
Algorithms for Concurrent Systems

Rachid Guerraoui Petr Kuznetsov

Contents

Contents

1. Introduction 13
1.1. A Broad Picture: the Concurrency Revolution 14
1.2. The Topic: Shared Objects . 14
1.3. Correctness (Part I): Linearizability 16
1.4. Correctness (Part II): Wait-Freedom 17
1.5. Reducibility of Algorithms . 18
1.6. Organization . 20
1.7. The Context of This Book . 22
1.8. Acknowledgments . 23
1.9. Chapter Notes . 23

I. Correctness 25

2. Linearizability 27
2.1. Introduction . 27
2.2. The Players . 28

2.2.1. Processes . 28
2.2.2. Objects . 29
2.2.3. Histories . 31
2.2.4. Sequential Histories . 32
2.2.5. Legal Histories . 33

2.3. Linearizability . 33
2.3.1. Complete Histories . 33
2.3.2. Incomplete Histories and Completions 36
2.3.3. Linearizability is Non-Blocking 38
2.3.4. Composition . 39

2.4. Safety . 41
2.5. Summary . 44
2.6. Chapter Notes . 45
2.7. Exercises . 45

3. Progress 47
3.1. Introduction . 47

 Contents

3.2. Implementation . 48
3.2.1. High-Level and Low-Level Objects 48
3.2.2. Zooming into Histories 48

3.3. Progress Properties . 50
3.3.1. Variations . 51
3.3.2. Bounded Termination . 51
3.3.3. Liveness . 52

3.4. Linearizability and Wait-Freedom 53
3.4.1. A Simple Example . 53
3.4.2. A More Sophisticated Example 54

3.5. Summary . 56
3.6. Chapter Notes . 57
3.7. Exercises . 57

II. Read-Write objects 59

4. The Semantics of Read-Write Objects 61
4.1. Register Properties . 61

4.1.1. The Three Dimensions 61
4.1.2. The Concurrent Behavior 62
4.1.3. The Extreme Cases . 63

4.2. Register Correctness . 63
4.2.1. Reading Function . 64
4.2.2. Proving Regularity . 64
4.2.3. Proving Atomicity . 65

4.3. Register Reductions: Roadmap 66
4.4. Chapter Notes . 68
4.5. Exercises . 68

5. Basic Register Reductions 69
5.1. Reducing Multi-Reader to Single-Reader (Safe and Regular) . . . 69

5.1.1. Safety . 69
5.1.2. Regularity . 70
5.1.3. Atomicity . 70

5.2. Reducing Regular to Safe (Binary) 71
5.2.1. Writing Only for Changing 71
5.2.2. Reduction . 71

5.3. Reducing b-Valued to Binary (Safe) 72
5.3.1. Binary Encoding . 72
5.3.2. Reduction . 73

Contents 

5.4. Reducing b-Valued to Binary (Regular) 74
5.4.1. Unary Encoding . 74
5.4.2. Reduction . 74
5.4.3. Correctness . 75

5.5. Reducing b-Valued to Binary (Atomic) 76
5.5.1. Atomic Bits Do Not Help 76
5.5.2. Reduction . 77
5.5.3. Correctness . 77

5.6. The Importance of a Bound . 79
5.7. Chapter Notes . 79
5.8. Exercises . 79

6. Timestamp-Based Reductions 81
6.1. Reducing Atomic to Regular (Unbounded) 81
6.2. Reducing Multi-Reader to Single-Reader (Atomic Unbounded) . . 83

6.2.1. Preventing New/Old Inversions by Having Readers Com-
municate . 83

6.2.2. Reduction . 84
6.3. Reducing Multi-Writer to Single-Writer (Atomic Unbounded) . . 85

6.3.1. Preventing New/Old Inversions by Having Writers Com-
municate . 85

6.3.2. Reduction . 86
6.4. Chapter Notes . 87
6.5. Exercises . 87

7. Optimal Atomic Bit 89
7.1. The Reader Has to Write . 89

7.1.1. Digests . 90
7.1.2. Repeated Digests . 90
7.1.3. Impossibility Result . 92
7.1.4. Lower Bound . 93

7.2. Reducing an Atomic Bit to Three Safe Bits 94
7.2.1. Regularity . 94
7.2.2. Handshaking (with the Writer) 95
7.2.3. Reading: an Incremental Approach 95
7.2.4. The Complete Algorithm 99

7.3. Chapter Notes . 104
7.4. Exercises . 104

8. Bounded Atomic Multivalued Register 105
8.1. A Hybrid Reduction Using an Atomic Control Bit 105
8.2. The Complete Reduction . 108

 Contents

8.3. Chapter Notes . 114
8.4. Exercises . 114

III. Snapshot Objects 115

9. Collects and Snapshots 117
9.1. Collect Object . 117

9.1.1. Definition and Implementation 117
9.1.2. A Collect Object has no Sequential Specification 118

9.2. Snapshot Object . 120
9.2.1. Definition . 120
9.2.2. The Sequential Specification of Snapshot 120
9.2.3. Non-Blocking Snapshot 122
9.2.4. Wait-Free Snapshot . 125
9.2.5. The Snapshot Implementation is Bounded Wait-Free . . . 126
9.2.6. The Snapshot Object Implementation is Atomic 127

9.3. Bounded Snapshot . 129
9.3.1. Double Collect and Helping 129
9.3.2. Binary Handshaking . 130
9.3.3. Bounded Snapshot with Handshaking 131
9.3.4. Correctness . 132

9.4. Chapter Notes . 134
9.5. Exercises . 134

10. Immediate Snapshot and Iterated Immediate Snapshot 135
10.1. Immediate Snapshots . 135

10.1.1. Definition . 135
10.1.2. Block Runs . 136
10.1.3. A One-Shot Implementation 137

10.2. Fast Renaming . 139
10.2.1. Renaming with Snapshots 140
10.2.2. Renaming with Immediate Snpahsots 141

10.3. Long-Lived Immediate Snapshot 145
10.3.1. Full-information protocols 145
10.3.2. Simulating IS: an Overview 146
10.3.3. Simulating IS: correctness 147

10.4. Iterated Immediate Snapshot . 150
10.4.1. An Equivalence between IIS and Read-Write 151
10.4.2. Solving Tasks in IIS . 155
10.4.3. Geometric Representation of IIS 156

10.5. Chapter Notes . 157

Contents 

10.6. Exercises . 158

IV. Consensus Objects 159

11.Consensus and Universality 161
11.1. Consensus Object: Specification 161
11.2. A Wait-Free Universal Construction 162

11.2.1. Deterministic Objects . 163
11.2.2. Bounded Wait-Free Universal Construction 165
11.2.3. Non-Deterministic Objects 166

11.3. Chapter Notes . 167
11.4. Exercises . 167

12.Consensus Number and Hierarchy 169
12.1. Consensus Number . 169
12.2. Preliminary Definitions . 170

12.2.1. Schedule, Configuration, and Valence 170
12.2.2. Bivalent Initial Configuration 171
12.2.3. Critical Configurations 172

12.3. Consensus Number of Atomic Registers 173
12.4. Objects with Consensus Numbers 2 175

12.4.1. Consensus from Test&Set Objects 175
12.4.2. Consensus from Queue Objects 176
12.4.3. Consensus Numbers of Test&Set and Queue 177

12.5. Objects of n-Consensus Type 179
12.6. Objects with Consensus Number +∞ 180

12.6.1. Consensus from Compare&Swap Objects 180
12.6.2. Consensus from Augmented Queue Objects 181

12.7. Consensus Hierarchy . 181
12.8. Chapter Notes . 182
12.9. Exercises . 182

V. Schedulers 183

13.Resilience 185
13.1. Safe Agreement . 185

13.1.1. Specification . 186
13.1.2. Solving Safe Agreement 186

13.2. BG Simulation . 188
13.2.1. Simulation: Definition 188

 Contents

13.2.2. Colorless Tasks . 189
13.2.3. Simulation: Algorithm 190

13.3. The Impossibility of 1-Resilient Consensus 193
13.4. Chapter Notes . 193
13.5. Exercises . 194

14.Failure Detectors 195
14.1. Defining and Comparing Failure Detectors 195

14.1.1. Failure Patterns and Failure Detectors 196
14.1.2. Algorithms Using Failure Detectors 197
14.1.3. Runs . 198
14.1.4. Implementing and Comparing Failure Detectors 198
14.1.5. Weakest Failure Detector 199

14.2. Solving Consensus with Failure Detectors 199
14.2.1. The Commit-Adopt Abstraction 200
14.2.2. Solving Consensus with Commit-Adopt and Ω 202

14.3. A Weakest Failure Detector for Consensus 202
14.3.1. Overview of the Reduction Algorithm 203
14.3.2. DAGs . 203
14.3.3. Asynchronous Simulation 205
14.3.4. Three levels of BG simulation 207
14.3.5. Using Consensus . 208
14.3.6. Extracting Ω . 209

14.4. Chapter Notes . 213
14.5. Exercises . 214

15.Adversaries 217
15.1. Non-Uniform Failure Models . 217
15.2. Non-Uniform Failures in Shared-Memory Systems 221

15.2.1. Model . 221
15.2.2. Survivor Sets and Cores 221
15.2.3. Adversaries . 222
15.2.4. Failure Patterns and Environments 223
15.2.5. Asymmetric Progress Conditions 223

15.3. Characterizing Superset-Closed Adversaries 224
15.3.1. Side Remark: a Topological Approach 224
15.3.2. A Simulation-Based Approach 226

15.4. Measuring the Power of Generic Adversaries 227
15.4.1. Solving Consensus with ABM 228
15.4.2. Set Consensus Power of an Adversary 228
15.4.3. Defining setcon . 228
15.4.4. Calculating setcon(A): Examples 229

Contents 

15.4.5. Solving Consensus with setcon = 1 230
15.4.6. Adversarial Partitions . 232
15.4.7. Characterizing Colorless Tasks 232

15.5. Chapter Notes . 233
15.6. Exercises . 235

16.Bibliography 237

17. Index 247

1. Introduction

In 1926, Gilbert Keith Chesterton published a novel “The Return of Don Quixote”
that reflected the advancing industrialization of the Western world, where mass
production started replacing personally crafted goods. One of the novel’s charac-
ters, soon to be converted in a modern version of Don Quixote, says:

”All your machinery has become so inhuman that it has become nat-
ural. In becoming a second nature, it has become as remote and in-
different and cruel as nature. ... You have made your dead system on
so large a scale that you do not yourselves know how or where it will
hit. That’s the paradox! Things have grown incalculable by being
calculated. You have tied men to tools so gigantic that they do not
know on whom the strokes descend.”

Since the mid-1920s, we have made a significant progress in ‘dehumanizing’ ma-
chinery, and computing systems are among the best examples. Indeed, modern
large-scale distributed software systems are often claimed to be the most compli-
cated artifacts to have ever existed. This complexity triggers a perspective of them
as natural objects. This is, at the very least, worrying. Indeed, given that our daily
life relies more and more on computing systems, we should be able to understand
and control their behavior.

In 2003, almost 80 years after Chesterton’s book was published, Leslie Lam-
port, in his invited lecture “Future of Computing: Logic or Biology”, called for a
reconsideration of the general perception of computing:

”When people who can’t think logically design large systems, those
systems become incomprehensible. And we start thinking of them as
biological systems. And since biological systems are too complex to
understand, it seems perfectly natural that computer programs should
be too complex to understand.

We should not accept this.”

In this book, we support this point of view by presenting a comprehensive col-
lection of fundamental results that improve our understanding of how computing
systems operate. More specifically, we focus on concurrent computing, some-
times also called (shared-memory) distributed computing. Concurrent computing
systems are treated here as logical entities, namely algorithms, with clear goals
and strategies.

 1. Introduction

1.1. A Broad Picture: the Concurrency Revolution

The field of concurrent computing has gained in importance after major chip man-
ufacturers switched their focus from increasing the speed of individual processors
to increasing the number of processors on a chip. The good old days where noth-
ing needed to be done to boost the performance of programs, besides changing
the underlying processors, are over. A single-threaded application can exploit at
most 1/100 of the potential throughput of a 100-core chip. To exploit multicore
architectures, programs must be executed in a concurrent manner. The algorithms
must be designed with a large number of threads (also called processes) and their
concurrent accesses to shared data must be synchronized to prevent inconsisten-
cies.

The computer industry has thus been calling for a software revolution: the con-
currency revolution. This might look surprising at first, for the very idea of con-
currency is almost as old as computer science. In fact, the software revolution
is more than about achieving concurrency: it is about achieving concurrency for
everyone. Namely, concurrency is going out of the small box of specialized pro-
grammers and is conquering all of them. Somehow, the very term “concurrency”
itself captures this democratization; earlier we used to talk about “parallelism”.
Specific kinds of programs designed by specialized experts to clearly involve in-
dependent tasks were deployed on parallel architectures. The term “concurrency”
better reflects a wider range of programs where the very fact that the tasks exe-
cuting in parallel compete for shared data is the norm rather than the exception.
Yet, designing and implementing such programs in a correct and efficient manner
is not trivial.

A major challenge underlying the concurrency revolution is creating a library of
abstractions that programmers can use for general-purpose concurrent program-
ming. Ideally, such a library should be usable by both programmers with little
expertise in concurrent programming as well as by advanced programmers who
master multicore architectures. The ability to compose these abstractions is of key
importance, for an application should ideally be the result of assembling several
pieces of code that have been devised and tested independently.

We study in this book how to define and build such abstractions. We focus on
(a) those that are considered the most difficult to get right and (b) those with the
highest impact on the overall performance of a program: synchronization abstrac-
tions, also called shared objects or sometimes concurrent data structures.

1.2. The Topic: Shared Objects

In concurrent computing, a problem is solved through several threads (processes)
that execute a set of tasks. In general, except in so-called “embarrassingly paral-

1.2. The Topic: Shared Objects 

lel” programs, i.e., programs that solve problems that can easily and regularly be
decomposed into independent parts, the tasks usually need to synchronize their
activities by accessing shared constructs, i.e., these tasks depend on each other.
These constructs typically serialize the threads and reduce parallelism. According
to Amdahl’s law [4], the cost of accessing these constructs significantly affects
the overall performance of concurrent computations. Devising, implementing
and making good use of such synchronization constructs usually leads to intri-
cate schemes that are very fragile and sometimes error-prone.

Every multicore architecture provides synchronization constructs in hardware.
Usually, these constructs are “low-level” and leveraging them is not trivial. Also,
the synchronization constructs that are provided in hardware differ from archi-
tecture to architecture, thus making concurrent programs hard to port. Even if
these constructs look the same, their exact semantics on different machines can
also be different, and some subtle details can have important consequences on the
performance or the correctness of the concurrent program. Clearly, coming up
with a high-level library of synchronization abstractions that could be used across
multicore architectures is crucial to the success of the multicore revolution. Such
a library could only be implemented in software for it is simply not realistic to
require multicore manufacturers to agree on the same high-level library to offer to
their programmers.

We assume a small set of low-level synchronization primitives (constructs) pro-
vided in hardware, and we use these primitives to implement higher-level synchro-
nization abstractions. These abstractions are supposed to be used by programmers
of various skills to build application pieces that could, in turn, be used within a
higher-level application framework.

The quest for synchronization abstractions, i.e., the topic of this book, can be
viewed as a continuation of one of the most important quests in computing: pro-
gramming abstractions. Indeed, the history of computing has mainly been about
devising abstractions that encapsulate the specifics of underlying hardware and
about helping programmers focus on the higher-level aspects of software applica-
tions. A file, a stack, a record, a list, a queue, and a set, are well-known examples
of abstractions that have proved to be valuable in traditional sequential and cen-
tralized computing. Their definitions and effective implementations have enabled
programming to become a high-level activity and made it possible to reason about
algorithms without specific mention of hardware primitives.

In modern computing, an abstraction is usually captured by an object that repre-
sents a server program. This program offers a set of operations to its users. These
operations and their specifications define the behavior of the object, also called
the type of the object.

The way an abstraction (object) is implemented is usually hidden from its users
who have to rely solely on its interface—the operations it exports and the values it

 1. Introduction

returns—to design and produce upper-layer software. Such a modular approach is
key to implementing provably correct software that can be reused by programmers
in different applications.

The abstractions we study in this book are shared objects, i.e., objects that can
be accessed by concurrent processes, that typically run on independent proces-
sors. We assume, however, that each process accesses the shared objects in a
sequential manner— the process waits until it receives a response to an invoked
operation before invoking the next one. Of course, the fact that a process executes
an operation on a shared object does not preclude other processes from invoking
operations on the same object.

We often assume that the object has a sequential specification, also called its
sequential type. The type specifies how the object should behave when accessed
sequentially. That is, if executed without concurrency, the behavior of the object is
known. This behavior might be deterministic in the sense that, given any operation
and an object state, the final state and response are uniquely defined. But this
behavior can also be non-deterministic, in the sense that, an operation may bring
the object to several possible states and return several different responses.

In summary, we study in this book how to implement, in the algorithmic sense,
objects that are shared by concurrent processes. The system we consider can
be viewed as a set of sequential Turing machines, each representing an individ-
ual process. These Turing machines communicate and synchronize their activ-
ities through low-level shared objects. These activities consist in implementing
higher-level shared objects. Such implementations need to be correct. Typically,
correctness is defined as an intersection of linearizability and wait-freedom. We
now give an overview of these two properties.

1.3. Correctness (Part I): Linearizability

Linearizability says that, despite concurrency, operations invoked on an object
should appear as if they were executed sequentially. As we discussed earlier,
the only instantiation of the object behavior visible to any given process is its se-
quence of operation invocations and matching responses. We require that every
invoked operation should appear to take effect at some indivisible instant between
the moment the operation was invoked and the moment it returned a response.
This instant is then called the linearization point of that operation. It is required
that the operations ordered by their linearization points constitute a correct se-
quential execution.

Therefore, linearizability, sometimes also called atomicity, transforms the dif-
ficult problem of reasoning about a concurrent system into a simpler problem of
reasoning about a sequential system where the processes access each object se-
quentially. To program with linearizable (atomic) objects, a developer only needs

1.4. Correctness (Part II): Wait-Freedom 

to know their sequential specifications.
Most interesting synchronization problems, such as the classical problems of

reader-writer, producer-consumer, and counting, are best described as lineariz-
able shared objects.

In the reader-writer problem, the processes need to read or write to a shared data
structure, so that the value read by a process at any given point is the last value
written so far. Solving this problem can be simply described as implementing a
linearizable object exporting read() and write() operations. Such an object type
is usually called a read-write variable, or a register. The object abstracts out the
very notions of shared file and disk storage.

In the producer-consumer problem, the processes are usually split into two
camps: the producers create items and the consumers use the items. It is typically
required that the first item to be produced is the first to be consumed. Solving
the producer-consumer problem can be simply described as implementing a lin-
earizable object type, called a FIFO (first-in-first-out) queue (or simply a queue)
that exports two operations: enqueue() (invoked by a producer) and dequeue()
(invoked by a consumer).

The counting problem consists in implementing a linearizable shared counter,
represented as an FAI (Fetch-and-Increment) object. The processes access an FAI
object to increment the value of the counter and obtain the current value.

1.4. Correctness (Part II): Wait-Freedom

Wait-freedom says that processes should not prevent each other from performing
operations and obtaining corresponding responses. More specifically, no process
p should ever prevent any other process q from making progress, i.e., obtaining
responses to its operations, provided q stays alive and kicking. A process q should
be able to terminate each of its operations on a shared object X despite speed
variations or even the failure of any other process p. Process p could be very fast
and might invoke arbitrarily many operations on X , or could have been swapped
out by the operating system while accessing X . None of these scenarios should
prevent q from completing its operation.

Wait-freedom conveys robustness of an implementation and is qualified as a
liveness (also called progress) property. Wait-freedom transforms the difficult
problem of reasoning about a failure-prone system where processes can be arbi-
trarily delayed or speeded up, into a simpler problem of reasoning about a system
where every process progresses at its own pace. In other words, wait-freedom
says that every operation invoked by a process on a shared object should return
a response in a finite number of the process’s steps, independently of the steps
performed by other processes. The notion of a step, as we will discuss later, cap-
tures an operation invoked by the process on a base (low-level) object used in the

 1. Introduction

implementation.
Ensuring linearizability alone or wait-freedom alone is simple. A trivial wait-

free implementation could return arbitrary responses to each operation, say some
value corresponding to some initial state of the object. This would satisfy wait-
freedom, as no process would prevent other processes from progressing. However,
these responses would not satisfy linearizability.

Also, we can ensure linearizability and some form of progress by using a mutual
exclusion mechanism. Every operation on the implemented object is performed
in an indivisible critical section. The mutual-exclusion mechanism ensures that
at most one process can be in a critical section at a time. Assuming that the op-
erations are provided by any sequential implementation of the object, i.e., they
respect the object specification when executed sequentially, we automatically en-
sure linearizability. However, the resulting implementation significantly limits
parallelism and, thus, the performance of the program. Moreover, the use of mu-
tual exclusion precludes wait-freedom. Indeed, a process delayed in a critical sec-
tion prevents all other processes from entering that critical section. These delays
can be significant or even, in case of a process crash or page-out which may take
millions of instructions, indefinite. In modern architectures, we might be talk-
ing about one process delaying hundreds of processes, rendering them useless. it
violates wait-freedom

1.5. Reducibility of Algorithms

In this book, we study how to wait-free implement abstract atomic objects from
more primitive ones. It is important to notice that the term implement is to be
considered in an abstract manner; we will describe the concurrent algorithms in
pseudocode. There will not be any C, Scala or Java code in this book. A concrete
instantiation of these algorithms would need to go through a translation into some
programming language.

An object to be implemented is typically called high-level, in comparison with
the objects used in the implementation, considered low-level (or base). It is also
common to talk about emulations of the high-level object by using the low-level
ones. As we will see, the notions of high-level and low-level are relative, as
there can be multiple emulation layers. Unless explicitly stated otherwise, by an
implementation we will mean by default a wait-free implementation, and by an
object— an atomic (linearizable) object.

It is often assumed that the underlying system provides some forms of registers
as low-level objects. These registers capture the abstraction of read-write storage
elements; they are used to exchange information between writer processes and
reader processes. Message-passing systems can also, under certain conditions,

1.5. Reducibility of Algorithms 

emulate such registers. Low-level registers provided in hardware are usually not
atomic. As we will see in this book, there are algorithms that implement atomic
registers from non-atomic registers provided in hardware.

Some multiprocessor machines also provide objects that are, in a certain sense,
more powerful than registers, such as test&set objects or compare&swap objects.
Unlike registers, the state of an object of these types is modified conditionally, i.e.,
the state is updated only if a specific condition on the current state and the invoked
operation is satisfied. Compared to a simple write operation on a register object,
such a conditional update enables more powerful synchronization schemes. In the
book, we will precisely capture the notion of “more powerful”.

The question of implementing high-level objects from lower-level ones can be
stated as a general reducibility question. Given two object types X1 and X2,
can we implement X2, by using any number of instances of X1 (we simply say
“using X1”)? In other words, is there an algorithm that implements X2 using
X1? In the case of concurrent computing, “implementing” typically assumes
providing linearizability and wait-freedom, which encapsulates smooth handling
of concurrency and failures.

When the answer to the reducibility question is negative, and it will be the case
for some X1 and X2, it is also interesting to ask what is needed (under some
minimality metric) to add to the low-level objects (X1) in order to implement the
desired high-level object (X2). For instance, base objects provided by a given
multiprocessor machine might be insufficient for implementing a particular ob-
ject in software. But an implementation could be found if we enrich these base
objects with some additional ones, which might help the manufacturers to design
a new generation of the multiprocessor in question. We will see examples of these
situations.

An important part of the book is about schedulers. When devising algorithms,
it is convenient not to make any assumption on process relative speeds. The multi-
processor machine (i.e., its operating system) is in that case viewed as a powerful
adversarial scheduler that can arbitrarily schedule steps of the processes in an ex-
ecution. In particular, the scheduler may enforce any process to fail at any moment
so that it stops taking steps in the execution. Wait-free algorithms are designed
precisely for this scheduler, and, as a result they are very robust to asynchrony and
failures. Unfortunately, many important problems cannot be solved in a wait-free
way, or if they can, the solutions are very inefficient. Therefore, we also con-
sider stronger models (i.e., weaker adversaries) where the processes are provided
with some non-trivial knowledge about the possible scheduling. For example, it
is sometimes reasonable to assume that at most t processes can fail in an execu-
tion (an assumption that could be based on statistical observations of the actual
underlying machine). More generally, we can assume that processes that can fail
are not necessarily independent, or that the processes have some knowledge about

 1. Introduction

which other processes have failed.

1.6. Organization

The book is organized in an incremental way. We begin with very basic objects
and then, step by step, implement increasingly more sophisticated and powerful
objects. The book also considers first a general (asynchronous) model of compu-
tation, before diving into more restricted models and highlighting their impact.

1. We start with precisely defining the notions of linearizability and wait-
freedom (Chapters 2 and 3). For this, we introduce the notion of a history,
modeling actual interleaving of operations accessing implemented shared
objects, and define what it means for a history to be linearizable. We intro-
duce a distinction between the notions of histories and low-level histories,
also called executions. This distinction is key to defining progress proper-
ties, such as wait-freedom. We discuss the separation of correctness criteria
into the categories of safety and liveness, and show that linearizability is
a safety property. We also show that linearizability is non-blocking and
compositional.

2. We study how to implement linearizable (read-write) registers from non-
linearizable base registers, i.e., registers that provide weaker guarantees
than linearizability (Chapters 4–6). Furthermore, we show how to imple-
ment registers that can contain values from an arbitrarily large range, and
that can be read and written by any process in the system, starting from
single-bit (containing only 0 or 1) base registers, where each base register
can be accessed by only one writer process and only one reader process.

3. Many of register reduction algorithms discussed in this book look simple (a
posteriori) but contain fundamental ideas that we often encounter in concur-
rent programming. Some of these reductions are, however, quite challeng-
ing, specifically those that build linearizable registers from a finite number
of non-linearizable ones with bounded capacity. In Chapters 7 and 8, we
discuss these algorithms and several corresponding impossibility results and
lower bounds. In particular, we give an iterative and intuitive description of
the optimal atomic bit construction by Tromp, one of the most beautiful
algorithms in the distributed computing literature.

4. We discuss how to use registers to implement seemingly more sophisticated
collect and snapshot objects (Chapter 9). In short, these objects abstract out
a set of registers. In the case of an (atomic) snapshot, the goal is to capture
an instantaneous picture of the set. We present non-trivial algorithmic tech-
niques, interesting in their own right, to implement a snapshot object in a

1.6. Organization 

linearizable and wait-free way. We also show that the collect object type is
inherently concurrent, i.e., it cannot be specified sequentially.

5. We discuss an important restriction of the snapshot abstraction, called im-
mediate snapshot (Chapter 10). We describe an elegant and efficient renam-
ing algorithm using immediate snapshots and show that the long-lived im-
mediate snapshot memory is computationally equivalent to the read-write
shared memory. We then discuss the iterated immediate snapshot model
in which the processes communicate via a series of (one-shot) immediate-
snapshot memories. We show that the iterated model is, in a strict sense,
computationally equivalent to the atomic snapshot model.

6. We discuss the importance of consensus as an object type, by proving its
universality. We describe a simple algorithm that uses registers and consen-
sus objects to implement any object with a sequential specification (Chap-
ter 11).

7. In Chapter 12, we show that registers are too weak to implement objects
such as test&set or compare&swap.

We derive this inherent limitation of registers from the seminal consensus
impossibility result. In short, even just two processes cannot, using only
registers, wait-free implement the consensus object. This result is central in
concurrent computing, and we present it in a detailed manner.

We then address the question of how to implement a consensus object from
more powerful objects. We show that two processes can implement con-
sensus using test&set and queue objects, while compare&swap objects can
implement consensus in a system with an arbitrary number of processes.
The implementations give rise to the notion of consensus number that can
be used to evaluate an object’s synchronization power.

8. In Chapter 13, we consider a different angle that restricts the system model
to capture some features of real concurrent settings. We first consider the
case where at most k processes can stop their execution, called k-resilience,
in contrast to the general case where any process can stop at any time. We
present a generalization of the consensus impossibility (with registers) that
also applies to the case where only 1 process can stop. The proof makes use
of the celebrated BG-Simulation technique that that is interesting in its own
right.

9. We study a complementary way of achieving universality by using registers
and specific oracles that reveal information about the operational status of
the processes (Chapter 14). These oracles, called failure detectors, provide

 1. Introduction

(possibly unreliable) information about which processes are alive and which
processes are not. We discuss how failure detectors can help devise a con-
sensus algorithm and hence achieve universality. We show to determine the
weakest failure detector to solve consensus, which is the most challenging
and technically interesting result of this chapter.

10. We revisit the assumption that processes are independent, and assume that
if they fail, they might fail according to some pattern (Chapter 15). More
specifically, we study the impact of non-uniform failure models, capturing
specific adversaries with more limited power than the general (wait-free)
one. We grasp the power of such adversaries by their ability to solve dis-
tributed tasks.

1.7. The Context of This Book

There is quite a choice of great textbooks on the theory of concurrent algorithms.
To mention a few: the classical introduction to distributed computing by Nancy
Lynch [90], The Cothe thorough discussion of secure and reliable distributed al-
gorithms by Christian Cachin, Rachid Guerraoui and Luis Rodrigues [20], and a
more recent introduction to the art of multiprocessor programming by Maurice
Herlihy and Nir Shavit [61].

We tried to give a comprehensive overview of fundamental concurrent algo-
rithms, enriched with a discussion of topics that, to the best of our knowledge,
were not covered in earlier textbooks in sufficient detail. These topics include:

• The optimal implementation of an atomic bit by John Tromp (Chapter 7).

• The implementation of a bounded multi-valued atomic register by Haldar
and Vidyasankar (Chapter 8).

• The fast renaming algorithm and the long-lived immediate-snapshot imple-
mentation by Borowsky and Gafni (Chapter 10).

• The computational equivalence between iterated immediate snapshots and
atomic snapshots established by Gafni and Rajsbaum (Chapter 10).

• The BG simulation technique (Chapter 13).

