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Project: the first meetings 23-25/10

§ Design a simple distributed system
üAtomic key-value store (read-write register)

§ AKKA: actor-based programming framework
üCheck 

https://doc.akka.io/docs/akka/current/guide/introduction
.html?language=java

üMake sure you have what is necessary (jdk, maven)
üPlay with the “getting started example”
üDo the homework (bootstraping a system)

https://doc.akka.io/docs/akka/current/guide/introduction.html?language=java
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Shared memory model
§ Processes communicate by applying operations on and 

receiving responses from shared objects
§ A shared object is a state machine

üStates
üOperations/Responses
üSequential specification

§ Examples: read-write registers, TAS,CAS,LLSC,…

P1

P2

P3

O1 Oj OM… …
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Read-write register

§ Stores values  (in a value set V)
§ Exports two operations: read and write

üWrite takes an argument in V and returns ok
üRead takes no arguments and returns a value in V
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Shared memory guarantees

Processes invoke operations on the shared objects 
and:

§ Liveness: the operations eventually return 
something

§ Safety: the operations never return anything 
incorrect 
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Liveness
§ An operation is complete if its invocation is 

followed by a matching response
üwrite(v)  -> ok
üread() -> a value in V

§ A process invoking an operation may fail (stop 
taking steps) before receiving a response

§ A process is correct (in a given run) if it never fails

Under which condition a correct process makes 
progress?
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Wait-freedom: unconditional progress 

Every operation invoked by a correct process  
eventually completes

All objects considered in this class are wait-free

We consider well-formed runs: a process never 
invokes an operation before returning from the 
previous invocation 
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A shared memory run

p1

p2

p3

write(1)   ok

read()       1

read()   0

write(0)   ok

write(2)    
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A shared memory run

p1

p2

p3

write(1)   ok

read()           ?

read()   ?

write(0)    ok

read()   ?
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Operation precedence

§ Operation op1 precedes operation op2 in a run R 
if the response of op1 precedes (in global time) 
the invocation of op2 in R

§ If neither op1 precedes op2 nor op2 precedes op1 
than op1 and op2 are concurrent
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Operation precedence

p1

p2

p3

op5

op1 op3

op2 op4
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Safety (registers)

Informally, every read operation returns the “last”
written value (the argument of the “last” write 
operation)
üWhat does the “last” mean?
üWhat if operations overlap?
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Safety criteria

§ Safe registers: every read that does not overlap with a 
write returns the last written value 

§ Regular registers: every read returns the last written 
value, or a concurrently written value 

(assuming one writer)

§ Atomic registers: the operations can be totally ordered, 
preserving legality and precedence (linearizability)
ü≈ if read1 returns v, read2 returns v’, and read1 precedes 

read2, then write(v’) cannot precede write(v) 
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Safe register

p1

p2

p3

write(1)   ok

read()   1

write(0)   ok

read()  3 read()  2
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Regular register

p1

p2

p3

write(1)   ok

read()        1

write(0)   ok

read()   1 read()   0
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Atomic register

p1

p2

p3

write(1)    ok

read()        1

write(0)  ok

read()   0 read()   1
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Quiz 1: relaxing atomicity? 

§ Show that the original Lamport’s Bakery algorithm 
works even when all base registers are safe?

©  P. Kuznetsov
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Bakery [Lamport’74,original]
// initialization
flag: array [1..N] of bool = {false};
label: array [1..N] of integer = {0}; //assume no bound

// code for process i that wishes to enter CS
flag[i] = true; //enter the doorway
label[i] = 1 + max(label[1], ..., label[N]); //pick a ticket
flag[i] = false; //exit the doorway
for j=1 to N do {

while (flag[j]); //wait until j is not in the doorway
while (label[j]≠0 and (label[j],j)<<(label[i],i));
// wait until j is not “ahead”

}
…
// critical section
…
label[i] = 0; // exit section

©  P. Kuznetsov
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Space of registers

§ Values: from binary (V={0,1}) to multi-valued
§ Number of readers and writers: from 1-writer 1-

reader (1W1R) to multi-writer multi-reader 
(NWNR) 

§ Safety criteria: from safe to atomic

1W1R binary safe registers can be used to 
implement 

an NWNR multi-valued atomic registers!
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Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or 

multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R), unbounded
V. From 1W1R to 1WNR (multi-valued atomic), 

unbounded
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1WNR binary safe -> 1WNR binary regular
Let p1 be the only writer and 0 be the initial value

