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The space of registers

§ Nb of writers and readers: 
from 1W1R to NWNR

§ Size of the value set: from 
binary to multi-valued

§ Safety properties: safe, 
regular, atomic 

# readers/writers

safety property
value set

All registers are (computationally) equivalent!
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Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular 

binary or multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
V. From 1W1R to 1WNR (multi-valued atomic)
VI. From 1WNR to NWNR (multi-valued atomic)
VII. From safe bit to atomic bit (optimal, coming later)
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This class

§ Atomic snapshot: reading multiple locations 
atomically
üWrite to one, read all

§ Immediate snapshot
§Write and “immediately” read

§ ABD: from message-passing to shared 
memory
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Atomic snapshot: sequential specification

§ Each process pi is provided with operations:
üupdatei(v), returns ok
üsnapshoti(), returns [v1,…,vN]

§ In a sequential execution:
For each [v1,…,vN] returned by snapshoti(), 

vj (j=1,…,N) is the argument of the last updatej(.) 
(or the initial value if no such update)  
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Snapshot for free?
Code for process pi:

initially:
shared 1WNR atomic register Ri := 0

upon snapshot()
[x1,…,xN] := scan(R1,…,RN)      /*read R1,…RN*/
return [x1,…,xN] 

upon updatei(v) 
Ri.write(v)
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Snapshot for free?

p1

p2

p3

read3()2

update1(1)      ok

update3(1) ok update3(2) ok

snapshot()                                [1,1,2]

read1()1

update2(1) ok

update1(2)      ok

read2()1
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Snapshot for free?

p1

p2

p3

update1(2)       okupdate1(1)         ok

update3(1) ok update3(2) ok

snapshot()                                [1,1,2]update2(1)     ok

[1,1,1] [2,1,1] [2,1,2]

read3()2read1()1 read2()1
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§ What about 2 processes? 

§ What about lock-free snapshots?
üAt least one correct process makes 

progress (completes infinitely many 
operations)
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Lock-free snapshot
Code for process pi (all written values, including the 

initial one, are unique, e.g., equipped with a sequence 
number)

Initially: 
shared 1W1R atomic register Ri := 0

© 2019 P. Kuznetsov

upon snapshot()
[x1,…,xN]:= scan(R1,…,RN)
repeat

[y1,…,yN] := [x1,…,xN] 
[x1,…,xN]:= scan(R1,…,RN)

until  [y1,…,yN] = [x1,…,xN] 
return [x1,…,xN] 

upon updatei(v)
Ri.write(v)
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Linearization
Assign a linearization point 

to each operation
§ updatei(v) 

üRi.write(v) if present
üOtherwise remove the op

§ snapshoti()
üif complete – any point 

between identical scans
üOtherwise remove the op

Build a sequential history S 
in the order of 
linearization points  

© 2019 P. Kuznetsov

snapshoti()          [1,1,2]

scan()

updatei(1) ok

[1,1,2] [1,1,2]
…
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Correctness: linearizability
S is legal: every snapshoti() returns the last written value for 

every pj
Suppose not: snapshoti() returns [x1,…,xN] and some xj is not 

the the argument of the last updatej(v) in S preceding 
snapshoti()  

Let C1 and C2 be two scans that returned [x1,…,xN]

C1

readj()  xj

…
C2

readj()  xj

No updatej(.) 
linearized here!Returns the 

argument of the 
last updatej(.)!
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Correctness: lock-freedom
An updatei() operation is wait-free (returns in a finite 

number of steps) 
Suppose process pi executing snapshoti() eventually 

runs in isolation (no process takes steps 
concurrently)

§ All scans received by  pi are distinct
§ At least one process performs an update between
§ There are only finitely many processes => at least 

one process executes infinitely many updates

What if base registers are regular?
© 2019 P. Kuznetsov
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General case: helping?
What if an update interferes with a snapshot?
§ Make the update do the work!

upon snapshot()
[x1,…,xN]:= scan(R1,…, RN)
[y1,…,yN] := scan(R1,…,RN)
if  [y1,…,yN] = [x1,…,xN] then 

return [x1,…,xN] 
else

let j be such that 
xj≠yj and yj=(u,U)
return U 
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If two scans 
differ – some 

update succeeded!
Would this work?

upon updatei(v)
S := snapshot()
Ri.write(v,S)
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Not that easy!