• A novel reduction of the weakest failure detector for solving consensus (a
simple variant of the algorithm by Chandra, Hadzilacos, and Toueg) (Chap-
ter 14).

• Shared-memory adversaries (Chapter 15).

1.8. Acknowledgments 

1.8. Acknowledgments

We would like to thank graduate students and postdocs who helped with the cor-
responding lecture series at EPFL, Technical University of Berlin, and Télécom
ParisTech: Igor Zablotchi, Jingjing Wang, Tudor David, Srivatsan Ravi, Thibault
Rieutord, Bilal Addam, Yu Li, Pierre de Boisset, Zohir Bouzid, Michal Kapalka,
Georgios Chatzopoulos, Ron Levy, Giuliano Losa, Bastian Pochon, Vasileios
Trigonakis, Marko Vukolic, Seth Gilbert, Julien Stainer, Viktor Bushkov, Alexan-
der Dragojevic, Vincent Gramoli, and Dan Alistarh.

Special thanks should go to Michel Raynal and Eli Gafni for countless discus-
sions of topics of this book.

1.9. Chapter Notes

The fundamental notion of abstract object type has been developed in various
textbooks on the theory or practice of programming. Early works on the genesis of
abstract data types were described in [28, 86, 95, 94]. In the context of concurrent
computing, one of the earliest work is reported in [64, 93]. An interesting survey
of the history of concurrent programming is given in [18].

The concept of a register (as considered in this book) and its formalization are
due to Lamport [82]. A hardware-oriented presentation is given in [92]. The
notion of atomicity is generalized to any object type by Herlihy and Wing [62]
under the name linearizability. The concept of a snapshot object is introduced in
[1]. A theory of wait-free atomic objects is developed in [68].

The classic (non-robust) way to ensure linearizability, through mutual exclu-
sion, is by Dijkstra [32]. The problem constitutes a basic chapter in nearly all
textbooks devoted to operating systems. There is also an entire monograph de-
voted solely to the mutual exclusion problem [98]. Various synchronization algo-
rithms are also detailed in [103].

The property of wait-free computation originated in the work of Lamport [77],
and was explored further by Peterson [97]. It is generalized and formalized by
Herlihy [53].

The consensus problem is introduced in [96]. Its impossibility in asynchronous
message-passing systems prone to process crash failures is proved by Fischer,
Lynch, and Paterson in [37]. Its impossibility in shared memory systems is proved
in [89]. The universality of the consensus problem and the notion of consensus
number are investigated in [53].

The concept of a failure detector oracle is introduced by Chandra and Toueg
[24]. A survey of the literature on failure detectors can be found in [38].

Part I.

Correctness

2. Linearizability

2.1. Introduction

Linearizabiliy is a correctness metric for shared object implementations. Intu-
itively, linearizability tells what responses returned by an implementation in a
concurrent execution can be considered correct. The notion of correctness, as
captured by linearizability, is defined with respect to how the object is expected to
react when accessed sequentially, i.e., the object’s sequential specification.

It is important to notice that linearizability does not say under which conditions
an object must return a response. As we will see later, this requirement is captured
by a complementary progress criterion, e.g., wait-freedom.

We illustrate here the notion of linearizability, and its relation to a sequential
specification, with a FIFO (first-in-first-out) queue. This object maintains (as a
state) an ordered set of elements and exports two operations:

• Enq(a): Insert element a at the end of the queue;

• Deq(): Return the first element inserted in the queue, that was not already
removed; then, remove this element from the queue; if the queue is empty,
return the default element nil.

1. Figure 2.1 conveys a sequential execution of a system made up of a sin-
gle process that accesses the queue (here the time goes from left to right).
Given that there are only a single object and a single process, we omit their
identifiers here. The process first enqueues element a, then element b, and
finally element c. According to the expected semantics of a queue (first-in-
first-out), and as depicted by the figure, the first dequeue invocation returns
element a, whereas the second returns element b.

b

Time

Enq(a) Enq (b) Deq() Enq (c)a Deq()

Figure 2.1.: Sequential execution of a queue

 2. Linearizability

2. Figure 2.2 depicts a concurrent execution of a system made up of two pro-
cesses p1 and p2 sharing a queue. Process p2, acting as a producer, en-
queues elements a, b, c, d, and e. Process p1, acting as a consumer, seeks to
dequeue two elements. In Figure 2.2, the execution of Enq(a), Enq(b) and
Enq(c) by p2 overlaps with the first Deq() of p1, whereas the execution
of Enq(c), Enq(d) and Enq(e) by p2 overlaps with the second Deq() of
p1. The role of linearizability is precisely to address the questions raised in
Figure 2.2: what elements can be dequeued by p1.

Enq(e)

p1

p2

Deq() ? Deq() ?

Time

Enq(a) Enq (b) Enq (c) Enq(d)

Figure 2.2.: Concurrent execution of a queue

Linearizability stipulates what elements can be returned by relying on how the
queue is supposed to behave if accessed sequentially. In other words, what should
happen in Figure 2.2 depends on what happens in Figure 2.1. Intuitively, lineariz-
ability says that, when accessed concurrently, an object should return the same
values that it could have returned in some sequential execution. However, before
defining linearizability and the very concept of ”the values that could have been
returned in some sequential execution”, we first define more clearly some impor-
tant underlying elements, namely processes and objects, and then the very notion
of a sequential specification.

2.2. The Players

Two categories of players are important in this context, processes and objects.
They are related by the notions of a history, and an execution (also called a run).

2.2.1. Processes

We consider a system that consists of a finite set of n processes, denoted
p1, . . . , pn. Besides accessing local variables, processes can execute operations
on shared objects (we sometimes simply say objects. Through these objects, the

2.2. The Players 

processes synchronize their computations. In the context of this chapter, which
defines linearizability of the objects, we omit the local variables accessed by the
processes.

The execution of an operation op on an object X by a process pi is modeled by
two events, specifically, the event denoted inv[X.op by pi] that occurs when pi in-
vokes the operation (invocation event), and the event denoted resp[X.op.idres by pi]
that occurs when the operation terminates (response event). We say that these
events are generated by process pi and associated with object X . Here the event
resp[X.op.res by pi] is called the response event that matches the invocation
event inv[X.op by pi]. Sometimes, when there is no ambiguity, we talk about
operations where we should be talking about operation executions. We also some-
times say that the object returns a response to the process. This is due to language
abuse because it is actually the process executing the operation on the object that
actually computes the response.

Every interaction between a process and an object is represented by a visible
event, i.e., the invocation or the response of an operation. A sequence of such
events is called a history. A history depicts the sequence of observable events of
the execution of a concurrent system.

We assume that each process is individually sequential: it can execute at most
one operation on an object at a time. That is, the algorithm of a sequential pro-
cess stipulates that after the process invokes an operation on an object, and until
a matching response is returned, the process does not invoke any other operation.
The fact that every process is (individually) sequential does not preclude differ-
ent processes from concurrently invoking operations on the same shared object.
Sometimes, however, we focus on sequential executions (modeled by sequential
histories) that specifically preclude such concurrency; that is, only one process at
a time invokes an operation on an object.

2.2.2. Objects

An object has a unique identity. The object also has a type. Multiple objects can
be of the same type: we talk about instances of the type. Of course, in the case of
multiple inheritance and subtyping, an object might belong to several types. But
for simplicity of presentation but without loss of generality, we restrict our study
in this manuscript to a single type per object.

We define an object type by (1) the set of possible states the objects of that type
can take, including the initial state, (2) a set of operations through which the state
of the objects of that type can be manipulated, and (3) a sequential specification
that describes, for each operation of the type and every state, the effect this op-
eration produces when it is applied to the object in that state (in the absence of
concurrency). The effect is measured in terms of the responses that the object may

 2. Linearizability

return and the new states that the object may reach after the operation is executed.
We say that the type exports its operations.

Note that we assume that the sequential specification of an object type is total,
i.e., it is defined for every state and every operation. This sometimes requires
specific care when defining types. For instance, if a dequeue operation is invoked
on a queue that is in an empty state, a specific response nil is returned.

We say that an operation of an object type is deterministic if the operation ap-
plied to any given object state results in a unique response and resulting state. An
object type is deterministic if all its operations are deterministic. Otherwise, the
object is said to be non-deterministic: several outputs and resulting states are pos-
sible. We assume here finite non-determinism, i.e., for each state and operation,
the set of possible outcomes (response and resulting state) is finite.

The sequential specification of an object type generates a set of sequences of
alternating operation invocations and matching responses. Every operation invo-
cation in such a sequence is followed by a response that is enabled by the type’s
sequential specification: the first operation in the sequence is applied to the initial
state and every next operation is applied to a state corresponding to the preceding
response. With a slight abuse of terminology, we will sometimes refer to this set
of sequences also as the sequential specification of the type.

To illustrate the notion of an object type, we consider two classic examples
below.

Example 1: a FIFO Queue. Our first example is the unbounded (FIFO)
queue, as described earlier. The producers enqueue items in a queue that the con-
sumers dequeue the elements. The sequential specification od the type generates
the set of sequences of enqueue and dequeue operations, where every dequeue
operation returns the first enqueued element that has not been dequeued yet. If
there is no such an element (i.e., the queue is empty), a specific default value nil
is returned.

Algorithms that implement this object correctly in a concurrent context capture
the classic producer/consumer synchronization problem.

Example 2: a Read/Write Object (Register). Our second example (called
register) is a simple read/write abstraction that models objects such as a shared
memory word, a shared file or a shared disk. Algorithms that implement this
object correctly in a concurrent context capture the classic reader/writer synchro-
nization problem.

An object of this type stores a value in a specific set and exports two operations:

• The operation read() has no input parameter. It returns the value stored in
the object.

2.2. The Players 

• The operation write(v) has an input parameter, v, representing the new
value of the object. This operation returns a response ok indicating to the
calling process that the operation has terminated.

The sequential specification of the type generates the set of sequences of read
and write operations, where each read operation returns the input parameter of
the last preceding write operation (i.e., the last value written). We discuss various
implementations of this object in the next chapters.

2.2.3. Histories

Processes interact with shared objects via invocation and response events. Such
events are totally ordered. (Simultaneous events are ordered arbitrarily.)

The interaction between processes and objects is modeled as a totally ordered
set of events H , and is called a history (sometimes also called a trace). The total
order relation on H , denoted <H , abstracts out the real-time order in which the
events actually occur.

Recall that an event includes (a) the name of an object, (b) the name of a pro-
cess, (c) the name of an operation, as well as the corresponding input or output
parameters.

A local history of pi, denoted H|pi, is a projection of H on process pi: the
subsequence H consisting of the events generated by pi. Two histories H and H ′

are said to be equivalent if they have the same local histories, i.e., for each process
pi, H|pi = H ′|pi.

As we consider sequential processes, we focus on histories H such that, for
each process pi, H|pi (the local history generated by pi) is sequential: The history
starts with an invocation, followed by a response, (the matching response asso-
ciated with the same object) followed by another invocation, etc. We say in this
case that the global history H is well-formed.

An operation is said to be complete in a history if the history includes both the
event corresponding to the invocation of the operation and its response. If the
history contains only the invocation of an operation but no matching response,
we say that the operation is pending in that history. A history without pending
operations is said to be complete. A history with pending operations is said to be
incomplete. Incomplete histories are important to study as they typically model
the situation where a process invokes an operation and stops, e.g., crashes, before
obtaining a response. Note that, being sequential, a process can have at most one
pending operation in a given history.

A history H induces an irreflexive partial order on its operations. Let op =
X.op1() by pi and op′ = Y.op2() by pj be two any operations. Informally, oper-
ation op precedes operation op′, if op terminates before op′ starts, where “termi-
nates” and “starts” refer to the time-line abstracted by the <H total order relation.

 2. Linearizability

More precisely: (
op→H op′

) def
=
(
resp[op] <H inv[op′]

)
.

Two operations op and op′ are said to overlap (we also say they are concurrent)
in a historyH if neither resp[op] <H inv[op′], nor resp[op′] <H inv[op] (neither
precedes the other one). Notice that two overlapping operations are such that
¬(op →H op′) and ¬(op′ →H op). As sequential histories have no overlapping
operations,→H is a total order if H is a sequential history.

Figure 2.3 highlights the events involved in the history that depicts the execu-
tion of Figure 2.2 above. The history contains events e1 . . . e14. As all events in
H involve the same object, the identity of this object is omitted. The history has
no pending operations and is consequently complete.

e7

p1

p2

Enq(a) Enq (b) Enq (c) Enq(d) Enq(e)

e1 e11 e12 e14

e13e2

e3

e8

e10

Deq() ? Deq() ?

e4 e5 e6 e9

Figure 2.3.: Example of a queue history

If we restrict the history to the sequence of events e1 . . . e12, we obtain an in-
complete one: the last dequeue operation of p1, and the last enqueue of p2, are
now pending operations in the resulting history.

2.2.4. Sequential Histories

Definition 2.1 A sequential history is one of which the first event is an invocation,
then (1) each invocation event, except possibly the last, is immediately followed
by the matching response event, (2) each response event, except possibly the last,
is immediately followed by an invocation event.

The stipulation “except possibly the last” is crucial for a history can be in-
complete as we discussed earlier. A history that is not sequential is said to be
concurrent.

Given that a sequential history S has no overlapping operations, the associ-
ated partial order →S defined on its operations is actually a total order. Strictly
speaking, the sequential specification of an object is a set of sequential histories
involving solely that object. Basically, the sequential specification represents all
possible sequential accesses to the object.

2.3. Linearizability 

b
p1

p2
e1

Enq(a) Enq(b) Enq(c)

e2

e3 e4

e5 e6

e7 e8

e9 e10

Deq() Deq()a

Figure 2.4.: Example of a sequential history

Figure 2.4 depicts a complete sequential history. This history has no overlap-
ping operations. The operations are totally ordered.

2.2.5. Legal Histories

As we pointed out, the definition of a linearizable history refers to the sequential
specifications of the objects involved in the history. The notion of a legal history
captures this relation.

Given a sequential history H and an object X , H|X denotes the subsequence
of H made up of all the events involving only object X . We say that H is legal if,
for each object X involved in H , H|X belongs to the sequential specification of
X . Figure 2.4 depicts an example of a legal history. It belongs to the sequential
specification of the queue. The first dequeue by p1 returns a, whereas the second
returns b.

2.3. Linearizability

Essentially, linearizability says that a history is correct if the response returned to
all operation invocations could have been obtained by a sequential execution, i.e.,
according to the sequential specifications of the objects. More specifically, we say
that a history is linearizable if each operation appears as if it has been executed
instantaneously at some indivisible point between its invocation event and its re-
sponse event. This point is called the linearization point of the operation. Below
we define linearizability more precisely, and we highlight its main characteristics.

2.3.1. Complete Histories

For pedagogical reasons, it is easier to first define linearizability for complete his-
toriesH , i.e., histories without pending operations, and then extend this definition
to incomplete histories.

 2. Linearizability

Definition 2.2 A complete history H is linearizable if there is a history L such
that:

1. H and L are equivalent,

2. L is sequential,

3. L is legal, and

4. →H⊆→L.

Thus, a history H is linearizable if there exists a permutation of H , L, that
satisfies the following requirements. First, L has to be indistinguishable from H
to any process: this is the meaning of equivalence. Second, L should not have any
overlapping operations: it has to be sequential. Third, the restriction of L to every
object involved in it should belong to the sequential specification of that object:
it has to be legal. Finally, L has to respect the real-time occurrence order of the
operations in H .

In short, L represents a history that could have been obtained by executing all
the operations of H , sequentially, and respecting the occurrence order of non-
overlapping operations in H . Such a sequential history L is called a linearization
of H or a sequential witness of H .

An algorithm implementing some shared object is said to be linearizable if all
histories generated by the processes accessing the object are linearizable.

Proving linearizability of an implementation consists in exhibiting, for each
of its histories, a linearization: a sequential history that respects the “real-
time” order of the operations in the history and that belongs to the sequential
specification of the object.

For every operation in the concurrent history, we determine a linearization
point defining the order in the linearization. To respect the real-time order,
the linearization point associated with an operation has to appear within the
interval defined by the invocation event and by the response event associated
with that operation. It is also important to notice that a history can have
multiple linearizations.

Example with a Queue. Consider the historyH depicted in Figure 2.3. Whether
H is linearizable or not depends on the values returned by the dequeue invocations
of p1, i.e., in events e7 and e13. For example, assuming that the queue is initially
empty, two possible values are possible for e7: a and nil.

2.3. Linearizability 

1. In the first case, depicted in Figure 2.5, the linearization of the first de-
queue of p1 would be before the first enqueue of p2. We depict a possible
linearization in Figure 2.6.

Deq()
p1

p2

Enq(a) Enq (b) Enq (c) Enq(d) Enq(e)

e1 e11 e12 e14

e13e2

e3

e8

e10e4 e5 e6 e9

e7

anil Deq()

Figure 2.5.: The first example of a linearizable history with a queue

Deq()
p1

p2

Enq(a) Enq(b) Enq(d) Enq(e)Enq(c)

Deq() anil

Figure 2.6.: The first example of a linearization

2. In the second case, depicted in Figure 2.7, the linearization of the first de-
queue of p1 would be after the first enqueue of p2. We depict a possible
linearization in Figure 2.8.

Deq()
p1

p2

Enq(a) Enq (b) Enq (c) Enq(d) Enq(e)

e1 e11 e12 e14

e13e2

e3

e8

e10e4 e5 e6 e9

e7

baDeq()

Figure 2.7.: The second example of a linearizable history with a queue

It is important to notice that, in order to ensure linearizability, the only possible
values for e7 are a and nil. If any other value is returned, the history of Figure 2.7.
would not be linearizable. For instance, if the value is b, i.e., if the first dequeue
of p1 returned b, then we could not find any possible linearization of the history.

 2. Linearizability

b
p1

p2

Enq(a) Enq(b) Enq(d) Enq(e)Enq(c)

Deq() Deq()a

Figure 2.8.: The second example of linearization

Indeed, the dequeue should be linearizable after the enqueue of b, that is in turn
after the enqueue of a. To be legal, the linearization should have a dequeue of a
before the dequeue of b: this is a contradiction.

Example with a Register. Figure 2.9 highlights a history of two processes
accessing a shared register. The history contains events e1 . . . e12. The history has
no pending operations and is consequently complete.

e11

p2

Write(0) Write (1) Write(2) Write(3)

p1

Read() Read()? ?

e12

e2

e1 e3 e4 e6

e5 e7

e8 e9 e10

Figure 2.9.: Example of a register history

Assuming that the register initially stores value 0, two values are possible to
return for e5 in order for the history to be linearizable: 0 and 1. In the first case,
the linearization of the first read of p1 would be promptly after the first write of
p2. In the second case, the linearization of the first read of p1 would be promptly
after the second write of p2.

For the second read of p1, the history is linearizable, regardless of whether the
second read of p1 returns values 1, 2 or 3 in event e7. If this second read had
returned a 0, the history would not be linearizable.

2.3.2. Incomplete Histories and Completions

So far, we have considered only complete histories. These are histories with at
least one process whose last operation is pending: the invocation event of this
operation appears in the history, whereas the corresponding response event does
not. Extending linearizability to incomplete histories is important as it enables us
to state what responses are correct when processes crash. We cannot decide when

2.3. Linearizability 

processes crash and cannot expect a process to first terminate a pending operation
before crashing.

Definition 2.3 A completion of a history H is a complete history obtained from
H as follows: every invocation of a pending operation is either removed or com-
pleted with a response put at the end of the history. The remaining events of H
are left in exactly the same order.

Notice that there can be multiple possible completions of an incomplete history:
one may choose whether to complete a given operation and with which response.
Intuitively, we would like to complete an operation if it takes effect in H by, e.g.,
affecting the response of another operation. The order in which the responses of
completed operations are added at the end of H does not matter. Intuitively, all
incomplete operations are concurrent and, thus, can be ordered arbitrarily.

Definition 2.4 A history H is linearizable if it has a linearizable completion.

Basically, this definition transforms the problem of determining whether an
incomplete history H is linearizable to a problem of determining whether a com-
plete history H ′, obtained by completing H , is linearizable. H ′ is obtained by
adding response events to certain pending operations of H , as if these operations
were indeed completed, or by removing invocation events from some of the pend-
ing operations of H . (All complete operations of H are preserved in H ′.) Notice
that here, the term ”complete” is a language abuse, as we might ”complete” a
history by actually removing some of its pending invocations.

Example with a Queue. Figure 2.10 depicts an incomplete history H . We
can complete H by adding to it the response b to the second dequeue of p1, and
a response to the last enqueue of p2: we would obtain history H ′ of Figure 2.5
that is linearizable. We could also ”complete” H by removing any of the pending
operations, or both of them. In all cases, we would obtain a complete history that
is linearizable.

a
p1

p2
e1 e11 e12

e2

e3

e8

e10e4 e5 e6 e9

e7

Deq()

Enq(d) Enq(e)Enq(c)Enq(b)Enq(a)

Deq()

Figure 2.10.: A linearizable incomplete history

 2. Linearizability

b
p1

p2
e1 e11 e12

e2

e3

e8

e10e4 e5 e6 e9

e7

Deq()

Enq(d) Enq(e)Enq(c)Enq(b)Enq(a)

Deq()

Figure 2.11.: A non-linearizable incomplete history

Figure 2.11 also depicts an incomplete history. However, no matter how we
try to complete it, either by adding responses or removing invocations, there is no
way to determine a linearization of the completed history.

Example with a Register. Figure 2.12 depicts an incomplete history of a
register. The only way to complete the history in order to make it linearizable is
to add a response ok the second write of p2. This would enable the read of p1 to
be linearized promptly after the write of p2.

2.3.3. Linearizability is Non-Blocking

An interesting feature of linearizability is that it is non-blocking. Every pending
operation in a history H can be completed, without having to wait for any other
operation complete or sacrificing the linearizability of the resulting history. The
following theorem captures this characteristic.

Theorem 2.5 Let H be any finite linearizable history and inv[op] any pending
operation invocation in H . There is a response r = resp[op] such that H · r is
linearizable.

Proof As H is incomplete and linearizable, there is a completion of H , H ′ that
is linearizable, i.e., that has a linearization L. of H . If L contains inv[op] and its

e3

p1

p2

Read() 1

Write(0)

e1 e4

e5

Write(1)

e2

Figure 2.12.: A linearizable incomplete history of a register

2.3. Linearizability 

matching response r, then L is also linearization of H · r. If L contains neither
inv[op] not r (i.e., H ′ does not contain inv[op]), then L′ = L · inv[op] · r is a
linearization ofH ′·inv[op]·r, which means thatH ·r is linearizable. 2Theorem 2.5

2.3.4. Composition

Here, we discuss a fundamental characteristic of linearizability as a property, i.e.,
as a set of histories. A property P is said to be compositional (also called local)
if whenever it holds for each of the objects of a set, it holds for the entire set.
For each history H , we have ∀X H|X ∈ P if and only if H ∈ P . Intuitively,
compositionality enables us to derive the correctness of a composed system from
the correctness of the components. This property is crucial for the modularity of
programming: a correct (linearizable) composition can be obtained from correct
(linearizable) components.

Theorem 2.6 A historyH is linearizable if and only if, for each objectX involved
in H , H|X is linearizable.

Proof The “only if” direction is a consequence of the definition of linearizability:
given that H is linearizable for each object X involved in H , H|X is linearizable.
Indeed, for every linearization S of H , S|X is a linearization of H|X .

To prove the other direction, consider a history H , where for each object X ,
H|X has a linearization, denoted SX , let→X denote the total order in SX of the
operation on X in H . We show below that the relation→=

⋃
X{→X} ∪ {→H}

does not induce any cycle. This means that its transitive closure is a partial order,
and, its linear extension S is a linearization of H .

Assume, by contradiction, that → contains a cycle. Recall that →X and →H

are transitive. We can thus replace any fragment of form op1 →X op2 →X op3

(respectively, op1 →H op2 →H op3) with op1 →X op3 (respectively, op1 →H

op3). Furthermore, since every operation concerns exactly one object, the cycle
cannot contain fragments of the form op1 →X op2 →Y op3 for X 6= Y . Hence,
the cycle alternate edges of the form→X with edges→H .

Now consider the fragment op1 →H op2 →X op3 →H op4. Recall that→X is
the order of operations in SX , a linearization ofH|X . Since SX respect real time,
we have op3 9X op2, i.e., the invocation of op2 precedes the response of op3

in H|X (and, thus, in H). Since op1 →H op2, the response of op1 precedes the
invocation of op2 and, thus, the response of op3. Since op3 →H op4, the response
of op3 and, thus, the response of op1 precedes the invocation of op4 in H . Hence,
op1 →H op4, i.e., we can shorten the fragment to one edge→H . By eliminating
all edges of the form→X we obtain a cycle of edges→H—a contradiction with
the definition of→H based on the real-time precedence between operations in H
that cannot induce cycles.

 2. Linearizability

Hence, the transitive closure of→ is irreflexive and anti-symmetric, thus, has a
linear extension: a total order on operations in H that respects→H and→X , for
all X . Consider the sequential history S induced by any such total order. Since,
for all X , S|X = SX and SX is legal, S is legal. Since →H⊆→S , S respects
the real-time order of H . Finally, since each SX is equivalent to a completion
of H|X , S is equivalent to a completion of H , where each incomplete operation
on an object X is completed in the way it is completed in SX . Hence, S is a
linearization of H . 2Theorem 2.6

The Importance of (Real) Time

Linearizability stipulates correctness with respect to a sequential execution: every
operation needs to “take effect” instantaneously, thereby respecting the sequential
specification of the object. In this regard, linearizability is similar to sequential
consistency, another classic correctness criterion for shared objects. There is how-
ever a fundamental difference between linearizability and sequential consistency,
and this difference is crucial to making linearizability compositional (which is not
the case for sequential consistency), as we explain below.

Sequential consistency is a relaxation of linearizability. It only requires that
the real-time order is preserved if the operations are invoked by the same process.
This relaxation of the real-time order is called process-order.

Formally, a history H is sequentially consistent if there is a history S such that:

1. H and S are equivalent,

2. S is sequential and legal.

Both linearizability and sequential consistency require a witness sequential his-
tory. However, recall that sequential consistency has no further requirements re-
lated to the occurrence order of operations issued by different processes (and cap-
tured by the real-time order). It is based only on a logical time (the one defined
by the witness history). In some sense, with linearizablity, after p1 has finished
its operation en enqueued element a, p1 could ”call” p2 and inform it about the
availability of ”a”: p2 will then be sure to find a. Everything occurs as if indeed
the enqueue of a were executed at a single point in time.

Clearly, any linearizable history is also sequentially consistent. The contrary
is not true. A major drawback of sequential consistency is that it is not composi-
tional. To illustrate this, let us consider the scenario depicted in Figure 2.13. Here
the history H involves two processes, p1 and p2, accessing two shared registers,
R1 and R2. It is easy to see that the restriction of H to each of the registers is
sequentially consistent. Indeed, concerning register R1, we can re-order the read
of p1 before the write of p2 to obtain a sequential history that respects the regis-
ter semantics (assuming that the initial value is 0). This is possible because the

2.4. Safety 

resulting sequential history does not need to respect the real-time ordering of the
operations in H . Note that the history restricted to R1 is not linearizable. As for
register R2, we simply need to order the read of p1 after the write of p2.

R2.Write(1)

p1

p2
e1

e2

e3

e5

e4

0

e6 e8

e7

R1.Read()R2.Read() 1

R1.Write(1)

Figure 2.13.: Sequential consistency is not compositional

Nevertheless, the system composed of the two registers R1 and R2 is not se-
quentially consistent. In every legal history equivalent to H , the write on R2 per-
formed by p2 should precede the read of R2 performed by p1: p1 reads the value
written by p2. If we also want to respect the process-order relation of H on p1

and p2, we obtain the following sequential history: p2.WriteR1(1); p2.WriteR2(1);
p1.ReadR2() 1; p1.ReadR1() 0. But the resulting history is not legal: the value
read by p1 in R1 is not the last written value.

2.4. Safety

It is convenient to reason about the correctness of a shared object implementation
by splitting the correctness property into safety and liveness. Intuitively, safety
properties ensure that nothing “bad” is ever going to happen, whereas liveness
properties guarantee that something “good” eventually happens.

More specifically, a property is a set of (finite or infinite) histories. A property
P is a safety property if:

• P is prefix-closed: if H ∈ P , then for every prefix H ′ of H , H ′ ∈ P .

• P is limit-closed: for every infinite sequenceH0, H1, . . . of histories, where
each Hi is a prefix of Hi+1 and each Hi ∈ P , the limit history H =
limi→∞Hi is in P .

Knowing that a property is a safety one helps prove it in the following
sense. To ensure that a safety property P holds for a given implementation,
it is enough to show that every finite history is in P : a history is in P if
and only if each of its finite prefixes is in P . Indeed, every infinite history
of an implementation is the limit of some sequence of ever-extending finite
histories hence should also be in P .

 2. Linearizability

We show that linearizability is a safety property. In the proof, we use a slight
generalization of the classical König’s infinity lemma formulated as follows:

Lemma 2.7 (König’s Lemma)[73] Let G be an infinite directed graph such that
(1) each node of G has finite outdegree, (2) each vertex of G is reachable from
some root vertex of G (a vertex with zero indegree), and (3) G has only finitely
many roots. Then G has an infinite path with no repeated nodes starting from
some root.

Theorem 2.8 Linearizability is a safety property.

Proof We show that the set of linearizable histories is prefix- and limit-closed.
Recall that we consider only objects with finite non-determinism: an operation
applied to a given object state can return only finitely many responses and cause
only a finite number of state transitions.
Linearizability is prefix-closed. Consider a linearizable history H . Since lin-
earizability is compositional, we can simply assume that H is a history of opera-
tions on a single (composed) object X . We show first that any H ′, a prefix of H ,
is also linearizable (with respect to X).

Let S be any linearization ofH , i.e., a sequential legal history that is equivalent
to (a completion of H) and respects the real-time order of H . Now we construct a
sequential history S′ as follows: we take the shortest prefix of S that contains all
complete operations of H ′. Since S contains all complete operations of H ′, such
a prefix of S exists.

