Distributed Algorithms

Atomic snapshots and ABD

q L+,
al ggrid 9
power Yol
da*’.bébgs

- Yo,
pa: iy
ssing, efflc'ent Work o archjtecturenun

seurenumoer oe
D'Smguted

\co"‘
7,)‘\:\ \'(’"‘L}d‘ “g
co!

S ting {zm d

3 oY sy$ \LA
%\ cationOr - “5\}1,3 \Id‘s“\bu
"b o JITW< 3 rdm

q:

EFREI; 2019
M1 Big Data

© 2019 P. Kuznesov

The space of registers

= Nb of writers and readers:

» Size of the value set: from

from TW1R to NWNR # readers/writers

binary to multi-valued
« Safety properties: safe,

regular, atomic /\

safety property

value set

All registers are (computationally) equivalent!

© 2019 P. Kuznetsov 2

Transformations

From 1W1R binary safe to TWNR multi-valued atomic

. From safe to regular (1W1R)

. From one-reader to multiple-reader (regular
binary or multi-valued)

. From binary to multi-valued (1WNR regular)
Iv. From reqgular to atomic (1W1R)

v. From 1W1R to TWNR (multi-valued atomic)
vi. From TWNR to NWNR (multi-valued atomic)

vil. From safe bit to atomic bit (optimal, coming later)

© 2019 P. Kuznetsov 3

This class

= Atomic snapshot: reading multiple locations
atomically

v'"Write to one, read all

« Immediate snapshot
= Write and “immediately” read

= ABD: from message-passing to shared
memory

Atomic snapshot: sequential specification

= Each process p; is provided with operations:
v'update;(v), returns ok
v'snapshoti(), returns [vq,...,V\]

« In a sequential execution:

For each [v4,...,v\] returned by snapshot;(),
Vi (j=1,...,N) is the argument of the last update;(.)

(or the initial value if no such update)

© 2019 P. Kuznetsov

Snapshot for free?

Code for process p;:

initially:
shared 1WNR atomic register R, :=0

upon shapshot()
[X4,...,Xy] :=SCan(R;,...,Ry) /read R,,...Ry*/
return [Xy,...,Xy]

upon update;(v)
R..write(v)

© 2019 P. Kuznetsov 6

Snapshot for free?

update,(1) ok update,(2) ok
p 4 F————-—
update,(1) ok snapshot() [1,1,2]

P —/———

read;()1 read,()1 read;()2

p3 ———HfF————H{tH—

update;(1) ok update;(2) ok

© 2019 P. Kuznetsov

Snapshot for free?
1,1,11 12,1,1] [2,1,2]

update,(1) ok sfnapshot()é [1,1,2]

read;01 read,01 read;()2 .

update;(1) oik update3(i2) ok

© 2019 P. Kuznetsov

« What about 2 processes?

« What about lock-free snapshots?

v'At least one correct process makes
progress (completes infinitely many
operations)

© 2019 P. Kuznetsov

Lock-free snapshot

Code for process p; (all written values, including the
|n|t|al!)or;e, are unique, e.g., equipped with a sequence
number

Initially:
shared 1TW1R atomic register R, :=0
upon snapshot() upon update;(v)
[X1,...,XN]:= scan(Rq,...,Ry) Ri.write(v)
repeat

(V1,0 Y] = [Xq, e, Xp]
[X1,...,XN]:= scan(Rq,...,Ry)
until [yq,...,¥n] = [Xg0Xn]

return [Xy,...,Xp]

© 2019 P. Kuznetsov 10

Linearization

Assign a linearization point
to each operation
. update;(v) update;(1) ok

v'R..write(v) if present —E—»

v’ Otherwise remove the op

= snapshot() shapshot;() [1,1,2]
v'if complete — any point [1,1.2] [1.1,2]
between identical scans
v'Otherwise remove the op scan()

Build a sequential history S
in the order of
linearization points

© 2019 P. Kuznetsov 71

Correctness: linearizability

S is legal: every snapshot;() returns the last written value for
every p,

Suppose not: snapshot;() returns [xy,...,Xy] and some Xx; is not
the the argument of the last update;(v) in S preceding
snapshot;()

Let C; and C, be two scans that returned [Xy,...,Xy]

read;() x; read;() x;

A
No update;(.)
linearized here!

