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Abstract

As we learn from the literature, flexibility in choosing syn-

chroni~ation operations greatly simplifies the task of de-

signing highly concurrent programs. Unfortunately, ex-

isting hardware is inflexible and is at best on the level

of a Load_Linked/Store_Cond itional operation on a single

word. Buildktg on the hardware based transactional syn-

chronization methodology of Herlihy and Moss, we offer

soflwar-e transactional memory (STM), a novel software

method for supporting flexible transactional programming

of synchronization operations. STM is non-blocking, and

can be implemented on existing machines using only a

Load.Linked/Store.Conditional operation. We use STM to

provide a general highly concurrent method for translating

sequential object implementations to lock-free ones based

on implementing a k-word compare&swap STM-transaction.

Empirical evidence collected on simulated multiprocessor ar-

chitectures shows that the our method always outperforms

all the lock-free translation methods in the style of Barnes,

and outperforms Herlihy’s translation method for sufficiently

large numbers of processors. The key to the efficiency of our

software-transactional approach is that unlike Barnes style

methods, it is not based on a costly “recursive helping” pol-

icy.

1 Introduction

A major obstacle on the way to making multiprocessor ma-

chines widely acceptable is the difficulty of programmers in

designing highly concurrent programs and data structures.

Given the growing realization that unpredictable delay is

an increasingly serious problem in modern multiprocessor

architectures, we argue that conventional techniques for im-

plementing concurrent objects by means of critical sections

are unsuitable, since they limit parallelism, increase con-

tention for memory and interconnect, and make the system

vulnerable to timing anomalies and processor failures. The

key to highly concurrent programming is to decrease the

number and size of critical sections a multiprocessor pro-

gram uses (possibly eliminating critical sections altogether)
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by constructing classes of implementations that are non-

blockirag [7, 15, 14]. As we learn from the literature, flexibil-

ity in choosing the synchronization operations greatly sim-

plifies the task of designing non-blocking concurrent pro-

grams. Examples are the non-blocking data-structures of

Massalin and Pu [22] which use a Corn pare&Swap on two

words, Anderson’s [2] parallel path compression on lists

which uses a special S pi ice operation, the counting net-

works of [5] which use combination of Fetch&Complement

and Fetch&I nc, Israeli and Rappoport’s Heap [18] which can

be implemented using a three-word Corn pare&Swap , and

many more. Unfortunately, most of the current or soon to

be developed architectures support operations on the level of

a Load. Linked/Store-Conditional operation for a single word,

making most of these highly concurrent algorithms imprac-

tical in the near future.

Bershad [7] suggested to overcome the problem of provid-

ing efficient programming primitives on existing machines

by employing operating system support. Herlihy and Moss

[16] have proposed an ingenious hardware solution: trans-

actional memory. By adding a specialized associative cache

and making several minor changes to the cache consistency

protocols, they are able to support a flexible transactional

language for writing synchronization operations. Any syn-

chronization operation can be written as a transaction and

executed using an optimistic algorithm built into the consis-

tency protocol. Unfortunately though, this solution is block-

ing.

This paper proposes to adopt the transactional approach,

but not its hardware based implementation. We introduce

sofiware transactional memory (STM), a novel design that

supports flexible transactional programming of synchroniza-

tion operations in software. Though we cannot aim for the

same overall performance, our software transactional mem-

ory has clear advantages in terms of applicability to todays

machines, portability among machines, and resiliency in the

face of tirnhg anomalies and processor failures.

We f0cu5 on implement.ati0n9 of a software transactional

memory that support static transactions, that is, transac-

tions which access a pre-determined sequence of locations.

This class includes most of the known and proposed syn-

chronization primitives in the literature.