We claim that S′ is a linearization of H ′. We complete H ′ by removing oper-
ations that do not appear in S′ and adding responses to incomplete operations in
H ′ that are present in S′. This way, only incomplete operations are removed from
H ′ since, by construction, all operations that are complete in H ′ appear in S′. Let
H̄ ′ denote the resulting complete history.

First, we observe that complete histories S′ and H̄ ′ consist of the same set of
operations. By construction, every operation in H̄ ′ appears in S′.

Now suppose, by contradiction, that S′ contains an operation op that does not
appear in H̄ ′. Since only operations that do not appear in S′ were removed from
H ′ to obtain H̄ ′, op does not appear in H ′ either. Since S′ is the shortest prefix
of S that contains all complete operations of H , op cannot be the last operation
appearing in S′. Otherwise, we could find a shorter prefix of S satisfying the
required property. Furthermore, for the same reason, the last operation in S′ must
be complete in H ′, we denote this operation by op′. Since op does not appear in
H ′ and op′ is complete in H ′, we have op′ <H op. But op precedes op′ in S′

(and, thus, in S), i.e., op <S op′. Hence, S violates the real-time order of H—a
contradiction.

2.4. Safety 

Since S′ is a prefix of a legal history, it is also legal. Moreover, S′ and H̄ ′

contain the same set of operations and S′ respects the real-time order in H̄ ′: if
<H̄′⊆<S′ (otherwise, S would violate the real-time order in H).

Consider any local history H̄ ′|pi. Recall that we only assume well-formed
histories, hence H̄ ′|pi is sequential. Since S′ and H̄ ′ contain the same set of
operations and S′ respects the real-time order of H̄ ′, we have S′|pi = H̄ ′|pi.
Hence, S′ and H̄ ′ are equivalent.

Thus, S′ is indeed a linearization of H ′, hence linearizability is prefix-closed.
Linearizability is limit-closed. To show that linearizability is limit-closed, we
consider an infinite sequence of ever-extending linearizable histories
H0, H1, H2, Our goal is to show that H = limi→∞Hi is linearizable. We
assume that H0 is the empty history and that each Hi+1 is a one-event extension
of Hi (by prefix-closedness, each prefix of every Hi is linearizable, so we do not
lose generality this way).

Now we construct a directed graphG = (V,E) as follows. Vertices ofG are all
tuples (Hi, S,Q), where i = 0, 1, . . . , |H|, S is any linearization of Hi that ends
with a complete operation present in Hi, and Q is any sequence of object states
that witnesses the legality of S: the sequence starts in an initial state, and each
next operation in S incurs a legal transition to a new state. Now there is a directed
edge ((Hi, S,Q), (Hj , S

′, Q′)) in G if and only if j = i + 1, S is a prefix of S′

and Q is a prefix of Q′.
Note that each Hi has at least one vertex (Hi, S,Q). Indeed, by taking any

linearization of Hi and removing operations at the end of it which are incomplete
in Hi, we obtain a linearization of a completion of Hi in which these operations
are removed. Thus, there exists a linearization S of Hi that ends with a complete
operation in Hi. Since S is legal, it must have a witness sequence of states Q.

We use König’s lemma to show that the resulting graph G contains an infi-
nite path (H0, S0), (H1, S1), . . . and the limit limi→∞ Si is a linearization of the
infinite limit history H .

First, we observe that each non-empty vertex (Hi+1, S
′, Q′) is connected to

some (Hi, S,Q). There are two cases to consider:

• The last operation op of S′ is a complete operation in Hi. In this case, S′

is also a linearization of Hi. Indeed, even if the last event of Hi+1 is the
invocation of a new operation op′, this operation cannot appear in S′: it can
only appear before op in S′ violating the real-time order in Hi+1. Thus,
(Hi, S

′, Q′) is a vertex in G.

• The last operation op of S′ is not a complete operation in Hi. Recall that
S′ ends with an operation op that is complete in Hi+1, and Hi+1 extends
Hi with one event only. Thus, the last event of Hi+1 is the response of
op. Thus, Hi and Hi+1 contain the same set of operations, except that

 2. Linearizability

op is incomplete in Hi. Let S be the longest prefix of S′ that ends with a
complete operation inHi. Since S′ is legal, S is also legal. By construction,
every complete operation in Hi appears in S and no operation appears in S
if it does not appear in Hi. Thus, S is a linearization of Hi and (Hi, S,Q),
where Q is the prefix of Q′ that witnesses the legality of S, is a vertex in G.

Inductively, we derive that each vertex (Hi, S,Q) is reachable from the vertex
(H0, S0, Q0), where H0, S0 and W0 are empty sequences. The only root vertex
of G (a vertex that has no incoming edges) is thus (H0, S0,W0).

Now we show that the outdegree of every vertex of G is finite. There are
only finitely many operations in Hi+1 and each linearization of Hi+1 is a per-
mutation of these operations. Since we only consider objects with finite non-
determinism, there can only be finitely many vertices of the form (Hi+1, S

′, Q′).
Since all outgoing edges of any vertex (Hi, S,Q) are directed to vertices of the
form (Hi+1, S

′, Q′), the outdegree of every such vertex is also finite.
By König’s lemma, G contains an infinite path starting from the root vertex:

(H0, S0, Q0), (H1, S1, Q1), We argue now that the limit S = limi→∞ Si is a
linearization of the infinite limit history H . By construction, S respects the real-
time order of H , otherwise there would be a vertex (Hi, Si, Qi) such that Si is
not equivalent to Hi or violates the real-time order of Hi. Also, S contains all
complete operations of H , thus S is equivalent to a completion of H . S is also
legal since each of its prefixes is legal. Hence, S is indeed a linearization of H ,
which concludes the proof that linearizability is a safety property.

Hence, the set of linearizable histories is indeed prefix-closed and limit-closed.
2Theorem 2.8

In the rest of this book, we only consider finite histories in the proofs of
linearizability. As linearizability is a safety property, if all finite histories of
an implementation are linearizable, then all its histories are linearizable.

2.5. Summary

In this chapter, we have studied the notion of a correct object implementation.
Specifically, to be correct, all histories generated by the object implementation
need to be linearizable. The responses returned by the object in a concurrent
history are those that could have been returned by the object if it had been accessed
sequentially. Proving this consists in determining a linearization point for each
operation of the object in any given history. Linearizability has some important
characteristics.

2.6. Chapter Notes 

1. Linearizability reduces the difficult problem of reasoning about a concur-
rent system to a problem of reasoning about a sequential one. To reason
about the correctness of a system made of processes that concurrently an
access, we simply need the object’s sequential specification.

2. Linearizabiliy is compositional. It is sufficient to prove that each object in a
set of objects is linearizable to conclude that the system using a composition
of the objects in the set is linearizable.

3. Linearizability is non-blocking, ensuring that it never forces processes to
wait for each other.

However, recall that linearizability is only a partial answer to the question of
correctness. It does say what responses should be forbidden to be returned by an
object but does not say when the object should actually return some response. In
fact, and as we will see in the next chapter, to be considered correct, the object im-
plementation should not only be linearizable but should also be wait-free. Whilst
linearizability covers safety, wait-freedom covers liveness.

2.6. Chapter Notes

The notion of sequential consistency has been introduced by Lamport [80]. Lin-
earizability was initially studied, under the name atomicity, in the context of
atomic read/write objects (registers) by Lamport [82] and Misra [92]. The no-
tion of a sequential specification of a type was introduced by Weihl in [113]. The
generalization of linearizability to any object type was developed by Herlihy and
Wing [62].

The concepts of safety and liveness were introduced by Lamport [78] and re-
fined by Alpern and Schneider [3], originally defined for infinite histories only.
Lynch reformulated the notions for finite histories and proved that linearizability,
when applied to deterministic objects is a safety property [90]. Guerraoui and
Ruppert [50] showed that linearizability is not limit-closed if objects can expose
infinite non-determinism. In other words, linearizability is not a safety property
for objects with unbounded non-determinism.

2.7. Exercises

1. Consider an alternative relaxed definition of a history’s completion:

Definition 2.9 A completion of a history H is a complete extension of H .

 2. Linearizability

If we consider linearizability (Definition 2.4) having this notion of a history
completion in mind, do we get a distinct notion? In other words, is a his-
tory that is linearizable with respect to this relaxed definition a linearizable
history with respect to Definition 2.4?

2. Let S be a safety property (e.g., linearizability). Show that every unsafe
history H (H /∈ S) has an unsafe finite prefix H ′ such that every extension
of H ′ is unsafe.

3. Progress

3.1. Introduction

In the previous chapter, we focused on the property of linearizability, that pre-
cludes concurrent operations that do not appear to execute sequentially. Lineariz-
ability (when applied to objects with finite non-determinism) is a safety property:
it states what should not happen in an execution.

Alone, such a property is, in fact, trivial to satisfy. Think of an implementation
(of some shared object) that never returns any response. As no operation would
ever be completed, the history would be trivial to linearize. Without any response,
no need for a linearization point. But, such an implementation would be useless.
To prevent such implementations, we need a progress property that stipulates that
certain responses should appear in a history, at least eventually and under certain
conditions.

Ideally, we would like every invoked operation to eventually return a matching
response. But this is impossible to guarantee if the process invoking the oper-
ation crashes, e.g., the process is paged out by the operating system and never
scheduled anymore. Nevertheless, we could require that a response is returned
to a process that is scheduled by the operating system to execute enough steps of
the algorithm implementing that operation (i.e., implementing the object export-
ing the operation). As we will see below, a step here is the access to a low-level
object (used in the implementation) during the operation’s execution.

To express such a requirement more precisely, we need to carefully define the
notion of an object implementation and to zoom into the way processes execute the
algorithm that implements the object, in particular how their steps are scheduled
by the operating system.

In the following section, we introduce the notion of an execution (also called a
run): this is a notion of a lower level than the notion of a history presented in the
previous chapter. An execution describes the interaction between the processes
and the low-level objects used in the implementation. The notion will be used in
defining progress properties of shared-object implementations.

 3. Progress

3.2. Implementation

First, we need to define the notions of high-level and low-level objects.

3.2.1. High-Level and Low-Level Objects

To distinguish the shared object to be implemented from the underlying objects
used in the implementation, we typically talk about a high-level object and under-
lying low-level objects. (The latter are also called base objects and the operations
they export are called primitives). That is, a process invokes operations on a
high-level object and the implementation of these operations requires the process
to invoke primitives on the underlying low-level (base) objects. When a process
invokes such a primitive, we say that the process performs a step.

The very notions of “high-level” and “low-level” are relative and depend on
the actual implementation. An object might be considered high-level in a given
implementation and low-level in another one. The object to be implemented is the
high-level one, and the objects used in the implementation are the low-level ones.
The low-level objects might capture basic synchronization constructs provided in
hardware and, in this case, the high-level ones are those we want to emulate in
software. Such emulations are based on the desire to facilitate the programming
of concurrent applications, i.e. to provide the programmer with powerful syn-
chronization abstractions encapsulated by high-level objects. Another reason is to
reuse programs initially devised with the high-level object in mind in a system that
does not provide such an object in hardware. Indeed, multiprocessor machines
may substantially differ in the basic synchronization constructs they provide.

An object O that is low-level in a given implementation A does not neces-
sarily correspond to a hardware synchronization construct. Sometimes, this
object O is, in turn, a software implementation B from some lower objects.
Therefore, O is, in fact, low-level in A and high-level in B. Also, sometimes
the low-level objects are assumed to be linearizable, and sometimes not. We
will study objects that are not linearizable, as building blocks to implement
linearizable ones.

3.2.2. Zooming into Histories

So far, we have represented computations using histories, as sequences of events,
each representing an invocation or a response on the object to be implemented,
i.e, the high-level object.

3.2. Implementation 

Executions. Reasoning about progress properties requires zooming into the
invocations and responses of the low-level objects of the implementations, on top
of which the high-level object is built. Without such zooming, we might not be
able to distinguish a process which crashes directly after invoking a high-level
object operation from one that keeps executing the algorithm implementing that
operation and invoking primitives on low-level objects. We might want to require
that the latter completes the operation by obtaining a matching response, but we
cannot expect that for the former. In this chapter, we consider executions, the low-
level histories that involve invocations and responses of low-level objects. This is
a refinement of the previously defined notion of a history that involves only the
invocations and responses of the high-level object to be implemented.

Consider the example of a fetch-and-increment (counter) high-level object im-
plementation (Section 3.4.1). As low-level objects, the implementation uses an
infinite array T [1, . . . ,∞] of TAS (test-and-set) objects and a snapshot-memory
object my-inc. The history here is a sequence of invocation and response events of
fetch-and-increment operations, and the execution is a sequence that, additionally,
includes primitive events read(), update(), snapshot(), and test-and-set().

The Two Faces of a Process. To better understand the very notion of an
execution, it is important to distinguish the two roles of a process. On the one
hand, a process has the role of a client that sequentially invokes operations on
the high-level object and receives responses. On the other hand, the process also
acts as a server implementing the operations. While doing so, the process invokes
primitives on low-level objects in order to obtain a response to the high-level
invocation.

It might be convenient to think of the two roles of a process as executed by dif-
ferent entities and written by two different programmers. As a client, the process
invokes object operations but does not control the way the low-level primitives
implementing these operations are executed. The programmer writing this part
typically does not know how object operations are implemented, except that they
ensure linearizability and some progress property as discussed below. As a server,
the process executes the implementation algorithm that is made up of invocations
of low-level object primitives. The programmer that writes this algorithm typi-
cally does not know what client applications will be using this object.

Scheduling and Asynchrony. The execution of a low-level object operation
is called a step. The interleaving of steps in an implementation is specified by
a scheduler (itself part of an operating system). The scheduler is outside of the
control of processes and, in our context, it is convenient to think of the scheduler as
an adversarial entity. This is because, when devising an algorithm implementing
some high-level object, we cope with the worst-case strategies the scheduler could

 3. Progress

choose to defeat the algorithm.
A process is said to be correct in an execution if it executes an infinite number

of steps, i.e., when the scheduler allocates infinitely many steps of that process.
This “infinity” notion models the fact that the process executes as many steps as
needed by the implementation until all responses are returned. Otherwise, if the
process takes only finitely many steps, it is said to be faulty. In this book, we
assume that only faulty processes crash, i.e., permanently stop performing steps,
otherwise they never deviate from the algorithm assigned to them. In other words,
they are not malicious (we also say they are not Byzantine).

Unless explicitly stated otherwise, the system is assumed to be asynchronous,
i.e., the relative speeds of the processes are unbounded. For all Φ ∈ N and pro-
cesses p and q, there is an execution in which p takes Φ steps while process q
takes only one step. An asynchronous system is controlled by a very weak sched-
uler, i.e., a scheduler that could prevent a correct process from taking steps for an
arbitrary (but finite) periods of time.

3.3. Progress Properties

As mentioned in the previous section, a trivial way to ensure linearizability would
be to do nothing, i.e., return no response to any operation invocation. This would
preclude any history that violates linearizability, by simply precluding any history
with a response.

Besides this (clearly, meaningless) approach, a popular way to ensure lineariz-
ability is to use critical sections (say using locks), thus preventing concurrent ac-
cesses to the same high-level shared object. In the simplest case, every operation
on a shared object is executed as a critical section. When a process invokes an
operation on an object, it first requests the corresponding lock; and the algorithm
of the operation is executed by the process only when the lock is acquired. If the
lock is not available, the process waits until the lock is released. After a process
obtains the response to an operation, it releases the corresponding lock. This ap-
proach also trivially ensures linearizability: one can choose the linearization point
of an operation to be the moment when the lock is acquired.

As we discussed in Chapter 1, such an implementation of a shared object has an
inherent drawback: the crash of a process holding the lock on an object prevents
other processes from completing their operations. In practice, the process holding
the lock might be preempted for a long period of time, and all processes contend-
ing on the same object remain blocked. When processes are asynchronous (i.e.,
the scheduler can arbitrarily preempt processes) which is the default assumption
we consider, there is no way for a process to know whether another process has
crashed (or was preempted for a long while) or is only very slow. In a system with
few processors, this might not be considered a big deal. But, in a modern archi-

3.3. Progress Properties 

tecture with a very large number of processors, having a single point of blocking
is often considered unacceptable.

In this book, we focus on robust shared object implementations with progress
properties that preclude situations where the crash of some proper subset of pro-
cesses prevents every other process from making progress. Hence, we preclude
the use of critical sections or locks.

Informally, we say that an implementation is lock-based if it permits a situation
in which some process running in isolation after some finite execution is never
able to complete its operation. Taking a negation of this property, we state that
an implementation does not employ locks if by starting after any finite execution,
every process can complete its operation in a finite number of its own steps.

Intuitively, this property, called obstruction-freedom (or solo termination), must
be satisfied by any implementation where the crash of any process does not pre-
vent other processes from making progress. Below, we discuss this property in
more detail, together with some of its restrictions.

3.3.1. Variations

Several progress properties preclude the use of locks:

• Obstruction-freedom (also called solo termination). An implementation
(of a shared object) is obstruction-free, if every operation by a correct pro-
cess that eventually runs without concurrency returns a response.

An operation on an object invoked by a process p is said to eventually run
without concurrency if there is a time after which p is the only process to
take steps involving the object.

• Non-blockingness (also called partial termination). This property, strictly
stronger than obstruction-freedom, states that at least one of correct pro-
cesses that execute operations on the same object terminates its operation.

• Wait-freedom (also called global termination). This property is even stronger.
It states that every operation executed by a correct process eventually re-
turns a response.

3.3.2. Bounded Termination

Wait-freedom, the strongest of the properties above, does not define any bound
on the number of steps that a correct process needs to execute before obtain-
ing a matching response for the high-level object operation the process invoked.
Though always finite, this number of steps depends on the behavior of the other
processes. It could be small if no other process performs any concurrent steps,
and large when many processes perform concurrent steps (or the opposite).

 3. Progress

• An implementation is bounded wait-free if there exists a boundB ∈ N such
that every process p that invokes an operation receives a matching response
within B of its own (not necessarily consecutive in the execution) steps.

In other words, there is no prefix of an execution in which a process invokes
an operation and executes B steps without obtaining a matching response.

Showing that an implementation is bounded wait-free consists in exhibiting an
upper bound on the number of steps needed for an operation to return. This upper
bound is usually defined by a function of the number n of processes (e.g., O(n2)).
We can similarly define notions such as bounded solo termination or bounded
partial termination.

3.3.3. Liveness

Recall that safety properties (Section 2.4) are used to declare the meaning for
an implementation to reach an undesired state. To show that an implementation
satisfies a safety property P , it is sufficient to check if each of its finite executions
satisfies P .

In contrast, a liveness property ensures that the implementation eventually reaches
some desired state. More precisely, we say that P is a liveness property if any fi-
nite execution has an extension in P . Hence, no matter what state our implemen-
tation is in, there is always a chance to reach a desired state in some extension of
the current execution. To show that an implementation satisfies a liveness property
P , we should show that all its infinite executions are in P .

Interestingly, every property can be represented as an intersection of a safety
property and a liveness property. Linearizability is a safety property (Section 2.4).
Wait-freedom, as we can easily see, is a liveness property. Indeed, we can only
violate wait-freedom in an infinite execution: an execution in which some correct
process invokes an operation that never completes. Similarly, non-blockingness
and obstruction-freedom are also liveness properties. For example, the only way
to violate obstruction-freedom is to exhibit an execution in which a process takes
infinitely many steps without concurrency and never completes an invoked oper-
ation.

Notice that bounded wait-freedom is, in fact, a safety property. Indeed, B-
bounded wait-freedom is violated in a finite execution where an operation does
not return after B steps of the process that invoked it. It is not difficult to see that
B-bounded wait-freedom is prefix-closed and limit-closed. Therefore, to prove
that an implementation is, e.g., linearizable andB-bounded wait-free, it is enough
to consider its finite executions.

3.4. Linearizability and Wait-Freedom 

3.4. Linearizability and Wait-Freedom

3.4.1. A Simple Example

The algorithm described in Figure 3.1 is a simple wait-free linearizable implemen-
tation of a fetch-and-increment (FAI object using an infinite array of test-and-set
TAS objects T [1, . . . ,∞] and a snapshot memory object My inc.

• The (high-level) FAI object stores an integer value and exports one opera-
tion fetch-and-increment(). The operation increments the value of the inte-
ger value and returns the previous value.

• The low-level objects used in the implementation include TAS objects.
Each of these exports one (primitive) operation test-and-set() that returns 0
or 1. The sequential specification of this operation guarantees that the first
invocation of test-and-set() on the object returns 1 and that all subsequent
invocations return 0. Intuitively, a TAS object enables a single process to
distinguish itself from the rest of the processes. Such objects are typically
provided by many multi-core machines.

• The snapshot memory is also a low-level object used in the implementation.
It can be seen as an array of n registers, one for each process, such that each
process pi can atomically write a value v to its dedicated register with an
operation update(i, v) and atomically read the content of the array using an
operation snapshot(). 1

The algorithm in Figure 3.1 depicts the code executed by every process pi of
the system. It works as follows. To increment the value of the FAI object (i.e.,
to execute a fetch-and-increment() operation), pi first increments its dedicated
register in the snapshot memory My inc. Then pi takes a snapshot of the memory
and evaluates entry as the sum of all its elements. Then, starting from the T [entry]
down to 1, pi invokes operations test-and-set() until some TAS object returns 1.
The index of this TAS object minus 1 is then returned by the fetch-and-increment()
operation.

Intuitively, when pi evaluates its local variable entry to `, at most ` processes
have previously incremented their positions, hence, at least one TAS object in
the array T [1, . . . , `] is “reserved” for pi (pi is one of these ` processes). Every
process that increments its position in My inc later will obtain a strictly higher
value of entry. Thus, eventually, every operation obtains 1 from one of the TAS
objects and returns. Moreover, as a TAS object returns 1 to exactly one process,
every returned value is unique.

1In Chapter 9, we show how snapshot memory can be implemented in a wait-free and linearizable
manner, by using only read-write registers.

 3. Progress

Shared
T [1, . . . ,∞]: n-process TAS objects
My inc[1, . . . ,∞]: snapshot memory, initialized to 0

Local
entry, c (initially 0), S

operation fetch-and-increment():
c← c+ 1;
My inc.update(i, c);
S ← My inc.snapshot();
entry← sum(S);
while T [entry].test-and-set() 6= 0 do

entry← entry− 1;
return(entry− 1)

Figure 3.1.: Fetch-and-increment implementation (code for process pi)

Notice that the number of steps performed by a fetch-and-increment() operation
is finite but, in general, unbounded (the implementation is not bounded wait-free).
This is because an unbounded number of increments can be performed by other
processes in the time lag between the moment when pi increments it position in
My inc and the moment pi takes a snapshot of My inc. It is however not difficult
to modify the algorithm so that every operation performs O(n2) steps.

3.4.2. A More Sophisticated Example

Proving that a given implementation satisfies linearizability and wait-freedom can
be sometimes extremely tricky, even if the implementation itself is quite simple.
To illustrate this, consider now the algorithm of Figure 3.2 that intends to imple-
ment an unbounded FIFO queue. (The sequential specification of this object has
been given in Section 2.1 of Chapter 2.)

The system we consider here is made up of producers (clients) and consumers
(servers) that cooperate through an unbounded FIFO queue. A producer process
repeats forever the following two statements:

1. Prepare a new item v;

2. Invoke the operation Enq(v) to deposits v in the queue.

Similarly, a consumer process repeats forever the following two statements:

1. Withdraw an item from the queue by invoking the operation Deq()

2. Consume that item.

3.4. Linearizability and Wait-Freedom 

If the queue is empty, then the default value nil is returned to the invoking
process. (This default value that cannot be deposited by a producer process.)

The algorithm depicted in Figure 3.2 relies on an unbounded arrayQ[0, . . . ,∞],
(initialized to nils) used to store the items of the queue. Also, the implementation
uses a shared variable NEXT (initialized to 1) as a pointer to the next available slot
of the array Q for a new value to be deposited.

To enqueue an item, the producer first locates the index of the next empty slot
in the arrayQ, reserves it, and then stores the item in that slot. To dequeue a value,
the consumer first determines the last entry of the array Q that has been reserved
by a producer. Then, it reads the elements of the array Q in ascending order until
it finds an item different from the default value nil. If it finds one, it returns it.
Otherwise, the default value is returned.

The variable NEXT can be accessed with two primitives denoted read() and
fetch&add(). The invocation NEXT.fetch&add(x) returns the value of NEXT
before the invocation and adds x to NEXT. Similarly, each entry Q[i] of the array
can be accessed with two primitives denoted write() and swap(). The invocation
Q[i].swap(v) writes v in Q[i] and returns the value of Q[i] before the invocation.

The execution of the read(), write(), fetch&add() and swap() primitives on the
shared base objects (NEXT and each variableQ[i]) are assumed to be linearizable.
The primitives read() and write() are implicit in the code of Figure 3.2 (they are
in the assignment statements denoted “←”).

The algorithm does not use locks: no process can forever block other processes.
Furthermore, each value deposited in the array by a producer will be withdrawn
by a swap() operation issued by a consumer (assuming that at least one consumer
is correct).

operation Enq(v):
in← NEXT.fetch&add (1);
Q[in]← v;
return ()

operation Deq():
last← NEXT− 1;
for i from 0 until last do

aux← Q[i].swap (nil);
if (aux 6= ⊥) then return (aux)

return (nil)

Figure 3.2.: Enqueue and dequeue implementations

It is easy to see that the implementation is wait-free; every process completes
each of its operations in a finite number of its own steps: the number of steps
performed by Enq() is two, and the number of steps performed by Deq() is pro-

 3. Progress

portional to the queue size as evaluated in the first line of its pseudocode.
But is the implementation linearizable? Superficially, yes: If no dequeue opera-

tion returns nil, we can order operations based on the times when the correspond-
ing updates of Q[] (a write performed by Enq() or a successful swap performed
by Deq()) take place.

However, if a dequeue operation returns nil, it is not always possible to find
the right place for it in a legal linearization. Consider for instance the following
scenario:

1. Process p1 performs Enq(x). As a result, the value of NEXT is 1, and Q[0]
stores x.

2. Process p2 starts executing Deq() and reads 1 in NEXT.

3. Process p1 performs Enq(y). The value of NEXT is now 2, Q[0] stores x,
and Q[1] stores y.

4. Process p3 performs Deq(), reads 2 in NEXT, finds x in Q[0] and returns x.
The value of Q[0] is nil now.

5. Finally, p2 reads ⊥ in Q[0] and completes Deq() by returning nil.

In this execution, we have the following partial order on operations:
p1.Enq(x) → p1.Enq(y) → p3.Deq(x), and p1.Enq(x) → p2.Deq(nil). Thus,
there are only three possible ways to linearize p2.Deq(nil): right after p1.Enq(x),
right after p1.Enq(y) or right after p3.Deq(). In all three possible linearizations,
the queue is not empty when p2 invokes Deq(), hence nil cannot be returned.

How do we fix this problem? One solution is to sacrifice linearizability and to
not consider operations that return nil in a linearization.

Another solution is to sacrifice wait-freedom and, instead of returning nil in
the last line of the Deq(), repeat the same procedure (evaluating NEXT and going
through the first NEXT elements in Q[]) over and over until a non-⊥ value is
found in Q[]. As long as a producer keeps adding items to the queue, every Deq()
operation is guaranteed to eventually return.

3.5. Summary

To reason about the correctness of an object implementation, it is common to
consider linearizability, as well as some companion progress property. In this
chapter, we have studied three progress properties: solo-termination (obstruction-
freedom), partial-termination (non-blockingness) and global termination (wait-
freedom). All of these are liveness properties, precluding the use of locks. The
first of these properties says that an operation invoked by a correct process that

3.6. Chapter Notes 

eventually accesses an object alone (with no contention) will obtain a response.
The second property requires a response to be returned to at least one correct pro-
cess even if there is contention. The last property, wait-freedom, is the strongest.
Responses should be returned to every correct process that invokes an operation,
i.e., that keeps executing low-level steps.

3.6. Chapter Notes

The notion of wait-freedom originated in the work of Lamport [77]. An associated
theory was developed by Herlihy [53].

The notion of solo-termination is presented implicitly in [35]. It is introduced
as a progress property in [56] under the name obstruction-free synchronization
and formalized in [10]. More developments on obstruction-freedom can be found
in [36]. The minimal knowledge on process failures needed to transform any solo-
terminating implementation into a wait-free one is investigated in [48]. Other
progress conditions, including those that can be implemented with locks, are
discussed in [61]. A systematic perspective on progress conditions is presented
in [60].

The algorithms in Figure 3.1 and Figure 3.2 were proposed by Afek et al. [2].
A blocking variant of the algorithm of Figure 3.2 in which nil is never returned
was given and proved correct by Herlihy and Wing [62].

3.7. Exercises

1. Prove that bounded wait-freedom is a safety property.

2. Show that the algorithm in Figure 3.1 is linearizable and wait-free. Trans-
form the algorithm into a bounded wait-free one.

3. Show that the algorithm sketched in the last paragraph of Section 3.4.2 in-
deed violates wait-freedom.

4. We say that a property P (a set of executions) is strictly weaker than prop-
erty P ′ if P ′ ⊆ P and P ′ * P .

Show that obstruction-freedom is strictly weaker than non-blockingness,
and non-blockingness is strictly weaker than wait-freedom.

Part II.

Read-Write objects

4. The Semantics of Read-Write
Objects

The simplest objects studied in concurrent computing are registers, shared storage
objects that export two basic operations: read and write. These correspond to
the abstraction of a programming-language variable that can be consulted and
modified by multiple concurrent threads.

We will describe how to wait-free implement registers that are atomic by using
registers that are not. We proceed incrementally through several steps. In each
step, we build registers with stronger semantics from weaker ones. The picture
to have in mind here is that weak registers are provided in hardware, whereas the
stronger ones, implemented on top of the weaker ones, are emulated in software.
We say that the strong ones are reducible to the weak ones. We assume that, unless
specifically stated otherwise, registers store integer values.

4.1. Register Properties

4.1.1. The Three Dimensions

The definition of a register depends on the following dimensions:

(a) Value range: the set of values that can be stored in the register. Regis-
ters that can contain only binary values, i.e., only 0 or 1, are called binary
registers or bits. Registers that contain values from a larger set are called
multivalued. A multivalued register can be bounded or unbounded. The
value range of a bounded register consists exactly of b distinct values, e.g.,
the values from 0 until b− 1 where b is a constant integer. We also say that
the register is b-valued. If there is no such bound b, the register is said to be
unbounded.

