
EFREI M1: Distributed Algoruthms 2019: Solutions for Quiz 3

1 Original Bakery

We prove first mutual exclusion: no two processes are in their critical sections at the same time.
Assume the contrary: pi with ticket number `i and pj with ticket number `j are at the

critical section at a given time tc. Assume that (`i, i) << (`j , j).
Notice that the binary registers flag[i] and flag[i] are only updated in order to change their

values (setting it from true to false or vice versa). Thus, as we have seen in the class, the
registers behave like regular ones: only the last written or a concurrently written values can be
read in them.

Thus, when pj passes the first waiting phase (waiting until pi is not in the doorway), it reads
false in flag[i] written by a concurrent or a preceding write by pi.

Let wf be the last write on flag[i] that pi performs before tc. By the algorithm pi writes
false in wf . Let rf be the last read of flag[i] that pj performs before tc. By the algorithm rf
returns false.

Two cases are possible:

• wf is performed before or concurrenty with rf .

In this case, every read of label[i] performed by pj after reading flag[i] and before enetering
its critical section at time tc is not concurrent with any write on label[i] by pi and, by the
definition of a safe register, every such read must return `i.

Since, by our assumption, (`i, i) << (`j , j), pj cannot be in its critical section at time
tc—a contradiction.

• wf is performed after rf .

Thus, for rf to return false, the preceding write w′
f of true to flag[i] must be performed by

pi after or concurrently with rf . Thus, when read of label[j] performed by pi after w′
f is

not overlapping with a write on label[j] and must return `j . By the algorithm, `i ≥ `j + 1
and, thus, (`j , j) << (`i, i)—a contradiction.

Proving starvation-freedom is left as an exercise.

2 Order of cleaning

To see that the resulting algorithm is incorrect consider a run in which write(1) completes, then
write(0) completes (leaving the array in the state [1, 1, 0, . . .]), and suppose that write(2) sets
the array to [1, 1, 1, . . .], starts cleaning it “bottom-up” by setting R[0] to 0, and falls asleep
(leaving the array in the state [0, 1, 1, . . .]).

A concurrent read() will then return 1, violating regularity (the last written value is 0 and
the concurrently written value is 2).

1



3 Cleaning before writing

Suppose that write(2) completes, then write(0) completes and let (leaving the array in the state
[1, 0, 1, . . .]), and suppose that write(1) starts cleaning by setting R[0] to 0, and falls asleep
(leaving the array in the state [0, 0, 1, . . .]).

A concurrent read() will then return 2, violating regularity (the last written value is 0 and
the concurrently written value is 1).

2


