Distributed Algorithms
Introduction

Pow;
dat aba Sespe .

n ISiness
D?Ssmgefﬂc‘em ommarcmectu,e

bt . ‘é%
m
D, I l “ralieicomputing .

vus}’ndrromzauon o
P .@ 20T hed
2 (9&;{«@ g il " ¢
P rnunica 3
,‘.§ co™ W
% prOcess &
- 1 OOV
a compinSeystelinured
,;3‘ u!‘“@“ Drogra," G)(\.\
o* Sz(VCTSco %(' ;,..pa(allel G}(\o
hOf 1Z o
mg oggtaf d;rb‘a

o
s‘\(’\w
O“doad K
‘yori2 futureg Pfocess

. ..‘7
’

EFREI, 2019

M2 Big Data

Administrivia

- Web page: hitp://perso.telecom-
paristech.fr/~kuznetso/EFREI18/

= Project (Cryptocurrency?)

« Office hours:

v’ Telecom Paris, 46 rue Barrault, C213-2, appointments by email to
petr.kuznetsov@telecom-paristech.fr
« Exam
v Project defense 10-11.12.2019
v Written exam 07.01.2020
v Bonus for participation/discussion of exercises
v Bonus for finding bugs in slides/lecture notes

mEER © P. Kuznetsov 2

http://perso.telecom-paristech.fr/~kuznetso/EFREI18/

Literature

= Algorithms for concurrent systems. R. Guerraoui, P.
Kuznetsov, link on the wiki

M. Herlihy and N. Shavit. The art of multiprocessor
programming. Morgan Kaufman, 2008

» C. Cachin, R. Guerraoui, L. Rodrigues, Introduction to

Reliable and Secure Distributed Programming. Springer
(2011)

© P. Kuznetsov 3

The field of concurrent computing has gained in EPFL

importance after major chip manufacturers switched REess A L R I I H M

their focus fromincreasing the speed of individual

processors to increasing the number of processors F E
SYSTE M Rachid Guerraoui
Petr Kuznetsov

ona chip. The computerindustry has thus been calling
for a software revolution: the concurrency revolution.
Amajor challenge underlying this paradigm shift is
creatinga library of abstractions that developers canuse
for general purpose concurrent programming. We study
inthisbook how to define and build such abstractionsin a
rigorous manner. We focus on those that are considered
the most difficult to get right and have the highestimpact
on the overall performance of a program: synchronization
abstractions, also called shared objects or concurrent
data structures. The book is intended for software
developers and students. It began as a set of lecture
notes for courses given at EPFL and Télécom Paris.

AOS}BUZNY 133
Inoe.lano piyoey

Rachid Guerraouiis Professor of Distributed Computing at
Ecole Polytechnique Fédérale de Lausanne. He got a PhD from
University of Orsay in 1992 and has been affiliated with HP Labs,
MIT and Collége de France.

Petr Kuznetsov is Professor of Computer Science at Télécom
ParisTech, Université Paris-Saclay, France. He received his PhD
from Ecole Polytechnique Fédérale de Lausanne (EPFL) in 2005.
Before joining Télécom ParisTech, he worked at Max Planck
Institute for Software Systems and Deutsche Telekom
Innovation Labs/Technical University of Berlin.

9l782889'152834'> el
EPEL Press

o 5 |
& ' 2
. ¥
.

”

Librairie Eyerolles, 55-57-61, Blvd Saint-Germain, 75005 Paris
Section «Informatique-Algorithmique»

TELECOM

ParisTech

=5 4 | © P. Kuznetsov

Roadmap

Synchronization and concurrency
Correctness in distributed systems

Optimistic, lazy and non-blocking
synchronization

Basics of read-write communication
Consensus and universal construction
Transactional memory

Paxos state machines

Blockchains

© P. Kuznetsov

This course 1s about distributed
computing:

iIndependent sequential processes
that communicate

EEEEEEE
ParisTech

EEEE © P. Kuznetsov

Concurrency is everywhere!

