EFREI M1: Distributed Algorthms 2019
Solutions for Quiz 5

1 Uninitialized queues

Recall that if a queue initially stores {winner, loser}, then two processes can solve consensus by
performing a dequeue operation and deciding on your own value if you are the winner, or the
value of the other process otherwise.

Suppose that we can only use empty queues. The trick is to use two queues, one for each
process. Each process p; first initializes its queue Q[j], then registers its input in 7'[¢], and then
for j = 0,1 (in this order) runs the consensus algorithm Cons; using the initialized queue Q[j]
and proposing the value decided in the first consensus to the second one. If for some j = 0,1,
T[j] = L (the input of p; is not yet registered), p; simply skips the corresponding consensus
(Algorithm 1).

The proof of correcteness is left as an exercise.

Hint: To prove that Algorithm 1 indeed solves consensus, assume that p; (i = 01,) was the
first process to write in T'[7]. Show first that if both processes return, then they both go through
consensus Cons; and, thus, they must retun the same value (returned by Cons;).

Note that the approach can be used for any set of uninitialized base objects and any algo-
rithm that solves consensus among any number of processes assuming a specific initialization
of these base objects.

Algorithm 1 2-process consensus using empty queues

1: Shared variables:
2:  registers T10,1] = {L}
3:  queues Q[0,1] = {}

4: propose(v;) performed by p; (i =0,1):
5. Qli].eng(winner);

6:  QIi].eng(loser);

7o T[i).write(vs);

8

v =g
9: for j =0..1 do
10: if T[j] # L then
11: v = Cons;(v) (using queue Q[j]);
12: return(v);

2 Consensus numbers of TAS

By contradiciton, suppose that an algorithm A solves binary 3-process consensus (for processes
Po, P1, p2) using registers and TAS objects.



Recall that any input configuration Cy in which some process p proposes 0 and another
process q proposes 1 is bivalent: p running solo from Cy must decide 0 and ¢ running solo from
Cp must decide 1.

We show that Cy must have a critical descendant: a configuration C reachable from Cy by
a finite execution such that:

e (' is bivalent;

e for each p; (i =0,1,2), C.p; (the configuration obtained after p; takes one more step of A
after C') is monovalent (0-valent or 1-valent).

Indeed, suppose, by contradiction, that Cp has no critical descendants. Thus, for every
bivalent descendant of Cy (including Cj itself) has a bivalent descendant.

Now we construct an infinite execution that only goes through bivalent configurations as
follows. Let Cp be the bivalent one-step extension of Cy (it must exist by our assumption),
C5 - the bivalent one-step extension of C', etc. We denote the resulting infinite execution by
E. Recall that no process can decide in a bivalent configuration - otherwise, the agreement
property of consensus is violated in some extension of this configuration. Thus, no process can
decide in EF—a violation of the termination property of consensus.

Thus, A has a critical configuration C. Without loss of generality let C.py (the extension of
C with one step of py) be 0-valent, and C.p; be 1-valent.

We observe that the steps of pg and p; enabled in C' must be on the same base object
X: otherwise they commute, i.e., configurations C.pg.p; and C.p;1.pg are indistinguishable (the
process and base-object states are identical), but have opposite valences.

Moreover, as we have shown in the class, X cannot be a register (to see this, consider the
cases of read and write operations performed by pg and p; and show that in each case we can
find indistinguishable configurations of opposite valences).

Note that until now we have not used the assumption that A uses only registers and TAS
objects. The claims above hold for any wait-free consensus algorithm using base objects.

Thus, X must be a TAS object. But then C.pg.p1 and C.p;1.pg only differ in the local states
of pp and p1: only these two processes “know” who won the TAS object and who lost it, and
all base objects have identical states in the two configurations.

Thus, po running solo from C.pg.p; must decide the same value as it would decide running
solo from C.p;.pp—a contradiction with the assumption that C.py (and, thus, C.pg.p1) is 0-valent
and C.p; (and, thus, C.p1.pg) is 1-valent.

Hence, TAS and registers cannot be used to solve consensus among 3 processes, which,
combined with the 2-process consensus algorithm using TAS and registers discussed in class,
implies that the consensus number of TAS is 2.

3 Consensus power of the “strong” key-value store

Every process p; simply executes add(1,v;), where v; is the input of p; (we assume that the
store object is initially empty).

If the operation returns true, p; outputs v;. Otherwise, p; outputs the value returned by
get(1).

This way every process outputs the argument of the first add operation to be executed.