(b) Access pattern: the number of processes that can read (resp., write in) the
register. We distinguish single-writer vs. multi-writer and single-reader
vs. multi-reader. The patterns we consider are all static, and we do not
consider dynamic schemes that change over time, i.e., we assume that the
pattern is determined once and for all at the creation of the register. A
single-writer, denoted 1W (resp., single-reader, denoted 1R) has only one

 4. The Semantics of Read-Write Objects

specific process known in advance, which is called the writer (resp., the
reader), that can invoke a write (resp., read) operation on the register. A
register that can be written (resp., read) by multiple processes and is called
a multi-writer (resp., multi-reader) register. Such a register is denoted MW
(resp., MR).

(c) Concurrent behavior: the correctness guarantees ensured when the register
is accessed concurrently. Registers that ensure linearizability are said to be
atomic or linearizable. There are other interesting forms of registers that
provide correctness guarantees weaker than linearizability. In the follow-
ing, we define and discuss two such weaker forms, called safe and regular
registers, respectively.

For instance, a binary 1WMR atomic register is a register that (a) can contain
only 0 or 1, (b) can be written only by a single process and read by all the pro-
cesses, and (c) ensures linearizability.

4.1.2. The Concurrent Behavior

In a sequential execution (i.e., when no operation is invoked if another one has
already been invoked without yet receiving a response), the behavior of a register
is simple to define: every read invocation returns the last value written. When
accessed concurrently, at least three main variants have mainly been considered.
We explain them below.

Safety. A (single-writer) safe register ensures only that a read that is not concur-
rent with any write returns the last written value, i.e., we care only about
the sequential case. Essentially, this property says that the register does not
provide any guarantees if accessed concurrently, except that the value read
must be in the value range of the register. Such a register supports only
a single writer. If this writer is concurrent with a read, then this read can
return any value in the range domain of the register, including a value that
has never been written. From this perspective, a binary safe register looks
like a random bit flickering under concurrency.

Regularity. A (single-writer) regular register ensures that, in addition to the safety
property above, a read that is concurrent with a write returns (a) the value
written by that write or (b) the value written by the last preceding write. A
regular register also supports only a single writer but unlike a safe register,
the reader cannot return any value in case it is concurrent with a write.

However, it is important to notice that a regular register can, if two consec-
utive (non-overlapping) reads are concurrent with a write, return the value

4.2. Register Correctness 

being written (the new value) and then later return the previous value writ-
ten (the old value). This situation is called a new/old inversion. Such a
situation could occur even if the two reads are issued by the same process,
as depicted in Figure 4.1. More generally, a read that overlaps several write
operations can return the value written by any of these writes, as well as the
value of the register before these writes.

Atomicity. A (single-writer or multi-writer) atomic (also called linearizable) reg-
ister is one that ensures linearizability. As we will see below, such a register
ensures that, in addition to the safety and regularity properties above, that
no new/old inversions ever occur. In the case two consecutive reads are in-
voked, the second read must return the same or a “newer” value. Coming
back to Figure 4.1, if the first read of p1 returns 1, then the second read of
p1 has to return 1.

4.1.3. The Extreme Cases

The weakest kind of registers, considering the properties discussed above, is one
that can store only one bit of information (i.e., the register is binary), that can be
written by a single process and read by a single process (i.e., the register is single-
reader and single-writer), and that ensures only the safety property (i.e., it does not
provide any guarantees on the value returned by a read that is concurrent with a
write). The strongest kind of register is the multivalued multi-reader multi-writer
atomic register.

Write(1)

p1

p2

0Read()Read() 1

Write(0)

Figure 4.1.: New/old inversion (the register initially stores 0)

4.2. Register Correctness

An algorithm that implements a register of some kind, from a register of a weaker
kind, is sometimes called a reduction, the former (high-level) register being “re-
duced” to the latter one and used as a base object in the implementation. We also
call such algorithm a register transformation and it is common to say that the
high-level register is emulated by, or constructed from, the lower-level one.

 4. The Semantics of Read-Write Objects

Before presenting several reductions, we first highlight some fundamental tech-
niques that help argue about their correctness.

4.2.1. Reading Function

Proving that a register is safe consists in checking that every read that is not con-
current with a write returns the last value written. Proving that a register is regular
is more challenging. The notion of a reading function is helpful in this context.

For a given register history, the reading function maps every complete read
operation r onto some write operation w whose argument is the value returned by
r. Roughly speaking, the function stipulates that w is the operation that wrote the
value returned by r. Notice that there can be multiple operations writing the same
value in a given history, thus there can be multiple reading functions for it.

Without loss of generality, we assume that every history starts with an operation
w(x0) that writes the initial value x0. No other operation is concurrent with that
initial write operation.

We say that a reading function π associated with a history H is regular if π
satisfies the following two properties:

A1 ∀ r: ¬(r →H π(r)).
This property says that no read returns a value that has not yet been written,
i.e., an irrelevant value.

A2 ∀ r, w in H: (w →H r)⇒
(
π(r) = w ∨ w →H π(r)

)
.

This property says that no read returns a value that has been overwritten,
i.e., a too old value.

We say that a reading function π is atomic if, besides being regular (A1 and A2),
π also satisfies the following property:

A3 ∀ r1, r2: (r1→H r2)⇒
(
π(r1) = π(r2) ∨ π(r1)→H π(r2)

)
.

This property precludes new/old inversions.

Notice that a history can have multiple reading functions, some atomic and
some only regular.

4.2.2. Proving Regularity

Theorem 4.1 H is a history of a 1WMR regular register if and only if H is asso-
ciated with a regular reading function π.

Proof (1) Let H be any history of a regular register. We associate with H a
reading function π defined as follows. For any read operation r in H that returns

4.2. Register Correctness 

x, we define π(r) as the last write operation w(x) in H such that ¬(r →H w(x).
Since by regularity, x is the argument of the last preceding write or a concurrent
write, then π satisfies properties A1 and A2 above.

(2) Now assume H is associated with a regular reading function. Let r be any
complete read operation in H that returns x. Then there exists a write w(x) in
H that either (a.1) precedes or (a.2) is concurrent with r in H (A1) and (b) is not
followed by any write that precedes r in H (A2). Thus, r returns either the last
written value or a concurrently written value. 2Theorem 4.1

4.2.3. Proving Atomicity

Theorem 4.2 H is a history of an atomic 1WMR register if and only if H is
associated with an atomic reading function π.

Proof (1) Let H be any history of an atomic register. By definition, H is lineariz-
able and we can associate with it an atomic reading function as follows. Consider
S, any linearization of H , and define π(r) as the last write that precedes r in S.
By construction, π(r) satisfies properties A1, A2 and A3 above.

(2) Now assume a history H has an atomic reading function π. We use π to
construct S, a linearization of H , as follows. We first construct S as the sequence
of all writes that took place in H in the order they appear in H . Since there is
only one writer, the writes are totally ordered. If the last write is incomplete, we
complete it in S with response ok . Then we put every complete read operation r
after π(r) in S, in such a way that:

if π(r1) = π(r2) and r1→H r2, then r1→S r2.

Clearly, the reading function guarantees that S is legal: π(r) writes the value
read by r and every read in S returns the last written value.

Showing that→H⊆→S goes through distinguishing the following four possible
cases. Here w1 and w2 denote write operations, whereas r1 and r2 denote read
operations.

1. w1 →H w2. Since S preserves the real-time order of writes in H , we get
w1→S w2.

2. r1→H r2. By A3, we have π(r1) = π(r2) or π(r1)→H π(r2).

If π(r1) = π(r2), then given that r1 precedes r2 in H , and the way S is
constructed, we get that r1 is ordered before r2 in S, hence, r1→S r2.

If π(r1)→H π(r2), then, since S preserves the real-time order of writes in
H and r1 and r2 are ordered just after π(r1) and π(r2), respectively, in S,
we get r1→S r2.

 4. The Semantics of Read-Write Objects

3. r1 →H w2. By A1, either π(r1) is concurrent with r1 or π(r1) →H r1.
Since r1→H w2 and all writes are totally ordered, we have π(r1)→H w2.
By the construction of S, since π(r1) is the last write preceding r1 in S,
r1→S w2.

4. w1→H r2. By A1 we have π(r2) = w1 or w1→H π(r2).

Assume π(r2) = w1. As r2 is serialized just after π(r2) in S, we have
π(r2) = w1→S r2.

Assume w1 →H π(r2). Given the way S is constructed, we get w1 →H

π(r2) ⇒ w1 →S π(r2). Further, π(r2) →S r2, as r2 is ordered just after
π(r2) in S. By transitivity of→S , we obtain w1→S r2.

Let Ĥ be the completion of H that consists of all complete operations of H ,
plus the last incomplete write operation, if any, completed with response ok . By
the construction, S is indistinguishable from H̄ to every process.

Thus, S is a legal sequential history equivalent to a completion of H that pre-
serves→H . 2Theorem 4.2

Theorems 4.1 and 4.2 imply that an atomic register is a regular register that
precludes new/old inversion. Since linearizability is compositional (as we have
proved in an earlier chapter), a set of 1WMR regular registers behave atomically
if each of them precludes new/old inversion.

4.3. Register Reductions: Roadmap

In the following chapters, we present several register reductions, each construct-
ing a certain type of register from a weaker type, i.e., reducing the stronger to the
weaker registers. The constructed register is called high-level, whereas those we
use in the construction are called low-level (or base) registers. For example, we
show how to obtain a (high-level) regular register from (low-level) safe base reg-
isters, how to build a 1WMR register from 1W1R registers, and how to transform
binary registers into a multivalued register. As we pointed out, and without loss
of generality, we focus for simplicity on registers that store integer values.

All the reductions we present below are wait-free: Every read or write operation
on the high-level register terminates in a finite number of steps; most of these
steps are reads and writes on the low-level registers. Proving wait-freedom is
sometimes trivial, in particular when there are no loops or conditional statements
in the algorithm. In such cases, we omit the proof.

The reductions we present vary in their complexity. An important aspect we
particularly focus on is memory complexity, i.e., the number and size of the un-
derlying base registers. For example, the number of base registers used by a re-
duction can be proportional to the number of readers. In particular, we distinguish

4.3. Register Reductions: Roadmap 

bounded reductions that assume a finite number of base registers of bounded ca-
pacity and unbounded ones that assume underlying registers with an infinite value
range.

We will proceed incrementally as follows.

(1) We start with an algorithm that builds a 1WMR safe register from 1W1R
safe registers: a reduction of a 1WMR safe register to a 1W1R safe one.
The very same algorithm can be used to reduce a 1WMR regular register to
a 1W1R regular one.

(2) We then show how to build a binary 1WMR regular register from a binary
1WMR safe register. Combining this algorithm with (1) above, we obtain a
reduction of a binary 1WMR regular register to a binary 1W1R safe register.

(3) We present reductions of a multivalued 1WMR register to binary 1WMR
registers that preserve the concurrency properties of the original binary one
(safety, regularity, and atomicity).

Algorithms 1, 2, and 3, presented in Chapter 5, are bounded, i.e., assume
finitely many bounded base registers.

In Chapter 6, we relax the bounded memory assumption and show how
to transform a 1W1R regular register into an MWMR atomic register by
proceeding through three unbounded reductions:

(4) We show how to reduce a 1W1R atomic register to a 1W1R regular register.

(5) We show how to reduce a 1WMR atomic register to a 1W1R atomic register.

(6) We show how to reduce a MWMR atomic register to a 1WMR atomic regis-
ter.

In Chapter 7, we come back to bounded reductions:

(7) We present an optimal (with respect to memory) reduction of a 1W1R
atomic bit (binary register) to a 1W1R safe bit.

Finally, in Chapter 8,

(8) We show how to reduce a 1WMR atomic multivalued register to a 1WNR
atomic regular multivalued register in a bounded manner.

The reason we go first through bounded reductions, then to unbounded ones
before coming back to bounded ones, is to keep the level of difficulty progressive.
Indeed, the last reductions we present in Chapter 7 and Chapter 8 are the most
technically challenging.

 4. The Semantics of Read-Write Objects

4.4. Chapter Notes

The notions of safe, regular, and atomic registers were introduced by Lamport [82].
Theorem 4.2 is also due to Lamport [82].

4.5. Exercises

1. Register executions.

• Depict a history of a binary 1W1R register that would illustrate why
it is not safe.

• Depict a history of a safe 1W1R register that would illustrate why it is
not regular.

• Depict a history of a regular 1W1R register that would illustrate why
it is not atomic.

2. Reading function.

• Give an example of a history in which new/old inversion depends on
the reading function: one regular reading function with the inversion,
and one without.

5. Basic Register Reductions

In this chapter, we show, through several reductions, how to construct a regular
multivalued 1WMR register from safe binary 1W1R registers.

5.1. Reducing Multi-Reader to Single-Reader (Safe
and Regular)

We show first how to use 1W1R safe registers to build a 1WMR safe register, i.e.,
a register that can be read by n concurrent processes. Note that, in this chapter,
the base registers and the high-level register we implement are all single-writer.
The base registers are assumed to be initialized to 0 that is also supposed to be the
initial value of the high-level register.

The reduction is described in Figure 5.1. The constructed high-level multi-
reader register R is built from n single-reader base registers: REG[1 : n], one per
reader process (we say the register is associated with the process). Every reader
pi reads the base register REG[i] it is associated with, whereas the only writer
modifies every base register individually.

operation R.write(v):
for j = 1 to n do REG[j]← v;

operation R.read() issued by pi :
return (REG[i])

Figure 5.1.: 1WMR safe from 1W1R safe

5.1.1. Safety

Theorem 5.1 The algorithm in Figure 5.1 implements a 1WMR safe register by
using one 1W1R safe base register per reader.

Proof By the safety of the underlying based registers REG[i], no read of the high-
level register returns a value that is not in its value range. Also, any read of the
high-level register R (i.e., R.read()) that is not concurrent with any R.write() re-
turns the last value written inR. RegisterR is consequently also safe. 2Theorem 5.1

 5. Basic Register Reductions

5.1.2. Regularity

The reduction above also works for regular registers.

Theorem 5.2 The algorithm in Figure 5.1 implements a 1WMR regular register
by using one 1W1R regular base register per reader.

Proof Since a regular register is safe, the theorem above implies that the high-
level registerR is also safe. Hence we only need to argue that every readR.read()
that is concurrent with any write operation returns (a) a concurrently written value
or (b) the last written value.

Let v be any value returned by some reader pi from the high-level register R.
Since the register REG[i] is regular, when pi reads REG[i], it returns either (a) the
value of a concurrent write on REG[i] (if any) or (b) the value of the last write
to REG[i] preceding the pi’s read operation. In case (a), v is obtained from a
R.write(v) that is concurrent with the R.read() of pi. In case (b), v can either be
(b.1) from a high-level operation R.write(v) that is concurrent with R.read() of
pi, or (b.2) from the last high-level operation R.write(v) that terminated before
R.read() of pi.

Hence, the high-level register R is regular. 2Theorem 5.2

5.1.3. Atomicity

The algorithm in Figure 5.1, though indeed preserving safety and regularity, does
not provide atomicity. The algorithm would not implement an atomic register,
even if we assumed every base register REG[i] to be atomic. This is because the
algorithm in Figure 5.1 does not prevent new/old inversions at the level of the
high-level register R, even if base registers prevent them. Consider the history
depicted in Figure 5.2. This history involves one writer pw and two readers p1 and

Reg[2]← 1

pw

p2

Write(1)

p1

Read(Reg[2])

Read(Reg[1])

Read() 0

Read() 1

Reg[1]← 1

Figure 5.2.: New/old inversion in the algorithm in Figure 5.1: p1 reads the new
value 1 and then p2 reads the old value 0.

5.2. Reducing Regular to Safe (Binary) 

p2. Assume that the high-level register R initially contains value 0 (i.e., REG[1]
and REG[2] have initial value 0). The writer first performs REG[1] ← 1 and then
REG[2] ← 1 in order to write value 1 in R. Concurrently, p1 reads REG[1] and
returns 1, and then p2 reads REG[2] and returns 0. This is precisely a new/old
inversion: the read by p1 returns the new value, and the subsequent read by p2

returns the old value.

5.2. Reducing Regular to Safe (Binary)

We now move to a different kind of reduction. We construct here a regular binary
register by using a safe binary register (a safe bit).

5.2.1. Writing Only for Changing

The algorithm heavily relies on the fact that we can store only one of two values
in a binary register: 0 or 1. Remember that the difference between a safe and a
regular register is only visible in the face of concurrency. The value read by a
regular register has to be a value concurrently written or the last value written,
whereas a safe register can return any value in its value domain (0 or 1 in the
binary case).

To understand the main idea behind the algorithm, consider a naive scheme
where the regular register would be directly implemented, using a safe base reg-
ister. More precisely, assume every read (resp. write) on the high-level register is
translated into a read (resp. write) on the base (safe) register.

Suppose that the initial value of the base register is 0. If a write operation
updates the register with value 1, then a concurrent reader can return either 0 or
1, i.e., either the previously written or a concurrently written value. Both would
be fine with the regular semantics. Now assume instead that the write operation
updates the register with the same value 0 (it writes the same value and does not
change the register). As the base register is only safe, a concurrent read operation
can return value 1, which might have never been written. The high-level register
would also return 1, thereby violating regularity.

The problem is circumvented by preventing the writer from actually writing in
the base register, unless the writer intends to change the value of the high-level
register. In the case the value is changed, the concurrent read is allowed to return
any value in {0, 1}.

5.2.2. Reduction

In the algorithm we present in Figure 5.3, besides using a safe register REG shared
between the reader and the writer, the writer also maintains a local variable last

 5. Basic Register Reductions

operation R.write(v):
if (last 6= v) then REG← v;

last← v;

operation R.read() issued by pi :
return (REG)

Figure 5.3.: Binary regular from binary safe

that contains the most recent value written in the base safe register REG. This
variable is local to the writer, in the sense that it is stored in its local memory, and
it is not accessible to the reader. Before writing a value v in the high-level regular
register, the writer checks if this value v is different from the previous value in
last and, if this is the case, writes v in REG.

Theorem 5.3 The algorithm in Figure 5.3 implements a 1WMR binary regular
register by using one 1WMR binary safe register.

Proof Since the underlying base register is safe, a read that is not concurrent with
any write returns the last written value.

Now consider a read operation r that overlaps with one or more write opera-
tions. If none of these operations change the value of the register, i.e., write to the
underlying base safe register REG , we are back to the previous case, as the read
of REG performed by r does not overlap with any write on REG .

Now suppose that a concurrent operation changes the value of REG . Thus, the
value written by the last write that precedes r is different from the value written
by the concurrent write. But the range of these values is {0, 1}. Since the read on
the underlying base register returns a value in the range to any read, any of these
values are accepted by the regularity condition. The high-level register is hence
regular. 2Theorem 5.3

It is important to see that the reduction in Figure 5.3 does not implement an
atomic bit for it does not prevent new/old inversions. The reduction also does not
work for regular registers that can store more than two values (see Exercise 2).

5.3. Reducing b-Valued to Binary (Safe)

5.3.1. Binary Encoding

We show how to obtain b-valued registers, i.e., registers that can store a set of
values of fixed cardinality b, from binary registers. We present three reductions:
for safe, for regular, and for atomic registers, respectively. In short, they all enable

5.3. Reducing b-Valued to Binary (Safe) 

us to reduce a multivalued register to binary ones, preserving the concurrency
semantics. All the reductions use bounded memory, i.e., they all assume a bound
on the number of base registers used, as well as a bound on the amount of memory
needed within each register. The difference between the first reduction and the last
two lies in the encoding scheme we use.

The first reduction we present here uses a binary encoding scheme to implement
a b-valued safe registerR using several safe bits. The algorithm assumes that b, the
capacity of R is a power of 2, i.e., b = 2B for some integer B. Any combination
of B bits is a value in the range of R.

5.3.2. Reduction

The algorithm is given in Figure 5.4 and it uses an array REG[1 : B] of 1WMR
safe bit registers to store the current value of high-level register R. Given µi =
REG[i], the binary representation of the current value of R is µ1 . . . µB . The
memory complexity of the algorithm is logarithmic with respect to the size b of
the value range of the high-level register R.

operation R.write(v):
compute µ1 . . . µB the binary representation of v;
for j = 1 to B do REG[j]← µj ;

operation R.read() issued by pi:
for j = 1 to B do µj ← REG[j];
compute v the value whose binary representation is µ1 . . . µB ;
return (v)

Figure 5.4.: Reducing a multivalued safe register to a binary one (binary encod-
ing)

Theorem 5.4 The algorithm in Figure 5.4 implements a 1WMR 2B-valued safe
register by using B 1WMR safe bits.

Proof By the safety property of the underlying base registers, every read ofR that
is not concurrent with some write ofR returns the binary representation of the last
value written into R. Hence, the value corresponding to this binary representation
is safe to return. A read of R that is concurrent with a write of R can return any
value whose binary encoding uses B bits. As every such combination represents
one possible encoding of a value that R is supposed to contain, the encoded value
is in the range of R and is thus safe to return. 2Theorem 5.4

 5. Basic Register Reductions

5.4. Reducing b-Valued to Binary (Regular)

5.4.1. Unary Encoding

The previous algorithm, in Figure 5.4, does not implement a regular register even
when the base registers are regular. Roughly speaking, this is because the write
is not continuous: a read of R concurrent with a write changing, for example,
the value of R from 0 . . . 0 to 1 . . . 1 can return any value (in the range of R),
including one that was never written.

In order to ensure regularity, a different encoding scheme is needed. Instead
of binary encoding as above, we turn to unary encoding: in short, whereas the
binary encoding does not ensure the continuity of the writing, the unary does.
Now, considering an array REG[1 : b] of 1WMR regular bits, the value v ∈ [1..b]
is represented by 0s in registers 1 to v − 1 and then 1 in register at position v.
The memory complexity of the transformation algorithm is now b base bits, i.e.,
it is linear with respect to the size of the value range of the constructed register R
(instead of being logarithmic in the case of a safe register). This can be viewed as
the price to pay for regularity.

5.4.2. Reduction

The algorithm that relies on unary encoding is given in Figure 5.5. In short, a read
searches for a value in the ascending order, whereas a write updates the array in
the descending order, from v − 1 until 1. In other words, the write and the read
are performed in opposite directions. More specifically, to write v, the writer first
sets REG[v] to 1, and then cleans the array REG by writing 0 in all base registers
going down from REG[v− 1] to REG[1]. On the contrary, the reader traverses the
array REG[1 : b] starting from its first entry (REG[1]). The reader stops when it
finds an index j such that REG[j] = 1. The reader then returns integer j as the
result of the read.

The algorithm in Figure 5.5 assumes that the register R has a valid initial value
v0: initially, REG[j] = 0 for 1 ≤ j < v0, REG[v0] = 1, and REG[j] = 0 or 1 for
v0 < j ≤ b.

operation R.write(v):
REG[v]← 1;
for j = v − 1 down to 1 do REG[j]← 0;

operation R.read() issued by pi:
j ← 1;
while (REG[j] = 0) do j ← j + 1;
return (j)

Figure 5.5.: multivalued regular from binary regular (unary encoding)

5.4. Reducing b-Valued to Binary (Regular) 

Notice that, as the execution unfolds, several entries of the array can contain
value 1. However, only the smallest entry of REG set to 1 actually encodes the
most recently written value. The other entries refer to past values and are not very
useful. Note also that the “last” base register REG[b], once set to 1, never changes.
A reader that reads 0 in all entries of REG up to b− 1, can assume REG[b] to be 1
without actually reading it.

5.4.3. Correctness

We first establish wait-freedom, as it is not immediate in this algorithm.

Lemma 5.5 The algorithm in Figure 5.5 is wait-free.

Proof Every R.write(v) operation terminates in a finite number of its own steps
for its for loop only goes at most through v iterations. Consider now a R.read()
operation. Recall first that we assume that initially the register stores value 1, i.e.,
REG [1] initially stores 1. Now observe that, before the writer changes REG[x]
from 1 to 0, it first writes 1 in some entry REG[y] such that x < y ≤ b. Hence, if
a reader finds 0 in some REG[x], then a higher entry of the array has been set to
1. As the index of the while loop of the read starts at 1 and is incremented each
time the loop body is executed, the loop eventually terminates in at most b steps.

2Lemma 5.5

We now turn to the safety property before arguing for regularity.

Lemma 5.6 The algorithm in Figure 5.5 implements a safe register R.

Proof Any value returned by a read is an index from 1 to b and is, thus, in the
value range of R. Consider now a read operation that is not concurrent with any
write, and let v be the last written value in R. By the write algorithm, when the
corresponding R.write(v) terminates, REG[v] is the first entry of the array that
equals 1 (i.e., REG[x] = 0 for 1 ≤ x ≤ v − 1). Because a read traverses the array
starting from REG[1], then REG[2], etc., it necessarily ascends until REG[v] then
returns value v. 2Lemma 5.6

Theorem 5.7 The algorithm in Figure 5.5 implements a 1WMR b-valued regular
register by using b 1WMR regular bits.

Proof Lemma 5.6 ensures safety, i.e., the correctness of a read operation in the
absence of concurrent write operations. It remains to consider the concurrent case.
Suppose that a complete read operation R.read() is concurrent with one or more
write operations R.write(v1), . . ., R.write(vm). Let v0 be the value written by the
last write operation that terminates before R.read() starts.

 5. Basic Register Reductions

By the algorithm, the read operation finds 0 in REG[1] up to REG[v − 1], then
finds 1 in REG[v], and then returns v. We show by induction that each of these
low-level reads returns a value that is (previously or concurrently) written by an
operation in R.write(v0), R.write(v1), . . ., R.write(vm).

Since R.write(v0) writes 1 in REG[v0] and 0 in REG[v0 − 1] down to REG[1],
the first low-level read performed within the high-levelR.read() operation returns
the value written byR.write(v0) or a concurrent write. Now assume that for some
j = 1, . . . , v − 1, the read on REG[j] returned 0 written by the latest preceding
or a concurrent write operation R.write(vk) (k = 1, . . . ,m). Notice that vk > j:
otherwise, R.write(vk) would not touch REG[j]. By the algorithm, R.write(vk)
has previously written 1 in REG[vk] and 0 in REG[vk − 1] down to REG[j + 1].
Thus, since the base registers are regular, the subsequent read of REG[j + 1]
performed within the R.read() operation, can only return (a) the value written by
R.write(vk), or (b) a subsequent write operation that is concurrent with R.read().

By induction, we conclude that the read of REG[v] performed within R.read()
returns a value written by the latest preceding or by a concurrent write. 2Theorem 5.7

5.5. Reducing b-Valued to Binary (Atomic)

It is natural to ask whether we can build an atomic b-valued register if, in the
algorithm in Figure 5.5, we replace base regular bits with atomic ones (we will
show in Chapter 7 how we can build an atomic bit from three regular ones). The
answer is negative.

5.5.1. Atomic Bits Do Not Help

A counterexample is presented in Figure 5.6. We suppose here the initial value
of the register R is 3: REG[1] = 0, REG[2] = 0 and REG[3] = 1. The writer
executes R.write(1) then R.write(2). A concurrent operation R.read() checks
REG[1] before it is updated by R.write(1), then finds 1 in REG[2] and returns
2. A subsequent operation R.read(), concurrent to R.write(2), can then check
REG[1] before it is set to 0 by R.write(2), finds 1 in it, and returns 1—a new/old
inversion.

However, we can prevent new/old inversions and, thus, ensure atomicity by
augment the R.read() algorithm in Figure 5.5 with a “counter-inversion” phase.
Instead of returning index j where the first 1 was located in REG, the read oper-
ation is now more cautious. It traverses the array again, in the opposite direction
(from j to 1), and returns the smallest entry containing value 1.

5.5. Reducing b-Valued to Binary (Atomic) 

Read(Reg[2])→ 1

Write(1) Write(2)

Reg[1]← 1 Reg[2]← 1 Reg[1]← 0

Read() 1Read()2

Read(Reg[1])→ 0 Read(Reg[1])→ 1

Figure 5.6.: New/old inversion in the algorithm in Figure 5.5

5.5.2. Reduction

To understand why the updated algorithm, presented in Figure 5.7, precludes
new/old inversions, consider the first R.read() operation depicted in Figure 5.6.
After it finds REG[2] = 1, the reader now changes its scanning direction, ac-
cording to the algorithm in Figure 5.7. The reader then finds REG[1] = 1 and
consequently returns value 1. The second read returns 1 in REG[1] hence returns
1. In the face of concurrency, the algorithm in Figure 5.7 does not eagerly return
a value. Instead, value v returned by a read operation is first validated by reading
registers REG[v − 1] to REG[1].

operation R.write(v):
REG[v]← 1;
for j = v − 1 down to 1 do

REG[j]← 0;

operation R.read() issued by pi:
j1 ← 1;

(1) while (REG[j1] = 0) do j1 ← j1 + 1;
(2) j ← j1;
(3) for j2 = j1 − 1 down to 1 do
(4) if (REG[j2] = 1) then j ← j2

return (j)

Figure 5.7.: multivalued atomic from binary atomic (unary encoding)

5.5.3. Correctness

Theorem 5.8 The algorithm in Figure 5.7 implements a 1WMR atomic b-valued
register by using b 1WMR atomic bits.

Proof For every history of the algorithm, we construct a reading function π,
derived from atomic reading functions of the elements of REG (each associated
with the history restricted to the corresponding element). Let r be a read operation

 5. Basic Register Reductions

that returns value v. We consider the last read of REG[v] performed within r and
apply the atomic function of REG[v] to identify the write operationw that contains
the corresponding write on REG[v]. If no such write operation exists, we choose
w to be the initializing write operation w0. Since r returns the index of REG
containing 1, π(r) writes 1 to REG[v].

We argue now that π satisfies properties A1, A2 and A3 of Section 4.2, i.e.,
it is indeed an atomic reading function. By the definition of π, π(r) is a write
operation that either precedes r or is concurrent with r, which implies A1.

