
© P. Kuznesov

Distributed Algorithms

Shared memory basics

EFREI, 2019
M2 Big Data

2

Project: the first meetings 23-25/10

§ Design a simple distributed system
üAtomic key-value store (read-write register)

§ AKKA: actor-based programming framework
üCheck

https://doc.akka.io/docs/akka/current/guide/introduction
.html?language=java

üMake sure you have what is necessary (jdk, maven)
üPlay with the “getting started example”
üDo the homework (bootstraping a system)

https://doc.akka.io/docs/akka/current/guide/introduction.html?language=java

3

Shared memory model
§ Processes communicate by applying operations on and

receiving responses from shared objects
§ A shared object is a state machine

üStates
üOperations/Responses
üSequential specification

§ Examples: read-write registers, TAS,CAS,LLSC,…

P1

P2

P3

O1 Oj OM… …

4

Read-write register

§ Stores values (in a value set V)
§ Exports two operations: read and write

üWrite takes an argument in V and returns ok
üRead takes no arguments and returns a value in V

5

Shared memory guarantees

Processes invoke operations on the shared objects
and:

§ Liveness: the operations eventually return
something

§ Safety: the operations never return anything
incorrect

6

Liveness
§ An operation is complete if its invocation is

followed by a matching response
üwrite(v) -> ok
üread() -> a value in V

§ A process invoking an operation may fail (stop
taking steps) before receiving a response

§ A process is correct (in a given run) if it never fails

Under which condition a correct process makes
progress?

7

Wait-freedom: unconditional progress

Every operation invoked by a correct process
eventually completes

All objects considered in this class are wait-free

We consider well-formed runs: a process never
invokes an operation before returning from the
previous invocation

8

A shared memory run

p1

p2

p3

write(1) ok

read() 1

read() 0

write(0) ok

write(2)

9

A shared memory run

p1

p2

p3

write(1) ok

read() ?

read() ?

write(0) ok

read() ?

10

Operation precedence

§ Operation op1 precedes operation op2 in a run R
if the response of op1 precedes (in global time)
the invocation of op2 in R

§ If neither op1 precedes op2 nor op2 precedes op1
than op1 and op2 are concurrent

11

Operation precedence

p1

p2

p3

op5

op1 op3

op2 op4

12

Safety (registers)

Informally, every read operation returns the “last”
written value (the argument of the “last” write
operation)
üWhat does the “last” mean?
üWhat if operations overlap?

13

Safety criteria

§ Safe registers: every read that does not overlap with a
write returns the last written value

§ Regular registers: every read returns the last written
value, or a concurrently written value

(assuming one writer)

§ Atomic registers: the operations can be totally ordered,
preserving legality and precedence (linearizability)
ü≈ if read1 returns v, read2 returns v’, and read1 precedes

read2, then write(v’) cannot precede write(v)

14

Safe register

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 3 read() 2

15

Regular register

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 1 read() 0

16

Atomic register

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 0 read() 1

17

Quiz 1: relaxing atomicity?

§ Show that the original Lamport’s Bakery algorithm
works even when all base registers are safe?

© P. Kuznetsov

18

Bakery [Lamport’74,original]
// initialization
flag: array [1..N] of bool = {false};
label: array [1..N] of integer = {0}; //assume no bound

// code for process i that wishes to enter CS
flag[i] = true; //enter the doorway
label[i] = 1 + max(label[1], ..., label[N]); //pick a ticket
flag[i] = false; //exit the doorway
for j=1 to N do {

while (flag[j]); //wait until j is not in the doorway
while (label[j]≠0 and (label[j],j)<<(label[i],i));
// wait until j is not “ahead”

}
…
// critical section
…
label[i] = 0; // exit section

© P. Kuznetsov

19

Space of registers

§ Values: from binary (V={0,1}) to multi-valued
§ Number of readers and writers: from 1-writer 1-

reader (1W1R) to multi-writer multi-reader
(NWNR)

§ Safety criteria: from safe to atomic

1W1R binary safe registers can be used to
implement

an NWNR multi-valued atomic registers!