Code for process p1:

initially:
shared 1WNR safe register R := 0 
lv := 0 \\ last written value

upon write(v) 
if v ≠ lv then

lv := v
R.write(v)

return ok

upon read()
return R.read()
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1WNR binary safe -> 1WNR binary regular

§ Correctness: 
üR is touched only to change its value
ü both 0 and 1 are legal values in case of concurrency!

p1

p2

write(1)

read()    1

write(1) write(0)

read()      0

p3
read()      1read()   0
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Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or 

multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
V. From 1W1R to 1WNR (multi-valued atomic)
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1W1R (binary regular) -> 1WNR (binary regular)
Let p1 be the only writer and 0 be the initial value

Code for process pi:

initially:
shared R[1..N] (1W1R binary regular registers) := 0N

// R[i] is written by p1 and read by pi 

upon read()
return R[i].read()

upon write(v)  // if i=1 
for all j do R[j].write(v)
return ok
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1W1R (binary regular) -> 1WNR (binary regular)

§ Correctness: 
üenough to consider a read that does not overlap with 

any write
üthe last written value cannot be missed

§ Works also for multi-valued and safe registers

What if 1W1R registers are atomic?
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Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or 

multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
V. From 1W1R to 1WNR (multi-valued atomic)
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Binary -> M-valued (1WNR regular) 
Code for process pi:

initially:
shared array R[0,..M-1] of 1WNR registers := [1,0,…,0]

upon read()
for j = 0 to M-1 do

if R[j].read() = 1 then return j

upon write(v)  // if i=1 
R[v].write(1)
for j=v-1 down to 0 do R[j].write(0)
return ok
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Binary -> M-valued (1WNR regular)

§ Correctness: 
üonly the last or concurrently written value can be 

returned
üevery operation returns in O(M) steps 
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Quiz 2: what if?
Code for process pi:

initially:
shared array R[0,..M-1] of 1WNR registers := [1,0,…,0]

upon read()
for j = 0 to M-1 do

if R[j].read() = 1 then return j

upon write(v)  // if i=1 
R[v].write(1)

for j=0 to v-1 do R[j].write(0)
return ok

©  P. Kuznetsov
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Quiz 3: what if?
Code for process pi:

initially:
shared array R[0,..M-1] of 1WNR registers := [1,0,…,0]

upon read()
for j = 0 to M-1 do

if R[j].read() = 1 then return j

upon write(v)  // if i=1 
for j=v-1 down to 0 do R[j].write(0)
R[v].write(1)
return ok

©  P. Kuznetsov
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Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or 

multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
V. From 1W1R to 1WNR (multi-valued atomic)
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Atomic registers
A register is atomic if every history it produces is 

linearizable

Informally, the complete operations (and some 
incomplete operations) are seen as taking effect 
instantaneously at some time between their 
invocations and responses

(The operations are atomic)
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Atomic?

p1

p2

p3

write(1)    ok

read()         1

write(0)  ok

read()   0 read()   1
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Atomic?

p1

p2

p3

write(1)    ok

read()      1

write(0)  ok

read()  0 write(3) ok Incorrect value!
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Atomic?

p1

p2

p3

write(1)    ok

read()      1

write(0)  ok

read() 0 write(3) ok
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Atomic?

p1

p2

p3

write(1)  ok

read()       1

write(0)  ok

read()  0 write(3) ok Incorrect value!
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Atomic?

p1

p2

p3

write(1) ok

read()         1

write(0)  ok

read()  1 write(3)
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Atomic?

p1

p2

p3

write(1)   ok

read()         3

write(0) ok

read() 1 write(3)
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Atomic?

p1

p2

p3

write(1)                        ok

read()          0

write(0) ok

read()   1
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From 1W1R regular to 1W1R atomic

p1

p2

write(1)     ok

read()  0

write(0)  ok

read()  1

Write a timestamp?
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1W1R regular -> 1W1R atomic
Code for process pi:

initially:
shared 1W1R regular register R := 0
local variables t := 0, x := 0

upon read()
(t’,x’) := R.read()
if t’ > t then t:=t’; x:=x’;
return(x)

upon write(v)   // if i=1
t:=t+1
R.write(t,v)
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Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or 

multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
V. From 1W1R to 1WNR (multi-valued atomic)
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Transformations-I