1.1 STM in a nutshell

In a non-faulty environment, the way to ensure the atomicity

of the operations is usually based on locking or acquiring ex-

clusively ownerships on the memory locations accessed by an

operation Op. If a transaction cannot capture an ownerships
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it fails, and releases the ownerships already acquired. Oth-

erwise, it succeeds in executing Op and frees the ownerships

acquired. To guarantee liveness, one must first eliminate

deadlocks, which for static transactions is done by acquiring

the ownerships needed in some increasing order. In order to

continue ensuring liveness in a faulty environment, we must

make certain that every transaction completes even if the

process which executes it has been delayed, swapped out,

or crashed. This is achieved by a “helping” methodology,

forcing other transactions which are trying to capture the

same location to help the owner of this location to com-

plete its own transaction. The key feature in the transac-

tional approach is that in order to free a location one need

only help its single owner transaction. Moreover, one can

effectively avoid the overhead of coordination among sev-

eral transactions attempting to help release a location by

employing a “reactive” helping policy which we call raon-

redundant-helping.

1.2 Sequential to Lock-free Translation

One can use STM to provide a general highly concurrent

method for translating sequential object implementations

into non-blocking ones based on the caching approach of

[6, 26]. The approach is straightforward: use transactional

memory to to implement any collection of changes to a

shared object, performing them as an atomic k-word Com-

pare&Swap transaction (see Figure 2) on the desired loca-

tions. The non-blocking STM implementation guarantees

that some transaction will always succeed.

Herlihy, in [15] (referred to in the sequel as Herlihy ’s

method), was the first to offer a general transformation of

sequential objects into non-blocking concurrent ones. Ac-

cording to his methodology, updating a data structure is

done by first copying it into a new allocated block of mem-

ory, making the changes on the new version and tentatively

switching the pointer to the new data structure, all that with

the help of Load_ Linked/Store_Conditional atomic operations.

Unfortunately, Herlihy ’s method does not provide a suitable

solution for large data structures and like the standard ap-

proach of locking the whole object, does not support con-

current updating. Alemany and Felten [4] and LaMarca [20]

suggested to improve the efficiency of this general method

at the price of loosing portability, by using operating sys-

tem support making a set of strong assumptions on system

behavior.

To overcome the limitations of Iferiihy ’s method, Barnes,

in [6], introduced hk caching method, that avoids copying

the whole object and allows concurrent disjoint updating.

A similar approach was independently proposed by Turek,

Shasha, and Prakash [26]. According to Barnes, a process

first “simulates” the execution of the updating in its pri-

vate memory, i.e reading a location for the first time is done

from the shared memory but writing is done into the private

memory. Then, the process uses an non-blocking k-word

Read-Modify- Write atomic operation which checks if the val-

ues contained in the memory are equivalent to the the value

read in the cache update. If this is the case, the operation

stores the new values in the memory. Otherwise, the process

rest arts from the beginning. Barnes suggested to implement

the k-word Read-Modify-write by locking in ascending order

of their key, the locations involved in the update executing

the operation and releasing the locks. The key to achieving

the non-blocking resilient behavior in the caching approach

of [6, 26] is the cooperative method whenever a process needs

a location already locked by another process it helps the lock-

ing process to complete its own operation, and this is done

recursively along the dependency chain. Though Barnes and

Turek, Shasha, and Prakash are vague on specific implemen-

tation details, a recent paper by Israeli and Rappoport [19]

gives, using the cooperative method, a clean and streamlined

implementation of a non-blocking k-word Compare&Swap

using Load-Linked/Store_Conditional . However, as our em-

pirical results suggest, both the general method and its spe-

cific implementation have two major drawbacks which are

overcome by our STM based translation method:

The cooperative method has a recursive structure of

“helping” which frequently causes processes to help

other processes which access a disjoint part of the data

structure.

Unlike STM’S transactional k-word Compare&Swap

operations which mostly fail on the transaction level

and are thus not “helped,” a high percentage of co-

operative k-word Compare&Swap operations fail but

generate contention since they are nevertheless helped

by other processes.