- <€ >
W s sl -
e
JT— ‘ ¢3
Pk

- Ael¥en
- &

Multi-core processors

= Sensor networks
= Internet

mEER © P. Kuznetsov 7

Communication models

« Shared memory

v'Processes apply operations on
shared variables

v'Failures and asynchrony
« Message passing
v'Processes send and receive
messages ,
v'Communication graphs

v'Message delays

© P. Kuznetsov

Moore’s Law and CPU speed

1000000

100000)

10000

1000

100

10 4

1 « Clock Speed (MHz)

= Transistors [000)

o 1 1 1 !

1371 1375 1373 1933 1387 1991 1935 1933 2003 2007

TIIELECrDI’"’I
JarisTech 9

IR © P. Kuznetsov

= Single-processor performance does
not improve

= But we can add more cores

« Run concurrent code on multiple
processors

Can we expect a proportional
speedup? (ratio between sequential

time and parallel time for executing
a job)

© P. Kuznetsov 10

Amdahl’ s Law s‘

« p — fraction of the work that can be done in
parallel (no synchronization)

» n - the number of processors

« Time one processor needs to complete the
job =1

1

G —
l-p+pln

EEEEEEE
ParisTech

54 i | 7

Challenges

What is a correct implementation?
v'Safety and liveness

What is the cost of synchronization?
v'Time and space lower bounds

Failures/asynchrony
v'Fault-tolerant concurrency?

How to distinguish possible from impossible?
v’ Impossibility results

12

© P. Kuznetsov

Distributed # Parallel

= The main challenge is synchronization

= “you know you have a distributed system
when the crash of a computer you’ve never
heard of stops you from getting any work
done” (Lamport)

13

History

Dining philosophers, mutual exclusion (Dijkstra
)~60" s

Distributed computing, logical clocks (Lamport),
distributed transactions (Gray) ~70 s
Consensus (Lynch) ~80" s

Distributed programming models, since ~90° s

Multicores and large-scale distributed services
now

4

Real concurrency--in which one program actually
continues to function while you call up and use
another--is more amazing but of small use to the
average person. How many programs do you have
that take more than a few seconds to perform any

task?

New York Times, 25 April 1989, in an article on
new operating systems for IBM PC

15

© P. Kuznetsov

Why synchronize ?

Concurrent access to a shared resource may lead to an
Inconsistent state

v E. g., concurrent file editing

v"Non-deterministic result (race condition): the resulting
state depends on the scheduling of processes

Concurrent accesses need to be synchronized

v E. g., decide who is allowed to update a given part of the
file at a given time

Code leading to a race condition is called critical
section

v'Must be executed sequentially

Synchronization problems: mutual exclusion, readers-
writers, producer-consumer, ...

© P. Kuznetsov 16

Dining philosophers
(Dijkstra, 1965)

Edsger Dijkstra
1930-2002

« To make progress (to eat) each process
(philosopher) needs two resources (forks)

= Mutual exclusion: no fork can be shared
= Progress conditions:

v'"Some philosopher does not starve (deadlock-
freedom)

v'No philosopher starves (starvation-freedom)

© P. Kuznetsov 17

Mutual exclusion

No two processes are in their critical sections (CS) at the same

time

+

«Deadlock-freedom: at least one process eventually enters its CS

«Starvation-freedom: every process eventually enters its CS
v"Assuming no process blocks in CS or Entry section

Originally: implemented by reading and writing
v Peterson’s lock, Lamport’s bakery algorithm
«Currently: in hardware (mutex, semaphores)

18

© P. Kuznetsov

Peterson’s lock: 2 processes

bool flag[0] = false;
bool flag[1] = false;
int turn;

PO: Pl:

flag[0] = true;
turn = 1;
while (flag[l] and turn==1)
{
// busy wait

}

// critical section

// end of critical section
flag[0] = false;

© P. Kuznetsov

flag[l] = true;
turn = 0;
while (flag[0] and turn==0)
{
// busy wait

}

// critical section

// end of critical section
flag[l] = false;

19

Peterson’s lock: N = 2 processes

// initialization

level[0..N-1] = {-1}; // current level of processes 0...N-1
waiting[0..N-2] = {-1}; // the waiting process in each level
// 0...N=2

// code for process i that wishes to enter CS
for (m = 0; m < N-1; ++m) {

level[i] = m;
waiting[m] = 1i;
while(waiting[m] == 1 &&(exists k # i: level[k] = m)) {

