
© 2019 P. Kuznesov

Distributed Algorithms

Atomic snapshots and ABD

EFREI, 2019
M1 Big Data

2© 2019 P. Kuznetsov

The space of registers

§ Nb of writers and readers:
from 1W1R to NWNR

§ Size of the value set: from
binary to multi-valued

§ Safety properties: safe,
regular, atomic

readers/writers

safety property
value set

All registers are (computationally) equivalent!

3© 2019 P. Kuznetsov

Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular

binary or multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
V. From 1W1R to 1WNR (multi-valued atomic)
VI. From 1WNR to NWNR (multi-valued atomic)
VII. From safe bit to atomic bit (optimal, coming later)

4

This class

§ Atomic snapshot: reading multiple locations
atomically
üWrite to one, read all

§ Immediate snapshot
§Write and “immediately” read

§ ABD: from message-passing to shared
memory

5

Atomic snapshot: sequential specification

§ Each process pi is provided with operations:
üupdatei(v), returns ok
üsnapshoti(), returns [v1,…,vN]

§ In a sequential execution:
For each [v1,…,vN] returned by snapshoti(),

vj (j=1,…,N) is the argument of the last updatej(.)
(or the initial value if no such update)

© 2019 P. Kuznetsov

6

Snapshot for free?
Code for process pi:

initially:
shared 1WNR atomic register Ri := 0

upon snapshot()
[x1,…,xN] := scan(R1,…,RN) /*read R1,…RN*/
return [x1,…,xN]

upon updatei(v)
Ri.write(v)

© 2019 P. Kuznetsov

7© 2019 P. Kuznetsov

Snapshot for free?

p1

p2

p3

read3()2

update1(1) ok

update3(1) ok update3(2) ok

snapshot() [1,1,2]

read1()1

update2(1) ok

update1(2) ok

read2()1

8© 2019 P. Kuznetsov

Snapshot for free?

p1

p2

p3

update1(2) okupdate1(1) ok

update3(1) ok update3(2) ok

snapshot() [1,1,2]update2(1) ok

[1,1,1] [2,1,1] [2,1,2]

read3()2read1()1 read2()1

9

§ What about 2 processes?

§ What about lock-free snapshots?
üAt least one correct process makes

progress (completes infinitely many
operations)

© 2019 P. Kuznetsov

10

Lock-free snapshot
Code for process pi (all written values, including the

initial one, are unique, e.g., equipped with a sequence
number)

Initially:
shared 1W1R atomic register Ri := 0

© 2019 P. Kuznetsov

upon snapshot()
[x1,…,xN]:= scan(R1,…,RN)
repeat

[y1,…,yN] := [x1,…,xN]
[x1,…,xN]:= scan(R1,…,RN)

until [y1,…,yN] = [x1,…,xN]
return [x1,…,xN]

upon updatei(v)
Ri.write(v)

11

Linearization
Assign a linearization point

to each operation
§ updatei(v)

üRi.write(v) if present
üOtherwise remove the op

§ snapshoti()
üif complete – any point

between identical scans
üOtherwise remove the op

Build a sequential history S
in the order of
linearization points

© 2019 P. Kuznetsov

snapshoti() [1,1,2]

scan()

updatei(1) ok

[1,1,2] [1,1,2]
…

12

Correctness: linearizability
S is legal: every snapshoti() returns the last written value for

every pj
Suppose not: snapshoti() returns [x1,…,xN] and some xj is not

the the argument of the last updatej(v) in S preceding
snapshoti()

Let C1 and C2 be two scans that returned [x1,…,xN]

C1

readj() xj

…
C2

readj() xj

No updatej(.)
linearized here!Returns the

argument of the
last updatej(.)!

© 2019 P. Kuznetsov

13

Correctness: lock-freedom
An updatei() operation is wait-free (returns in a finite

number of steps)
Suppose process pi executing snapshoti() eventually

runs in isolation (no process takes steps
concurrently)

§ All scans received by pi are distinct
§ At least one process performs an update between
§ There are only finitely many processes => at least

one process executes infinitely many updates

What if base registers are regular?
© 2019 P. Kuznetsov

14

General case: helping?
What if an update interferes with a snapshot?
§ Make the update do the work!

upon snapshot()
[x1,…,xN]:= scan(R1,…, RN)
[y1,…,yN] := scan(R1,…,RN)
if [y1,…,yN] = [x1,…,xN] then

return [x1,…,xN]
else

let j be such that
xj≠yj and yj=(u,U)
return U

© 2019 P. Kuznetsov

If two scans
differ – some

update succeeded!
Would this work?

upon updatei(v)
S := snapshot()
Ri.write(v,S)

15

Not that easy!