C G,
Returns the
argument of the
last update;(.)!

© 2019 P. Kuznetsov 12

Correctness: lock-freedom

An update;() operation is wait-free (returns in a finite
number of steps)

Suppose process p; executing snapshoti() eventually
runs in isolation (no process takes steps

concurrently)
= All scans received by p,are distinct
= At least one process performs an update between

« There are only finitely many processes => at least
one process executes infinitely many updates

What if base registers are regular?

© 2019 P. Kuznetsov 13

General case: helping?

What if an update interferes with a snapshot?
« Make the update do the work!

upon snapshot() upon update;(v)

[X-I,...,XN]:: SCan(R1,, RN)

[y1,---,Yn] i= scan(Ry,...,Ry)

it [yq,--,¥Yn] = [Xq,--.,X7] then
return [X4,...,X\]

S := snapshot()
R..write(v,S)

else | If two scans
let | be such that differ - some
xzy; and y;=(u,U) update succeeded!

return U Would this work?

© 2019 P. Kuznetsov 4

Not that easy!

Updﬂ"'el(l) ok
! snapshot() [0,0,0] wrifelz;.%,a,ai;
snapshot() [0,0,0]
[0,0,1] [1,0,1]
P2
scan() scan()

upda'l'e3(1) ok

~

writes(1,]0,0,

© 2019 P. Kuznetsov

15

General case: wait-free atomic snapshot

upon snapshot() upon update;(v)
[X1,...,Xn]:= sCan(R4,...,Ry) S := snapshot()
while true do R..write(v,S)

[V ¥Yn] = [Xg, e Xn]
[X1,...,Xn]:= scan(Rq,...,Ry)
it [y1,..,Yn] = [X1,-%n] then If a process moved

return [Xq,...,Xy] / twice: its last

else if moved;and x; # y; then snapshot is valid!
let x; = (u,U)
return U

for each j: moved; := moved; Vx; #y;

© 2019 P. Kuznetsov 76

Correctness: wait-freedom

Claim 1 Every operation (update or snapshot) returns
in O(N?) steps (bounded wait-freedom)

shapshot: does not return after a scan if a concurrent
process moved and no process moved twice

« At most N-1 concurrent processes, thus
(pigeonhole), after N scans:
v Either at least two consecutive identical scans
v'Or some process moved twice!

update: snapshot() + one more step

© 2019 P. Kuznetsov 17

Correctness: linearization points

update;(v): linearize at the R,.write(v,S)
complete snapshot()
« |f two identical scans: between the scans

» Otherwise, if returned U of p;: at the linearization
point of p;" s snapshot

snapshot() [0,1,0]
[0,0,0] [0.1,0] [0,2,0]

"
s¢an() scan()

update,(1) ok update,(2) ok

000 0.1.0
P2 ll i EEBi E '

© 2019 P. Kuznetsov 18

The linearization Is:

= Legal: every snapshot operation returns the
most recent value for each process

= Consistent with the real-time order: each
linearization point is within the operation’ s
Interval

= Equivalent to the run (locally
indistinguishable)

(Full proof in the lecture notes, Chapter 6)

© 2019 P. Kuznetsov 19

Quiz 1: atomic snapshots

1. Prove that one-shot atomic snapshot
satisfies self-inclusion and containment:
v'Self-inclusion: for all i: v;is in S
v'Containment: for all i and j: S; is subset of S;or S;

IS subset of S

2. Show that the atomic snapshot is subject to
the ABA problem (affecting correctness) in
case the written values are not unigue