// busy wait

}

// critical section
level[i] = -1; // exit section

© P. Kuznetsov 20

Bakery [Lamport’'74,simplified]

// initialization
flag: array [1l..N] of bool = {false};
label: array [l..N] of integer = {0}; //assume no bound

// code for process i that wishes to enter CS
flag[i] = true; //enter the “doorway”

label[i] = 1 + max(label[l], ..., label[N]); //pick a ticket
//leave the “doorway”

while (for some k # i: flag[k] and (label[k],k)<<(label[i],i));
// wait until all processes *“ahead” are served

// critical section

flag[i] = false; // exit section

Processes are served in the “ticket order”; first-come-first-serve

aris
' 21

CEATG © P. Kuznetsov

Bakery [Lamport’74,original]

// initialization
flag: array [1l..N] of bool = {false};
label: array [l..N] of integer = {0}; //assume no bound

// code for process i that wishes to enter CS
flag[i] = true; //enter the doorway
label[i] = 1 + max(label[l], ..., label[N]); //pick a ticket
flag[i] = false; //exit the doorway
for j=1 to N do {
while (flag[j]); //wait until j is not in the doorway
while (label[]j]#0 and (label[j],])<<(label[i],i)):;
// wait until j is not “ahead”

// critical section

label[i] = 0; // exit section

Ticket withdrawal is “protected” with flags: a very useful trick:
works with “safe” (non-atomic) shared variables 2

CEATG © P. Kuznetsov

Black-White Bakery [Taubenfeld’04]

// initialization

color: {black,white};

flag: array [l1l..N] of bool = {false};

label[l..N]: array of type {0,..,N} = {0} //bounded ticket numbers
mycolor[l..N]: array of type {black,white}

// code for process i that wishes to enter CS
flag[i] = true; //enter the “doorway”
mycolor[i] =color;
label[i] = 1 + max({label[j]| j=1,..,N: mycolor[i]=mycolor[j]});
flag[i] = false; //exit the *“doorway”
for j=1 to N do
while (flag[]j]);
if mycolor[j]=mycolor[i] then
while (label[j]#0 and (label[]j],])<<(label[i],i) and mycolor[j]=mycolor[i]
else
while (label[j]#0 and mycolor[i]=color and mycolor[]j] # mycolor[i]);
// wait until all processes “ahead” of my color are served

// critical section

if mycolor[i]=black then color = white else color = black;
label[i] = 0; // exit section

Colored tickets => bounded variables!

aris
' 23

CEATG © P. Kuznetsov

)

Quiz 1.1

« What if we reverse the order of the first two lines the
2-process Peterson’s algorithm

PO: Pl:
turn = 1; turn = 0;
flag[0] = true; flag[l] = true;

Would it work?

« Prove that Peterson’s N-process algorithm ensures:

v'mutual exclusion: no two processes are in the critical
section at a time

v'starvation freedom: every process in the trying section
eventually reaches the critical section (assuming no
process fails in the trying, critical, or exit sections)

24

© P. Kuznetsov

Distributed Algorithms

Correctness: safety and liveness

EFR

E

© P. Kuznetsov

How to treat a (computing) system
formally

« Define models (tractability, realism)

= Devise abstractions for the system design
(convenience, efficiency)

= Devise algorithms and determine complexity bounds

26

© P. Kuznetsov

Basic abstractions

= Process abstraction — an entity performing
independent computation

« Communication
v'Message-passing: channel abstraction
v'Shared memory: objects

© P. Kuznetsov 27

Processes
= Automaton P, (i=1,...,N):

\/States Applica'rior
v'Inputs

v Outputs "
v'Sequential specification |

Communication
Algorithm = {P1,...,PN} | \-—l".d/-)

= Deterministic algorithms
= Randomized algorithms

28

© P. Kuznetsov

Shared memory

» Processes communicate by applying operations on
and receiving responses from shared objects

A shared object instantiates a state machine

v'States
v'Operations/Responses

v'Sequential specification
« Examples: read-write registers, TAS,CAS,LL/SC,...

