
Simple Load Balancing for Distributed Hash Tables

John Byers

byers@cs.bu.edu

Je�rey Considine

jconsidi@cs.bu.edu

Michael Mitzenmacher

michaelm@eecs.harvard.edu

Dept. of Computer Science

Boston University

Boston, Massachusetts

EECS

Harvard University

Cambridge, Massachusetts

Abstract

Distributed hash tables have recently become a use-
ful building block for a variety of distributed ap-
plications. However, current schemes based upon
consistent hashing require both considerable imple-
mentation complexity and substantial storage over-
head to achieve desired load balancing goals. We ar-
gue in this paper that these goals can be achieved
more simply and more cost-e�ectively. First, we
suggest the direct application of the \power of two
choices" paradigm, whereby an item is stored at
the less loaded of two (or more) random alterna-
tives. We then consider how associating a small
constant number of hash values with a key can nat-
urally be extended to support other load balancing
methods, including load-stealing or load-shedding
schemes, as well as providing natural fault-tolerance
mechanisms.

1 Introduction

Distributed hash tables have been proposed as a
fundamental building block for peer-to-peer sys-
tems [6, 9, 8, 10, 12]. In the current design of dis-
tributed hash tables (DHTs), it is conventionally as-
sumed that keys are mapped to a single peer | that
peer is then responsible for storing a value associ-
ated with the key, such as the contents of a �le with
a given name. A widely used design to support such
a DHT [10] consists of two components: consistent
hashing over a one-dimensional space [6] and an in-
dexing topology to quickly navigate this space.
In a basic consistent hashing approach, both

peers and keys are hashed onto a one dimensional
ring. Keys are then assigned to the nearest peer
in the clockwise direction. Servers are connected

to their neighbors in the ring (i.e. the ring struc-
ture is embedded in the overlay) and searching for
a key reduces to traversing the ring. Fast searches
are enabled through additional overlay edges span-
ning larger arcs around the ring; for example, in
Chord [10], a carefully constructed \�nger table"
of logarithmic size enables searches in a logarithmic
number of steps.

However, with the naive implementation of con-
sistent hashing described so far, considerable load
imbalance can result. In particular, a peer that hap-
pens to be responsible for a larger arc of the ring
will tend to be assigned a greater number of items.1

If there are n peers, the maximum arc length for a
peer will be O(log n=n) with high probability, even
though the average arc length is 1=n.

A solution proposed in [10] is for each peer to sim-
ulate a logarithmic number of \virtual peers", thus
assigning each peer several smaller segments whose
total size is more tightly bounded around the ex-
pectation 1=n. While theoretically elegant, virtual
peers do not completely solve the load balancing is-
sue. First, even with perfectly uniform assignments
of segments to peers, the load need not be well bal-
anced. In the extreme case where there are n items
and n peers, this is the standard balls and bins prob-
lem, and with high probability one peer will be re-
sponsible for �(logn= log log n) items. Second, the
proposal to use O(log n) virtual peers with O(logn)
edges in each �nger table leads toO(log2 n) edges per
peer. Using the numbers of [10], a network of 100,000
peers will need to maintain 400 edges per peer. Al-

1For now, we will make the unrealistic assumption that all
items are of equal size and popularity. Very popular items,
or \hot spots", can be specially handled by appropriate repli-
cation, as in [6, 10]. We are here concerned with the load
balance of the bulk of less popular items.

1



though this number is small in terms of memory con-
sumption, maintaining 400 edges per peer incurs a
rather hefty messaging cost since each edge will need
to be probed at regular intervals to detect failures
and perform general maintenance.

As a practical alternative to virtual peers, we pro-
pose the application of the \power of two choices"
paradigm [1, 7] to balance load. These methods are
used in standard hashing scenarios using bins (chain-
ing) to reduce the maximum bin load with high prob-
ability. Using these methods, two or more hash func-
tions are used to pick candidate bins for each item
to be inserted. Prior to insertion, the load of each
bin is compared and the item is inserted into the
bin with the lowest load. Similarly, to search for an
item, the hash functions are applied again and each
bin is examined to locate the item. If there are n
items, n bins, and d � 2 hash functions, the maxi-
mum load of any bin is only log log n= log d + O(1)
with high probability. Moreover, the maximum load
is more tightly concentrated around the mean for
any number of balls.

Returning to DHTs, suppose that we have each
peer represented by just one point in the circle. Each
item chooses d � 2 possible points in the circle, and
is associated with the corresponding peer with the
least load from these choices. Previous results for the
power of two choices cannot be immediately applied,
since in this case the probability of a ball landing in
a bin is not uniform. Our �rst contribution is to
examine this interesting case, both theoretically and
through simulation.