Take for example a process P which executes a 2-word

Compare&Swap on locations a and b. Assume that some

other process Q already owns b. According to the coopera-

tive method, P first helps Q complete its operation and only

then acquires b and continues on its own operation. HOW-

ever, in many cases P’s Compare&Swap will not change the

memory since Q changed 11after P already read it, and P

will have to retry. All the processes waiting for location a

will have to first help P, then Q, and again P, when in any

case P‘s operation will likely fail. Moreover, after P has ac-

quired b, all the processes requesting b will also redundantly

help to P.

On the other hand, if P executes the 2-word Com-

pare&Swap as an STM transaction, P will fail to acquire

b, help Q, release a and restart. The processes waiting for

a will have to help only P. The processes waiting for b will

not have to help P. Finally, if Q hasn’t changed b, P will

most likely find the value of b in its own cache.

1.3 Our Empirical Results

To make sequential-to-non-blocking translation methods ac-

ceptable, one needs to reduce the performance overhead one

has to pay when the system is stable (non-faulty). We

present (see Section 5) the first experimental comparison of

the performance under stable conditions of the translation

techniques cited above. We use the well accepted Proteus

Parallel Hardware Simulator [8, 9].

We found that on a simulated Alewife [1] cache-coherent

distributed shared-memory machine, as the potentiid for

concurrency in accessing the object grows, the STM non-

blocking translation method outperforms both Herlihg’s

method and the cooperative method. Unfortunately, our ex-

periments show that in general STM and other non-blocking
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Dequeueo
BeginTransaction

DeletedItem G Read_transactional( Hesd)
if DeletedItem Q Null

ReturnedValue = Empty
else

Write-transactional( Hesd,DeletedItem+ Next )
if DeletedItem-+Next n Null

Write-transactional( ’Ml, Null)
ReturnedValue n DeletedItem+Value

EndTransaction
end Dequeue

k.word_C&S(Size, DataSetlJ,OldH, NewD)

BeginTransacti.m

for i=l to Size do

if Read_transactional (DataSet~]]) # Old~]

ReturnedValue = C& S-l%lure

Exitl’ransacti.m

for i=l to Size do

Wrke_transactional (DataSet~],New~])

ReturnedValue = C&S-Success

EndTransaction

end k_word_C&S

Figure 2: A Static Transaction
Figure I: A Non Static Transaction

techniques are inferior to standard non-resilient lock-based

methods such as queue-locks [23]. Results for a shared bus

architecture were similar in flavor.

In summary, STM offers a novel software package of flex-

ible coordination-operation for the design of highly concur-

rent shared objects, which ensures resiliency in faulty runs

and improved performance in non-faulty ones. The following

section introduces STM, In Section 3 we describe our imple-

mentation and and provide a sketch of the correctness proof.

Finally, in Section 5 we present our empirical performance

evaluation.

2 Transactional Memory

We begin by presenting sofiware transactional memory, a

variant of the transactional memory of [16]. A transaction

is a finite sequence of local and shared memory machine

instructions:

Read-transactional - reads the value of a shared location

into a local register.

Write.transactional – stores the contents of a local register

into a shared location.

The data set of a transaction is the set of shared locations

accessed by the Read-transactional and Write-transactional in-

structions. Any transaction may either fail, or complete suc-

cessfully, in which case its changes are visible atomically to

other processes. For example, dequeuing a value ~from the

head of a doubly linked list as in Figure 1 may be performed

as a transaction. If the transaction terminates successfully

it returns the dequeued item or an Empty value.

A k-word Compare&Swap transaction as in Figure 2 is

a transaction which gets as parameters the data set, its size

and two vectors Old and New of the data set’s size. A suc-

cessful k-word Compare&Swap transaction checks whether

the values stored in the memory are equivalent to old. In

that case, the transaction stores the New values into the

memory and returns a C&S-Success value, otherwise it re-

turns CtYS-Fadure.

A sofiware transactional memory (STM), is a shared ob-

ject which behaves like a memory that supports multiple

changes to its addresses by means of transactions. A trans-

action is a thread of control that applies a finite sequence

of primitive operations to memory. Any implementation of

software transactional memory should satisfy the following

standard properties [13]:

A tomicity: transactions appear to execute sequen-

tially, i.e., without interleaving.