© 2019 P. Kuznetsov

snapshot2() [0,0,0]

snapshot() [0,0,0]

scan()

update1(1) ok

[0,0,1]

scan()

[1,0,1]

update3(1) ok

write1(1,[0,0,0])

write3(1,[0,0,0])

p1

p2

p3

16

General case: wait-free atomic snapshot

© 2019 P. Kuznetsov

upon snapshot()
[x1,…,xN]:= scan(R1,…,RN)
while true do

[y1,…,yN] := [x1,…,xN]
[x1,…,xN]:= scan(R1,…,RN)
if [y1,…,yN] = [x1,…,xN] then

return [x1,…,xN]
else if movedj and xj ≠ yj then

let xj = (u,U)
return U

for each j: movedj := movedj∨xj ≠ yj

upon updatei(v)
S := snapshot()
Ri.write(v,S)

If a process moved
twice: its last

snapshot is valid!

17

Correctness: wait-freedom
Claim 1 Every operation (update or snapshot) returns

in O(N2) steps (bounded wait-freedom)
snapshot: does not return after a scan if a concurrent

process moved and no process moved twice
§ At most N-1 concurrent processes, thus

(pigeonhole), after N scans:
üEither at least two consecutive identical scans
üOr some process moved twice!

update: snapshot() + one more step

© 2019 P. Kuznetsov

18

Correctness: linearization points
updatei(v): linearize at the Ri.write(v,S)
complete snapshot()
§ If two identical scans: between the scans
§ Otherwise, if returned U of pj: at the linearization

point of pj’s snapshot

© 2019 P. Kuznetsov

snapshot() [0,1,0]

scan()scan()
update2(2) ok

[0,1,0] [0,2,0]

…

[0,1,0]

[0,0,0]

update2(1) ok
[0,0,0]

p1

p2

19

The linearization is:

§ Legal: every snapshot operation returns the
most recent value for each process

§ Consistent with the real-time order: each
linearization point is within the operation’s
interval

§ Equivalent to the run (locally
indistinguishable)

(Full proof in the lecture notes, Chapter 6)
© 2019 P. Kuznetsov

20

Quiz 1: atomic snapshots

1. Prove that one-shot atomic snapshot
satisfies self-inclusion and containment:
üSelf-inclusion: for all i: vi is in Si

üContainment: for all i and j: Si is subset of Sj or Sj
is subset of Si

2. Show that the atomic snapshot is subject to
the ABA problem (affecting correctness) in
case the written values are not unique

© 2019 P. Kuznetsov

21

One-shot atomic snapshot (AS)
Each process pi:

updatei(vi)
Si := snapshot()

Si = Si[1],…,Si[N]
(one position per

process)

© 2019 P. Kuznetsov

Vectors Si satisfy:
§ Self-inclusion: for all i: vi is

in Si
§ Containment: for all i and

j: Si is subset of Sj or Sj is
subset of Si

22© 2019 P. Kuznetsov

“Unbalanced” snapshots

p1

p2

p3

snapshot() [1,1,0]update1(1) ok

update3(1) ok

update2(1) ok snapshot() [1,1,1]

snapshot() [1,1,1]

p1 sees p2 but misses
its snapshot

23

Enumerating possible runs:
two processes

Each process pi (i=1,2):
updatei(vi)
Si := snapshot()

Three cases to consider:
(a) p1 reads before p2 writes
(b) p2 reads before p1 writes
(c) p1 and p2 go “lock-step”:

first both write, then both
read

© 2019 P. Kuznetsov

p1

p2
(a)

p1

p2
(b)

p1

p2
(с)

24

Topological representation: one-shot AS

p1 sees {p1} p3 sees {p3}

p2 sees {p2}

p3 sees {p2,p3}

p2 sees {p2,p3}p2 sees {p1,p2}

p1 sees {p1,p2}

p3 sees {p1,p2,p3}

Balanced run:
two steps of p2,

then p1, then
p3

25

Topological representation: one-shot AS

p1 p3

p2

p2 sees {p1,p2}

p1 sees {p1,p2}

p3 sees {p2,p3}

p2 sees {p2,p3}

“unbalanced”
run

p3 sees {p1,p2,p3}

26

One-shot immediate snapshot (IS)
One operation:

WriteRead(v)

Each process pi:
Si := WriteReadi(vi)

© 2019 P. Kuznetsov

Vectors S1,…,SN satisfy:
§ Self-inclusion: for all i: vi is in

Si

§ Containment: for all i and j:
Si is subset of Sj or Sj is
subset of Si

§ Immediacy: for all i and j: if
vi is in Sj, then is Si is a subset
of Sj

27

Topological representation: one-shot IS

p1 p3

p2

p2 sees {p1,p2}

p1 sees {p1,p2}

p3 sees {p2,p3}

p2 sees {p2,p3}

A subdivision!