Our second contribution is to apply these meth-
ods in the context of the Chord architecture. We
present low-overhead searching methods which are
compatible with the two choice storage model and
then provide a comparative performance evaluation
against the virtual peers approach.

Our �nal contribution is a consideration of the
broader impact of having a key map to a small con-
stant number of peers rather than to a single peer.
We argue that the power of two choices paradigm
facilitates other load balancing methods, such as
load-stealing and load-shedding in highly dynamic
DHTs, and enables new methods for addressing
fault-tolerance.

2 Two Choices

We �rst consider the following problem, which is in-
teresting theoretically in its own right. Suppose that
we have each of n peers represented by just one point
in the circle, to avoid the need for multiple �nger ta-
bles. Then n items are placed sequentially. Each
item uses d � 2 hash functions to choose locations
on the circle; each point is associated with the closest
peer (in the clockwise direction). The item is then
associated with the peer from this set of at most d
peers storing the fewest other items; ties are broken
arbitrarily. A natural question to determine the pos-
sible utility of two choices in this setting is whether
in this case, we maintain a log log n= log d + O(1)
maximum load with high probability.

Theorem 1 In the setting above, the maximum load

is at most log log n= log d+O(1) with high probability.

Our proof (not included for reasons of space) uses
the layered induction technique from the seminal
work of [1] (see also [7]). Because of the variance
in the arc length associated with each peer, we must
modify the proof to take this into account. The stan-
dard layered induction uses the fact that if there are
�k bins that have load at least k, then the prob-
ability each ball causes a bin to reach load k + 1
is most (�k=n)

2. This is used to derive bounds on
�k that hold with high probability for each k. The
key insight that is required for our modi�cation is
that the largest �k arcs have total length \not too
much longer" than �k=n. In fact, our result holds
for more general situations than arcs on a circle. It
holds whenever the probability of choosing one of the
largest j bins is not too much larger than j=n. This
extension may therefore be useful in showing that
the power of two choices applies to other settings as
well.

The above result holds regardless of how ties
are broken when more than one choice has the
same smallest load. V�ocking uses an improved tie-
breaking scheme to improve the d-choice balls and
bins result [11]; his extension can also be applied
here. However, in this setting we have a natural cri-
terion that can be used to break ties: the length of
the arcs. Intuitively, choosing the least loaded arc
with the smallest length appears best, since that arc
is the least likely to obtain further load in the future.
Simulations bear out that this tie-breaking approach
is better than breaking ties at random and in fact ap-

2



pears better than V�ocking's scheme. This scheme is
used in our subsequent experiments. We do not yet
have an analysis of this tie-breaking approach.

Although this theoretical result is for the simplest
setting (items have equal weight, and are inserted
sequentially), the paradigm of using two choices is
generally successful in more complex situations, in-
cluding weighted items and cases where items enter
and leave the system dynamically [7]. We therefore
expect good behavior in the more complex peer-to-
peer settings; we plan to continue to derive related
theoretical results.

3 DHT Implementation

Now we describe the application of this idea to
DHTs. Let h0 be a universally agreed hash func-
tion that maps peers onto the ring. Similarly, let
h1; h2; : : : hd be a series of universally agreed hash
functions mapping items onto the ring. To insert
an item x using d hash functions, a peer �rst cal-
culates h1(x); h2(x); : : : ; hd(x). Then, d lookups are
executed in parallel to �nd the peers p1; p2; : : : ; pd
responsible for these hash values, according to the
mapping given by h0. After querying the load of
each peer, the peer pi with lowest load is chosen
to store x. A straightforward, but naive, imple-
mentation of a search requires the peer performing
the search to again calculate h1(x); h2(x); : : : ; hd(x).
The peer then initiates lookups to �nd the peers as-
sociated with each of these d values, of which at least
one will successfully locate the key-value pair. While
these searches are inherently parallelizable, and thus
enable searching in little more time than their clas-
sic counterparts, the use of factor of d more network
traÆc spent searching is a concern.

To reduce the overhead searching for additional
peers, we introduce redirection pointers. Insertion
proceeds exactly as before. But in addition to stor-
ing the item at the least loaded peer pi, all other
peers pj where j 6= i store a redirection pointer
x ! pi. To search for x, a peer now performs a
single query, by choosing a hash function hj at ran-
dom in an e�ort to locate pi. If pj does not have
x, then pj forwards the query using a redirection
pointer x! pi. Lookups now take at most one more
step; if hj is chosen uniformly at random from the d
choices, the extra step is necessary with probability
(d�1)=d. Although this incurs the overhead of keep-
ing these additional pointers, unless the items stored

are very small or inexpensive to calculate, storing ac-
tual items and any associated computation will tend
to dominate any stored pointers.