To prove A2, assume, by contradiction, that π(r) → w(v′) → r(v) for some
write w(v′). By the algorithm in Figure 5.7, w(v′) writes 1 in REG[v] and then
writes 0 in all REG[v − 1] down to REG[1]. Thus, v′ < v, otherwise w(v′) would
also write to REG[v] and π(r) would not be the latest write updating REG[v]
before r reads REG[v]. Since r reached REG[v], there exists a write w(v′′) that
writes 0 in REG[v′] after w(v′) writes 1 in REG[v′] but before r read REG[v′]. By
the algorithm, before writing 0 in REG[v′], w(v′′) has written 1 in REG[v′′] and,
by the assumption, v′′ < v. Assuming that w(v′′) is the latest such write, before
reading REG[v], r must have found REG[v′′] = 1—a contradiction.

To argue about A3, consider two read operations r1 and r2, r1 → r2, and
assume, by contradiction, that π(r2)→ π(r1).

Assume r1 return v and r2 return v′. Since π(r1) 6= π(r1), the construction of
π is such that v 6= v′. We now focus on the two following cases:

(1) v′ > v.

Here, r2 has read 0 in REG[v] before reading 1 in REG[v′] and returning
v′ > v. Thus, a write w(v′′) such that v < v′′ < v′ and π(r2)→ w(v′′)→
(r1), has written 0 in REG[v] after π(v) wrote 1 in REG[v] but before r2
read it. Assume, without loss of generality, that v′′ is the smallest such
value. Since w(v′′) has written 1 in REG[v′′] before writing 0 to REG[v],
r2 must have returned v′′ < v′—a contradiction.

(2) v′ < v.

Here, r1 reads 1 in REG[v], v > v′, and then r1 reads 0 in all REG[v − 1]
down to REG[1], including REG[v′]. Since π(r2) has previously written 1
in REG[v′], another write operation must have written 0 in REG[v′] after
π(r2) has written 1 in it but before r1 read it. Thus, when r2 subsequently
reads 1 in REG[v′], π(r2) is not the last preceding write operation to update
REG[v′]—a contradiction with the definition of π.

Therefore, π is an atomic reading function and, by Theorem 4.2, the algorithm
in Figure 5.7 indeed implements a 1WMR atomic register. 2Theorem 5.8

5.6. The Importance of a Bound 

5.6. The Importance of a Bound

The reductions we presented above build bounded multivalued registers from bi-
nary ones. The constructed register R can contain multiple values, but we assume
that the range of these values is finite. This is a crucial assumption when con-
structing regular and atomic registers (unary encoding). We explain this here.

If the range ofR is unbounded (b =∞), a read operation might never terminate
when a writer that continuously updates R with ever-increasing values. Indeed,
let R.write(x) be the last write operation terminated before a R.read() starts.
Suppose that a high-level read operation proceeds until it is about to read REG[x]
that contains 1. Now schedule a concurrentR.write(y), y > x) to set REG[x] to 0.
We then schedule the read of REG[x] by the high-level read operation which has to
return 0. When the range of values that can be concurrently written is unbounded,
this scenario can repeat indefinitely, forcing the reader to take infinitely many
reads of REG, and thus violating wait-freedom.

5.7. Chapter Notes

The algorithms in Figure 5.1, Figure 5.3, Figure 5.4 and Figure 5.5 are due to
Lamport [82]. The algorithm in Figure 5.7 is due to Vidyasankar [107].

The wait-free construction of stronger registers from weaker ones has been
an active research area. The interested reader can consult the following (non-
exhaustive) list of articles where numerous related algorithms are presented and
analyzed: [13, 19, 26, 27, 52, 67, 84, 102, 108, 109, 110].

5.8. Exercises

1. Safe registers.

Consider the algorithm in Figure 5.1 implementing a safe (resp. regular)
multi-reader register using safe (resp. regular) single-reader registers. In the
algorithm, the writer modifies the base registers from REG [1] to REG [n].
Would the algorithm remain correct if it modifies the registers in the oppo-
site direction, from REG [n] to REG [1].

2. Regular binary registers.

Consider the algorithm, in Figure 5.3, that reduces a regular 1WMR binary
register to a safe one.

a) Depict a history illustrating why the algorithm does not build an atomic
register.

 5. Basic Register Reductions

b) Depict a history illustrating why the algorithm would not build a reg-
ular register that could store more than 2 values.

3. Multivalued safe registers.

Give a history depicting why the algorithm in Figure 5.4 does not build a
multivalued regular register, even if we replace the base safe binary registers
with regular binary ones.

4. Multivalued regular registers.

Consider the implementation of a b-valued 1WMR regular register (Fig-
ure 5.5).

a) In the algorithm of write(v), is it possible to change the order of op-
erations: First write 0 to REG[v − 1], . . . ,REG[1] and then write 1 to
REG[v], without jeopardizing the correctness?

b) What if the writer puts 0 to REG[1], . . . ,REG[v − 1] in the ascending
order?

6. Timestamp-Based Reductions

We have seen in the previous chapter how to reduce multi-reader and multi-valued
regular registers to safe bits, as well as how to reduce multi-valued atomic registers
to atomic bits. Reducing atomic registers to regular registers is a missing piece of
the puzzle to which we devote this and the forthcoming chapters.

In this chapter, we fill this gap by using timestamps. These timestamps, also
called sequence numbers, allow us to build general atomic registers from non-
atomic ones. The key idea is to associate each written value with a sequence
number that intuitively captures the number of past write operations that were
performed up to writing that value. In the reductions we present below, a typical
base register consists of two fields: a data field that stores the value of the register
and a control field that stores the sequence number associated with this value.

We assume here for simplicity that the timestamps grow without bound. As
a consequence, the base registers are assumed to be of unbounded capacity (un-
like in the previous and following chapters). Of course, assuming base objects
of unbounded capacity might not seem very realistic. One way to interpret this
assumption is to expect, without explicitly mentioning it in the algorithm, that
the implemented atomic register works until the underlying base registers reach
their physical limits. Besides, and as we will discuss later, there are timestamp
recycling techniques that allow us to emulate logically unbounded timestamps.

In Chapters 7 and 8, we will come back to bounded constructions and discuss
more sophisticated, but very efficient and bounded, reductions of atomic registers
from bounded safe ones.

6.1. Reducing Atomic to Regular (Unbounded)

We show first how to implement a 1W1R atomic register by using a 1W1R regular
register. The use of timestamps (sequence numbers) is key to preventing new/old
inversions. Preventing these, while preserving regularity, means that, by Theo-
rem 4.2, the resulting register is atomic.

The reduction algorithm is given in Figure 6.1. Exactly one base regular register
REG is used in the implementation of the high-level register R. Local variable sn
at the writer is used to hold sequence numbers. It is incremented for every new
write on R.

Each time the writer seeks to write a value v in the high-level register, R, it

 6. Timestamp-Based Reductions

writes the pair [sn, v] in the base regular register REG. The reader also manages
a local variable last that is made up of two fields: a sequence number (last sn)
and a value (last val): (1) last sn stores the highest sequence number the reader
has ever read in REG, whereas (2) last val stores the corresponding value.

When the reader (recall that we assume only one reader for now) seeks to read
R, it first reads the sequence number in REG and compares it with last sn . The
value with the highest sequence number is the one returned by the reader. This
scheme prevents new/old inversions, as we will prove.

operation R.write(v):
sn ← sn + 1;
REG← [sn, v]

operation R.read():
if (REG sn > last sn) then

last sn ← REG sn;
last val ← REG val ;

return (last val)

Figure 6.1.: From regular to atomic (1W1R)

Theorem 6.1 The algorithm in Figure 6.1 implements a 1W1R atomic register by
using an unbounded 1W1R regular register.

Proof Let H be any history of the algorithm. We argue that H is atomic by
building an equivalent legal sequential history S that respects the partial order on
the operations in H .

Operations in S are ordered according to the sequence numbers determined by
the writer. Write operations that performed their writes on REG are put in S in the
ascending order of sequence number. As for the reads, we associate each complete
read r with the sequence number sn(r) of the value returned by r. Given that the
base register is regular, any of its reads returns a value that has been written with
its sequence number, and it is either the last written value or a concurrently written
value. Now each read r operation is put in S just after the write operation that has
the sequence number sn(r).. If two read operations return the same value and
have the same sequence number, we first order the one whose invocation event is
first. This is possible as there is a single reader.

The resulting history S is (a) sequential as all its operations are totally ordered,
and (b) legal as each of its reads follows the corresponding write operation. Also,
(c) equivalent to a completion of H that contains all complete reads and all writes
that modified REG . What is left is to argue that (d) S respects→H .

6.2. Reducing Multi-Reader to Single-Reader (Atomic Unbounded) 

• Consider first any two write operations w1 and w2 in S. As we have a
single writer, we either have w1→H w2 or w2→H w1. In any case, given
that this order follows that of sequence numbers, it is that of S.

• Consider now any two read operations r1 and r2 in S. As we have a single
reader, we either have r1 →H r2 or r2 →H r1. Again, this respects the
order of the sequence numbers and is the order of S.

• Let w be any write operation and r any read operation in S such that w →H

r. The read r returns the sequence number of w or a bigger one, hence w is
ordered before r in S.

• Finally, let r be any read operation and w any write operation and assume
that r →H w. The read r returns the sequence number of w or a smaller
one, hence w is ordered after r in S.

Thus, S is a linearization of H , and the implemented register is indeed atomic.
2Theorem 6.1

6.2. Reducing Multi-Reader to Single-Reader
(Atomic Unbounded)

In this section, we show how timestamps can also be effective in building a 1WMR
atomic register out of 1W1R atomic registers.

6.2.1. Preventing New/Old Inversions by Having Readers
Communicate

It is first natural to ask if the algorithm in Figure 6.1 cannot be easily extended
to obtain a multi-reader atomic register from base 1W1R registers, even if we
assume that the base registers are atomic. At first glance, following the idea of
the algorithm in Figure 5.1, we could associate n base 1W1R atomic registers
with n possible readers, one register per reader. The writer would write in all
of them. Each reader would read its associated register following the algorithm
in Figure 6.1. However, determining the value to return by comparing sequence
numbers, as in the algorithm in Figure 6.1, might be problematic. This is be-
cause the writer does not modify all these n registers at once. It may happen that,
concurrently with the writer modifying these registers, a read operation reads an
updated register and returns the new value and then another read operation reads
a register that is not yet updated, thus, returning the old value. Assuming that
base 1W1R registers are atomic does not help here. The construction of a 1WMR

 6. Timestamp-Based Reductions

atomic register from base 1W1R atomic registers is actually not trivial and we
now discuss it.

Indeed, we consider n possible readers and, accordingly, we make use of n
base 1W1R atomic registers: one per reader. As in the algorithm in Figure 6.1,
the writer writes in all of them, in addition to the value to be written, a sequence
number. As we just pointed out, new/old inversions cannot be prevented by read-
ers simply comparing sequence numbers. Instead, we have the readers inform
each other of the values they return, as well as the associated sequence numbers.

6.2.2. Reduction

The algorithm is depicted in Figure 6.2: the readers inform each other about what
the values they return and their corresponding sequence numbers. To implement
this inter-reader information exchange, we use an array RR[1 : n, 1 : n] of 1W1R
atomic registers. Each such register contains a pair (sequence number, value)
written by the writer. More specifically, RR[i, j] is a 1W1R atomic register written
by pi and read by pj .

Before returning a value v, determined as we will explain below, reader pi up-
dates RR[i, j] with the pair [sn, v], indicating to every other reader pj that pi has
returned v with sequence number sn . In short, this prevents pj from returning,
after pi is done with its read, any value older than v, i.e., any value with a smaller
sequence number than sn . Now to determine the value to return for a read op-
eration, after writing it in registers RR[i, j], reader pi first computes the greatest
sequence number that pi has ever seen in a base register, including all 1W1R
atomic registers pi can read, i.e., REG[i] and all RR[j, i] for all j. Then pi returns
the value that has the greatest sequence number.

In the algorithm, temp is a local array used by every reader pi; its jth entry con-
tains the (sequence number, value) pair that pj has written in RR[j, i]; temp[j].sn
and temp[j].val denote the corresponding sequence number and the associated
value, respectively. The local variable last is used by reader pi to contain the last
(sequence number, value) pair that pi has read from REG[i] (reg sn and last val
are its the corresponding fields). Register RR[i, i] is used only by pi, that can con-
sequently keep its value in a local variable. The 1W1R atomic register RR[i, i]
contains the 1W1R atomic register RR[i]. The algorithm uses exactly n2 base
1W1R atomic registers.

Theorem 6.2 The algorithm in Figure 6.2 implements a 1WMR atomic register
with n readers, by using n2 unbounded 1W1R atomic registers.

Proof Given any history H of R, we derive an equivalent legal and sequential
history S by ordering all write operations according to their sequence numbers
and then inserting the read operations as in the proof of Theorem 4.2.

6.3. Reducing Multi-Writer to Single-Writer (Atomic Unbounded) 

operation R.write(v):
sn ← sn+ 1;
for j = 1 to n do REG[i]← [sn, v]

operation R.read() issued by pi:
last← REG[i];
for j = 1 to n do temp[j]← RR[j, i];
let sn max be max(last sn, temp[1].sn, . . . , temp[n].sn);
let val be last val or temp[k].val such that the associated seq number is sn max ;
for j = 1 to n do RR[i, j]← [sn max , val];
return (val)

Figure 6.2.: From single-readers to a multi-reader (atomic)

The only difference is that to show that S respects →H , we account for se-
quence numbers found not only in REG[1 : n], but also RR[1 : n, 1 : n]. Indeed,
if for two complete read operations r1 and r2 performed in H by pi and pj ,
respectively, we have r1 →H r2, then pj will necessarily find in RR[i, j] the se-
quence number of the value returned by r1 or a higher value. Thus, r1 →S r2.

2Theorem 6.2

6.3. Reducing Multi-Writer to Single-Writer (Atomic
Unbounded)

6.3.1. Preventing New/Old Inversions by Having Writers
Communicate

Consider first a direct extension of the algorithm in Figure 6.2, now with multi-
ple writers. Each writer determines its sequence number locally by incrementing
the last one it used, and it writes the next value with this incremented sequence
number in registers associated with the readers. We would assume in this exten-
sion that every writer would be associated with an array of n registers, to which it
writes its new value for each reader.

This algorithm would not, however, ensure atomicity because the sequence
numbers associated by the writers to the values they write might not be totally
ordered. Moreover, they may not reflect the real-time order of write operations.
For example, writer pi might write several values, increasing its sequence number.
Then another writer, pj , which has never written before, writes a new value. A
subsequent read operation might choose to return the last value written by pi as it
has the highest sequence number.

Just as in Figure 6.2, where we enable multiple readers and ensure atomicity by
forcing them to communicate, we do the same here. To enable multiple writers,

 6. Timestamp-Based Reductions

we force them to communicate in determining their sequence numbers.

6.3.2. Reduction

Now we use an array REG[1 : n] of n 1WMR atomic registers such that pi is the
only writer in REG[i]. Any process can read in any register. Each register REG[i]
stores a pair (sequence number, value). Variables REG.sn and REG.val are
also used here to denote the sequence number field and the value field of register
REG, respectively. Each REG[i] is initialized to the same pair, [0, v0], where v0

is the initial value of R.
The main idea here is to totally order the write operations. In performing a

write operation, the writer first computes the highest sequence number that has
been used by the writers so far. Then the writer determines the sequence number
of its write. To prevent two distinct concurrent write operations from choosing
the same sequence number with their respective values, we break the symmetry
by defining a sequence number as a pair composed of an integer and the identifier
(i) of the process (pi) that issues the corresponding write operation. The pairs are
ordered lexicographically: if the two integers are equal, the preferred sequence
number is the one with the larger process identifier. The algorithm is given in
Figure 6.3.

operation R.write(v) issued by pi:
compute sn max = max(REG[1].sn, . . . , REG[n].sn) + 1;
REG[i]← [sn max , v]

operation R.read() issued by pi:
compute k the process number with max(REG[1].sn, . . . , REG[n].sn);
return (REG[k].val)

Figure 6.3.: From single-writers to a multi-writer (atomic) (unbounded)

Theorem 6.3 Given n unbounded 1WMR atomic registers, the algorithm described
in Figure 6.3 implements an MWMR atomic register.

Proof Let H be any history of the constructed MWMR register R. Again, the
idea is to derive from H a linearization S. Given H , we build an equivalent
sequential history S by first ordering all the “effective” write operations based
on their sequence numbers, then we insert the complete read operations as in the
proof of Theorem 4.2. S is legal as each read operation is ordered just after the
write operation that wrote the value read. Following the reasoning in the proof of
Theorem 4.2, we argue that S respects→H . 2Theorem 6.3

6.4. Chapter Notes 

6.4. Chapter Notes

The algorithms described in Figure 6.2 and 6.3 are from Vitányi and Awerbuch
[111].

The algorithms presented in this chapter assume that the sequence numbers
can grow without bound, hence the assumption of unbounded base registers. As
we pointed out early in the chapter, this means that the algorithms stop working
when the underlying base registers reach their physical limit. One pragmatic ap-
proach to preventing this issue and to bounding the capacity of base registers is
to use timestamp systems. These techniques, originally proposed by Dolev and
Shavit [33], as well as Dwork and Waarts [34], seek to emulate shared sequence
numbers taken from a fixed range, bounded by a function of the number of pro-
cesses. A prominent atomic register construction, based on bounded timestamps,
was proposed by Li, Tromp, and Vitanyi [84].

6.5. Exercises

1. Single-reader single-writer atomic register.

The algorithm in Figure 6.1 implements a 1W1R atomic register. Consider
an extension of the algorithm where we associate one 1W1R regular register
per reader and where the writer writes in all of them; each reader reading its
dedicated register. Give a history depicting a violation of atomicity in the
case of two or more readers.

2. Multi-reader atomic register.

In the algorithm in Figure 6.2, and unlike in the algorithm in Figure 6.1, the
reader has to write back the value it read (to RR[][]) before returning it. Is
it possible to devise an implementation in which the readers do not write?

3. Multi-writer atomic register.

Consider an extension of the algorithm in Figure 6.2 to the case of multiple
writers: Each writer determines its sequence number by incrementing the
last one it used and writes the next value with it. Give a history depicting a
violation of atomicity.

7. Optimal Atomic Bit

In Chapter 5, we described several register reductions. In particular, we have seen:

• How to transform a safe bit, which, when read under contention, could re-
turn a value that was never written, into a regular bit, which always returns
a value written.

• How to compose several single-reader registers to obtain a single register
that can be accessed by multiple readers.

• How to compose several safe (resp., regular or atomic) binary registers
(bits) to obtain a multivalued safe (resp., regular or atomic) register.

All these reductions were bounded, i.e., they work even if the base objects have
bounded capacity. To complete the picture, from a safe bit into an atomic multi-
valued register, without assuming unbounded timestamps as we did in Chapter 6,
we must add an important bounded reduction: an algorithm that implements an
atomic bit from regular bits.

Implementing, in a bounded manner, an atomic bit from regular bits is not triv-
ial. We again proceed incrementally. We first show that, to construct an atomic bit
(even single-writer single-reader), we need at least three safe bits: two written by
the writer and one written by the reader. We then present a three-bit construction
of an atomic bit, matching this lower bound.

In Chapter 8, we will present a construction of a multivalued atomic 1WNR
register from a multivalued regular 1WNR register.

7.1. The Reader Has to Write

The algorithm we presented in Chapter 6 builds a single-writer single-reader (1W1R)
atomic register from a 1W1R regular one by using timestamps to prevent new/old
inversions. In short, the timestamps enable us to distinguish “old” values from
“new” ones, warning the reader about what it should (not) return. The challenge
we address in this chapter is to prevent new/old inversions without timestamps,
which basically means without the ability to distinguish old values from new ones.

We first show that to address this challenge, the reader also has to write. Re-
member that we have already seen a scheme where the reader writes, in Chapter 5:

 7. Optimal Atomic Bit

the readers inform each other about the value returned. There, the need for read-
ers to write came from their multiplicity. Now, we show that even in the case of a
single reader, the reader has to write. This is due to the bounded nature of the un-
derlying base registers. We give here an actual impossibility result that applies to
any bounded register reduction: We prove that it is impossible to prevent new/old
inversions if the reader does not write. Stating such a result goes first through
some general intermediary lemmas about how to represent values (states of base
registers) in bounded reductions.

7.1.1. Digests

We first introduce the notion of a digest. Let S be any finite sequence of values
from some given set. A digest of S is possibly a shorter sequence D that “sum-
marizes” S in the following manner: (a) S and D have the same first and last
elements; (b) no element appears twice in D; and (c) any two consecutive ele-
ments ofD are also consecutive in S. For example, sequencesD1 = 1, 3, 4, 5 and
D2 = 1, 2, 4, 5 are digests of sequence S = 1, 2, 1, 3, 4, 2, 4, 5. In the special case
when the sequence starts and ends with the same element, e.g., S = 1, 2, 3, 1, we
have a trivial digest D = 1. The following lemma says that every finite sequence
has a digest:

Lemma 7.1 For any finite sequence S = v1, . . . , vk of values, there exists a se-
quence D = d1, . . . , dm of values such that:

• d1 = v1 ∧ dm = vk,

• di = dj ⇒ i = j,

• ∀j : 1 ≤ j < m : ∃i : 1 ≤ i < k : dj = vi ∧ dj+1 = vi+1.

Proof The proof is by induction on k. If k = 1, D = v1.
Now for some n ≥ 1, let D = d1, . . . , dm be a digest of v1, . . . , vk. We get a

digest of v1, . . . , vk, vk+1 as follows.
If ∀j ∈ {1, . . . ,m}: vk+1 6= dj , then D′ = d1, . . . , dm, vm+1 is a digest of

v1, . . . , vk+1. Indeed, by construction, all elements of D′ are distinct and the only
transition dm, vn+1 that appears in D′ but not in D is actually vn, vn+1.

Now suppose that ∃j ∈ {1, . . . ,m}: vk+1 = dj . We can easily see that the
shorter sequenceD′ = d1, . . . , dj is then a digest of v1, . . . , vk, vk+1. 2Lemma 7.1

7.1.2. Repeated Digests

Consider any reduction of an atomic 1W1R register R to a finite collection of
bounded 1W1R regular registers. Any execution of a write operation w on R in

7.1. The Reader Has to Write 

this reduction induces a non-empty sequence of writes (state changes) on the base
registers.

Consider a specific sequential execution E where the writer constantly alter-
nates between writing 1 and writing 0 (a flipping execution). We assume that the
initial value in register R is 0. We denote by wi, i ≥ 1 the i-th such R.write(v)
operation: v = 1 when i is odd; and v = 0 when i is even. Every prefix of
execution E unambiguously determines the resulting state of each base register
X , i.e., the value that the reader of X returns promptly after that prefix. Indeed,
since such an execution is sequential, there exists exactly one reading function
determining the state of each register, at any point in that execution.

Consider a write operation w2i+1 = R.write(1), i = 0, 1, This write
operation induces a sequence of writes on the base registers, let ω1, . . . , ωk be the
sequence of base writes generated by w2i+1. Let Si be the sequence of states of
base registers defined as follows:

The first element of Si is the state of the base registers before ω1, i.e., just before
w2i+1 has started. The second element of Si is the state of the base registers
just after ω1, etc. Finally, the last element of Si, is the state of the base
registers just after ωk, i.e., just after w2i+1 has completed.

Let Di be any digest of Si (by Lemma 7.1 such a digest sequence exists).

Lemma 7.2 There exists a digestD = d0, . . . , dm (m ≥ 1) that appears infinitely
often in D1, D2,

Proof We first argue that every digest Di (i = 0, 1, . . .) consists of at least two
elements. Indeed, if Di contains a single element, then reading of R just before
w2i+1 and just after w2i+1 will observe the same state of the base registers (d0).
In this case, the reader cannot decide whether the read operation was applied
before or after w2i+1 and must, therefore, return the same value, contradicting
with the fact that wi changes the value ofR from 0 to 1. As there are finitely many
bounded base registers, they can only have finitely many states. Since every such
state appears in a digest at most once, there can only be finitely many digests.
Hence, in the infinite sequence of digests, D1, D2, . . ., some digest D (that is not
a singleton) appears infinitely often. 2Lemma 7.2

It is important to notice that the number of steps taken within a write operation
can, in general, be unbounded and therefore all sequences Si can be different.
What the lemma above says, however, is that the sequence of base register states
in Si can be “represented” as its (bounded) digest Di.

 7. Optimal Atomic Bit

7.1.3. Impossibility Result

Theorem 7.3 There does not exist an implementation of a 1W1R atomic bit from
a finite number of bounded regular registers, in which the reader does not write
to the base registers.

Proof By contradiction, assume that it is possible to build an atomic bit R from a
finite set S of bounded regular registers, in which the reader does not update base
registers.

Consider an operation r = R.read() (invoked by the reader), implemented
as a sequence of read operations on base registers. Without loss of generality,
assume that r reads all base registers. Consider the flipping execution E that we
introduced above: the writer performs write operations w1, w2, . . ., alternating
between writing 1 and 0 in R.

Since we assume that the reader does not modify the base registers, we can
insert the complete execution of r between every two steps in E without affecting
the steps of the writer. Let X be any low-level register used in the reduction. As
we assume regular base registers, the value read in X by the reader performing
r after a prefix of E is unambiguously defined by the latest value written to X
before the beginning of r. Let λ(r) denote the state of the base registers observed
by r.

By Lemma 7.2, there exists a digest D = d0, . . . , d` (` ≥ 1) that appears
infinitely often in D1, D2, . . ., where Di is a digest of w2i+1. Since each state
in {d0, . . . , d`} appears in E infinitely often, we can construct an execution E′

by inserting in E a sequence of read operations r0, . . . , r` such that for each j =
0, . . . , `, λ(rj) = d`−j . In E′, the reader observes the states of base registers
evolving downwards from d` to d0. By induction, we argue that in E′, each rj
(j = 0, . . . , `) returns 1. Initially, since λ(r0) = d` and d` is the state of the
base registers right after some R.write(1) is complete, r0 returns 1. Inductively,
suppose that rj (for some j, 0 ≤ j ≤ `− 1) returns 1 in E′.

Consider read operations rj and rj+1 (j = 0, . . . , ` − 1). Recall that λ(rj) =
d`−j and λ(rj+1) = d`−j−1. Since digest D appears in D1, D2, . . . infinitely
often by Lemma 7.2, E′ contains infinitely many base register writes, by which
the writer changes the state of base registers from d`−j−1 to d`−j . Assume X is
the base register changed by these writes.

SinceX is regular, we can construct another executionE′′ that is indistinguish-
able to the reader from E′, where rj are concurrent with a base register write
performed within R.write(1) in which the writer changes the state of the base
registers from d`−j−1 to d` − j (Figure 7.1).

By the induction hypothesis, rj returns 1 in E′ and, thus, in E′′. Since the
implemented register R is atomic and rj returns the concurrently written value 1
in E′′, rj+1 must also return 1 in E′′. But the reader cannot distinguish between
E′ and E′′, hence rj+1 returns 1 also in E′.

7.1. The Reader Has to Write 

from dy−j−1 to dy−j

R.write(1)

λ(rj) = dy−j

rj

λ(rj+1) = dy−j−1

rj+1

Figure 7.1.: R.write(1) is concurrent with two read operations rj and rj + 1

By induction, r` must return 1 in E′. But λ(r`) = d0, where d0 is the state of
base registers right after some R.write(0) is complete. Thus, r` must return 0—a
contradiction. 2Theorem 7.3

7.1.4. Lower Bound

Theorem 7.3 implies that to implement an atomic register from a finite number
of bounded regular registers, even for the case of a single writer and a single
reader, the reader also has to write to the base registers. In other words, a two-
way communication scheme between the writer and the reader is needed. The
reader must inform the writer that it is aware of the latest written value, which
requires at least one base register that can be written by the reader and read by the
writer. Furthermore, the writer must also be able to react to the information read
in this register, and Theorem 7.4 says that it needs to write in at least two different
base registers.

Theorem 7.4 In any implementation of a 1W1R atomic bit from regular bits, the
writer must be able to write to at least two regular bits.

Proof By contradiction, consider an implementation of a 1W1R atomic bit R in
which the writer writes to only one base bit X . Note that, in this case, every write
operation on R that changes the value of X and does not overlap with any read
operation must change the state of X . Without loss of generality, assume that the
first write operation w1 = R.write(1), performed by the writer in the absence of
the reader, changes the value of X from 0 to 1 (the corresponding digest is 0, 1).

Consider an extension of this execution in which the reader performs r1 =
R.read() promptly after the end of w1. Clearly, r1 returns 1. Then, add w2 =
R.write(0) right after the end of r1. Since the state of X at the beginning of w2

is 1, the only digest generated by w2 is 1, 0.

 7. Optimal Atomic Bit

Now, add r2 = R.read() directly after the end of w2, and let E be the resulting
execution. But r2 must return 0 in E. Given that X is regular, E is indistin-
guishable to the reader from an execution in which r1 and r2 take place within the
interval of w1, hence both must return 1—a contradiction. 2Theorem 7.4

By Theorem 7.3 and Theorem 7.4, we obtain the following corollary.

Corollary 7.5 Implementing a an atomic bit requires at least three 1W1R regular
bits: two written by the writer and one written by the reader.

In the next section, we present an algorithm that builds a 1W1R atomic
bit by using exactly three regular bits. Using the simple bounded algorithm
presented in Chapter 5 that constructs a regular bit from a safe bit, we will
derive that three safe bits are necessary and sufficient to build a 1W1R atomic
register.

7.2. Reducing an Atomic Bit to Three Safe Bits

We now present a matching protocol: an optimal reduction of a high-level 1W1R
atomic bit R to three base 1W1R safe bits. The first register used in the reduction
is denoted by X and is written by the writer and read by the reader to transmit the
value of the high-level atomic bit that is implemented. The second is denoted by
WR and is written by the writer to transmit control information to the reader. The
third is denoted by RR and is written by the reader to transmit control information
to the writer. The high-level bit R is assumed to be initialized to 0, as well as the
three base registers we consider in the reduction.