© 2019 P. Kuznetsov 20

One-shot atomic snapshot (AS)

Each process p;: Vectors S; satisfy:
update;(v;) . Self-inclusion: for all i: v; is
S; = snapshot() in S
= Containment: for all i and
Si=Si[1],...,SIN] j: S; is subset of S;or S; is
(one position per subset of S,

process)

© 2019 P. Kuznetsov 21

“Unbalanced” snapshots

P, sees p, but misses
its snapshot

update,(1) ok snapshot() [1,1,0]
p F—g—
update,(1) ok snapshot() [1,1,1]

p, —HfF————H—

snapshot() [1,1,1]

py —H{——Hg—

update;(1) ok

© 2019 P. Kuznetsov 22

Enumerating possible runs:
two processes

Each process p, (i=1,2):
update;(v;)
S, := snhapshot()

Three cases to consider:
(a) p; reads before p, writes
(b) p, reads before p, writes

(c) p; and p, go “lock-step”:

first both write, then both
read

© 2019 P. Kuznetsov

P1 _._._’ (a)
P2 _._.->

P1 _H’ (b)
p, §—§—

P1 _._._’ (©)
p, §—&

23

Topological representation: one-shot AS

P, sees {pz} Balanced run:
two steps of p,,

then p4, then
P3

P sees {p,,ps}

P, sees {p4,p,} P, sees {p,,Ps}

p, sees {p,} p3 sees {ps}

Topological representation: one-shot AS

“unbalanced”
P>

run

P, sees {py,p,}

P sees {p,,ps}

A

P3 $€es {pP1,P2,P3}

P, sees {p4,p,} P, sees {p,,Ps}

P1 P3

25

One-shot immediate snapshot (IS)

One operation: Vectors S, ...,S,, satisfy:
WriteRead(v) . _ o
= Self-inclusion: for all i: v; is in
Each process p;: S
S; := WriteRead;(v;) » Containment: for all i and j:
S, is subset of S;or §; is
subset of S,

= |[mmediacy: for all i and j: if
Viisin S, then is S; is a subset
of S,

© 2019 P. Kuznetsov 26

Topological representation: one-shot IS

0, A subdivision!
P, sees {py,p,}
P sees {p,,ps}
()
P, sees {p4,p,} P, sees {p,,Ps}

P1 P3

27

IS is equivalent to AS (one-shot)

= IS is a restriction of one-shot AS => IS is stronger
than one-shot AS

v'Every run of IS is a run of one-shot AS

« Show that a few (one-shot) AS objects can be used
to implements IS

v'One-shot ReadWrite() can be implemented using a series
of update and snapshot operations

© 2019 P. Kuznetsov 28

IS from AS

shared variables:
A,,...,Ay — atomic snapshot objects, initially [T,...,T]

Upon WriteRead;(v;)

r .= N+1

while true do
r:=r-1 // drop to the lower level
A..update;(v;)
S = A,.snhapshot()
If ISI=r then /181 is the number of non-T values in S

return S

© 2019 P. Kuznetsov 29

Drop levels: two processes, N>3

} See< N
} See < N-1
} Seelor?2
} See 1

©©©©©©©©©©©©©©©©

Correctness

The outcome of the algorithm satisfies Self-Inclusion,
Snapshot, and Immediacy

= By induction on N: for all N>1, if the algorithm is
correct for N-1, then it is correct for N

= Base case N=1: trivial

© 2019 P. Kuznetsov 37

Correctness, contd.

Suppose the algorithm is correct for N-1 processes

N processes come to level N

v'At most N-1 go to level N-1 or lower

v (At least one process returns in level N)

v'Why?

Self-inclusion, Containment and Immediacy hold for
all processes that return in levels N-1 or lower

The processes returning at level N return all N
values
v'The properties hold for all N processes! Why?