P2

O1 | . Oj -~ OM

29

© P. Kuznetsov

Implementing an object

Using base objects, create an illusion that an object O
IS available

__

enqlx) N — L
> = — | <

o0 - = . - [

30

© P. Kuznetsov

Correctness

What does it mean for an implementation to be
correct?

« Safety = nothing bad ever happens

v'Can be violated in a finite execution, e.g., by
producing a wrong output or sendlng an incorrect
message

v'What the implementation is allowed to output

= Liveness = something good eventually happens
v'Can only be violated in an infinite execution, e.g.,
by never producing an expected output
v"Under which condition the implementation outputs

ParisTech
EEEE © P. Kuznetsov 37

In our context

Processes access an (implemented) abstraction
(e.g., read-write buffer, a queue, a mutex) by
iInvoking operations

= An operation is implemented using a
seqguence of accesses to base objects

» E.g.: a queue using reads, writes, TAS, etc.

« A process that never fails (stops taking steps)

iIn the middle of its operation is called correct

= We typically assume that a correct process
invokes infinitely many operations, so a process is

correct if it takes infinitely many steps

32

© P. Kuznetsov

Runs

A system run is a sequence of events
v'E.g., actions that processes may take

2 — event alphabet
v E.g., all possible actions

2® is the set all finite and infinite runs

A property P is a subset of 2©

An implementation satisfies P if every its run is
in P

33

© P. Kuznetsov

Safety properties
P is a safety property if:

= P is prefix-closed: if gis in P, then each prefix of
oisin P

« P is limit-closed: for each infinite sequence of
traces o,, 04, O,,..., Such that each g; is a prefix
of 0., and each g, is in P, the limittrace gisin P

(Enough to prove safety for all finite traces of an
algorithm)

T
mEER © P. Kuznetsov 34

Liveness properties

P is a liveness property if every finite o (in 2%,
the set of all finite histories) has an extension
in P

(Enough to prove liveness for all infinite runs)

A liveness property is dense: intersects with
extensions of every finite trace

© P. Kuznetsov 35

Safety? Liveness?

» Processes propose values and decide on values
(distributed tasks):

2=U; ,{propose;(Vv),decide;(Vv)}U{base-object accesses}

v'Every decided value was previously proposed
v'No two processes decide differently

v'Every correct (taking infinitely many steps)
process eventually decides

v"No two correct processes decide differently

36

© P. Kuznetsov

Quiz 1.2: safety

1. Let S be a safety property. Show that if all finite
runs of an implementation | are safe (belong to

S) then all runs of | are safe

2. Show that every unsafe run o has an unsafe
finite prefix o’ : every extension of ¢’ is unsafe

1. Show that every property is an intersection of a
safety property and a liveness property

37

ParisTech
EEEE © P. Kuznetsov

How to distinguish safety and liveness:
rules of thumb

Let P be a property (set of runs)

= |f every run that violates P is infinite
v'P is liveness

= |f every run that violates P has a finite prefix
that violates P
v'P is safety

« Otherwise, P is a mixture of safety and
liveness

EEEEEEE
ParisTech

RG] © P. Kuznetsov 38

Example: implementing a
concurrent queue

What js a concurrent FIFO queue?

v FIFO means strict temporal order
v'Concurrent means ambiguous temporal order

39

When we use a lock...

shared
items|[];
tail, head := 0

deq()

lock.lock() ;
if (tail = head)

X := empty;

else
X := items[head];
head++;

lock.unlock() ;
return x;

© Nir Shavit

40

Intuitively...

deq ()

All modifications

lock.lock(); £ —
T ail = head) of queue are done

X := empty; in mutual exclusion

© Nir Shavit 41

We describe
the concurrent via the sequential

.d
9-954 lock unlock()
deq
Q-eHQé ' . li> |
lock) €N9 | unlock() e)
; g ; ; Behavior is
“Sequential”
J
eng
M ® Nir Shavit 42

Linearizability (atomicity):
A Safety Property

= Each complete operation should
v “take effect”
v'Instantaneously
v'Between invocation and response events

= The history of a concurrent execution is
correct if its “sequential equivalent” is correct

= Need to define histories first

EEEEEEE
Pe cch

43

Histories

A history is a sequence of invocation and
responses

E.g., p1-eng(0), p2-deq(),p1-ok,p2-0,...

