time O (nf) for process i to complete the doorway; we
must bound the length of the time interval I that i spends in T' — D. Let P be
the set of other processes already in 7' at the moment i enters T'— D. Then only
processes in P can enter C before i does, and each of these can only do so once.
Tt follows that the total time within interval I during which some process is in C
is at most (n — 1)c, and that the total time within interval I during which some
process is in the doorway is at most O (n?().

Tt remains to bound the residual time within interval I, that is, the total time
within I during which no process is either in C or in the doorway. We bound
the residual time by considering the progress of processes in P U {i}. During
the residual time, note that none of these processes is ever blocked in its first
waitfor loop, since all the choosing variables are 0. Moreover, some process in
P U {i} will not be blocked at any step of its second waitfor loop either, and so,
within residual time O (n£), will enter C. After it finishes, some other process in
P U {i} will not be blocked, and so, within an additional residual time O (nf),
will enter C, and so on. This continues until ¢ enters C, for a total residual time
of O (n?().

FIFO after a wait-free doorway. The Bakery algorithm guarantees a high-
level-fairness condition that is somewhat stronger than lockout-freedom. Namely,
if process i completes the doorway before j enters T', then j cannot enter C before
i does. Note that the algorithm is not actually FIFO based on the time of entry