From safe to regular (binary 1W1R)
§ Writer touches shared memory only to change
§ A concurrent read is allowed to return any value (0 

or 1) 
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Transformations-II

From one-reader to multiple-reader (regular 
binary or multi-valued)

§ Every reader is assigned a dedicated register to 
read

§ Writer writes in all
§ Reader reads its own register
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Transformations-III

From binary to M-valued (1WNR regular)
§ Every value in {0,…,M-1} is assigned a dedicated 

1WNR register 
§ Write(v) sets R[v]  to 1 and sets R[v-1] … R[0] to 0
§ Read returns the smallest v such that R[v]=1
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Transformation IV (unbounded)

From regular to atomic (1W1R multi-valued)
§ Write a timestamp with a value
§ The reader returns the latest value and ignores 

the old one
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Transformation IV
From regular to atomic (1W1R multi-valued)
§ Write a timestamp with a value
§ The reader returns the latest value and ignores the old 

one

p1

p2

write([v’,1]) ok

read() [v,0]

write([v,0]) ok

read() [v’,1]

read v’ read v’ 

write v write v’ 
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Multiple readers?

p1

p2

write2([v’,1])

read2()  [v’,1]

read v’ 

write v write v’ 

p3

? 

read3()  [v,0]

write3([v’,1])write2([v,0]) write3([v,0])
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Multiple readers?
Does not work either!

p1

p2

write2([v’,1])

read2()   [v,0]

read v 

write v write v’ 

p3

? 

read3()  [v,0]

write3([v’,1])write2([v,0]) write3([v,0])
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Transformation V (unbounded)
shared:

matrix RR[1..N][1..N] of 1W1R atomic registers := 0NxN

// for all i,j, RR[i][j] is read by pi and written by pj 

array WR[1..N] of 1W1R atomic registers := 0N

// for all i WR[i] is written by p1 and read by pi 

upon write(v)  // code for p1  
ts:=ts+1
for all j do WR[j].write([v,ts])
return ok

A bounded construction coming soon…
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Transformation V

upon read() // code for pi
for all j=1,…,N  do (t[j],x[j]) := RR[i][j].read()

(t[0],x[0]) := WR[i].read()
(tmax,xmax) := highest(t,x)

for all j do RR[j][i].write([tmax,xmax]);

return(xmax)

(Here highest(t,x) computes the value x[j] written with the highest timestamp t[j])
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Transformation V: correctness

If read1 returns v and read1 precedes read2 then 
read2 cannot return a value that is older than v –
sufficient for proving that a one-writer regular 
register is linearizable

§ What if the reader does not write?
§ What about multiple writers?
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Appendix: “Quasi-bounded” construction:
1WNR regular + atomic bit->1WNR atomic

©  P. Kuznetsov

initially:
shared 1WNR atomic bit WFLAG := false
shared 1WNR regular registers R1,R2:=initial

upon write(v)   
WFLAG:=true
R1.write(v)
WFLAG:=false
R2.write(v)

upon read()
val:=R1
wf:=WFLAG
if !wf then return(val) 
val:=R2
return(val)
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Appendix: bounded construction:
1WNR regular->1WNR atomic

©  P. Kuznetsov

Replace 
§ WFLAG with a ternary LEVEL registers (0,1,2)  
§ arrays WC[0..N] and RC[0..N] to exchange “signals” between the processes

upon write(v)   
LEVEL:=1 // incomplete write
R1.write(v)
LEVEL:=2  
LEVEL:=0  // “safe” to return the value read in R1
R2.write(v)
for j=1,...,N do 
lr := RC[j]; 
WC[j] := !lr; // a new value for pj is written
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Appendix: bounded construction:
1WNR regular->1WNR atomic

©  P. Kuznetsov

Upon read() // for reader pi
val := R1
lw:=WC[i]
if lw != RC[i] then 

FC[i]:=false; 
RC[i] := lw; // the new value is read

case LEVEL: 
0: return(val)
2: FC[i]:=true; return(val)
1: for j=1,...,N do 

lr := RC[j]; 
lf := FC[j]; 
lw := WC[j];

if (lr = lw) && lf then 
FC[i] := true 

return (val) 
val := R2; 
return(val); 

Chapter 8 of lecture notes for the code of Read and the proofs. 
Bug detection is welcome!
More on signaling in the next lecture…