Serializability: The sequential order among trans-

actions is consistent with their real-time order.

A static transaction is a special form of transaction in

which the data set is known in advance, and can thus be

thought of as a procedure which gets as parameters (1) the

data set (2) the inputs of the transaction (3) a deterministic

function which based on the inputs and the the data set,

returns the new values which should be stored data set and

the output of the transaction. This paper we will focus on

implementations of a transactional memory that supports

static. transactions, a class that includes most of the known

and proposed synchronization operations in the literature.

The k-word Compare&Swap transaction in Figure 2 is an

example of a static transaction, while the Dequeue procedure

in Figure 1 is not.

An STM implementation is wait-free if any process which

repeatedly executes the transaction terminates successfully

after a finite number of attempts. It is non-blocking if the

repeated execution of some transaction by a process implies

that some process (not necessarily the same one and with

a possibly dtierent transaction) will terminate successfully

after a finite number of attempts in the whole system. An

STM implementation is swap tolerant, if it is non-blocking

under the assumption that a process cannot be swapped out

infinitely many times. The hardware implemented transac-

tions of [16] could in theory repeatedly fail forever, if pro-

cesses try to write two locations in different order (as when

updating a doubly linked list). However, if used only for

static transactions, their implementation can be made swap-

tolerant (but not non-blocking, since a single process which

is repeatedly swapped during the execution of a transaction

will never terminates successfully).

3 Our Implementation of Static-STM

We implement a non-blocking static TM of size M using

Memory[M], a vector which cent ains the data stored in the

transactional memory, Ownerships[M], a vector which de-

termines for any cell in Memorg[lll], which transaction owns

it. Each process keeps in the shared memory a record with
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StartTransaction( input,DataSet )

Initialize(Tranj ,input ,DataSet )

Tranj + Stable = True

TransactiOn(Tranj,Tranj -. version,’lkue)

Tranj + Stable = False

Tranj +. Version++

if TTanj + Status = Success then

return (Success, CalcOutput(Tranj -+ OldValues,input))

else

return I?dure

Figure 3: St artTransaction

the following fields: Size which contains the size of the data

set. Addo – a vector which cent sins the data set addresses

in increasing order. Input – the input of the transaction.

Oldvatues~ a consensus vector which cells are initialized to

Null at the beginning of every transaction. In case of a

successful transaction this vector cent ains the former values

stored in the involved locations. The output of the transac-

tion is calculated from this vector and the input. The other

fields are used in order to synchronize between the owner

of the record and the processes which may eventually help

its transactions: Version– an integer, initially O, which de-

termines the instance number of the transaction. This field

is incremented every time the process terminates a transac-

tion For every process PJ, Tran3 determines the address of

its record.

A process P] initiates the execution of a transaction by

calling the Transact ion rout ine of Figure 3. Transaction first

initializes the process’s record then declares the record as

stable, ensuring that any helping processors will read a con-

sistent description of the transaction. After executing the

transaction the process checks if the transaction has suc-

ceeded, and if so calculates the output from the input and

the Oid Vaiues vector.

The procedure Transaction (Figure 4), gets as parameters

tran, the record’s address of the transaction executed, and

a boolean value Mmtiator, indicating whether Transaction

was called by the initiating process or by a helping process.

The parameter version contains the instance number of the

record executedl This parameter is not used when the rou-

tine is crdled by the initiating process since the version field

will never change during the call. Transaction, first tries

to acquire ownership on the data set’s locations by calling

AquireOwnership. If it fails to do so then upon returning

from AquireOwnership, the status field will be set to (Fail-

zme, fadadd). If the status field doesn’t have a vzlue yet, the

process sets it to (Success, 0). In case of success the process

writes the old values into the transaction’s record, calculates

the new values to be stored, writes them to the memory and

releases the ownerships. Otherwise, the status field contains

the location that caused the failure. The process first re-

leases the ownerships that it already owns and, in the case

that it is not a helping process, it helps the transaction which

owns the failing location. Helping is performed only if the

record is in a stable state.