A history is sequential if every invocation is
immediately followed by a corresponding
response

E.qg., p1-enqg(0), p1-ok, p2-deq(),p2-0,...

(A seqguential history has no concurrent operations)

44

© P. Kuznetsov

Histories

enq(0) ok enqg(1) ok

deq()

0

deq() O deq()

p3

History:

pl-enq(0); pl-ok; p3-deq(); p1l-enq(); p3-0; p3-deq(); p1-ok; p2-
deq(); p2-0

© P. Kuznetsov 45

Histories

enq(0) ok enq(l) ok

pl
deq() 1
p2
deq) O deq()
p3
History:

pl-enqg(0); pl-ok; p3-deq(); p3-0; pl-enq(l); pl-ok; p2-deq(); p2-1;

46

© P. Kuznetsov

Legal histories

A sequential history is /egal if it satisfies the sequential
specification of the shared object

« (FIFO) queues:
Every deq returns the first not yet dequeued value

- Read-write registers:
Every read returns the last written value

(well-defined for sequential histories)

47

Complete operations and completions

Let H be a history

An operation op is complete in H if H contains
both the invocation and the response of op

A completion of H is a history H’ that includes
all complete operations of H and a subset of
incomplete operations of H followed with
matching responses

EEEEEEE
Pe cch

48

Complete operations and completions

enqg(0) ok enq(l) ok

pl

deq() 1

p2

enq(3) ok deq()

p3

pl-enqg(0). pl-ok: p3-enq(3): pl-enq(1). p3-ok:
p3-deq(); pl -ok: p2-deq(). p2-1;

49

Complete operations and completions

enqg(0) ok enq(l) ok

pl "
deq() 1
p2]
eng(3) ok deq() 100
p3 ’

pl-enqg(0). pl-ok: p3-enq(3): pl-enq(1). p3-ok:
p3-deq(); pl -ok; p2-deq(); p2-1; p3-100

50

Complete operations and completions

enq(0) ok enq(1) ok

pl

deq() 1

p2

eng(3) ok

p3

pl-enqg(0). pl-ok: p3-enq(3): pl-enq(1). p3-ok:
pl -ok; p2-deq(); p2-1;

57

Equivalence

Histories H and H' are equivalent if for all pi
H I pi —_ H, | pi

E.g.:

H=p,-enq(0); p;-ok; p3-deq(); p5-3
H’ =p,-enq(0); ps-deq(); p;-0k; ps-3

TELECOM
2ar

52

Linearizability (atomicity)

A history H is linearizable if there exists a sequential
legal history S such that:

= S is equivalent to some completion of H
» S preserves the precedence relation of H:

op1 precedes op2 in H => op1 precedes op2 in S

What if: define a completion of H as any complete
extension of H?

53

Linearization points

An implementation is /inearizable if every history
it produces is linearizable

Informally, the complete operations (and some
incomplete operations) in a history are seen
as taking effect instantaneously at some time
between their invocations and responses

Operations ordered by their linearization points
constitute a legal (sequential) history

EEEEEEE
ParisTech

mEER © P. Kuznetsov 54

Linearizable?

enq(0) ok enq(1) ok enq(2) ok
L) R S B —
deq() 2

deq) O deq() 1

EEEEEEE
ParisTech

EEEE © P. Kuznetsov 55

Linearizable?

write(0) ok write(1) ok

read() O write(3) ok

p——t—T

© P. Kuznetsov 56

Linearizable?

write(0) ok write(1) ok

read() O write(3) ok

P —— T ——————

© P. Kuznetsov 57

Linearizable?

write(0) ok write(1) ok

pl ———t——————— o ————————»

read() 1

p———————

write(3) ok read() O

P ———————

© P. Kuznetsov 58

Linearizable?

write(0) ok write(l) ok

o

read() 1

p————————F—1~

read() O write(3) ok Tncorrect value!

p34|_|_|_|—’

© P. Kuznetsov 59

Linearizable?

write(0) ok write(1l) ok

TELECOM
.....