7.2.1. Regularity

We assume that each R.write(v) operation invoked by the writer changes the
value of R. This is done without loss of generality: the writer of R can locally
keep a copy of the last written value and apply the next R.write(v) operation,
only when the writer indeed modifies the current value of R. Similarly, as we will
see in the reduction, the read and write algorithms ofR (defining the reduction) are
also such that any write applied to a base register X changes its value. Therefore,
given that they are binary, the successive values written in X are 0, then 1, then
0, etc. Consequently, to simplify the presentation, we denote a write operation
on a base register X “change X”. Furthermore, as any two consecutive write
operations on a base bit X write different values, X behaves as a regular register.

7.2. Reducing an Atomic Bit to Three Safe Bits 

7.2.2. Handshaking (with the Writer)

The basic idea of the reduction algorithm we present below is for the reader
to inform the writer when it reads a new value in the implemented register R.
Otherwise, the writer could repeat the digest of state transitions that appear in
R.write(v), leading to a new/old inversion. Hence, whenever the writer is in-
formed that a previously written value is read, it changes the execution so that
critical digests are not repeated. This handshaking mechanism is implemented
by registers WR and RR. Intuitively, the writer informs the reader about a new
value by changing the value of WR so that WR 6= RR. Similarly, the reader
informs the writer that the new value is read by changing the value of RR so that
WR = RR. More specifically, this handshaking protocol operates as follows:

• The writer changes the value of X and then checks if WR = RR. If this
is the case, the writer changes the value of WR to indicate that a new value
has been written in X . The write operation is described in Figure 7.2.

operation R.write(v): %Change the value of R %
i change X ;
ii if WR = RR then change WR % Try to set WR 6= RR %

Figure 7.2.: The write algorithm

• Before reading X , if the reader observes that WR 6= RR, it changes the
value of RR. This indication is used by the writer to update WR if it dis-
covers that the previous value has been read.

As we see below, the exchange of indications through WR and RR is also used
by the reader to check if the value found in X can be returned.

7.2.3. Reading: an Incremental Approach

The reader’s algorithm is much more involved than the writer’s one. We present
the approach in an incremental manner, from simpler (and incorrect) versions to
more involved ones, until we reach the correct version.

The Need for Control Information. We start with a simple scheme in which
the reader establishes RR = WR and returns the value in X .

3 if WR 6= RR then change RR;
4 val ← X;
5 return (val)

 7. Optimal Atomic Bit

It is easy to see that this protocol does not prevent new/old inversions: Indeed,
assume that, while the writer is changing the value ofX from 0 to 1 (line ii in Fig-
ure 7.2), the reader performs two read operations (concurrent with the write). The
first read could return 1 (the “new” value of R) and the second read could return
0 (the “old” value). Notice that the protocol does not use the control information
in RR and WR.

Too Little Conservatism. An obvious way to prevent the new/old inversion
described earlier is for the reader to be conservative and not to return the current
value ofX unless the reader observes that the writer has actually updated WR and
WR 6= RR since the previous read operation. Bellow, local variable val initially
contains 0, the initial value of R.

1 if WR = RR then return (val);
3′ change RR;
4 val ← X;
5 return (val)

We remove here the test WR 6= RR before changing RR, in line 3′ which
seems unnecessary because the reader does not touch the shared memory between
reading WR in line 1 and in line 3. Unfortunately, it may still happen that a read
operation can return a value concurrently written to X , while a subsequent read
operation finds RR 6= WR and returns an old value, as illustrated in the following
scenario (Figure 7.3):

1. w1 = R.write(1) changes X and starts changing WR.

2. r1 reads WR, finds WR 6= RR and changes RR, reads X and then returns
1.

3. r2 reads WR and still finds WR 6= RR (new/old inversion on WR).

RR 6=WR

w1=write(1)

read 1

w2=write(0)

Writer

Reader

r1 return 1 r2

read 0 read 1

r3 return 1return 0

change X change WR change X

RR 6=WR

change RR RR=WR change RR RR 6=WR

Figure 7.3.: New/old inversion for r2 and r3

7.2. Reducing an Atomic Bit to Three Safe Bits 

4. w1 completes the change of WR and returns.

5. w2 = R.write(0) starts changing X .

6. r2 changes RR (establishing that RR 6= WR now), reads X and returns 0.

7. r3 reads WR, finds WR 6= RR, reads X and then returns 1 (new-old inver-
sion on X).

8. w2 completes the change of X and then returns.

w1=write(1)

Writer

Reader

change RR

w2=write(0)

RR 6=WR

read 1

RR 6=WR

r1 return 1 r2 return 1

Figure 7.4.: Read r2 returns an outdated value

Too Much Conservatism. The problem with the scenario above is that read
operation r2 changes RR too fast: the reader previously evaluated WR 6= RR due
to a new/old inversion on WR. Thus, when r2 changes RR, r2 sets WR 6= RR
again. Thus, the following read r3 finds WR 6= RR, has to return a value read in
X , and the value can be “old” due to the ongoing change in X .

A naive solution to this problem could be for the reader to check again if WR 6=
RR still holds before changing RR. Yet, this additional check will not change
much, as it can still happen that this check is performed by r2 immediately after
the first one and concurrently with w1’s change of WR. Hence, additionally, the
reader might first read X and only then check if the condition WR 6= RR still
holds, and then, if it does, change RR.

1 if WR = RR then return (val);
2′ val ← X;
3 if WR 6= RR then change RR;
5 return (val)

Whereas we have solved the problem described in Figure 7.3, we now face a
new one. The value read inX can get overly conservative in some cases. Consider

 7. Optimal Atomic Bit

the scenario in Figure 7.4. Here, read operation r2 evaluates WR = RR and
returns old value 1, even though the most recently written value is actually 0.
This is because the preceding read operation r1 changed RR to be equal to WR,
without noticing that X had meanwhile changed.

New/Old Inversion Strikes Again. One solution to the problem of Fig-
ure 7.4 is to evaluateX after changing RR and then check RR again, as described
in the pseudocode below. If the predicate RR = WR does not hold after RR was
changed and X was read again, the reader returns the old (read in line 2) value of
X . Otherwise, the new (read in line 4) value is returned.

1 if WR = RR then return (val);
2 aux ← X;
3 if WR 6= RR then change RR;
4 val ← X;
5 if WR = RR then return (val);
7 return (aux)

Unfortunately, there is still a problem here. Variable val evaluated in line 4
could be too conservative to be returned by a subsequent read operation that finds
RR = WR in line 1.

Again, assume that w1 = R.write(1) is followed by a concurrent execution of
r1 = R.read() and w2 = R.write(0) as follows (Figure 7.5):

1. w1 = R.write(1) completes.

2. w2 = R.write(0) begins and starts changing X from 1 to 0.

3. r1 finds WR 6= RR, reads 0 from X and stores it in aux (line 2), changes
RR, reads 1 fromX and stores it in val (the write operation onX performed
by w2 is still going on).

RR=WR

Reader

Writer

w1=write(1) w2=write(0)

change RRread 0
to aux

RR 6=WR

RR=WR

return 1

change X change WR

r2r1

RR 6=WR

return 0

read 1
to val

Figure 7.5.: New/old inversion strikes again

7.2. Reducing an Atomic Bit to Three Safe Bits 

4. w2 completes its write on X , finds RR = WR and starts changing WR.

5. r1 finds WR 6= RR (line 5), concludes that there is a concurrent write
operation and returns the “conservative” value 0 (read in line 2).

6. r2 = R.read() begins, finds RR = WR (the write operation on WR per-
formed by w2 is still going on), and returns 1 previously evaluated in line 4
of r1.

That is, r1 returned the new (concurrently written) value 0 while r2 returned
old value 1.

7.2.4. The Complete Algorithm

The resulting complete read algorithm is presented in Figure 7.6. Combined with
the write algorithm in Figure 7.2, this gives a reduction of an atomic 1W1R bit
to three safe 1W1R bits. We now proceed with proving the correctness of the
algorithm.

operation R.read():
1 if WR = RR then return (val);
2 aux ← X;
3 if WR 6= RR then change RR;
4 val ← X;
5 if WR = RR then return (val);
6 val ← X;
7 return (aux)

Figure 7.6.: The read algorithm

Let H be any history of the algorithms in Figures 7.2 and 7.6. Recall that→H

denotes the real-time partial order induced on operations in H (Chapter 2). Let
L be the corresponding execution— the sequence of invocations and responses of
read and write operations on the base registers, let<L denote the total order on the
events in L, and let→L denote the real-time partial order induced on operations
in L.

By Theorem 4.2, to show that H is linearizable, it is sufficient to show that H
has an atomic reading function.

Recall that a reading function is atomic if it satisfies properties A1, A2 and
A3 below (here w and r denote read and write operations, respectively, on the
implemented register):

A1 : ∀ r: ¬(r →H π(r)). (No read returns a value that has not yet been
written, i.e., a too new value.)

 7. Optimal Atomic Bit

A2 : ∀ r, w in H: (w →H r)⇒
(
π(r) = w ∨ w →H π(r)

)
. (No read returns

a value that has been overwitten, i.e., a too old value.)

A3 : ∀ r1, r2: (r1 →H r2) ⇒
(
π(r1) = π(r2) ∨ π(r1) →H π(r2)

)
. (No

new/old inversion.)

Recall also that a reading function is regular if it satisfies A1 and A2. As the
base registers used in the algorithm are safe bits that are only accessed for writing
when its value is changing, we can treat them as regular (Section 5.2). Thus, we
can associate each of the base registers with a regular reading function.

The Reading Function. Let r be a complete read operation in L. By the
algorithm, r returns (in line 1, 5 or 7) the value stored in one of the two local vari-
ables val or aux . Let ρr denotes the last read step (“val ← X” or “aux ← X”)
executed before r returns:

• If r returns in line 7, ρr is the read step “aux ← X ” executed in line 2 of r;

• If r returns in line 5, ρr is the read step “val ← X ” executed in line 4 of r;

• If r returns in line 1, ρr is the read step “val ← X ” executed in line 4 or 6
of some previous read operation.

Let φ be any regular reading function on X . Now we define our reading func-
tion on R as follows:

• For each read step ρr within a high-level read operation r, we define the
corresponding write step φ(ρr) that writes the value returned by r. Then
we define π(r) as the write operation that contains φ(ρr).

• If there is no such write operation, i.e., ρr returns the initial value of X ,
we define that π(r) is the write operation that writes the initial value and
precedes all steps in H .

Theorem 7.6 The algorithm in Figures 7.2 and 7.6 implements a 1W1R atomic
bit from three 1W1R safe bits.

Proof
We show that the function π defined above satisfies properties A1, A2, and A3

of an atomic reading function.

7.2. Reducing an Atomic Bit to Three Safe Bits 

Property A1 (No read returns a value that was not yet written). Let
r be any complete read operation in H . By the definition of π, the invocation of
the write step φ(ρr) occurs before the response of ρr, hence the response of r in
L, i.e., inv[π(ρr)] <L resp[r]. Thus, inv[π(r)] <L inv[π(ρr)] <L resp[r] and
¬(resp[r] <L inv[π(r)]).

By contradiction, assume that A1 is violated, i.e., r →H π(r). Thus,
resp[r] <L inv[π(ρr)])—a contradiction.

Proof ofA2 (No read returns a value that has been overwritten). Since
there is only one writer, all writes are totally ordered andw →H π(r) is equivalent
to ¬(π(r)→H w).

By contradiction, suppose there is a write operation w such that π(r) →H

w →H r. If there are several such write operations, let w be the last one before r,
i.e., @ w′: w →H w′ →H r.
We first claim that, in such a context, ρr cannot be a read step of the read operation
r (i.e., ρr /∈ r).
Proof of the claim. Recall that φ(ρr) ∈ π(r) (by definition). Let ω be the “change
X ” step of the operationw (ω ∈ w). By the case assumption, we obtain φ(ρr)→L

ω. By the definition of φ(ρr), we have ¬(ρr →L φ(ρr)), hence ¬(ω →L ρr).
Therefore, inv[ρr] <L resp[ω]. As ω ∈ w and w →H r, we have inv[ρr] <L
resp[w] <L inv[r]. As ρr started before r, and both are executed by the same
process, we have ρr /∈ r. End of the proof of the claim.

Since ρr /∈ r, by the algorithm in Figure 7.6, the read operation r returns a
value in line 1, which means that r has previously seen WR = RR. After the
writer has executed ω within π(r), it reads RR in order to ensure WR is different
from RR if they were seen equal. As w →H r and @ w′: w →H w′ →H r
(assumption), it follows that RR has been modified by a read operation in line 3
before the read operation r starts but after or concurrently with the read step on
RR performed by w. Let r′ be that read operation; as there is a single process
executing R.read(), we have r′ →H r.
Now we claim that ρr /∈ r′.
Proof of the claim: Let r′′ be the read operation that contains ρr. We show that
r′′ 6= r′. We observe that (Figure 7.7):

- If r′′ updates RR, it does it in line 3, i.e., before executing ρr (in line 4
or 6),

 7. Optimal Atomic Bit

- inv[ρr] <L resp[ω] (since φ is a regular reading function and φ(ρr) pre-
cedes ω); the relation “φ(ρr) precedes ω” is indicated by a dotted arrow in
Figure 7.7),

- w reads RR after having executed ω (code of the write operation).

It follows from these observations that if r′′ writes into RR, then r′′ completes
the write before w starts reading RR. But r′ writes to RR either after or con-
currently with the read of RR performed within w. Therefore, r′′ 6= r′, hence
ρr /∈ r′. End of the proof of the claim.

But since the reader modifies RR within r′, the reader also executes line 4 of r′

(val ← X) before executing r (this follows from the algorithm of the high-level
read). But, as ρr /∈ r′, this read of X step within r′ contradicts the definition of
ρr (according to which ρr is the last step “val ← X ” executed before r starts),
which completes the proof of the assertion A2.

Proof of A3 (No New/Old Inversion). By contradiction, assume there ex-
ist r1 and r2, two complete read operations in H , such that r1 →H r2 and
π(r2) →H π(r1). Without loss of generality, we assume that if r1 returns in
line 1, then ρr1 is the read step in line 6 in the immediately preceding read op-
eration. Since π(r2) 6= π(r1), we have ρr1 6= ρr2. Thus, either ρr1 →L ρr2 or
ρr2 →L ρr1.

• ρr2 →L ρr1.
As ρr1 precedes or belongs to r1, and r1 →H r2, we have resp[ρr1] <L
inv[r2]. Combined with the case assumption, the assertion implies ρr2 →L

ρr1 →L r2, which contradicts the fact that ρr2 is the last “val ← X ” or
“aux ← X ” step executed before r2 started. So, the case ρr2 →L ρr1 is
not possible.

r

ω read RR

write RR ρr

r′′

π(r) w

r′

Figure 7.7.: ρr belongs neither to r nor to r′

7.2. Reducing an Atomic Bit to Three Safe Bits 

• ρr1 →L ρr2.
By the definition, φ(ρr1) ∈ π(r1) and φ(ρr2) ∈ π(r2). As π(r2) →H

π(r1), we have φ(ρr2)→L φ(ρr1).

ρr2

resp[ρr1] inv[ρr2] resp[φ(ρr1)]

WR is not modified

inv[φ(ρr1)]

φ(ρr2) φ(ρr1)

ρr1

Figure 7.8.: A new/old inversion on X

Thus, we have φ(ρr2) →L φ(ρr1) and ρr1 →L ρr2 (Figure 7.7) which
implies a new/old inversion on low-level regular register X . But since
φ is a regular reading function on X , we have ¬(ρr1 →L φ(rhor1) and
¬(φ(ρr1) →L ρr2). Thus, both ρr1 and ρr2 have to overlap π(ρr1) (Fig-
ure 7.8): inv[φ(ρr1)] <L resp[ρ1] and inv[ρ2] <L resp[φ(ρr1)]. As
φ(ρr1) is a step that updates X , and as X and WR are both updated by
the writer, the “value” of the base register WR does not change while the
writer is updating X or, more specifically:

Read Stability: All read steps on WR whose intervals fall between resp[ρr1]
and inv[ρr2] return the same value.

We consider three cases according to the line in which r1 returns.

– r1 returns in line 7.
Then ρr1 is “aux ← X ” in line 2 of r1. We have the following:
- Since ρr1 →L ρr2 and r1 returns in line 7, ρr2 can only be the read
in line 6 of r1 or a later read step.
- After having performed ρr1, r1 reads WR and if WR 6= RR, it sets
RR = WR in line 3. But r1 returns in line 7, after having seen RR
different from WR in line 5 (otherwise, r1 would have returned in
line 5). Thus, r1 reads different values of WR after ρr1 (line 2 of r1)
and before ρr2 (line 6 of r1 or later). This contradicts the read stability
property above.

 7. Optimal Atomic Bit

– r1 returns in line 5.
Then, ρr1 is “val ← X ” in line 4 of r1, and r1 sees RR = WR in
line 5. Since ρr1 →L ρr2, r2 does not return in line 1. Indeed, if r2
returns in line 1, the last read on X preceding line 1 of r2 is line 4
of r1, i.e., ρr1 = ρr2. Thus, r2 sees RR 6= WR in line 1, before
performing ρr2 is in line 2 or line 4 of r2. But r1 has seen WR = RR
in line 5, after having performed ρr1 in line 4—a contradiction with
property P .

– r1 returns in line 1.
In that case, ρr1 is line 4 or line 6 of the read operation that precedes
r1. Again, since ρr1 →L ρr2, r2 does not return in line 1, from which
we conclude that, before performing ρr2, r2 sees RR 6= WR in line 1.
On the other hand, r1 sees RR = WR in line 1 after having performed
ρr1 which contradicts property P and concludes the proof.

Thus, π is an atomic reading function. 2Theorem 7.6

7.3. Chapter Notes

The impossibility result and the lower bound presented in this chapter are by Lam-
port [82]. The optimal reduction presented here is by Tromp [105, 106].

7.4. Exercises

We typically measure the complexity of a register reduction algorithm as a pair
of values that represent, respectively, the maximal (worst case) and minimal (best
case) numbers of accesses to the base registers, depending on the scheduling of
the operations.

1. Determine the complexity of the write algorithm of Figure 7.2.

2. Determine the complexity of the read algorithm of Figure 7.6.

3. Determine which schedule corresponds to the worst case and which—to the
best case.

8. Bounded Atomic Multivalued
Register

In Chapter 6, we described an algorithm that implements an atomic multival-
ued single-writer multi-reader (1WMR) register from regular ones, using ever-
growing sequence numbers, hence assuming base registers of unbounded capac-
ity. In this chapter, we propose a bounded reduction. To better understand the
technical challenges we address here, before diving into our reduction, two re-
minders are in order.

1. In the one-reader case, we can turn a series of atomic single-reader single-
writer bits into an atomic bounded multivalued register by using the re-
duction in Chapter 5 based on unary encoding (see Section 5.5). The first
challenge that we face here is the fact that we rather aim for a multi-reader
register.

2. In that same chapter, we have also seen how to build a regular bounded
multivalued multi-reader register from single-reader ones (see Section 5.5).
The second challenge we face here is the fact that we rather seek for an
atomic register.

8.1. A Hybrid Reduction Using an Atomic Control
Bit

In order to build a multivalued multi-reader atomic register, we proceed incre-
mentally. We first describe a hybrid algorithm (Figure 8.1) that, in addition to
low-level bounded regular registers X1 and X2 used to store the written value,
employs a low-level atomic bit WFLAG to transmit control information from the
writer to the readers.

The value to be written in high-level register R is written twice in the base
regular registers: first in X1 and then in X2. Before writing to X1, the writer sets
WFLAG to true in order to inform the readers about the starting of a new write
operation. After updating X1, the writer sets WFLAG back to false . A high-level
read operation on R reads X1 and then checks WFLAG . If WFLAG is false ,
the reader returns the value previously read in X1. If WFLAG is true , the reader
returns the value in X2.

 8. Bounded Atomic Multivalued Register

operation R.write(v):
(1) WFLAG ← true;
(2) X1 ← v;
(3) WFLAG ← false;
(4) X2 ← v

operation R.read():
(5) temp ← X1;
(6) if ¬WFLAG then return(temp);
(7) temp ← X2;
(8) return (temp)

Figure 8.1.: An atomic multivalued register from regular multivalued registers and
one atomic bit.

Essentially, WFLAG indicates whether the value read earlier inX1 could have
been written by a concurrent write operation. If WFLAG = true , a subsequent
read operation might find the older value in X1: a possible new/old inversion on
X1. To prevent a new/old inversion on R, the reader returns a more conservative
value from X2.

Theorem 8.1 The algorithm in Figure 8.1 implements a 1WMR atomic register
by using one 1WMR atomic bit and two 1WMR regular registers.

Proof Let H be any history of the algorithm in Figure 8.1, and let E be the
corresponding execution. Again, by Theorem 4.2 (Chapter 4), we show that H is
linearizable, by finding a matching atomic reading function.

Let π be any regular reading function defined on read operations on X1 or
X2. We extend π to the high-level read operations on the implemented high-level
register R as follows. For each high-level read r returning the value found by a
read operation ρ in X1 or X2 (lines 5 or 7), we define π(r) as the high-level write
operation w that contains π(ρ).

The algorithm in Figure 8.1 implies that the resulting extension of π on high-
level read operations is regular. Indeed, the interval of every such π(ρ) belongs to
the interval of w. Thus, ρ 6→E π(ρ) implies r 6→H π(r): property A1 is ensured.
Additionally, since every complete write operation contains writes on both X1

and X2, A2 satisfied by π defined over reads of X1 and X2 implies that for any w
and r, we cannot have π(r)→H w →H r.

Assume by contradiction that A3 is not ensured and assume two high-level
operations r1 and r2, such that r1 →H r2 and π(r2) →H π(r1). For i = 1, 2, let
ρi be the read operation on X1 or X2 that was used by ri to evaluate the returned
value. Clearly, ρ1 →E ρ2.

There are four cases to consider:

8.1. A Hybrid Reduction Using an Atomic Control Bit 

(1) Both ρ1 and ρ2 read X1.

By property A2 of regular functions, π(ρ1) 6→E ρ2: otherwise we would
have π(ρ2) →E π(ρ1) →E ρ2: ρ2 would return an “overwritten” value.
By property A1, ρ1 6→E π(ρ1). Thus, given that ρ1 →E ρ2, π(ρ1) is
concurrent with both ρ1 and ρ2.

By the algorithm in Figure 8.1, just before writing toX1 in π(ρ1), operation
π(r1) sets WFLAG to true . Since π(ρ1) is concurrent with both ρ1 and
ρ2, no write on WFLAG tales place in the interval between the response
of ρ1 and the invocation of ρ2. Notice that r1 checks WFLAG during
this interval, thus, true is the last written value on WFLAG when it is read
within r1. Thus, after having readX1, r1 must have found true in WFLAG
and returned the value read inX2—a contradiction with the assumption that
the value read in X1 is returned by r1.

(2) Both ρ1 and ρ2 read X2.

Using A1 and A2, we now conclude that π(ρ1), updating X2, is concurrent
with both ρ1 and ρ2. By the algorithm, just before writing to X2, π(r1) has
set WFLAG to false . Thus, before reading X2, r2 must have read false
in WFLAG and returned the value read in X1—a contradiction with the
assumption that the value read in X2 is returned by r2.

(3) ρ1 reads X2 and ρ2 reads X1.

In π(r1), π(ρ1) is preceded by a write wr1 on X1: wr1 →E π(ρ1). By
A1, ρ1 6→E π(ρ1). Now relations wr1 →E π(ρ1), ρ1 6→E π(ρ1), and
ρ1 →E ρ2 imply wr1 →E ρ2.

But, by our assumption, π(r2)→H π(r1) and, thus, π(ρ2)→E wr1, which,
together with wr1 →E ρ2, implies π(ρ2)→E wr1 →E ρ2, violating A2—
a contradiction.

(4) ρ1 reads X1 and ρ2 reads X2.

By the algorithm, after ρ1 has returned, r1 found false in WFLAG . After
this, r2 read X1, found true in WFLAG , then read and returned the value
inX2. Let rf 1 and rf 2 be the read operations of WFLAG performed within
r1 and r2, respectively. Thus, ρ1 →E rf 1 →E rf 2 →E ρ2.

Since WFLAG is atomic, there must be a write operation wf on WFLAG
changing its value from false to true (line 1) that is linearized between lin-
earizations of rf 1 and rf 2, thus wf 6→E rf 1 and rf 2 6→E wf . Let wr1 and
wr2 be the write operations on, respectively, X1 and X2 that immediately
precede wf .

 8. Bounded Atomic Multivalued Register

Now we deduce that π(ρ1) must be wr1 or an earlier write on X1. Other-
wise, we would get wf →E π(ρ1) which, combined with ρ1 →E rf 1 and
wf 6→E rf 1, implies that ρ1 →E π(ρ1)—a violation of A2.

By A2, there is no wr , a write operation on X2, such that π(ρ2) →E

wr →E ρ2.

Similarly, π(ρ2) must be wr2 or a later write on X2. Otherwise, we would
get π(ρ2) →E wr2. But wr2 →E wf , rf 2 6→E wf and rf 2 →E ρ2 imply
wr2 →E ρ2. Thus, π(ρ2)→E wr2 →E ρ2—a violation of A2.

Therefore, π(ρ1) →E π(ρ2) and, thus, π(r1) = π(r2) or π(r1) →H

π(r2)—a contradiction.

Hence, π ensures A3 and the algorithm indeed implements an atomic register.
2Theorem 8.1

Notice that we only used the fact that WFLAG is atomic in case (4). By
replacing WFLAG with a regular register, or a set of registers providing
the functionality of one regular register, we would still maintain atomicity in
cases (1)-(3). However, as we will see in the next section, addressing case (4)
significantly affects the remaining cases.

8.2. The Complete Reduction

We now present the bounded algorithm that transforms regular multivalued multi-
reader registers into an atomic one, without the help of an atomic multi-reader
control bit. The reduction is presented in Figure 8.2. In short, we replace the
atomic control bit WFLAG in the algorithm in Figure 8.1 with several regular
registers of bounded capacity. More specifically, we make use of the following
registers.

• LEVEL ∈ {0, 1, 2}: a ternary regular register used by the writer to inform
the readers about which “stage of writing” it currently is.

• FC [1, . . . , n]: an array of regular binary registers, each FC [i] is written by
reader pi and read by the other readers.

• RC [1, . . . , n]: an array of regular binary registers, each RC [i] is written by
reader pi and read by the writer as well as other readers.

• WC [1, . . . , n]: an array of regular binary registers, written by the writer
and read by the readers.

8.2. The Complete Reduction 

Basically, in the algorithm in Figure 8.1, LEVEL = 1 corresponds to WFLAG =
true , whereas LEVEL = 2 and LEVEL = 0 correspond to WFLAG = false .
Given that LEVEL is a regular register now, to handle its possible new/old inver-
sions, the readers exchange information with each other using array FC [1, . . . , n]
and with the writer using arrays RC [1, . . . , n] and WC [1, . . . , n].

operation R.write(v):
(9) LEVEL← 1;
(10) X1 ← v;
(11) LEVEL← 2;
(12) LEVEL← 0;
(13) X2 ← v;
(14) for j = 1, . . . , n do
(15) lr ← RC [j];
(16) WC [j]← ¬lr

operation R.read() (code for reader pi):
(17) temp ← X1;
(18) lw ←WC [i];
(19) if lw 6= RC [i] then
(20) FC [i]← false;
(21) RC [i]← lw;
(22) case LEVEL do
(23) 0: return(temp);
(24) 2: FC [i]← true; return(temp);
(25) 1: for j = 1, . . . , n do
(26) lr ← RC [j];
(27) lf ← FC [j];
(28) lw ←WC [j];
(29) if (lr = lw) ∧ lf then
(30) FC [i]← true;
(31) return (temp);
(32) temp ← X2;
(33) return(temp)

Figure 8.2.: Atomic register from regular (bounded).

Theorem 8.2 The algorithm in Figure 8.2 implements a 1WMR atomic register
using 1WMR regular registers.

Proof Consider any history H of the algorithm in Figure 8.2 and a corresponding
execution E. As in the proof of Theorem 8.1, we take any reading function π
acting over read operations on base regular registers, then extend it to high-level
read operations on the implemented register R as follows. For each complete
high-level operation r returning the value read by an operation ρ in X1 (line 17)
or X2 (line 32), let π(r) be the high-level write operation w that contains π(ρ). It

 8. Bounded Atomic Multivalued Register

is not difficult to see that π, as a function on high-level reads, is regular (we leave
sorting out the details of the proof as an exercise).

Now assume, by contradiction, that π is not atomic and does not prevent new/old
inversions, i.e., there are two high-level operations r1 and r2, such that r1 →H r2

and π(r2) →H π(r1). For i = 1, 2, let ρi be the read operation on X1 or X2 that
was used by ri to evaluate the returned value.

We introduce the following notations:

• w1 = π(ρ1) and w2 = π(ρ2);

• wr i,j denotes the write to Xj performed within wi (i = 1, 2, j = 1, 2), if
any;

• rr i,j denotes the read of Xj performed within ri (i = 1, 2, j = 1, 2);

• wl i,j denotes j-th write to LEVEL performed within wi (i = 1, 2, j =
1, 2, 3), if any; note that wl i,j writes the value j mod 3;

• rl i denotes the read operations on LEVEL, performed within ri (i = 1, 2).

Since every complete high-level write operation contains writes on bothX1 and
X2, it follows that w2 immediately precedes w1. Otherwise, regardless of which
register Xi (i = 1, 2) is read by ρ2, we would have a write wr on Xi such that
π(ρ2) →E wr →E π(ρ1) which, combined with ρ1 6→E π(ρ1) and ρ1 →E ρ2

(our initial assumption), would imply π(ρ2) →E wr →E ρ2—a violation of A1
for ρ2.

As in the proof of Theorem 8.1, we now should consider the four following
cases:

(1) ρ1 reads X2 and ρ2 reads X1.

Since w2 →H w1, we have π(ρ2) →E wr1,1 →E π(ρ1). Now, by
A1, ρ1 6→E π(ρ1), which, together with ρ1 →E ρ2, implies π(ρ2) →E

wr1,1 →E ρ2—a violation of A2 for ρ2.

(2) Both ρ1 and ρ2 read X2.