1The use of this unbounded field can be avoided if an additional

Validate operation is available [18, 19].

‘hansaction(t rrm,versiOn,IsInitiatOr)

AcquireOwnerships( tran,version)

f;~ayi~~fl/l;h~j( tran+stat.s)

if (version # tran-+version) then return

SC(tran+status, (Success, O))

(status,failadd) = LL(tran+status)

if status = Success then

AgreeOldValues( tran,version)

NewValues = CalcNewValues(tran+ OldValues,tran+ input)

UpdateMemory(tran, version) NewValues)

ReleaseOwnerships( tran,version)

else

ReleaseOwnerships( tran,version)

if IsInitiator then

failtran= Ownerships[failadd]

if failtran = Nobody then

return

else

failversion = failtran+version

if failtran+stable

TransactiOn(failtran,failversiOn,Fslse)

Figure 4: Transaction

AcquireO wnerships(tran, version)

transize = tran+size

for i = 1 to size do

while true do

location = tran+.add~]

if LL(tran+status) # Null then return

owner = LL (Ownerships[tran+ Add~]])

if tran-+version # version return

if owner = tran then exit while loop

if owner = Nobody then

if SC(tran+status, (Null , O) ) then

if SC( O wnerships[locat ion], tran) then

exit while loop

else

if SC(tran+status, (Failure,i) ) then

return

ReleaseO wnerships(tran, version)

size = tran+si5e

for i = 1 to size do

location= tran+Add~]

if LL( O wnerships[locat ion]) = tran then

if tran+. version # version then return

SC(Ownerships[location], Nobody)

AgreeOldValues( tran,version)

size = tran+si5e

for i = 1 to size do

location= tran+.Add~]

if LL(tran+ OldValues[locat ion]) # Null then

if tran+version # version then return

SC(tran+OldValues[location],Memory[location])

UpdateMemory(tran, version, newvalues)

si5e = tran+size

for i = 1 to size do

location= tran+Add~]

oldvalue= LL(Memory[location])

if tran+ AllWritten then return

if version # tran+version then return

if oldvalue# newvalues~] then

SC(Memory[location], newvalues~])

if (not LL(tran+ AllWritten)) then

if version # tran+version then return

SC(tran+AllWritten,True)

Figure 5: Ownerships and Memory access
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Since AcquireOwnerships of Figure 5 may be called either

by the initiator or by the helping processes we must ensure

that (1) all processes will try to acquire ownership on the

same locations (this is done by checking the version between

the Load.Linked and the Store.Conditional instructions) (2)

from the moment that the status of the transaction becomes

fixed, no additional ownerships are allowed for that transac-

tion. The second property is essential for proving not only

atomicity but also the non-blocking property. Any process

which reads a free location will have before acquiring own-

ership on it, to confirm that the transaction status is still

undecided. This is done by writing (with Store.-Conditiona I )

(Nu1l,O) in the status field. This prevents any process which

read the location in the past as owned by a different trans-

action, to set the status to Failure.

When writing the new values to the UpdateMemory as

in Figure 5, the processes synchronize in order to prevent

a slow process from updating the memory after the owner-

ships have been released. To do so every process sets the

All Written field to be True, after updating the memory and

before releasing the ownerships.

4 Correctness Proof Outline

Formallyj following [21], the specification of a static trans-

actional memory for n processes that supports k different

static transactions can be described as an automaton with

k types of input actions:

TranJ Request, (DataSet) and k types of output actions:

TTanJ Return, (FinalStatus, Output) where J C 1... k and

Zel. ..n.

In our implementation, any transaction T is related to a

transaction record tran, and an instance number (the content

of the version field). Therefore, we define the process which

started the execution of T (which owns the record tran) as

the initiator of T. All the processes which execute rou-

tine Transaction with parameters (tran,version,False), are

defined to be the helping processes of T. The initiator and

the helping processes are the executing processes of T.