20

Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or

multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R), unbounded
V. From 1W1R to 1WNR (multi-valued atomic),

unbounded

21

1WNR binary safe -> 1WNR binary regular
Let p1 be the only writer and 0 be the initial value

Code for process p1:

initially:
shared 1WNR safe register R := 0
lv := 0 \\ last written value

upon write(v)
if v ≠ lv then

lv := v
R.write(v)

return ok

upon read()
return R.read()

22

1WNR binary safe -> 1WNR binary regular

§ Correctness:
üR is touched only to change its value
ü both 0 and 1 are legal values in case of concurrency!

p1

p2

write(1)

read() 1

write(1) write(0)

read() 0

p3
read() 1read() 0

23

Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or

multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
V. From 1W1R to 1WNR (multi-valued atomic)

24

1W1R (binary regular) -> 1WNR (binary regular)
Let p1 be the only writer and 0 be the initial value

Code for process pi:

initially:
shared R[1..N] (1W1R binary regular registers) := 0N

// R[i] is written by p1 and read by pi

upon read()
return R[i].read()

upon write(v) // if i=1
for all j do R[j].write(v)
return ok

25

1W1R (binary regular) -> 1WNR (binary regular)

§ Correctness:
üenough to consider a read that does not overlap with

any write
üthe last written value cannot be missed

§ Works also for multi-valued and safe registers

What if 1W1R registers are atomic?

26© P. Kuznetsov

Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or

multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
V. From 1W1R to 1WNR (multi-valued atomic)

27© P. Kuznetsov

Binary -> M-valued (1WNR regular)
Code for process pi:

initially:
shared array R[0,..M-1] of 1WNR registers := [1,0,…,0]

upon read()
for j = 0 to M-1 do

if R[j].read() = 1 then return j

upon write(v) // if i=1
R[v].write(1)
for j=v-1 down to 0 do R[j].write(0)
return ok

28© P. Kuznetsov

Binary -> M-valued (1WNR regular)

§ Correctness:
üonly the last or concurrently written value can be

returned
üevery operation returns in O(M) steps

29

Quiz 2: what if?
Code for process pi:

initially:
shared array R[0,..M-1] of 1WNR registers := [1,0,…,0]

upon read()
for j = 0 to M-1 do

if R[j].read() = 1 then return j

upon write(v) // if i=1
R[v].write(1)

for j=0 to v-1 do R[j].write(0)
return ok

© P. Kuznetsov

30

Quiz 3: what if?
Code for process pi:

initially:
shared array R[0,..M-1] of 1WNR registers := [1,0,…,0]

upon read()
for j = 0 to M-1 do

if R[j].read() = 1 then return j

upon write(v) // if i=1
for j=v-1 down to 0 do R[j].write(0)
R[v].write(1)
return ok

© P. Kuznetsov

31© P. Kuznetsov

Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or

multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
V. From 1W1R to 1WNR (multi-valued atomic)

32© P. Kuznetsov

Atomic registers
A register is atomic if every history it produces is

linearizable

Informally, the complete operations (and some
incomplete operations) are seen as taking effect
instantaneously at some time between their
invocations and responses

(The operations are atomic)

33© P. Kuznetsov

Atomic?

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 0 read() 1

34© P. Kuznetsov

Atomic?

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 0 write(3) ok Incorrect value!

35© P. Kuznetsov

Atomic?

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 0 write(3) ok

36© P. Kuznetsov

Atomic?

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 0 write(3) ok Incorrect value!

37

Atomic?

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 1 write(3)

38© P. Kuznetsov

Atomic?

p1

p2

p3

write(1) ok

read() 3

write(0) ok

read() 1 write(3)

39© P. Kuznetsov

Atomic?

p1

p2

p3

write(1) ok

read() 0

write(0) ok

read() 1

40

From 1W1R regular to 1W1R atomic

p1

p2

write(1) ok

read() 0

write(0) ok

read() 1

Write a timestamp?