One hazard with this approach is that the use of
explicit redirection pointers introduces a dependence
on a particular peer staying up. We assume that
a soft state approach [4] is used and the provider
of the key periodically re-inserts it, both to ensure
freshness and to recover from failures. Replication to
nearby peers as in DHash [5] will allow recovery, but
a new search will need to be performed to �nd the
replicating peers. This is easily remedied by keeping
pointers to some or all of the replicating peers, and
similarly, replicating those pointers.

4 Other Virtues of Redirection

While using two or more choices for placement im-
proves load balancing, it still forces a static place-
ment of the items, which may lead to poor perfor-
mance when the popularity of items changes over
time. As mentioned earlier, one means of coping
with this issue is to use soft state and allow items
to change location when they are re-inserted if their
previous choice has become more heavily loaded.2

However, since redirection pointers give the peers re-
sponsible for a key explicit knowledge of each other,
they can be used to facilitate a wide range of load
balancing methods that react more quickly than pe-
riodic re-insertion allows. We brie
y explore some
of these possibilities here.

Load-stealing and load-shedding become simple in
this context. For example, consider load-stealing,
whereby an underutilized peer p1 seeks out load to
take from more heavily utilized peers. The load-
stealing peer �nds such a peer p2 and takes respon-
sibility for an item x by making a replica of x and
having p2 create a redirection pointer to p1 for item
x. In the case where items are placed using mul-
tiple choices, a natural idea is to have p1 attempt
to steal items for which p1 currently has a redirec-
tion pointer. This maintains the invariant that an
item is associated with one of its d hash locations.
Alternatively, the stealing peer could break this in-
variant, but at the risk of additional implementation
complexity.

Load-shedding, whereby an overloaded peer at-
tempts to o�oad work to a less loaded peer, may

2This is essentially a dynamic balls and bins problem.

3



0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

i
t
e
m
s
 
p
e
r
 
b
i
n

number of items (x 10,000)

(a) virtual peers

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

i
t
e
m
s
 
p
e
r
 
b
i
n

number of items (x 10,000)

(b) unlimited virtual peers

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

i
t
e
m
s
 
p
e
r
 
b
i
n

number of items (x 10,000)

(c) two choices

Figure 1: 1st percentile, mean and 99th percentile loads using various load balancing strategies.

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

i
t
e
m
s
 
p
e
r
 
b
i
n

number of items (x 10,000)

(a) virtual peers

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

i
t
e
m
s
 
p
e
r
 
b
i
n

number of items (x 10,000)

(b) unlimited virtual peers

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

i
t
e
m
s
 
p
e
r
 
b
i
n

number of items (x 10,000)

(c) two choices

Figure 2: Minimum, mean and maximum loads using various load balancing strategies.

also be well suited to peer-to-peer networks. An
overloaded peer p1 must pass on an item x and cre-
ate a redirection pointer to a peer p2. Alternatively,
the item x could be replicated at p2, both adding re-
dundancy and allowing p1 to control how much of
the load to shed. Again, in the case where items are
placed using multiple choices, shedding can attempt
to maintain the semantics of the hashing paradigm,
although this is not strictly necessary.

An interesting alternative combining replication
and the multiple-choice schemes above is to repli-
cate an item x at the k least loaded out of d possible
locations given by hash functions. Such replication
can maintain good load balancing while also allow-
ing additional functionality, such as parallel down-
loading from multiple sources [3, 2]. Indeed, parallel
downloading may further improve load balancing in
the system. This remains an interesting possibility
for future study.

5 Experiments

In this section, we detail the results of our experi-
ments. For comparison with the experiments of [10],
we use 104 peers with numbers of items ranging from

105 to 106. The three schemes we consider are 1) us-
ing blog2 nc virtual peers, 2) using an unbounded
number of virtual peers (simulated using uniformly
sized arcs), and 3) our power of two choices scheme
(d = 2, breaking ties to smaller bins). We omit the
unbalanced scheme as the virtual node scheme was
already shown to be superior to it.3 All statistics are
the results of aggregating 104 trials.