Lemma 4.1 The implementation is atomic and serializ-

able.

Sketch of proofi The proof of thk lemma is based on the

following invariants:

1.

2.

3.

All the executing processes of a transaction T read the

same data set vector which was stored by T“s initiator.

Any executing process of T which read . diRerent data

set will not be able to update any of the shared data

structures.

All the executing processes of a transaction T will never

acquire ownership after the the status of T has been set.

All the ownerships owned by T will be released before

the version field of T’s record is incremented by T’s

initiator.

All the executing processes of a successful transaction

T will update the memory before T’s AllWritten field is

set to True.
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In order to prove the non-blocking property we first define

that the failing process of a failing transaction T, is the exe-

cuting process which wrote Failure to T’s status. The fai~ing

location of T is the location that the failing process failed to

acquire ownership on it.

Claim 4.2 A failing transaction, T will never owns its fail-

ing location or a higheT location that its failing location.

Proof: (Sketch ) Assume the contrary. Let P be an ex-

ecuting process which acquired an ownership on a higher

location than the failing location. By the first invariant in

Lemma 4.1, P acquired that ownership before the status was

set to Failure. Therefore P has confirmed that the transac-

tion’s status is undefined before the failing process saw the

failing location owned by another transaction. Now, if P has

acquired ownership on a higher location then the failing pro-

cess should have seen that the failing location belongs to T.

Therefore P has acquired the failing location itself. But, in

that case, since P saw the location free before the failing pro-

cess saw it occupied and since the failing process saw the lo-

cation occupied before P has executed the Store-Conditions I

instruction on the ownership, therefore the Store-Conditions I

instruction should has failed. ■

Lemma 4.3 The implementation is non-blocking.

Proof: (Sketch ) Assume by way of contradiction that

there is an infinite schedule in which no transaction termi-

nates successfully. Assume that the number of transaction

failures is finite. This happens only if from some point on,

in the computation, all the processes are “stuck” in the Ac-

quireOwnerships routine. In this case there are several pro-

cesses which try to acquire ownership of the same location

for the same transaction. Thk may happen only if the lo-

cation is squired and released infinitely often. Since every

location is released only when the transaction is completed,

it follows that there must be an infinite number of failing

transactions. This in turn implies that there is at least one

location on which processes fail infinitely often, and con-

sider A, the highest such location. Since the initiator of

the transaction tries to help the transaction which has failed

him before retrying, it follows that there are infinitely many

transaction which have acquired ownership on A but have

failed. By Claim 4.2 those transactions have failed on ad-

dresses higher than A – a contradiction to the fact that A is

the highest. ■

To avoid major overheads when no failures occur, any al-

gorithm based on the helping paradigm must avoid as much

as possible “redundant helping.” In the S’rM implementa-

tion given above, redundant helping occurs when a failing

transaction “helps” another non-faulty process. Such help-

ing will only increase contention and consequently, will cause

the helped process to release the ownerships later then it

would have released if not helped. In our algorithm, a pro-

cess increases or decreases the interval between helps as a

function of the “redundant helps” it discovered.



5 An Empirical Evaluation of Transla-

tion Methods

5.1 Methodology

We compared the performance of STIVI and other software

methods on 64 processor bus and network architectures us-

ing the Proteus simulator developed by Brewer, Dellarocas,

Colbrook and Weihl [8]. Our network architecture was that

of the Alewife cache-coherent distributed-memory machine

currently under development at MIT [1]. Each processor

had a cache with 2048 lines of 6 bytes and a memory access

without contention cost 4 cycles in both architectures. The

cost of switching or wiring in the Alewife architecture was 1

cycle/packet.

The current version of Proteus does not support

Load_Linked/Store.Conditional instructions. Instead we

used a slightly modified version that supports a 64-bit

Corn pare&Swap operation where 32 bits serve as a time

stamp. 2 On existing machines the 64 bits Com -

pare&Swap may be implemented by using the a 64 bits

Load-Linked/Store_Conditional as on the Alpha or using Ber-

shad’s lock-free methodology [7].

