
EFREI M1: Distributed Algoruthms 2019: Solutions for Quiz 2

1 Hand-over-hand locking

Locking in contains

If we allow a contains operation C to proceed in the wait-free manner, every node it reads may
turn out to be already unreachable from the head.

However, this is not an issue if we realize that if this is the case, then the remove operation
R that unlinked the node from list must be concurrent with C. Moreover, the linearization
point of R (the moment it updates pred.next) must lie within the interval of C. Indeed, if the
liearization point of R preceeds the invocation of C in the real-time order, then the node is
already unreachable at the moment when C is invoked and, thus, C cannot find it.

In fact, this observation holds for each of the algorithms we considered in the class: a
complete wait-free contains operation can always be linearized at:

• the moment it performs its last read (in case the node it reads is reachiable from the
head), or

• just before the linearization point of the successful remove operation that unlinks the last
node it reads.

Checking curr before locking

The idea is to return false early, without grabbing locks. Indeed, an unsuccessful update does
not need to protect data with locks, as it is not going to modify it.

We can see that the resulting algorithm is correct, as an unsuccessful update can be treated
as a contains operation, and we have just shown that contains operations can be performed
wait-free.

Locking one node at a time

Imagine that an operation R = remove(1) keeps a lock on pred, reads curr = pred.next and
releases the lock on pred before grabbing the lock on curr. Imagine further that curr.value == 1.

Then we can squeeze another R′ = remove(1) in the gap when no node is protected with
locks that unlinks curr from the list updating pred.next.

R wakes up and successfully completes, which violates linearizability.
The morale here is that an update operation must at some point keep locks on two consec-

utive nodes when traversing the list.

Starvation-freedom

Immediate, once we realize that the underlying locks are starvation-free and each opearion
may only perform a bounded number of steps. The bound comes from the parameter v of
the operation, since the list is sorted, the number of shared-memory operations the operation
performs is bounded by O(v −MININT) (assuming that keys are integers).

1



2 Optimistic locking

The need for validation in updates

Without validation concurrent updates may overwrite each other. See the example of the lost-
update problem on slide 8 on the lecture.

Validation in contains

Not necessary, check the discussion of the first question.

The lack of starvation-freedom

Suppose that the list is initially empty and consider an operation I = insert(1) that is concurrent
with an infinite series of alternating successful insert(1) and remove(1) operations, each of them
scheduled just before I grabs locks and runs its validation procedure. As all validations fail, I
never terminates, even though every lock is eventually released - starvation-freedom is violated.

But for this to heppen, infinitely many updates must take place, and deadlock-freedom is
satisfied.

3 Lazy locking

Validation conditions

By “two conditions” here we mean (1) checking that pred is not marked for deletion and (2)
checking that pred still points to curr.

The first check is needed to anticipate the scenario in which pred is removed by a concurrent
update before we take a lock on it. If we do not do it, any further modification of pred will be
“lost”.

The second check is needed to make sure that a potential concurrent update that modified
pred.next will not be “lost” because of our operation.

Checking curr.marked

Coming soon

Linearizability

A nice feature of a set abstraction is that we can prove linearizability of a history H by only
considering separately, for each key k, the restriction of H to operations invoked with parameter
k. Therefore, we can choose the linearization point of an operation in an execution of the lazy
algorithm bazed on other operations with the same key. We only give a sketch below.

A successful update is linearized at the point it modifies pred.next. (Recall that an update
is successful if it executes this instruction.)

An incomplete unsuccessful operation or contains is removed from the linearization (it is
read-only, so no other operation is affected by its presence in a history).

The linearization point of a complete unsuccessful update is the moment it completes its
validation.

To define the linearization point of contains see the first exercise.

2



Finishing the argument and showing that the sequential history resulting after placing op-
erations of H in the order of their linearization points is left as an exercise. Check Chapter 7
of Herlihy-Shavit for details.

3