© 2019 P. Kuznetsov

snapshot2()           [0,0,0]

snapshot()  [0,0,0]

scan()

update1(1)                      ok

[0,0,1]

scan()

[1,0,1]

update3(1)    ok

write1(1,[0,0,0])

write3(1,[0,0,0])

p1

p2

p3
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General case: wait-free atomic snapshot
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upon snapshot()
[x1,…,xN]:= scan(R1,…,RN)
while true do

[y1,…,yN] := [x1,…,xN] 
[x1,…,xN]:= scan(R1,…,RN)
if [y1,…,yN] = [x1,…,xN] then

return [x1,…,xN]
else if movedj and xj ≠ yj then

let xj = (u,U)
return U

for each j: movedj := movedj∨xj ≠ yj

upon updatei(v)
S := snapshot()
Ri.write(v,S)

If a process moved 
twice: its last 

snapshot is valid! 
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Correctness: wait-freedom
Claim 1 Every operation (update or snapshot) returns 

in O(N2) steps (bounded wait-freedom)
snapshot: does not return after a scan if a concurrent 

process moved and no process moved twice 
§ At most N-1 concurrent processes, thus 

(pigeonhole), after N scans:
üEither at least two consecutive identical scans
üOr some process moved twice!

update: snapshot() + one more step

© 2019 P. Kuznetsov
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Correctness: linearization points
updatei(v): linearize at the Ri.write(v,S)
complete snapshot()
§ If two identical scans: between the scans
§ Otherwise, if returned U of pj: at the linearization 

point of pj’s snapshot
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snapshot() [0,1,0]

scan()scan()
update2(2) ok

[0,1,0] [0,2,0]

…

[0,1,0]

[0,0,0]

update2(1) ok
[0,0,0]

p1

p2
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The linearization is:

§ Legal: every snapshot operation returns the 
most recent value for each process

§ Consistent with the real-time order: each 
linearization point is within the operation’s 
interval

§ Equivalent to the run (locally 
indistinguishable)

(Full proof in the lecture notes, Chapter 6)
© 2019 P. Kuznetsov
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Quiz 1: atomic snapshots 

1. Prove that one-shot atomic snapshot 
satisfies self-inclusion and containment:
üSelf-inclusion: for all i: vi is in Si

üContainment: for all i and j: Si is subset of Sj or Sj
is subset of Si

2. Show that the atomic snapshot is subject to 
the ABA problem (affecting correctness) in 
case the written values are not unique

© 2019 P. Kuznetsov
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One-shot atomic snapshot (AS)
Each process pi:

updatei(vi)
Si := snapshot()

Si = Si[1],…,Si[N]
(one position per 

process)

© 2019 P. Kuznetsov

Vectors Si satisfy:
§ Self-inclusion: for all i: vi is 

in Si
§ Containment: for all i and 

j: Si is subset of Sj or Sj is 
subset of Si
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“Unbalanced” snapshots

p1

p2

p3

snapshot()     [1,1,0]update1(1)   ok

update3(1) ok

update2(1)   ok snapshot()     [1,1,1]

snapshot()     [1,1,1]

p1 sees p2 but misses 
its snapshot  
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Enumerating possible runs: 
two processes

Each process pi (i=1,2):
updatei(vi)
Si := snapshot()

Three cases to consider:
(a) p1 reads before p2 writes
(b) p2 reads before p1 writes
(c) p1 and p2 go “lock-step”: 

first both write, then both 
read

© 2019 P. Kuznetsov

p1

p2
(a)

p1

p2
(b)

p1

p2
(с)
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Topological representation: one-shot AS

p1 sees {p1} p3 sees {p3}

p2 sees {p2}

p3 sees {p2,p3}

p2 sees {p2,p3}p2 sees {p1,p2}

p1 sees {p1,p2}

p3 sees {p1,p2,p3}

Balanced run:
two steps of p2, 

then p1, then 
p3
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Topological representation: one-shot AS

p1 p3

p2

p2 sees {p1,p2}

p1 sees {p1,p2}

p3 sees {p2,p3}

p2 sees {p2,p3}

“unbalanced”
run 

p3 sees {p1,p2,p3}
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One-shot immediate snapshot (IS)
One operation: 

WriteRead(v)

Each process pi:
Si := WriteReadi(vi)

© 2019 P. Kuznetsov

Vectors S1,…,SN satisfy:
§ Self-inclusion: for all i: vi is in 

Si

§ Containment: for all i and j: 
Si is subset of Sj or Sj is 
subset of Si

§ Immediacy: for all i and j: if 
vi is in Sj, then is Si is a subset 
of Sj
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Topological representation: one-shot IS

p1 p3

p2

p2 sees {p1,p2}

p1 sees {p1,p2}

p3 sees {p2,p3}

p2 sees {p2,p3}

A subdivision!
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IS is equivalent to AS (one-shot)

§ IS is a restriction of one-shot AS => IS is stronger 
than one-shot AS
üEvery run of IS is a run of one-shot AS

§ Show that a few (one-shot) AS objects can be used 
to implements IS
üOne-shot ReadWrite() can be implemented using a series 

of update and snapshot operations

© 2019 P. Kuznetsov
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IS from AS
shared variables:

A1,…,AN – atomic snapshot objects, initially [T,…,T]

Upon WriteReadi(vi)
r := N+1
while true do

r := r-1  // drop to the lower level

Ar.updatei(vi)     
S := Ar.snapshot()
if |S|=r then      // |S| is the number of non-T values in S

return S

© 2019 P. Kuznetsov
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Drop levels: two processes, N>3

© 2019 P. Kuznetsov

...