28

IS is equivalent to AS (one-shot)

§ IS is a restriction of one-shot AS => IS is stronger
than one-shot AS
üEvery run of IS is a run of one-shot AS

§ Show that a few (one-shot) AS objects can be used
to implements IS
üOne-shot ReadWrite() can be implemented using a series

of update and snapshot operations

© 2019 P. Kuznetsov

29

IS from AS
shared variables:

A1,…,AN – atomic snapshot objects, initially [T,…,T]

Upon WriteReadi(vi)
r := N+1
while true do

r := r-1 // drop to the lower level

Ar.updatei(vi)
S := Ar.snapshot()
if |S|=r then // |S| is the number of non-T values in S

return S

© 2019 P. Kuznetsov

30

Drop levels: two processes, N>3

© 2019 P. Kuznetsov

...

N

N-1

2

1

See < N

See < N-1

See 1 or 2

See 1

31

Correctness
The outcome of the algorithm satisfies Self-Inclusion,

Snapshot, and Immediacy

§ By induction on N: for all N>1, if the algorithm is
correct for N-1, then it is correct for N

§ Base case N=1: trivial

© 2019 P. Kuznetsov

32

Correctness, contd.
§ Suppose the algorithm is correct for N-1 processes
§ N processes come to level N

üAt most N-1 go to level N-1 or lower
ü(At least one process returns in level N)
üWhy?

§ Self-inclusion, Containment and Immediacy hold for
all processes that return in levels N-1 or lower

§ The processes returning at level N return all N
values
üThe properties hold for all N processes! Why?

© 2019 P. Kuznetsov

33

Iterated Immediate Snapshot (IIS)
Shared variables:

IS1, IS2, IS3,… // a series of one-shot IS

Each process pi with input vi:
r := 0
while true do

r := r+1
vi := ISr.WriteReadi(vi)

© 2019 P. Kuznetsov

34

Iterated standard chromatic subdivision (ISDS)

p1 p3

p2

35

ISDS: one round of IIS

p1 p3

p2

36

ISDS: two rounds of IIS

p1 p3

p2

37

IIS is equivalent to (multi-shot) AS

§ AS can be used to implement IIS (wait-free)
üMultiple instances of the construction above (one per

iteration)

§ IIS can be used to implement (multi-shot) AS in the
lock-free manner:
üAt least one correct process performs infinitely many read

or write operations
üGood enough for protocols solving distributed tasks!

© 2019 P. Kuznetsov

38© 2012 P. Kuznetsov

Message-passing

§ Consider a network where every two
processes are connected via a reliable
channel
üno losses, no creation, no duplication

§ Which shared-memory results translate into
message-passing?

§ Implementing a distributed service

39© 2012 P. Kuznetsov

Implementing message-passing

Theorem 1 A reliable message-passing
channel between two processes can be
implemented using two one-writer one-reader
(1W1R) read-write registers

Corollary 1 Consensus is impossible to solve in
an asynchronous message-passing system if
at least one process may crash

40© 2012 P. Kuznetsov

ABD algorithm (Attiya, Bar-Noy, Dolev):
implementing shared memory

Theorem 2 A 1W1R read-write register can be
implemented in a (reliable) message-passing
model where a majority of processes are
correct

41

Implementing a 1W1R register
Upon write(v)
t++
send [v,t] to all
wait until received [ack,t] from a majority
return ok

Upon read()
r++
send [?,r] to all
wait until received {(t’,v’,r)} from a
majority
return v’ with the highest t’

© 2012 P. Kuznetsov

42

Implementing a 1W1R register, contd.
Upon receive [v,t]
if t>ti then

vi := v
ti := t
send [ack,t] to the writer

Upon receive [?,r]
send [vi,ti,r] to the reader

© 2012 P. Kuznetsov

43© 2012 P. Kuznetsov

A correct majority is necessary
Otherwise, the reader may miss the latest written value

The quorum (set of involved processes) of any write operation must intersect with the quorum of any read
operation:

at least a majority of processes must be correct

W writes v R reads v

44

Quiz 2
§ Does the ABD algorithm run by one writer and

multiple readers implement an atomic
(linearizable) register?

§ If not, can it be turned in an atomic one?
§ How to support multiple writers?

45

Simplified key-value store:
sequential specification 1

State:
set of key-value pairs (k,v), k in N, v In V (set of
values)
Operations:
§ add(k,v) – add a new pair to the set, return

true iff the key is not in the set
§ get(k) - return the value in the set with key k

(predefined “bottom” value returned if k is not
in the set)

© 2019 P. Kuznetsov

46

Simplified key-value store:
sequential specification 2

State:
set of key-value pairs (k,v), k in N, v In V (set of
values)
Operations:
§ put(k,v) – set the value with key k to v
§ get(k) - return the value in the set with key k

(predefined “bottom” value returned if no
value with key k is put until now)

© 2019 P. Kuznetsov

