
EFREI M1: Distributed Algorthms 2019

Solutions for Quiz 4

1 “One-Shot” Atomic Snapshots

In one-shot atomic snapshot, every process pi performs updatei(vi) followed by snapshot(), let
Si denote the result of the snapshot. Prove that every run of one-shot atomic snapshot satisfies
the following properties:

Self-Inclusion ∀i: vi ∈ Si

Containment ∀i, j: (Si ⊆ Sj) ∨ (Sj ⊆ Si)

Here we assume that the initial value of each memory location i is ⊥ and we say that Si ⊆ Sj

if ∀k : (Si[k] 6= ⊥)⇒ (Si[k] = Sj [k]).

Solution. Self-Inclusion is immediate: since pi first performs updatei(vi) and then snapshot()
to obtain Si, Si must necessarily contains vi in position i.

Now suppose that pi and pj obtained snapshots Si and Sj , respectively, in a given run. Let
L be any linearization of the corresponding history. Suppose that the snapshot operation of pi
precedes the snapshot operation of pj in L. Since L is legal, for every non-⊥ position k in Si,
updatek(vk) precedes snapshoti() and, thus, snapshotj() in L. Since there is exactly one update
performed by pk in this run, we have Sj [k] = Si[k] = vk. The case when Sj precedes Si in L is
symmetric. Thus, Containment is also satisfied.

The Immediacy property is violated in the run presented in slide 21 of lecture 5. Here
v2 ∈ S1, but S2 * S1.

R[1].write(2)

R[3].write(2)

Update(2)

R[3].write(2)

Update(2)

R[2].write(1)

Update(1)

Update(1)

R[3].write(1)

R[1].write(1)

Update(1)

p1

p2

p3

Snapshot()

R[1].read() R[2].read() R[3].read() R[1].read() R[2].read() R[3].read()

Update(2)

R[3].write(1)

Update(1)

R[1].write(1)

Update(1) Update(2)

R[1].write(2)

[1,1,1] [2,1,1] [2,1,2][2,1,2] [2,1,1]

[1,1,2] [1,1,2]
[1,1,2]

[1,1,1] [2,1,1]

Figure 1: ABA in atomic snapshots: p2 gets two identical scans, but the scan outcome (in red)
does not belong to the set of allowed snapshots (in blue).

1



2 Atomic Snapshots and the ABA Problem

Show that our atomic snapshot algorithm fails if a process may perform multiple update oper-
ations with identical parameters.

Solution. Figure 1 gives an example of a run in which p1 and p2 update the memory concur-
rently with a snapshot taken by p2. In the first scan, p2 sees the old value od p1 (1) and the
new value of p3 (2), then p3 and p1 write back their “old” values (in this order), and then we
repeat this scenario with the second scan of p2.

The resulting execution is not linearizable: there is no place between the updates where we
can linearize the snapshot operation by p2.

3 Extending ABD

• Does the ABD algorithm run by one writer and multiple readers implement an atomic
(linearizable) register?

The answer is no. Consider the following scenario. The writer invokes operation write(1)
(assuming the the initial register value is 0). At the moment when the corresponding
message only reaches a minority of the processes, reader 1 issues a read operation, reaches
a process in this minority and returns 1. Then reader 2 issues a read operation, but this
time only reaches a majority that is not aware on the new value. Reader 2 must return
0, which implies a new-old inverstion.

• If not, can it be turned in an atomic one?

Here we need to add a writing phase to the reader’s algorithm. Before returning a value
v, the reader must make sure that a majority of processes has v or a newer value.

• How to support multiple writers?

With multiple writers, we need to make sure that the timestamps associated with the
values respect the order in which write operations are perfromed.

For this, every writer should start with a reading phase in which the writer queries a
majority of processes to get the maximal sequence number t used by them. The new
sequence number is then chosen as t + 1.

Of course, two concurrent writers can compute identical sequence number. To break ties,
as in the Bakery algorithm, we define the timesamp to be the pair (sequence number,
process identifier). Timestamps are then compared lexicographically.

2