We used four synthetic benchmarks for evaluating vari-

ous methods for implementing shared data structures. The

methods vary in the size of the data structure and the

amount of parallelism,

Counting Each of n processes increments a shared counter

10000/n times. In this benchmark updates are short,

change the whole object state, and have no built in par-

allelism.

Resource Allocation A resource allocation scenario [10]:

a few processes share a set of resources and from time

to time a process tries to atomically acquire a subset of

size s of those resources. This is the typical behavior

of a well designed distributed data structure. For lack

of space we show only the benchmark which has n pro-

cesses atomically increment 5000/n times with s = 2

locations chosen uniformly at random from a vector of

length 60. The benchmark captures the behavior of

highly concurrent queue and counter implementations

as in [24, 25].

Priority Queue A shared priority queue on a heap of size

n. We used a variant of a sequential heap implemen-

t ation [11]. In this benchmark each of the n processes

consequently enqueues a random value in a heap and

dequeues the greatest value from it 5000/n times. The

heap is initially empty and its maximsl size is n. This

is probably the most trying benchmark since there is

2 Naturally this operation is less efficient than the theoretical

Load-Linked/Store-Conditional proposed in [6, 15, 18] (which we could

have built directly into Proteus), since a failing Compare&Swap will

cost a memory access while a failing Store_Conditional wont. However,

we believe the 64-bit Com pare&Swap is closer to the real world then

the theoretical Load&inked/Store.Conditional since existing implemen-

tations of Load-Linked/Store-Conditional as on Alpha [12] or PowerPC

[17] do not allow access to the shared memory between the Load_Linked

and the Store-Conditional operations.

3 The non-blocking property will be achieved only if the number of

spurious failures is finite.

no potential for concurrency and the size of the data

structure increases with n.

Doubly Linked Queue An implementation of a queue aa

a doubly linked list in an array. The first two cells of

the array cent ain the head and the tail of the list. Every

item in the list is a couple of cells in the array, which

represent the index of the previous and next element

respectively. Each process enqueues a new item by up-

dating tadto contain the new item’s index and dequeues

an item by updating the head to contain the index of the

next item in the list. Each process executes 5000/n cou-

ples of enqueue/dequeue operations on a queue of ini-

tial size n. This benchmark supports limited parallelism

since when the queue ia not empty, enqueues/dequeues

update the tail/head of the queue without interfering

each other. For a high number of processes, the size of

the updated locations in each enqueue/dequeue ia rela-

tively small compared to the object size.

We implemented the k-word Compare&Swap transaction

(given in Figure 2) as specialization of the general STM

scheme given above. The simplification is that processes do

not have to agree on the value stored in the data set before

the transaction started, only on a boolean value which says

if the value ia equal to oMl_J or not.

We used the above benchmarks to compare STM to the

two nonblocking software translation methods described ear-

lier and a blocking MCS queue-lock [23] based solution (the

data structure is accessed in a mutually exclusive manner).

The non-blocking methods include Herlihy’s Method and Is-

raeli and Rappoport’s k-word Compare&Swap based imple-

mentation of the cooperative method. All the non-blocking

methods use exponential backoff [3] to reduce contention.

5.2 Results

The data to be presented leads us to conclude that there are

three factors differentiating among the performance of the

four methods:

1.

2.

3.

Potential parallelism: Both locking and Herlihy’s

method do not exploit potential parallelism and only

one process at a time is allowed to update the data

structure. The software-transactional and the coopera-

tive methods allow concurrent processes to access dis-

joint parts of the data structure.

The price oj a jailing update: In Hedihy’s lock-free

method, the number of memory accesses of a failing

update in is at least the size of the object (reading the

object and copying it to the private copy, and reading

and writing to the pointer). Fortunately, the nature of

the cache coherence protocols is such that almost all ac-

cesses performed when the process updates its private

copy are local. In both caching methods, the price of a

failure is a least the number locations accessed during

the cached execution.