Figure 1 shows the 1st and 99th percentile loads
for comparison to the results of [10]. Figure 2 shows
the minimum and maximum loads { we view the
maximum load as a key metric since the highest
loaded peers are most likely to fail or provide poor
service. Both �gures show the mean load to illus-
trate how far or close each scheme is to the ideal.
Figure 1(a) reproduces some of those experiments
of [10].4 As noted there, the use of virtual peers
improves load balancing signi�cantly and reduces
the fraction of idle peers compared to the unbal-
anced scheme. However, the corresponding maxi-
mum loads shown in Figure 2(a) are much higher
and reveal a potential performance problem. Fig-

3The high loads that result when no load balancing is used
dwarf those of the three schemes we compare and make them
diÆcult to distinguish when plotted on the same axes.

4The maximum load of a peer was not considered in [10].

4



ures 1(b) and 2(b) show the results of using an un-
bounded number of virtual peers. The load bal-
ancing is signi�cantly better in this case, but we
note that it is very close to that shown in Fig-
ures 1(c) and 2(c), which show the results of allowing
two choices.

Overall, this means that even given unlimited re-
sources to allocate to virtual peers in this scenario,
the end result is a maximum load like that of us-
ing two choices. The distribution of load is slightly
di�erent { there is less variation in load than when
using two choices { but we emphasize that we are
comparing an unlimited resource scenario with a lim-
ited one. In particular, approximating the unlimited
scenario is expensive, and the use of blog2 nc virtual
peers as proposed in [10] introduces a large amount
of topology maintenance traÆc but does not pro-
vide a very close approximation. Finally, we observe
that while we are illustrating the most powerful in-
stantiation of virtual peers, we are comparing it to
the weakest choice model { further improvements are
available to us just by increasing d to 3.

6 Conclusion

We advocate generalizing DHT's to enable a key
to map to a set of d possible peers, rather than
to a single peer. Use of this \power of two
choices" paradigm facilitates demonstrably bet-
ter load-balancing behavior than the virtual peers
scheme originally proposed in Chord; moreover, it
does so with considerably less shared routing infor-
mation stored at each peer. We also make a pre-
liminary case for other bene�ts of multiple storage
options for each key ranging from fault-tolerance to
better performance in highly dynamic environments.

At �rst glance, the prospect of having keys map to
a small set of possible peers in a DHT runs the risk
of incurring a substantial performance penalty. In
practice, the cost is only a modest amount of extra
static storage at each peer as well as a small additive
constant in search lengths.

References

[1] Azar, Y., Broder, A., Karlin, A., and Upfal,
E. Balanced allocations. SIAM Journal on Comput-
ing 29, 1 (1999), 180{200.

[2] Byers, J., Considine, J., Mitzenmacher, M.,

and Rost, S. Informed content delivery across

adaptive overlay networks. In SIGCOMM (2002),
pp. 47{60.

[3] Byers, J. W., Luby, M., and Mitzenmacher,

M. Accessing multiple mirror sites in parallel: Using
tornado codes to speed up downloads. In INFOCOM
(1) (1999), pp. 275{283.

[4] Clark, D. The design philosophy of the DARPA in-
ternet protocols. In ACM SIGCOMM (1988), ACM
Press, pp. 106{114.

[5] Dabek, F., Kaashoek, M. F., Karger, D.,

Morris, R., and Stoica, I. Wide-area cooper-
ative storage with CFS. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles
(SOSP '01) (Chateau Lake Louise, Ban�, Canada,
Oct. 2001).

[6] Karger, D. R., Lehman, E., Leighton, F. T.,
Panigrahy, R., Levine, M. S., and Lewin, D.

Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world
wide web. In ACM Symposium on Theory of Com-
puting (May 1997), pp. 654{663.

[7] Mitzenmacher, M., Richa, A., and Sitara-

man, R. The Power of Two Choices: A Survey of
Techniques and Results. Kluwer Academic Publish-
ers, Norwell, MA, 2001, pp. 255{312. edited by P.
Pardalos, S. Rajasekaran, J. Reif, and J. Rolim.

[8] Ratnasamy, S., Francis, P., Handley, M.,

Karp, R., and Shenker, S. A scalable content
addressable network. In ACM SIGCOMM (2001),
pp. 161{172.

[9] Rowstron, A., and Druschel, P. Pastry: Scal-
able, distributed object location and routing for
large-scale peer-to-peer systems. In Proceedings of
Middleware 2001 (2001).

[10] Stoica, I., Morris, R., Karger, D., Kaashoek,

M. F., and Balakrishnan, H. Chord: A scalable
peer-to-peer lookup service for internet applications.
In ACM SIGCOMM (2001), pp. 149{160.

[11] V�ocking, B. How asymmetry helps load balanc-
ing. In Proceedings of the 40th IEEE-FOCS (1999),
pp. 131{140.

[12] Zhao, B. Y., Kubiatowicz, J. D., and Joseph,

A. D. Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Tech. Rep.
UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

5