41

1W1R regular -> 1W1R atomic
Code for process pi:

initially:
shared 1W1R regular register R := 0
local variables t := 0, x := 0

upon read()
(t’,x’) := R.read()
if t’ > t then t:=t’; x:=x’;
return(x)

upon write(v) // if i=1
t:=t+1
R.write(t,v)

42© P. Kuznetsov

Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or

multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
V. From 1W1R to 1WNR (multi-valued atomic)

43© P. Kuznetsov

Transformations-I

From safe to regular (binary 1W1R)
§ Writer touches shared memory only to change
§ A concurrent read is allowed to return any value (0

or 1)

44© P. Kuznetsov

Transformations-II

From one-reader to multiple-reader (regular
binary or multi-valued)

§ Every reader is assigned a dedicated register to
read

§ Writer writes in all
§ Reader reads its own register

45© P. Kuznetsov

Transformations-III

From binary to M-valued (1WNR regular)
§ Every value in {0,…,M-1} is assigned a dedicated

1WNR register
§ Write(v) sets R[v] to 1 and sets R[v-1] … R[0] to 0
§ Read returns the smallest v such that R[v]=1

46© P. Kuznetsov

Transformation IV (unbounded)

From regular to atomic (1W1R multi-valued)
§ Write a timestamp with a value
§ The reader returns the latest value and ignores

the old one

47© P. Kuznetsov

Transformation IV
From regular to atomic (1W1R multi-valued)
§ Write a timestamp with a value
§ The reader returns the latest value and ignores the old

one

p1

p2

write([v’,1]) ok

read() [v,0]

write([v,0]) ok

read() [v’,1]

read v’ read v’

write v write v’

48© P. Kuznetsov

Multiple readers?

p1

p2

write2([v’,1])

read2() [v’,1]

read v’

write v write v’

p3

?

read3() [v,0]

write3([v’,1])write2([v,0]) write3([v,0])

49© P. Kuznetsov

Multiple readers?
Does not work either!

p1

p2

write2([v’,1])

read2() [v,0]

read v

write v write v’

p3

?

read3() [v,0]

write3([v’,1])write2([v,0]) write3([v,0])

50© P. Kuznetsov

Transformation V (unbounded)
shared:

matrix RR[1..N][1..N] of 1W1R atomic registers := 0NxN

// for all i,j, RR[i][j] is read by pi and written by pj

array WR[1..N] of 1W1R atomic registers := 0N

// for all i WR[i] is written by p1 and read by pi

upon write(v) // code for p1
ts:=ts+1
for all j do WR[j].write([v,ts])
return ok

A bounded construction coming soon…

51© P. Kuznetsov

Transformation V

upon read() // code for pi
for all j=1,…,N do (t[j],x[j]) := RR[i][j].read()

(t[0],x[0]) := WR[i].read()
(tmax,xmax) := highest(t,x)

for all j do RR[j][i].write([tmax,xmax]);

return(xmax)

(Here highest(t,x) computes the value x[j] written with the highest timestamp t[j])

52© P. Kuznetsov

Transformation V: correctness

If read1 returns v and read1 precedes read2 then
read2 cannot return a value that is older than v –
sufficient for proving that a one-writer regular
register is linearizable

§ What if the reader does not write?
§ What about multiple writers?

53

Appendix: “Quasi-bounded” construction:
1WNR regular + atomic bit->1WNR atomic

© P. Kuznetsov

initially:
shared 1WNR atomic bit WFLAG := false
shared 1WNR regular registers R1,R2:=initial

upon write(v)
WFLAG:=true
R1.write(v)
WFLAG:=false
R2.write(v)

upon read()
val:=R1
wf:=WFLAG
if !wf then return(val)
val:=R2
return(val)

54

Appendix: bounded construction:
1WNR regular->1WNR atomic

© P. Kuznetsov

Replace
§ WFLAG with a ternary LEVEL registers (0,1,2)
§ arrays WC[0..N] and RC[0..N] to exchange “signals” between the processes

upon write(v)
LEVEL:=1 // incomplete write
R1.write(v)
LEVEL:=2
LEVEL:=0 // “safe” to return the value read in R1
R2.write(v)
for j=1,...,N do
lr := RC[j];
WC[j] := !lr; // a new value for pj is written

55

Appendix: bounded construction:
1WNR regular->1WNR atomic

© P. Kuznetsov

Upon read() // for reader pi
val := R1
lw:=WC[i]
if lw != RC[i] then

FC[i]:=false;
RC[i] := lw; // the new value is read

case LEVEL:
0: return(val)
2: FC[i]:=true; return(val)
1: for j=1,...,N do

lr := RC[j];
lf := FC[j];
lw := WC[j];

if (lr = lw) && lf then
FC[i] := true

return (val)
val := R2;
return(val);

Chapter 8 of lecture notes for the code of Read and the proofs.
Bug detection is welcome!
More on signaling in the next lecture…