The amount of helping by other processes: Helping ex-

ists only in the software-transactional and the coop-

erative methods. In the cooperative implementation,
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Figure 6: Counting Benchmark

k-word Compare&Swap , including failing ones, are

helped not only by the k-word Compare&Swap oper-

ations that acceas the same locations concurrently, but

also by all the operations that are in turn helping them

and so on... In the STM method, an k-word Com-

pare&Swap is helped only by operations that need the

same locations. Moreover, and this is a crucial perfor-

mance factor, in STM most of the unsuccessful updatea

terminate as ~ailirzg transactions, not as failing k-word

Compare&Swap , and when a transaction fails on the

first location, it is not helped.

The results for the counting benchmark are given in Fig-

ure 6. The horizontal axis shows the number of processors

and the vertical axia shows the throughput achieved. This

benchmark ia cruel to the caching based methods, since the

amount of updated memory is equivalent to the size of the

object and there is no potential for parallelism . On the bus

architecture, locking and Herlihy’s method give significantly

higher throughput than the caching methods.

In the resource allocation benchmark Figure 7, as the

number of processors increases, local work can be performed

concurrently, and thus the performance of the STM im-

proves. On the bus, beyond a certain number of proces-

sors, the potential for parallelism declines, causing a grow-

ing number of k-word Compare&Swap conflicts, and the

throughput degrades.

A priority queue is a data structure that does not allow

concurrency, and as the number of processors increases, the

number of locations accessed increases too. Still, the number

of accessed Iocations is smaller than the size of the object.

Therefore, the STM performs better than Herlihy’s method

in most concurrency level.

Figure 9 contains the doubly linked queue results. There is

more concurrency in acceasing the object than in the counter

benchmark, though it is limited: at most two processes may

concurrently update the queue. Herlihy’s method performs

poorly because the penalty paid for a failed update grows

linearly with queue size: usually twice the number of the pro-

cesses. In the STM method, the low granularity of the two-

word Compare&Swap transactions implies that the price of

a failure remains constant in all concurrency levels, though

local work is still higher than the Test-and-Test-smd-Set.

5.3 A comparison of non-blocking methods

only

Every theoretical method can be improved in many ways

when implemented in practice. In order to get a fair com-

parison between the non-blocking methods one should use

them in their purest form. Therefore, we compare the perfor-

mance of all the non-blocking methods without backoff (in all

the methods) and without the non-redundant-helping policy

(in STM). We also compare the cooperative k-word Com-

pare&Swap with STM for a specific implementation which

explicitly needs such a software supported operation. We

chose Israeli and Rappoport’s algorithm for a concurrent

priority queue [18], since it is based on recursive helping.

Therefore, whenever a process during the execution of a

k-word Compare&Swap helps another remote disjoint pro-

cess, it should give an advantage to Israeli and Rappoport

method. Our implement ation is slightly different since it

uses a 3-word Compare&Swap operation instead of a 2-word

Store-Conditional operation 4.

We ran the same benchmark aa for the regular priority

queue. The results of the concurrent priority queue bench-

mark are given in Figure 10. In spite of the advantage that

the inherent structure of the algorithm should give to Israeli

and Rappoport method, STM provides the highest through-

put. As in the counter and the sequential priority queue

benchmarks, the reason for this is the high number of faihng

k-word Compare&Swap operations in Israeli and Rappoport

method: up to 2.5 times the number of successful k-word

Compare&Swap .

We summarize the highlights of the other pure bench-

marks in Table 1, where entries are the throughput ratio

of ~tkc~~~~thod. As can be seen, STM outperforms the coop-

erative method in all benchmarks and outperforms Herlihy’s

in all except for the counter benchmark.

4 In fact, using 3-word Compare&Swap simplifies the implementa-

tion since it avoids freezzng [1S] nodes
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