N

N-1

2

1

See < N

See < N-1

See 1 or 2

See 1
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Correctness
The outcome of the algorithm satisfies Self-Inclusion, 

Snapshot, and Immediacy

§ By induction on N: for all N>1, if the algorithm is 
correct for N-1, then it is correct for N

§ Base case N=1: trivial

© 2019 P. Kuznetsov
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Correctness, contd. 
§ Suppose the algorithm is correct for N-1 processes
§ N processes come to level N 

üAt most N-1 go to level N-1 or lower
ü(At least one process returns in level N)
üWhy?

§ Self-inclusion, Containment and Immediacy hold for 
all processes that return in levels N-1 or lower

§ The processes returning at level N return all N 
values
üThe properties hold for all N processes! Why?

© 2019 P. Kuznetsov
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Iterated Immediate Snapshot (IIS)
Shared variables:

IS1, IS2, IS3,…   // a series of one-shot IS 

Each process pi with input vi:
r := 0
while true do

r := r+1
vi := ISr.WriteReadi(vi)

© 2019 P. Kuznetsov
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Iterated standard chromatic subdivision (ISDS)

p1 p3

p2
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ISDS: one round of IIS

p1 p3

p2
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ISDS: two rounds of IIS

p1 p3

p2
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IIS is equivalent to (multi-shot) AS

§ AS can be used to implement IIS (wait-free)
üMultiple instances of the construction above (one per 

iteration)

§ IIS can be used to implement (multi-shot) AS in the 
lock-free manner:
üAt least one correct process performs infinitely many read 

or write operations
üGood enough for protocols solving distributed tasks!

© 2019 P. Kuznetsov
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Message-passing

§ Consider a network where every two 
processes are connected via a reliable 
channel 
üno losses, no creation, no duplication

§ Which shared-memory results translate into 
message-passing?

§ Implementing a distributed service
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Implementing message-passing

Theorem 1 A reliable message-passing 
channel between two processes can be 
implemented using two one-writer one-reader 
(1W1R) read-write registers 

Corollary 1 Consensus is impossible to solve in 
an asynchronous message-passing system if 
at least one process may crash



40© 2012 P. Kuznetsov

ABD algorithm (Attiya, Bar-Noy, Dolev):
implementing shared memory

Theorem 2 A 1W1R read-write register can be 
implemented in a (reliable) message-passing 
model where a majority of processes are 
correct
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Implementing a 1W1R register
Upon write(v)
t++
send [v,t] to all
wait until received [ack,t] from a majority
return ok

Upon read()
r++
send [?,r] to all
wait until received {(t’,v’,r)} from a 
majority
return v’ with the highest t’

© 2012 P. Kuznetsov
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Implementing a 1W1R register, contd.
Upon receive [v,t]
if t>ti then

vi := v
ti := t
send [ack,t] to the writer

Upon receive [?,r]  
send [vi,ti,r] to the reader

© 2012 P. Kuznetsov
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A correct majority is necessary
Otherwise, the reader may miss the latest written value  

The quorum (set of involved processes) of any write operation must intersect with the quorum of any read 
operation:

at least a majority of processes must be correct

W writes v R reads v
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Quiz 2
§ Does the ABD algorithm run by one writer and 

multiple readers implement an atomic 
(linearizable) register?

§ If not, can it be turned in an atomic one?
§ How to support multiple writers?
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Simplified key-value store: 
sequential specification 1

State: 
set of key-value pairs (k,v), k in N, v In V (set of 
values)
Operations:
§ add(k,v) – add a new pair to the set, return 

true iff the key is not in the set
§ get(k) - return the value in the set with key k 

(predefined “bottom” value returned if k is not 
in the set)
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Simplified key-value store: 
sequential specification 2

State: 
set of key-value pairs (k,v), k in N, v In V (set of 
values)
Operations:
§ put(k,v) – set the value with key k to v
§ get(k) - return the value in the set with key k 

(predefined “bottom” value returned if no 
value with key k is put until now)
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