60

Linearizable?

write(0) ok write(l) ok

read() 1 write(3)

67

© P. Kuznetsov

Linearizable?

write(0) ok write(1) ok

62

© P. Kuznetsov

Sequential consistency

A history H is sequentially consistent if there exists a
sequential legal history S such that:

= S is equivalent to some completion of H
» S preserves the per-process order of H:

pi executes op1 before op2 in H => pi executes op1
before op2in S

Why (strong) linearizability and not (weak)
sequential consistency?

© P. Kuznetsov 63

Linearizability is compositional!

« Any history on two linearizable objects A and B is a
history of a linearizable composition (A,B)

= A composition of two registers A and B is a two-field
register (A,B)

write(A,1) ok write(B,1) ok

pl

read(B) 1 read(A) 1

64

Sequential consistency is not!

= A composition of sequential consistent objects
IS not always sequentially consistent!

write(A,1) ok write(B,1) ok

read(B) 1 read(A) 0

TELECOM
.....

65

Linearizability is nonblocking

Every incomplete operation in a finite history
can be independently completed

enq(2) ok

pl

eng(1) ok deq()

p2

What safety property is blocking?

EEEEEEE
ParisTech

mEER © P. Kuznetsov 66

Linearizability as safety

« Prefix-closed: every prefix of a linearizable
history is linearizable

« Limit-closed: the limit of a sequence of
linearizable histories is linearizable

(see Chapter 2 of the lecture notes)

An implementation is linearizable if and only if
all its finite histories are linearizable

T
EEEE © P. Kuznetsov 67

Why not using one lock?

Simple — automatic transformation of the
sequential code

Correct — linearizability for free

In the best case, starvation-free: if the lock is

“fair” and every process cooperates, every
process makes progress

Not robust to failures/asynchrony

v' Cache misses, page faults, swap outs
Fine-grained locking?

v' Complicated/prone to deadlocks

68

© P. Kuznetsov

Liveness properties

« Deadlock-free:

v'If every process is correct”, some process makes progress™*
Starvation-free:

v If every process is correct, every process makes progress

« Lock-free (sometimes called non-blocking):
v'Some correct process makes progress

- Wait-free:
v Every correct process makes progress

- Obstruction-free:

v Every process makes progress if it executes in isolation (it is the only
correct process)

* A process is correct if it takes infinitely many steps.
** Completes infinitely many operations.

mEER © P. Kuznetsov 69

Periodic table of liveness properties
[© 2013 Herlihy&Shavit]

independent dependent dependent
non-blocking non-blocking blocking
every process wait-freedom obstruction- starvation-freedom
makes progress freedom
some process lock-freedom ? deadlock-freedom

makes progress

What are the relations (weaker/stronger) between these
progress properties?

RG] © Kuznetsov 70

Quiz 1.3: liveness

« Show how the elements of the “periodic table of
progress” are related to each other

v'Hint: for each pair of properties, A and B, check if any run
of Ais a run of B (A is stronger than B), or if there exists a
run of A that is not in B (A is not stronger than B)

v'Can be shown by transitivity: if A is stronger than B and B
is stronger than C, then A is stronger than C

© P. Kuznetsov 71

Liveness properties: relations

Property A is stronger than property B if every run satisfying A also satisfies B (A is a
subset of B).

A is strictly stronger than B if, additionally, some run in B does not satisfy A, i.e., A is
a proper subset of B.

For example:

« WF is stronger than SF

Every run that satisfies WF also satisfies SF: every correct process makes
progress (regardless whether processes cooperate or not).

WEF is actually strictly stronger than SF. Why?

« SF and OF are incomparable (none of them is stronger than the other)

There is a run that satisfies SF but not OF: the run in which p1 is the only
correct process but does not make progress.

There is a run that satisfies OF but not SF: the run in which every process is
correct but no process makes progress

© P. Kuznetsov 72

Quiz 1.4: linearizability

Show that the sequential queue implementation
considered before is linearizable and wait-free as
Is iIf used by two processes: one performing only
engueue operations and one performing only
dequeue operations

Devise a simple queue implementation shared by
any number of processes in which enqueue and
dequeue operations can run concurrently (data
races between these operations are allowed)

© P. Kuznetsov 73

