
EFREI M1 Big Data: Project Description

Robust Key-Value Store

The goal of this project is to get an initial experience in designing a fault-tolerant distributed system.
Here we focus on the popular key-value store application.

1 Sequential specification

The state of a key-value store is a set of key-value pairs of the form (k, v), where k is an integer and v
is a value in a given value set (assume that values are also integers). The initial state is an empty set.
The system exports two operations:

• put(k, v) sets the value with key k to v (overwriting the old value if it is already in the set).

• get(k) returns the value of key k (the default value ⊥ is returned is the key is not at the system).

2 Concurrent environment

The goal of the project is to give a key-value store implementation for the following environment:

• We have N asynchronous processes. Every process has a distinct identifier. The identifiers are
publicly known.

• Every two processes can communicate via a reliable asynchronous point-to-point channel.

• Up to f < N/2 of the processes are subject to crash failures: a faulty process prematurely stops
taking steps of its algorithm. A process that never crashes is called correct.

The implemenation should ensure that in its every execution, the following conditionas are met:

Safety The corresponding history is linearizable with respect to the sequential specification above;

Liveness Every operation invoked by a correct process eventually returns.

Hint: You can treat the system as a set of multi-writer multi-reader atomic registers (indexed by
keys). Just as in the ABD algoriuthm (check class04), for each key k, every process maintains a local
copy of the value, equipped with a timestamp. To write a new value v, we need to make sure that at
least a majority (N −f) of the processes store v or a newer value in their local copies. To get a value, we
need to contact a a majority (N − f) of the processes and return the most recent value they are aware
of.

Of course, the ABD algorithm only implements a single-writer regular register, while we want to
implement a multi-writer atomic one. So the writer (the process executing a put operation) needs to be
careful to choose a timestamp for the message it writes to be higher than the timestamps of preceding
writes. Respectively, to prevent the new-old inversion, the reader (the process executing a get operation)
needs to ensure that the returned value (or a newer one) is stored at a majority of the processes.

This might require one extra round of message exchange between the process performing an operation
and a quorum (a majority) of other processes.

1



3 Prerequisites

The project assumes a basic knowledge of Java. Get familiarized with the Java version of AKKA, an
actor-based programming model https://akka.io/docs/. heck basic constructions in to see how to
create an actor, and make the actors communicate.

Check https://github.com/remisharrock/SLR210Patterns for sample AKKA patterns which you
might want to use.

4 Formalities

The project is pursued in teams of two or three students each.
The implemented system should be provided with a short report describing how the system operates

and containing correctness arguments. The team should also prepare a short presentation to be given at
the end of the course.

The first project meetings on October 23-25 contain a tutorial on the AKKA programming environ-
ment. The two subsequent meetings (on 5-6/11 and 26/11) will be used for discussing potential issues
and problems. The final meetingson December 10-11 will be used for project presentations.

5 Implementation

The implementation should extend the basic construction creating a system of a given size and ensure
all-to-all connectivity (the homework of November 7). More precisely, in the main class, create N actors
(processes), and pass references of all N processes to each of them. Use the name Process for the process
class.

In the Process class create methods for executing operations put and get. For simplicity, imple-
ment just the system for just a single key. Recall that this is equivalent to implementing
a single atomic register.

To test the implementation and measure its performance, use the following procedure.
The main method selects f processes at random (e.g., using the shuffle method from java.collections)

and sends each of them a special crash message. If a process receives a crash message it enters the silent
mode, not reacting to any future event.

For every remaining process, the main method sends a special launch message. Once process i receives
a launch message, it sequentially performs:

• M put operations, with parameters k = 1 and v = i, 2 ∗ i, . . . ,M ∗ i, and

• M get operations, with parameters k = 1.

Make sure that every process performs at most one operation at a time (remember that we require
every exported history to be well-formed).

Use the LoggingAdapter class to log both the invocation and the response of each operation a process
performs together with it timing.

Perform the experiment for N = 3, 10, 100 (with f = 1, 4, and 49, respectively) and M = 3, 10, 100
(nine instances). For the instance N = 3 and M = 3, check that the resulting execution is linearizable.
Also, for each instance, measure the latency, i.e., the total computation time.

6 Report

Prepare a short report (up to 15 pages), preferably in English (can also be written in French if English
does not feel comfortable). The report should contain:

• A high level description of the system;

• A pseudocode of the implementation;

• A sketch of a proof of correctness (please argue that both safety and liveness hold);

2

https://akka.io/docs/
https://github.com/remisharrock/SLR210Patterns


• A report on performance analysis.

The report and the code of the implementation should be submitted by December 6 via the Moodle
service (archived in one zip file).

7 Presentation

The presentation (7 mins) should contain a very brief overview of the main features of the algorithm,
its correctness arguments and performance. We envision 10 minutes per team (including 3 minutes for
questions), so the time bounds are strict.

3


	Sequential specification
	Concurrent environment
	Prerequisites
	Formalities
	Implementation
	Report
	Presentation