Properties A1 and A2 imply that π(ρ1) 6→E ρ2 and ρ1 6→E π(ρ1), i.e.,
π(ρ1) is concurrent with both ρ1 and ρ2. Thus, no write on LEVEL takes
place between the response of ρ1 and the invocation ρ2. By the algorithm,
immediately before updating X2, w1 writes 0 to LEVEL. Thus, before
reading X2, r2 must have read 0 in LEVEL and return the value read in
X1—a contradiction.

8.2. The Complete Reduction 

(3) ρ1 reads X1 and ρ2 reads X2.

Just before updatingX1 in π(ρ1),w1 writes 1 to LEVEL in operation wl1,1,
thus, wl1,1 →E π(ρ1), ρ1 →E rl1, and ρ1 6→E π(ρ1) (property A1) imply
wl1,1 →E rl1 →E rl2.

By the algorithm, r2 must have read 1 in LEVEL. Suppose that wl1,1 6=
π(rl2), i.e., rl2 reads 1 written to LEVEL by another write operation wl .
Since wl1,1 →E rl2, property A2 for rl2 implies wl1,1 →E wl. By the
algorithm, since wl writes 1, we have wl1,2 →E wl . But π(ρ2) →E wr1,2

(since w2 →H w1), rl2 6→E wl (A0 for rl2), and rl2 →E ρ2 (by the
algorithm). Therefore, π(ρ2)→E wr1,2 →E ρ2—a violation of A2 for ρ2.
Thus, π(rl2) = wl1,1.

Since rl1 →E rl2 (by the assumption), wl1,2 6→E rl2 (A2 for rl2), and
wl1,2 →E wl1,3 (by the algorithm), we have rl1 →E wl1,3. Also, since
wl1,1 →E wr1,1, ρ1 →E rl1 (by the algorithm), and ρ1 6→E wr1,1 (A1
for ρ1), we have wl1,1 →E rl1. Furthermore, rl1 →E wl1,3: otherwise,
wl1,2 →E wl1,3 and rl1 →E rl2 would imply wl1,1 →E wl1,2 →E rl2—a
violation of A2 for rl2.

Thus, by the algorithm, rl1 reads either 1 written by wl1,1 or 2 written by
wl1,2. In both cases, r1 (executed, e.g., by reader pi) sets FC [i] to true
before returning the value read by ρ1 (in lines 24 or 30).

Since ρ2 readsX2, we have wr1,2 6→E ρ2. Otherwise, we would violateA2
by having π(ρ2)→E wr1,2 →E ρ2. Thus, ρ1 6→E π(ρ1) and wr1,2 6→E ρ2

imply that the writer performs no updates on registers WC [i] in the interval
between the response of ρ1 and before r2 finishes reading WC [i]. Note
that, within this interval, r1 makes sure that RC [i] = WC [i] and then sets
FC [i] to true .

Any subsequent operation rw performed by pi writing false in FC [i] or
modifying RC [i] can only take place if pi previously finds out that RC [i] 6=
WC [i] (line 19), which cannot take place before a write on WC [i] per-
formed by the writer which, by the algorithm, must succeed wr1,2: indeed,
after r1 ensures RC [i] = WC [i] and sets FC [i] to true and before it sets
FC [i] to false and modifies RC [i] (lines 20 and 21), the writer must modify
WC [i] which can only happen after wr1,2.

Thus, reads of RC [i] and FC [i] performed by r2 precede rw , and the values
read by r2 satisfy RC [i] = WC [i] and FC [i] = true (Figure 8.3). By the
algorithm, r2 must then return the value of X1—a contradiction.

(4) Both ρ1 and ρ2 read X1.

By A1, ρ1 6→E π(ρ1) and by A2, π(ρ1) 6→E ρ2, i.e., π(ρ1) is concurrent
with both ρ1 and ρ2.

 8. Bounded Atomic Multivalued Register

w2

Writer

w1

pi

pj

wl1,1 π(ρ1) wl1,2

r1

rl1

π(ρ2)

rl2

r2

ρ1

set

wr1,2

RC[i] = WC[i]

find FC[i] = true and

ρ2

set

FC[i] = trueRC[i] = WC[i]

Figure 8.3.: An execution in case (3): r2 finds out that RC [i] = WC [i], so r2

cannot return the value read in X2.

Hence, π(rl1) = wl1,1, i.e., r1 reads 1 in LEVEL, and then returns the
value of X1 in line 31 before the response of π(ρ1).

We say that a read operation rk finishes its check-forwarding when rk ex-
ecutes the last read operation on some WC [j] in line 28 before exiting the
for loop starting in line 25. For any operation op, we write cf k →E op if
rk finishes its check-forwarding before the invocation of op.

Suppose now that a read operation rk returns in lines 31 or 33 and satisfies
the following conditions:

(1) rlk 6→E wl1,1, and

(2) cf k →E wl1,2.

Notice that r1 satisfies these conditions. We establish a contradiction by
showing that no such rk can return in line 31.

For read operations r` and rm, we say that r` finishes check-forwarding
before rm, and we write cf ` →E cf m, if the last read operation of the
check-forwarding phase of r` precedes the last read operation of the check-
forwarding phase of rm.

By contradiction, assume that there is a non-empty set R of read operations
satisfying conditions (1) and (2) above that return in line 31. Without loss
of generality, let rk be any read operation on R, such that no other read
operation on R finishes its check-forwarding before rk.

By the algorithm, before returning in line 31, rk finds out that, for some
reader p`, FC [`] = true and WC [`] = RC [`]. Let rt be the read operation

8.2. The Complete Reduction 

performed by p` that, according to the reading function π, wrote this value
in FC [`]. Let rf denote the read operation on FC [`] performed within rk
(line 27), and let wf denote the write operation on FC [`] performed within
rt (lines 24 or 30), i.e., π(rf) = wf . By the algorithm, before executing
wf , rt read 1 or 2 in LEVEL.

We first show that rt reads the value written in LEVEL by a write operation
that precedes w1. Since rf →E wl1,2 (rk ∈ R and the check-forwarding
phases of reads in R satisfy condition (2) above), rl t →E wf (by the algo-
rithm), and rf 6→E wf (A1 for rf), we have rl t →E wl1,2 that is rl t returns
the value written by wl1,1 or an earlier write.

Suppose, by contradiction, that π(rl t) = wl1,1, i.e., rl t returns 1 written
by wl1,1. By A1, we have rl t 6→E wl1,1. Note that the fact that the last
read operation of cf k succeeds rf , cf t →E wf (by the algorithm), and
rf 6→E wf (A1 for rf) imply cf t →E cf k. But cf t →E wf and rf →E

wl1,2 imply cf t →E wl1,2, i.e., rt satisfies conditions (1) and (2), while
cf t →E cf k—a contradiction with the definition of rk.

Hence, rl t returns a value written by a write operation on LEVEL preceding
w1. Since rt modified FC [`], rl t must have returned 1 or 2, and wl2,3 6→E

rl t (otherwise, the only value that rl t can return is 0). Note that, by the
algorithm, any subsequent read operation by p` must set FC [`] to false
(line 20) before modifying RC [`] (line 21). Since rk first reads RC [`] and
then reads true in FC [`] written by wf , the value of RC [`] read by rk
must then be the value that rt has “ensured”, i.e., written or read in its last
operation on RC [`]. Also, w2 reads RC [`] after the invocation of rl t and
before rk read RC [`], therefore it must read the same value of RC [`].

Recall that after executing wl2,3, w2 ensures that WC [`] 6= RC [`]. Since
no succeeding update on WC [`] takes place before rk finishes its check-
forwarding, the value of WC [`] read by rk must be the value that w2 has
previously ensured (Figure 8.4).

Thus, rk will find WC [`] 6= RC [`]—a contradiction with the assumption
that rk returns line 31 after finding out that FC [`] = true and WC [`] =
RC [`].

Thus, the algorithm in Figure 8.2 ensures A1, A2 and A3, and indeed imple-
ments an atomic register. 2Theorem 8.2

 8. Bounded Atomic Multivalued Register

WC[`] 6= RC[`]

Writer

pk

p`

rt

w1

wl1,2

find WC[`] 6= RC[`]

rk

rlk

cftrlt

read 1 or 2 fromensure
a write preceding wl2,3

wl2,3 wl1,1 π(ρ1)

cfk

w2

WC[`] = RC[`]

ensure

Figure 8.4.: A scenario for case (4): rk finds out that RC [`] 6= WC [`], so rk
cannot return the value read in X1.

8.3. Chapter Notes

Both constructions of a multi-reader atomic register, the one with the use of an
atomic bit and the direct one, presented in this chapter, are due to Haldar and
Vidyasankar [52].

8.4. Exercises

1. Explain why the algorithm in Figure 8.1 does not implement an atomic
register if we replace the atomic bit WFLAG with a regular one.

2. Show that π, the reading function defined in the proof of Theorem 8.2 on
high-level read operations, is regular.

Part III.

Snapshot Objects

9. Collects and Snapshots

Until now we discussed read-write abstractions in which every read operation
returns the last value written to a single specified register. It is also convenient to
have an abstraction that enables the reader to get, in a single operation, the vector
of the last values written by all the processes. As usual, we expect the operation
to be wait-free, and we explore several definitions of the “last written value”.

We start with the collect object. We sketch a simple collect implementation and
show that the collect abstraction has no sequential specification.

We then proceed to the stronger (atomic) snapshot object. We first present
a snapshot implementation from unbounded atomic registers based on sequence
numbers, and then show how to implement a snapshot object in a bounded way.

In Chapter 10, we discuss the (even stronger) immediate snapshot abstraction.

9.1. Collect Object

A collect object exports the operation store() that is used to post values and the
operation collect() that returns a view, a collection of “most recent” values posted
so far. More precisely, a view V is an n-vector, with one value per process.
Intuitively, store(v) is invoked by process pi to replace the value in position i
of the view with v. If no value has been posted by pi so far, the view returned by
a collect() operation contains ⊥ at position i.

9.1.1. Definition and Implementation

A collect object can be seen as an array of n elements. Each process pi can update
element i using the store() operation. An evaluation of the content of the array
can be obtained using the collect() operation: each position i of the returned n-
vector, called a view, contains the argument of a concurrent store operation or the
argument of the latest store operation of pi.

For simplicity, we assume that every value written by a given process pi, includ-
ing the initial value in position i, is unique. This way the value at position i in a
view V returned by a collect operation is associated with a unique store operation
si by pi that has written that value, and we simply write si ∈ V (the initial value
⊥ the view is associated with an artificial “initializing” store operation performed
by pi in the beginning). We also say that view V is contained in a view V ′, and

 9. Collects and Snapshots

we write V ≤ V ′, if for all j, V [j] is written before V ′[j]. We write V < V ′ if
V ≤ V ′ and V 6= V ′.

To define what it means for a collect object to behave correctly, consider a his-
tory H of events inv [store()], resp[store()], inv [collect()] resp[collect()] issued
by the processes. Recall that <H denotes the total order on the events in H and
→H denoted the real-time order on the operations in H . As usual, we assume
that H is well-formed: no process invokes a new operation on the collect object
before its previous operation returns. Thus, any two operations invoked by a given
process in H are related by →H . Every history H of invocations and responses
on a collect object must satisfy the following properties (here C denotes a collect
operation and si denotes a store operation of process pi):

B1 : For each collect operation C that returns V , and each si ∈ V : C¬ →H si.
(No collect returns a value not yet written.)

B2 : For each collect operation C that returns V , store operations s and s′ by
process pi, such that s′ ∈ V : (s →H C) ⇒ (s = s′ ∨ s′ →H s′). (No
collect returns an overwritten value.)

B3 : ∀ V, V ′ returned by C,C ′: (C →H C ′) ⇒ (V ≤ V ′). (The result of any
collect contains all preceding ones.)

A straightforward implementation of a collect object maintains n atomic
registers, REG [1], . . . ,REG [n], one per process. To store a value, pi simply
writes it to REG [i]. To collect the content, pi reads REG [1], . . . ,REG [n]
in any order. We can construct a collect reading function as a composition
of corresponding atomic reading functions π1, . . . , πn: for each collect oper-
ation, define π(C)[i] = πi(r

C
i), where rCi is the read operation on REG [i]

performed withinC. The reader can easily see that the resulting reading func-
tion satisfies properties B1–B3 above.

9.1.2. A Collect Object has no Sequential Specification

An abstraction A has a sequential specification S if its behavior can be expressed
through a set of sequential histories in S. Formally:

• Every implementation of A is a linearizable implementation of S, and

• Every linearizable implementation of S is an implementation of A.

Note that the second property implies that every sequential history of S should be
a history of A. If an abstraction A has a sequential implementation, we say that A
is an atomic object.

9.1. Collect Object 

Lemma 9.1 Collect is not an atomic object.

Proof Suppose, by contradiction, that the collect abstraction has a sequential
specification S.

Consider the execution history in Figure 9.1. Here the collect() operation is-
sued by p1 is concurrent with two store operations issued by p2 and p3. The history
could have been exported, for example, by an execution of the simple algorithm
described above (Section 9.1.1), in which p1, within its collect() operation, reads
REG [2] before the write on REG [2] performed by p2 and REG [3] after the write
on REG [3] performed by p3.

By our assumption, the history should be linearizable with respect to S. We
recall that any linearization of H should respect the real-time order on operations,
thus, we should put [store(v) by p2] before [store(v′) by p3] in any linearization
of H . We establish a contradiction by showing that there is no way to find a place
for the collect() operation in any such linearization.

Suppose that S permits to place the collect() operation before store(v′) by
p3. Thus, S contains a sequential history that violates property B1 (the collect
operation returns a value which is not written yet).

Now suppose that S permits to place the collect() operation after store(v′) by
p3. This results in a history that violates propertyB2 (the collect operation returns
an overwritten value).

In both cases, S contains a history that does not respect the properties of collect.
2Lemma 9.1

Note that the proof will hold even for a weaker abstraction that only satisfies only
B1 and B2: A collect abstraction would not have a sequential specification even
without the requirement that any collect operation should contain all preceding
collect operations.

store(v′)

p1

p2

⊥

⊥

⊥
p3

collect()→ [⊥,⊥, v′]

store(v)

Figure 9.1.: A collect object has no sequential specification

 9. Collects and Snapshots

9.2. Snapshot Object

One of the reasons the collect object cannot be captured by a sequential specifi-
cation is that it permits concurrent collect operations to return views that are not
“ordered”, i.e., not related by containment.

In this chapter, we introduce an “atomic restriction” of collect: a snapshot ob-
ject that exports two operations: update() and snapshot(). The snapshot() op-
eration returns a vector of n values (one per process). The value in position i of
the vector contains the argument of the last preceding or a concurrent update()
operation executed by process pi.

9.2.1. Definition

In every history H , a snapshot object satisfies properties B1–B3 of collect (Sec-
tion 9.1.1), where store and collect are replaced with update and snapshot , re-
spectively, plus the following two properties:

B4 For any two views V and V ′ obtained by snapshot operations, (V ≤ V ′) ∨
(V ′ ≤ V).

B5 For any two updates u and u′, where u is performed by a process pi, and
any view V obtained by a snapshot operation, if u′ ∈ V and u→H u′, then
V contains u or a later update at position i.

In other words, non-concurrent updates cannot be observed by snapshot
operations in the opposite order: new-old inversion on the level of snapshot
and updates is not allowed.

If snapshot operations S and S′ return views V and V ′, respectively, such that
V ≤ V ′, we say that S is contained in S′, and write S ≤ S′. Thus, B4 implies
that any two snapshot operations are related by containment.

9.2.2. The Sequential Specification of Snapshot

The sequential specification of snapshot is defined as a set of sequential histories
of update and snapshot operations. In every such sequential history, each posi-
tion i of the vector returned by every snapshot operation contains the argument of
the last preceding update operation of pi (if any, or the initial value ⊥ otherwise).

Intuitively, a concurrent implementation of the snapshot type gives the illusion
of update and snapshot operations taking place instantaneously. We show that this
type indeed captures the behavior of a snapshot object.

Lemma 9.2 Snapshot is an atomic object (with respect to the snapshot type).

9.2. Snapshot Object 

Proof (1) Consider a finite history H of a snapshot implementation. Recall that
H satisfies propertiesB1–B3 of collect (where store and collect are replaced with
update and snapshot), plus B4 and B5.

We construct a linearization L of H as follows. First, we order all complete
snapshot operations in H , based on the ≤ relation, which is possible by property
B4.

Let update(v) = U be an operation performed by pi. U is then inserted in L
just before the first snapshot operation that returns v or a later value in position
i, or at the end of the sequence if there is no such a snapshot. After having done
this for every update, we obtain a sequence [U0], S1, [U1], S2, [U2], . . ., Sk, [Uk],
where each [Uj] is a (possibly empty) sequence of update operations U such that
snapshot Sj returns values older than written by U and Sj+1 returns the value
written by U or a later value. Now we rearrange elements of each [Uj] so that the
real-time order is respected. This is possible since the real-time order is acyclic.

Now we show that the resulting linearization L respects the order →H . Con-
sider two operations op and op′, such that op→H op′. Three cases are possible:

• Both op and op′ are update operations. Let op and op′ belong to [U`] and
[Um], respectively. If ` < m, op →L op′, as [U`] precedes [Um] in L. If
` = m, L), then op→L op

′, as L preserves the real-time order ofH in each
[Um].

Suppose now that ` > m. But, by B5, Sm+1 contains op′ and any update
that precedes it, including op. By the construction of L, op′ cannot belong
to U`—a contradiction.

• Both op and op′ are snapshot operations that return views V and V ′, respec-
tively. If op′ is incomplete, then it does not appear in L. If op′ is complete,
then by B3, V ≤ V ′. Since L orders snapshots based on the ≤ relation, if
op′ appears in L, we have op→L op

′ in L.

• op is an update and op′ is a snapshot. By B2, op′ returns the value written
by op or a later value, and, by the construction of L and B4, op→L op

′.

• op is a snapshot and op′ is an update. By B1, the value written by op′ does
not appear in the result of op. By the construction of L, op→L op

′.

Thus, any snapshot object is a linearizable implementation of the snapshot type.
(2) Now consider a history H of a linearizable implementation of the snap-

shot type. We are going to show that H satisfies properties B1−B5. Let L be a
linearization of H . Thus, L is a legal (with respect to the snapshot type) sequen-
tial history that is equivalent to a completion of H and that respects the real-time
order in H . In particular, L contains every complete operation in H .

 9. Collects and Snapshots

• Suppose that a snapshot operation S returns a value v at position i in H .
SinceL is legal, v is the value written by the last update u of pi that precedes
S in L. Since L respects the real-time order, S cannot precede u inH , thus,
B1 is ensured in H .

• Suppose an update u precedes a snapshot S in H . Since L respects the
real-time order of H , u precedes S also in L. Since L is legal, S returns the
value written by u or a later value at the corresponding position, thus, B2
is ensured in H .

• Suppose a snapshot S1 precedes a snapshot S2 in H . Since L respects the
real-time order of H , S1 precedes S2 also in L. Legality of L implies that
S1 ≤ S2, thus, B3 is ensured in H .

• All complete snapshot operations appear in L and, since L is legal, are
related by ≤: B4 is ensured in H .

• Suppose that an update u1 precedes an update u2 and a snapshot S returns
the value written by u2. Since L respects→H and is legal, we have u1 →L

u2 and u2 →L S. Thus, u1 →L S and, since L is legal, S returns the value
written by u1 or a later value at the corresponding position: B5 is ensured
in H .

Hence, any linearizable implementation of the snapshot type is indeed a snapshot
object. 2Lemma 9.2

Note that, unlike the operational definitions of collect and snapshot objects
proposed above, the definition of the sequential snapshot type is valid even
if we do not assume that every value written by a given process is unique.
However, the snapshot implementations presented in this section stick to this
assumption. We get rid of it in Section 9.3 where we present a bounded
snapshot implementation.

9.2.3. Non-Blocking Snapshot

We start with a simple non-blocking snapshot implementation that only guaran-
tees that at least one correct process completes each of its operations. The con-
struction assumes that the underlying base registers can store values of arbitrary
(unbounded) size, i.e., we can associate ever-growing sequence numbers with ev-
ery stored value. Then we turn the construction into an unbounded wait-free one.
Finally, we present a wait-free snapshot implementation that uses bounded mem-
ory.

9.2. Snapshot Object 

operation update(v) invoked by pi:
sni ← sni + 1 { local sequence number generator }
REG[i]← [v, sni] { store the pair }

Figure 9.2.: Update operation

operation snapshot():
1 aa← REG.scan();
2 repeat forever
3 bb← REG.scan();
4 if (aa = bb) then return (aa.val); { return the vector of read values }
5 aa← bb

Figure 9.3.: Snapshot operation

Our n-process snapshot implementation uses an array of atomic registers REG [].
Each value that can be stored in a register REG [i] is associated with a sequence
number that is incremented each time a new value is stored. Each REG [i] con-
sists of two fields, denoted REG [i].sn and REG [i].val. The implementation of
update() is presented in Figure 9.2. Here sni is a local variable, initially 0, that
pi uses to generate sequence numbers.

In an update operation, process pi simply writes the value, together with its
sequence number, in the corresponding register. To ensure that the result of
every snapshot operation is consistent, i.e., contains the most recent the imple-
mentation uses the double collect technique: the process keeps reading registers
REG [1, . . . , n] until two consecutive collects return identical results. The result
of the last scan is then returned by the snapshot operation.

The scan() function asynchronously reads the last (sequence number, data)
pairs posted by each process:

function REG .scan():
for j ∈ {1, . . . , n} do

r[j]← REG [j];
return (r)

Theorem 9.3 The algorithm in Figures 9.2 and 9.3 is a non-blocking snapshot
implementation.

Proof To prove that the implementation is non-blocking, consider any infinite
execution of the algorithm.

 9. Collects and Snapshots

The update operation terminates in only one base-object step. Suppose now
that a snapshot operation performed by a correct process pi never terminates. By
the algorithm, pi thus executes infinitely many scans of REG . The only reason
to not return in line 4 is to find out that one of the positions in REG has changed
since the last scan. Thus, for every two consecutive scan operations C1 and C2

executed by pi, another process pj executes an update operation U such that write
to REG [j] in U takes place between the read of REG [j] in C1 and the read of
REG [j] in C2. Since there are only finitely many processes, at least one process
performs infinitely update operations concurrently with the snapshot operation of
pi. Thus, in every infinite execution of the algorithm, at least one correct process
completes every its operation. So indeed the implementation is non-blocking.

Now we show that the implementation is linearizable with respect to the snap-
shot type. Let E be any finite execution of the algorithm and H be the corre-
sponding history. Consider any complete snapshot() operation in E. Let C1 and
C2 be its last two scans. By the algorithm, C1 and C2 return the same result. Now
we choose the linearization point of the snapshot operation to be any point in E
between the response of C1 and the invocation of C2 (see example in Figure 9.4).
Otherwise, if a snapshot operation does not return in E, we remove the operation
from our completion of the corresponding history H .

Consider now an update(v) operation executed by a process pi in E. We lin-
earize the operation at the point when it performs a write on REG [i] in E (if it
does not, we remove it from the completion of H).

linearization point of snapshot()

REG [1]

REG [4]

REG [3]

REG [2]

aai[1].sn = a = REG [1].sn bbi[1].sn = a

aai[2].sn = b bbi[2].sn = b

bbi[3].sn = caai[3].sn = c

aai[4].sn = d bbi[4].sn = d

second scan()first scan()
snapshot()

Figure 9.4.: Linearization point of a snapshot() operation

9.2. Snapshot Object 

Let L be the resulting linearization of H , i.e., the sequential history where op-
erations appear in the order of their linearization points in E. By the construction,
L is equivalent to a completion of H . Also, since each operation is linearized
within its interval in E, L respects the real-time order of H . We show that L
is legal, i.e., at every position i, every snapshot operation in L returns the value
written by the latest preceding update of pi.

Let S be a snapshot operation in L, and letC1 andC2 be the two last scans of S.
For each pi, let ui be the last update operation of pi preceding S in L. Recall that
ui is linearized at the write on REG [i] and S is linearized between the response
of C1 and the invocation of C2. Since, by the algorithm, C1 and C2 read the same
value in REG [i], no write on REG [i] takes place between the read of REG [i]
performed within C1 and the read of REG [i] performed within C2. Thus, since
the write operation performed within ui is the last write on REG [i] to precede the
linearization point of S in E, we derive that it is also the last write on REG [i] to
precede the read of REG [i] performed within C1.

Therefore, for each pi, the value of pi returned by C1 and, thus, by S is the
value written by ui. Hence, L is legal, and the algorithm in Figures 9.2 and 9.3
gives a linearizable implementation of a snapshot. 2Theorem 9.3

9.2.4. Wait-Free Snapshot

In the non-blocking snapshot implementation in Figures 9.2 and 9.3, update op-
erations can starve a snapshot operation out by “selfishly” updating REG . This
implementation can be turned into a wait-free one by using helping: an update op-
eration can help concurrent snapshot operations terminate. An update operation
can take a snapshot and store the result, together with the new value, in REG .
Of course, for this helping mechanism to work, we need to make sure that the
intertwined snapshot and update operations do not prevent each other from termi-
nating.

First, we can make the following two observations about the non-blocking snap-
shot implementation:

• If two consecutive scans performed within a snapshot operation are not
identical, then at least one process has concurrently performed an update
operation.

• If a snapshot operation S issued by a process pi witnesses that the value of
REG [j] has changed twice, i.e., pj concurrently executed two update oper-
ations u1 and u2, then the second of these updates was entirely performed
within the interval of S. This is because S observed the value written by u1

(and, thus, u2 was invoked after the invocation of S) and the (atomic) write
by pj of the base atomic register REG [j] is the last operation of u2.

 9. Collects and Snapshots

As the execution interval of the second update falls entirely within the interval
of S, we can use the update to “help” S as follows:

• Within u2, pj takes a snapshot itself (using the algorithm in Figure 9.3) and
writes the result help to REG [j].

• Within S, pi uses the result read in REG [j] as the response of S. This
is going to be a valid result, since the execution of u2 (and, thus, of the
snapshot performed by u2) takes place entirely within the interval of S, so
S can simply “borrow” the snapshot result help from U2.

Note that for this kind of helping to work, S must witness at least two concur-
rent updates of the same process. For example, even though the write on REG [j],
performed within u1, takes place within the interval of S, the snapshot written
by u1 together with its value can have taken place way before the invocation of
S. Thus, adopting the result of u1’s snapshot as the result of S might violate lin-
earizability, since it can miss updates executed after the snapshot taken by u1 but
before the invocation of S. This is why, before adopting the snapshot taken by pj ,
pi should wait until it observes the second change in REG [j].

The resulting implementations of update() and snapshot() are described in
Figure 9.5. The atomic register REG [i] consists now of three fields, REG [i].val
and REG [i].sn as before, plus the new field REG [i].help array that contains the
result of the snapshot taken by pi in the course of its latest update operation.

The new local variable could helpi is used by process pi when it executes
snapshot(). Initially ∅, could helpi contains the set of the processes that ter-
minated update operations concurrently with the snapshot operation currently ex-
ecuted by pi (lines 11-15). When pi observes that a process pj ∈ could help
updated its value in REG , i.e., pi finds out that aai[j].sn 6= bbi[j].sn , pi returns
REG [j].help array as the result of its snapshot operation.

9.2.5. The Snapshot Implementation is Bounded Wait-Free

Theorem 9.4 Each update() or snapshot() operation returns after at mostO(n2)
operations on base registers.

Proof Let us first observe that an update() by a correct process always terminates
if the snapshot() operation it invokes always returns. So, the proof consists in
showing that any snapshot() issued by a correct process pi terminates.

Suppose, by contradiction, that a snapshot operation executed by pi has not
returned after having executed n times the while loop (lines 5-16). Thus, each
time it has executed the loop, pi has found out that for some new j /∈ could helpi,
aai[j].sn 6= bbi[j].sn (line 11), i.e., pj has executed a new update() operation
since the last scan() of pi. After this, j is added to the set could helpi in line 14.

9.2. Snapshot Object 

operation update(v) invoked by pi:
(1) help arrayi ← snapshot();
(2) sni ← sni + 1;
(3) REG[i]← (v, sni, help arrayi)

operation snapshot():
(4) could helpi ← ∅;
(5) aai ← REG.scan();
(6) while true do
(7) bbi ← REG.scan();
(8) if (∀j ∈ {1, . . . , n} : aai[j].sn = bbi[j].sn) then
(9) return (aai.val)
(10) else for all j ∈ {1, . . . , n} do
(11) if (aai[j].sn 6= bbi[j].sn) then
(12) if (j ∈ could helpi) then
(13) return (bbi[j].help array)
(14) else
(15) could helpi ← could helpi ∪ {j};
(16) aai ← bbi

Figure 9.5.: Snapshot object construction

Note that i /∈ could helpi (pi does not change the value of REG [i] while ex-
ecuting snapshot()). Thus, after n − 1 iterations, could helpi contains all other
n − 1 processes {1, . . . , i − 1, i + 1, . . . , n}. Therefore, when pi executes the
while loop for the nth time, for any pj such that aai[j].sn 6= bbi[j].sn (line 11),
it finds j ∈ could helpi in line 12. By the algorithm, pi returns in line 13, after
having executed n iterations in lines 5-16—a contradiction.

Thus, every snapshot operation returns after having executed at most n while
loops in lines 5-16. Since every loop involves exactly n base-object reads (in the
scan operation on registers REG [1], . . ., REG [n]), every snapshot terminates in
n2 base-object steps. An update operation additionally executes only one base-
object write, thus its complexity is also within O(n2). 2Theorem 9.4

9.2.6. The Snapshot Object Implementation is Atomic

Theorem 9.5 The object built by the algorithms described in Figure 9.5 is atomic
with respect to the snapshot type.

Proof LetE be an execution of the algorithm andH be the corresponding history
of E. To prove that the algorithm is indeed an atomic snapshot implementation,
we construct a linearization of H , i.e., a total order L on the operations in H such
that: (1) L is equivalent to a completion of H , (2) L respects the real-time order

 9. Collects and Snapshots

of H , and (3) L is legal, i.e., each snapshot() operation S in L returns, for each
process pj , the value written by the last update() operation of pj that precedes S
in L.