© 2019 P. Kuznetsov 32

lterated Immediate Snapshot (I1S)

Shared variables:
1S4, 1S,, IS;,... /] a series of one-shot IS

Each process p; with input v;:
r.=0
while true do

r=r+1

v; .= IS,.WriteReadi(v,)

© 2019 P. Kuznetsov

33

lterated standard chromatic subdivision (ISDS)

P>

P1 P3

34

ISDS: one round of IIS

P>

P3

35

ISDS: two rounds of |IS

ﬂ.‘« \\‘l\
e ‘> SN
// \v;\\§

\\\
)

Q\

IS is equivalent to (multi-shot) AS

« AS can be used to implement IIS (wait-free)

v'Multiple instances of the construction above (one per
iteration)

« IS can be used to implement (multi-shot) AS in the
lock-free manner:

v'At least one correct process performs infinitely many read
or write operations

v'Good enough for protocols solving distributed tasks!

© 2019 P. Kuznetsov 37

Message-passing

= Consider a network where every two

processes are connected via a reliable
channel

v'no losses, no creation, no duplication

« Which shared-memory results translate into
message-passing”?

= Implementing a distributed service

© 2012 P. Kuznetsov 38

Implementing message-passing

Theorem 1 A reliable message-passing
channel between two processes can be
implemented using two one-writer one-reader
(1W1R) read-write registers

Corollary 1 Consensus is impossible to solve in
an asynchronous message-passing system if
at least one process may crash

© 2012 P. Kuznetsov 39

ABD algorithm (Attiya, Bar-Noy, Dolev):
implementing shared memory

Theorem 2 A 1TW1R read-write register can be
implemented in a (reliable) message-passing
model where a majority of processes are
correct

© 2012 P. Kuznetsov 40

Implementing a TW1R register

Upon write(v)
t++
send [v,t] to all
wait until received [ack,t] from a majority
return ok

Upon read()
r++
send [?,r] to all
wait until received {(t’,v ,r)} from a
majority
return v. with the highest t’

© 2012 P. Kuznetsov 41

Implementing a 1IW1R register, contd.

Upon receive [Vv,t]
if t>t; then
V; := V
t; = t
send [ack,t] to the writer

Upon receive [?,r]
send [v;,t;,r] to the reader

© 2012 P. Kuznetsov 42

A correct majority is necessary

Otherwise, the reader may miss the latest written value

The % orum (set aof involved Pr]o%esses) of anfy write
ng Igﬂ must intersect with the quorum of any read

at least a majority of processes must be correct

. N
' N
4 N
4 A Y
’ \

’ \
/ [— [e— [e— — [— [— [— == \
! | e— | e— | e— — — | e— | e— | e— | c— \
1 \
1 1
\ 1
\ 1
\ \ ’ ’
\ \ 4 4
\ \ ’ ’

A \ 7 4
N N 4 7
N P ’
~ 7 N 4
~ . N -

S - ~ -

- ~
~ - ~ -

SS g ~So -

\\\ 4” \\\ ’,’

W writesv. =~ e - Tt - R readsv

© 2012 P. Kuznetsov 43

Quiz 2

= Does the ABD algorithm run by one writer and
multiple readers implement an atomic
(linearizable) reqister?

» |f not, can it be turned in an atomic one?
» How to support multiple writers?

44

Simplified key-value store:
sequential specification 1

State:

set of key-value pairs (k,v), Kin N, vIn V (set of
values)

Operations:

» add(k,v) — add a new pair to the set, return
true iff the key is not in the set

= get(k) - return the value in the set with key k
(predefined “bottom” value returned if k is not
In the set)

© 2019 P. Kuznetsov 45

Simplified key-value store:
sequential specification 2

State:

set of key-value pairs (k,v), Kin N, vIn V (set of
values)

Operations:
« put(k,v) — set the value with key kto v

= get(k) - return the value in the set with key k
(predefined “bottom” value returned if no
value with key k is put until now)

© 2019 P. Kuznetsov 46