The desired linearization L is built as follows. The linearization point of a com-
plete update() operation in E is the write in the corresponding 1WMR register
(line 3). Incomplete update operations are not included to L. The linearization
point of a snapshot() operation S issued by a process pi depends on the line at
which it returns.
(i) If S returns in line 9 (successful double scan()), then the linearization point
is any time between the end of the first scan() and the beginning of the second
scan() (see the proof of Theorem 9.3 and Figure 9.4).
(ii) If S returns in line 13 (i.e., pi terminates with the help of another process pj),
then the linearization point is defined recursively as the linearization point of the
corresponding update operation of pi. In the example depicted in Figure 9.6, the
arrows show the direction in which snapshot results are adopted by one operation
from another.

pi

pj1

pjk

snapshot()

successful double scan

help array

help array

update()

update() update()

snapshot()

snapshot()

update()

Figure 9.6.: Linearization point of a snapshot() operation (case ii)

We show now that the linearization point is well-defined. If S returns in line 13,
the array (say help array) returned by pi has been provided by an update() op-
eration executed by some process pj1 . As we observed earlier, this update() has
been entirely executed within the interval of S, since help array is the result of
the second update operation of pj that is observed by pi to be concurrent with S.
Thus, this update started after the invocation of S and its last event (the write in
REG [j] in line 8) before the response of S.

Recursively, help array has been obtained by pj1 from a successful double
scan, or from another process pj2 . As there are at most n concurrent processes,
it follows by induction that there is a process pjk that has executed a snapshot()

9.3. Bounded Snapshot 

operation within the interval of S and has obtained help array from a successful
double scan.

The linearization point of the snapshot() operation issued by pi is thus de-
fined as the linearization point of snapshot() operation of pjk whose double scan
determined help array .

This association of linearization points to the operations in H results in a com-
plete sequential history L that puts the operations inH in the order their lineariza-
tion points appear in E.
L trivially satisfies properties (1) and (2) stated at the beginning of the proof.

Reusing the proof of Theorem 9.3, we observe that, for every pj , every snapshot
operation S (be it a standalone snapshot or a part of an update) returns the value
written to REG [j] by the last update of pj to precede the linearization point of S
in E. Thus, L also satisfies (3), and the algorithm in Figure 9.5 is a linearizable
implementation of snapshot. 2Theorem 9.5

9.3. Bounded Snapshot

Implementing atomic abstractions is our main concern. In Chapter 7, we de-
scribed a space-optimal implementation of an atomic bit that uses three safe bits.
In Chapter 8, we discussed how to implement a multi-valued bounded atomic
register from bounded regular registers.

In contrast, our implementation of the snapshot abstraction in Section 9.2.4
assumes underlying atomic registers of unbounded capacity. Indeed, the values
written to the abstraction by update operations are assumed to be unique, e.g.,
equipped with distinct sequence numbers that are taken in an unbounded range.

We can see an apparent gap between these transformations, and a natural ques-
tion is whether we can use atomic registers of bounded size to implement snap-
shot.

9.3.1. Double Collect and Helping

The unbounded construction of snapshots was based on two simple ideas: double
collect and helping.

Two consecutive collects returning identical results within a snapshot operation
guarantee that no register has been changed in the interval of time between the
return of the first collect and the invocation of the second one. Thus, all the
updates affecting the result of these collects can be safely linearized before the
end of the first one.

If, after taking n collects, process pi does not observe two consecutive identical
ones, then at least one of the n − 1 other processes (denote it pj) performed two

 9. Collects and Snapshots

concurrent updates. Now assume that each update operation of pj includes taking
a snapshot and attaching its outcome to the written snapshot value. Clearly, the
snapshot attached to the second update performed by pj , and witnessed by pi,
took place within the interval of the snapshot operation of pi. Hence, it is safe for
pi to adopt this outcome as its own.

Notice, however, that these mechanisms rely on the assumption that every value
written to the snapshot object is unique, otherwise, two identical collects do not
necessarily imply that no concurrent update took place. An amusing exercise is
to find an incorrect execution of our algorithm, assuming that the “unique-write”
requirement is lifted. Intuitively, the so-called ABA problem (A in a snapshot
position is replaced with B and then with A again, so that a concurrent reader does
not see the change) can cause a snapshot operation to return an inconsistent value
(see Exercise 3).

In histories with an unbounded number of updates, using a distinct value for
each update operation requires unbounded memory. But suppose now that we
seek a bounded snapshot object: processes only write values from a bounded
range. It turns out that a simple bounded-space handshaking mechanism can be
used to detect modifications in a snapshot position.

9.3.2. Binary Handshaking

Let us recall the signaling mechanism in the 1W1R atomic register construction
(Chapter 7): the writer uses a special bit W to inform the reader that the value of
the implemented register has been modified, and the reader uses another special
bit R to inform the writer that the last written value has been read.

Intuitively, in a snapshot construction, every process executing a snapshot op-
eration acts as a reader, and every process executing an update operation acts as a
writer. Therefore, for each distinct pair of processes, pi and pj , we can maintain
two atomic binary registers W [i, j] and R[i, j], where W [i, j] can be written by
pi when it performs an update and read by pj when it performs a snapshot, while
R[i, j] can be written by pj when it performs a snapshot and read by pi when it
performs an update.

Now suppose that after pi modifies REG [i], it also checksR[i, j] for each j 6= i
and sets W [i, j] to be different from R[i, j]. Respectively, whenever pj collects
the values of REG it checks W [i, j] and, if needed, sets R[i, j] to be equal to
W [i, j]. Therefore, whenever pj takes a subsequent scan of REG and observes
R[i, j] 6= W [i, j], it may deduce that REG [i] has been recently changed.

It is still possible, however, that pi changes REG [i] but pj takes its scan before
pi modifies W [i, j]. This is why we also introduce an additional toggle bit that
is attached to the value written to REG [i]. The bit REG [i].toggle is inverted
each time REG [i] is written by pi. This way pj can detect a concurrent update

9.3. Bounded Snapshot 

operation via a change either in REG [i].toggle or in W [i, j].

9.3.3. Bounded Snapshot with Handshaking

Figure 9.7 describes a bounded implementation of the snapshot object. Now the
atomic register REG [i] consists of three fields, REG [i].val for the written value,
REG [i].help array for the result of the snapshot taken by pi within its latest
update operation, and REG [i].toggle for the bit inverted with each new update
performed by pi.

operation update(v) invoked by pi:
(17)help array i ← snapshot();
(18)REG[i]← (v, help array i,¬REG[i].toggle);
(19) for all j ∈ {1, . . . , n}, i 6= j do
(20) if R[i, j] =W [i, j] then
(21) W [i, j]← 1−W [i, j]

operation snapshot():
(22)could helpi ← [0, . . . , 0];
(23) while true do
(24) for all j ∈ {1, . . . , n}, i 6= j do
(25) if R[j, i] 6=W [j, i] then
(26) R[j, i]← 1−R[j, i];
(27) aai ← REG.scan();
(28) bbi ← REG.scan();
(29) for all j ∈ {1, . . . , n}, i 6= j do
(30) if R[j, i] 6=W [j, i] or

aai[j].toggle 6= bbi[j].toggle then
(31) if could helpi[j] = 2 then
(32) return (REG[j].help array)
(33) else
(34) could helpi[j]← could helpi[j] + 1;
(35) else
(36) return (bbi.val)

Figure 9.7.: Bounded snapshot

The update operation is very similar to that in the unbounded algorithm (Fig-
ure 9.5). But instead of using a unique sequence number with every written value,
process pi inverts the toggle bit and makes sure that W [i, j] 6= R[i, j], in order to
inform every other process pj that a new value has been written.

In the snapshot operation, process pi first ensures that W [j, i] = R[j, i] for
every j 6= i, and then performs two scans of REG . We will show that, for any
j 6= i, REG [j].toggle has different values in these two scans or W [j, i] does not
equal R[j, i] if and only if REG [j] has been concurrently modified. Thus, if no

 9. Collects and Snapshots

j satisfies the conditions in line 30, it is safe to return the outcome of the latest
scan taken by pi (line 36). If, for some j, the conditions are satisfied in three
iterations, then it is safe to return the snapshot attached to last the value written by
pj (line 32). Note that, unlike the unbounded version (Figure 9.5), this algorithm
cannot return after two concurrent modifications of the shared memory performed
by another process are observed (see Exercise 6).

9.3.4. Correctness

Essentially, we use the correctness arguments of the unbounded snapshot algo-
rithm (Section 9.2.4). As before, we linearize each update operation of a process
pi at the point it writes to REG [i]. Each snapshot operation that detects no con-
flicts and returns in line 36, is linearized anywhere between the end of its first
scan (line 27) and the beginning of its second scan (line 28), taken just before re-
turning. Recursively, each snapshot operation, which adopts the value written by
a concurrent update operation op (line 32) is linearized at the linearization point
of the corresponding snapshot operation performed within op (line 17).

Two points remain to be proved in this bounded algorithm. First, we need to
show that if a snapshot operation S does not detect any change in REG [j] in
line 30, then indeed REG [j] has not been modified between the moment it was
read in line 27 and the moment point it was read in line 28.

Lemma 9.6 Let s1 and s2 be two consecutive scans performed within a snapshot
operation S by a process pi. If REG [j] has been modified between the moment
it has been read in s1 and the moment it has been read in s2, then the check in
line 30 performed by S immediately after s2 will succeed.

Proof If REG [j] has been modified only once after it was read in s1 but before
it was read in s2, then the toggle field is different in aai[j] and bbi[j], hence the
check in line 30 will succeed.

Suppose now that REG [j] has been modified at least twice in the chosen inter-
val. By the update algorithm, between any two modifications of REG [j], pj must
make sure that R[j, i] 6= W [j, i] (lines 19-21). Since between s1 and s2, pi does
not modify R[j, i], when it reads W [j, i] immediately after the scans (line 30), it
will find R[j, i] 6= W [j, i] in line 30 and the check will succeed. 2Lemma 9.6

Thus, a snapshot operation that, for all j, passed through the checks in line 30 and
returned in line 36 can be safely linearized at any point between its last two scans.

Second, we need to show that it is also safe for a snapshot operation to “borrow”
the outcome of a snapshot taken by a process that has been witnessed “moving”
three times (line 32). within the interval of S. For this, we first prove the following
auxiliary result:

9.3. Bounded Snapshot 

Lemma 9.7 Let s1 and s2 be two consecutive scans performed within a snapshot
operation S by a process pi (lines 27 and 28). If the check in line 30 performed
by S immediately after s2 succeeds for some j, then REG [j] or W [j, i] has been
modified in the interval between time t1, when W [j, i] has been read just by pi
before s1 (line 25), and time t2, when W [j, i] has been read by pi just after s2

(line 30).

Proof Suppose that the check in line 30 succeeds because the toggle bit of
REG [j] has changed. This can happen only if pj has written to REG [j] (line 18))
between the reads of the register performed by pi within s1 and s2, thus, in the
desired interval.

Suppose now that pi finds out, in line 30, that R[j, i] 6= W [j, i]. But after
having read W [j, i] at time t1 and before executing s1, pi has made sure that
R[j, i] = W [j, i] (lines 25 and 26. Thus, the only reason is to find out later
that R[j, i] 6= W [j, i] can be a modification of W [j, i] (line 21) performed in the
interval between t1 and t2. 2Lemma 9.7

Lemma 9.8 If a snapshot operation S returns the view provided by an update
operation U (line 32), then the execution of the snapshot S′ taken by U falls
within the interval of S.

Proof Suppose that pi, within a snapshot operation S, returns the view written by
an update operation U performed by pj . By the algorithm and Lemma 9.7, during
S, pj “moved” (by modifying REG [j] or W [j, i]) at least three times.

Note that pj can modify each of the registers REG [j] and W [j, i] at most once
during an update operation: in lines 18 and 21, respectively. Thus, if three checks
in line 30 performed by S succeed, the first and the third modifications of REG [j]
and W [j, i] witnessed by S must belong to different update operations performed
by pj , let us denote these update operations by U1 and U2.

Since an update operation performed by pj first takes a snapshot, then writes the
outcome to REG [j] (together with its value and the toggle bit), and then modifies
W [j, i] (if needed), we conclude that the value read by S in REG [j] in line 32
was written by a concurrent operation U , which is U2 or a subsequent update
operation. But since U1 is concurrent with S and U succeeds U1, we have that the
snapshot operation S′ taken within U is entirely contained within the interval of
S. 2Lemma 9.8

Thus, we can safely assign the linearization point of S to the linearization point
of S′. As in the unbounded case, this recursive assignment of linearization points
to snapshot operations is well-defined. The reader is encouraged to check this
and to show that the sequential history based on these linearization points is legal,
following the proof for the unbounded algorithm.

 9. Collects and Snapshots

9.4. Chapter Notes

The collect abstraction was introduced by Aspnes and Waarts [5], refined and
implemented in an adaptive way by Attiya, Fouren, and Gafni [8]. The notion
of atomic snapshot was introduced by Afek et al., they also gave the snapshot
implementations discussed in this chapter [1].

9.5. Exercises

1. Would the algorithm implementing collect (Section 9.1.1) be correct if, in-
stead of atomic registers, regular ones were used?

If not, would it be correct if we only require properties B1 and B2 to be
satisfied?

2. Give a sequentially consistent wait-free snapshot implementation withO(n)
step complexity.

3. Show that the non-blocking snapshot algorithm (Section 9.2.3) is not cor-
rect if the values of update operations are not unique.

Hint: Consider an instance of the classic ABA problem: a register is written
with value A, then overwritten with value B, and then overwritten with A
again, so that a concurrent reader reading A and then A again cannot detect
that the register temporarily stored B.

4. Show that the bounded implementation of snapshot (Section 9.3) is not cor-
rect if we do not use toggle bits.

5. Show that, by presenting a counter-example, the bounded snapshot algo-
rithm (Figure 9.7) would be incorrect if we did not use the toggle bit.

6. Show that the bounded algorithm is incorrect if the condition in line 31 is
replaced with could helpi[j] = 1.

7. Show that the bounded algorithm is incorrect if line 32 is replaced with
return (bbi[j].help array).

10. Immediate Snapshot and
Iterated Immediate Snapshot

In Chapter 9, we discussed the (atomic) snapshot abstraction providing two oper-
ations: update, which enables a process to write a value in a dedicated memory lo-
cation; and snapshot, which atomically returns the “current” state of the memory.
Strong and useful, the atomic-snapshot abstraction, however, does not preclude a
situation when snapshots, taken by different processes, are “unbalanced”: a snap-
shot Si taken by pi contains a value written by pj , but the snapshot Sj taken by
pj contains more recent values (hence, is more up-to-date) than Si. In this chap-
ter, we discuss a restricted version of the snapshot abstraction, called immediate
snapshot: it only exports “balanced” runs: if pi “sees” pj , then Si contains Sj .

10.1. Immediate Snapshots

10.1.1. Definition

An immediate-snapshot object exports a single operation update snapshot() that
takes a value as a parameter and returns a vector of values (a view) in response. It
is required that these operations appear as executed in “batches”. In each batch, a
fixed subset of processes execute their update snapshot() operations in parallel:
the processes in the subset first execute their updates and then take their snapshots.
Obviously, the results of the snapshots taken by the processes in the same batch
are identical. An update snapshot() operation is “immediate” in the sense that
the snapshot taken by a process does not “lag” too much behind its update. As
we will see, the immediate-snapshot model has a straightforward geometrical rep-
resentation that, in turn, enables simple and elegant reasoning about the model’s
computability.

As in the original definition of snapshots (Chapter 9), we assume that each
written value is unique. Any history of an immediate-snapshot object satisfies the
following properties.

• Self-Inclusion. For any operation update snapshot(vi) that returns Vi, we
have (Vi[i] = vi.

 10. Immediate Snapshot and Iterated Immediate Snapshot

• Containment. For any two operations update snapshot(vi) and
update snapshot(vj) that return Vi and Vj , respectively, we have Vi ≤ Vj
or Vj ≤ Vi.

• Immediacy. For any operation update snapshot(vi) and update snapshot(vj)
that return Vi and Vj , respectively, if Vi[j] = vj then Vj ≤ Vi.

The first two properties will automatically hold if we take a snapshot object and
implement update snapshot(vi) as update(vi) followed by snapshot(). How-
ever, the Immediacy property will not be satisfied here: It is possible that an
update operation of a process pi is followed by an update and snapshot operation
of another process pj , and then multiple updates and snapshots of other processes
(e.g., Figure 10.1). The subsequent snapshot by pi would then strictly succeed
the snapshot taken by pj , as it would contain the updates that occurred after pj
performed its snapshot (see Exercise 3).

snapshot()→ [1, 1, 1]

p1

p2

p3

update1(1)

update2(1)

snapshot()→ [1, 1,⊥]

update3(1)

snapshot()→ [1, 1, 1]

Figure 10.1.: An example of an “unbalanced” execution: p1 sees p2 but misses
p2’s snapshot

Notice that the Immediacy property implies that the immediate snapshot
object has no sequential specification. Indeed, consider a history in which
update snapshot(vi) and update snapshot(vj) return Vi and Vj , respectively, such
that Vj [i] = vi and Vi[j] = vj . The history does not permit for a legal ordering
of these two operations with a sequential semantics that matches the properties
above. We leave it to the reader to prove this claim, e.g., along the lines of the
proof of Lemma 9.1 (Exercise 1).

10.1.2. Block Runs

We can view the immediate-snapshot model as a subset of runs of the conventional
atomic-snapshot model in which every process alternates between performing up-
dates (on its distinct location in the shared memory) and taking snapshots. Every
run in the immediate-snapshot model is induced by a block sequence:

B1, B2, B2, . . . ,

10.1. Immediate Snapshots 

where each Bi is a non-empty set of processes. The induced run consists in B1

performing updates (in an arbitrary order) and then taking snapshots (in the arbi-
trary order), followed by all processes in B2 performing updates and then taking
snapshots, and so on.

It is not hard to see that the snapshots taken by the members of the same Bi are
identical and for all i < j, the snapshot Vi taken by Bi and the snapshot Vj taken
by Bj satisfy Vi ≤ Vj . Moreover, if Vi only contains values that processes in Bj ,
j ≤ i, have written in the induced run. Thus, if Vj [i] = vi, where vi is the value
written by pi just before it obtained immediate snapshot Vi, then Vi ≤ Vj .

10.1.3. A One-Shot Implementation

We begin with an implementation of the immediate-snapshot abstraction, assum-
ing that every process performs at most one update snapshot() in a run.

The algorithm, presented in Figure 10.2, uses two shared arrays of 1WMR
atomic registers: VAL[1 : n] and REG [1 : n]. Position i in each of the two arrays
can be written only by pi and read by all processes. Each REG [i], initially ⊥, is
used to store vi, the value written by pi. Each REG [i], initially n + 1, is used to
store the floor reached by pi so far, as we will explain below.

Shared:
value array of registers VAL[1 : n], initially ⊥;
integer array of registers REG [1 : n], initially n+ 1;

Local:
value array val [1, . . . , n], initially ⊥;
integer floor , initially n+ 1;

operation update snapshot(vi) invoked by pi:
VAL[i]← vi;

(1) repeat
(2) floor ← floor − 1;
(3) REG [i]← floor ;
(4) V ← ∅;
(5) for j = 1 to n do

`← REG [j];
if ` ≤ floor then V ← V ∪ {j};

(6) until |V | ≥ floor ;
(7) for j = 1 to n do

if j ∈ V then val [j]← VAL[j];
(8) return (val)

Figure 10.2.: A one-shot IS implementation

 10. Immediate Snapshot and Iterated Immediate Snapshot

Operation

To perform the update snapshot(vi) operation, every process pi begins with post-
ing its value vi in VAL[i] and announcing its participating at floor n by writing n
in REG [i]. Then it reads REG [1 : n] to check the floors reached by other pro-
cesses. If all n processes are at floors n or lower, then pi returns the set of n their
values (read in VAL). Otherwise, pi goes down to floor n−1. If, inductively, after
writing ` (` = n − 1, . . . , 1) in REG [i] and checking REG [1 : n], pi finds out
that ` processes reached floors ` or lower, it returns the values of these ` processes.
Clearly, the process returns at floor 1 at the lowest, i.e., the algorithm is bounded
wait-free: it takes O(n2) basic reads and writes to complete an operation.

Correctness

To get an intuition about the algorithm’s correctness, let us consider a run in which
a set of k processes proceed in lock step, i.e., the k processes alternate between
concurrently writing to REG and reading REG [1 : n]. Notice that in this run,
whenever a process reaches a floor ` and reads REG [1 : n], it witnesses exactly
k processes at the same floor. Thus, all the processes will return the same set of k
values as soon as they reach floor k.

At the other extreme, consider a sequential execution of n processes performing
update snapshot() operations one by one. The first process, as it only sees itself,
will be obliged to return at floor 1. Inductively, the k-th process in the sequential
order (k = 2, . . . , n), will output at floor k: it will see itself and k − 1 processes
before it. Thus, the processes will return strictly increasing sets of values, starting
from a singleton containing the value of the first process.

More generally, the last process pi to reach floor n, i.e., to write n in REG [i]
will see exactly n processes at floors n or lower. Thus, pi returns the set of n
values, and at most n− 1 processes will reach floors n− 1 or lower. Inductively,
we will show that if ` processes reach floor ` (` = n, . . . , 2), then at least one
process will return at this floor and, hence, at most ` − 1 will proceed to floor
`− 1.

Formally, what we need to show is that, in every run of the algorithm, the
sets of values returned by the processes satisfy the three properties of immediate
snapshot: Self-Inclusion, Containment and Immediacy.

Lemma 10.1 The algorithm is bounded wait-free.

Proof In every round (lines 1–6), a process performs one write and n reads. In
round n (reaching floor 1), the process will see at least one value (its own). Thus,
at the latest, the process returns in round n and, thus, every operation performs
O(n2) basic read-write steps. 2Lemma 10.1

10.2. Fast Renaming 

Consider any run of the algorithm. Let S` denote the set of processes that ever
reach floor ` in that run. Since the processes explore the floors in order, from n
downwards, we have S1 ⊆ S2 ⊆ . . . ⊆ Sn.

Lemma 10.2 For all ` ∈ {1, . . . , n}, |S`| ≤ `.

Proof We proceed by downward induction on `. The base case ` = n is trivial,
as there are at most n processes taking steps in any run.

Suppose that for some ` ∈ {2, . . . , n}, |S`| ≤ `, i.e., at most ` processes reach
floor `. If |S`| < `, then we are done, as S`−1 ⊆ S`. Otherwise, suppose that
|S`| = `, and let pj be the last process in this set of ` processes that reaches
floor `, i.e., writes ` in REG in line 3. By the algorithm, pj witnesses exactly `
processes at floors ` and lower, hence it returns in floor `. Therefore, at most `−1
process ever reach floor `− 1. 2Lemma 10.2

Theorem 10.3 The algorithm in Figure 10.2 is a bounded wait-free implementa-
tion of an immediate snapshot.

Proof By Lemma 10.1, the algorithm is bounded wait-free.
Consider any run of the algorithm, and let Vi denote the set of values returned

by a process pi in that run. Let `i denote the floor at which pi returns. By the
algorithm, pi reached floor `i by writing `i in REG [i], then read REG [1 : n]
and then returned the set of `i values written by processes that reached floor `i or
lower.

Thus, pi returned values written by a subset of S`i of size `i or more, includ-
ing its own value—the property of self-inclusion is ensured. Furthermore, by
Lemma 10.2, S`i ≤ `i and, thus, pi returned exactly the values of processes in
S`i .

Consider any other process pj that returned in the given run and suppose, with-
out loss of generality, that pj returned at floor `j < `i. Recall that S`j ⊆ S`i , and
hence Vj ≤ Vi—the property of containment is ensured.

Finally, consider any process pj such that pj ∈ S`i , hence vj ∈ Vi. Since pj
reached floor `i in that run, it can only return some the values written by some S`j
such that `j ≤ `i. Since S`j ⊆ S`i , we have Vj ⊆ Vi—the property of immediacy
is ensured. 2Theorem 10.3

10.2. Fast Renaming

To illustrate how the IS model can be used, we describe an elegant algorithm that
solves the classic (adaptive) renaming problem.

 10. Immediate Snapshot and Iterated Immediate Snapshot

In the renaming problem, processes take, as inputs, original names from a large
range and they return, as outputs, new names, taken in a smaller range the size of
which is proportional to the number of participating processes. More precisely,
the following properties must be satisfied in every run of a renaming algorithm:

• Termination: Every correct process eventually outputs a name.

• Uniqueness: No two distinct processes output the same name.

• Name-Adaptivity: The output names belong to the range {1, . . . , 2p − 1},
where p is the number of participating processes.

Here a process is considered participating in a given run if it takes at least one step
in it.

To rule out a trivial solution in which process pi outputs name i, we add the
following requirement on the algorithm:

• Anonymity: For all pi and pj , the algorithm of pi with input x is the same
as the algorithm of pj with input x.

The renaming abstraction can be very handy in computations in which the names
(identifiers) of the participants may come from a very large space (e.g., IP ad-
dresses). By renaming the participating processes, we can adapt the complexity
of the algorithm to the set of participants and not to the size of the original names-
pace.

In solving renaming here, we assume that 1WMR (single-writer multi-
reader) registers are available, which somewhat undermines the very motiva-
tion behind the problem. One may ask how exactly the assignment of distinct
single-writer registers to participating processes can be implemented. The
challenge of simulating 1WMR registers in such a system (also called boot-
strapping) is out of the scope of this chapter. See Section 10.5 for more on
this.

10.2.1. Renaming with Snapshots

A simple snapshot-based renaming algorithm in Figure 10.3 is based on “arbitra-
tion”. The processes proceed in rounds. In a round, a process writes the name it
wants to claim (initially 1) with its input name in its position in a shared snapshot
object. Then it takes a snapshot of the memory to evaluate the set of participants,
selects a name based on its ranking in the set (using the compare operator), writes
the chosen name, together with its input, back in its register, and takes a snapshot

10.2. Fast Renaming 

Shared:
atomic-snapshot object AS

operation rename(vi) invoked by pi
name ← 1;
repeat forever

AS .update([name, vi]);
S ← AS .snapshot();
if S contains no [name ′, vj] such that name ′ = name and vj 6= vi then

return name
rank ← the rank of vi in {vj | [∗, vj] ∈ S};
free ← {u | [u, ∗] /∈ S};
name ← the r-th element in free;

Figure 10.3.: A renaming algorithm using snapshots

again. If no other process claims the same name, the process terminates with the
chosen output. Otherwise, the process chooses, as its new name, the first name
with its ranking in the current set of participants that is not claimed by another
process and repeats the procedure.

When p processes participate, the largest name a process is allowed to choose
is 2p − 1. Intuitively, a given process can “block” at most two names at a time:
one it has written to the memory and one that it is about to write. As a result,
in the worst case, the process can see p − 1 blocked and have rank p among the
participants: thus, the largest name 2p−1. Simple as it is, the algorithm is however
very inefficient: in the worst case, it may require a process to take exponential (in
p) number of steps to get a name. In the next section, we present a simple and
efficient renaming algorithm using immediate snapshots.

10.2.2. Renaming with Immediate Snpahsots

In the recursive IS-based algorithm described in Figure 10.3, we use (one-shot)
IS instances to evaluate the set of participating processes. Each invocation of an
IS instance is associated with a range of names that the processes invoking this
instance can return. The range is determined via a starting point (denoted start)
and a direction (denoted dir ∈ {−1, 1}) in which names of the range, starting
from start, are allocated. A list of integer values tags contains the sequence of
starting points of preceding recursive calls of get name .

If p participating processes invoke get name(tags, start , dir), then the algo-
rithm guarantees that all names output by these processes fall within the range
start + dir , . . . , start + dir(2p − 1) (of 2p − 1 names). As we will see, we en-
sure that all output names are distinct using the property of IS that the number of

 10. Immediate Snapshot and Iterated Immediate Snapshot

Shared:
for each L, list of values in {1, . . . , n}: one-shot IS instance IS [L]

operation rename(vi) invoked by pi with input vi:
(9) return get name(ε, 0, 1)

operation get name(L, start , dir) invoked by pi with input vi:
(10) S ← IS [L].update snapshot(vi);
(11) st ← start + dir(2|S| − 1);
(12) if vi = max(S) then
(13) name ← st ;

else
(14) name ← get name(L · |S|, st ,−dir);
(15) return name

Figure 10.4.: A renaming algorithm using one-shot IS instances

processes that output a set of values of size ` is precisely ` minus the number of
processes that output strictly smaller sets of values.

For each sequence L of values in {1, . . . , n}, the algorithm uses a distinct one-
shot IS object IS [L]. The first instance invoked by a process is IS [ε], where ε
denotes the empty list. A process invokes get name(L, f, d) where L is the list
of sizes of sets obtained in all preceding IS calls. As we will show, the sequences
L invoked recursively by a given process are monotonically decreasing.

A outputs 10

G outputs 1

F

D,E

(ε, 0, 1)

range 1, . . . , 13

1

2

4

7

(7, 13,−1)

range 8, . . . , 12

A,B3

1

(4, 7,−1)

range 4, 5, 6

IS[4]

2

1

range 2

(2, 3,−1)
IS[2]

1

range 9, 10, 11

(7 · 3, 8, 1)

1

2

F outputs 2

C outputs 12
A,B,C

D outputs 6

E outputs 4

A
IS[ε]

IS[7] IS[7 · 3]

(7 · 3 · 2, 11,−1)

range 10
IS[7 · 3 · 2]

1

B outputs 9

Figure 10.5.: An execution of the renaming algorithm in Figure 10.4

10.2. Fast Renaming 

Operation

The get a new name, every process pi invokes get name(ε, 0, 1). Within
get name(L, start , dir), the process first invokes IS [L].update snapshot(vi),
where vi is its input name, to get a set S of input names. If vi is the largest name
in S, pi returns the “most far-away” name in the range start + dir , . . . , start +
dir(2|S|−1), i.e., name = start +dir(2|S|−1). Otherwise, pi selects name as a
new starting point and “inverses” the direction by recursively calling get name(L·
|S|,name,−dir) to get its new name.

In Figure 10.5, we describe an execution of the algorithm for seven processes
with original names A,B,C,D,E, F,G. The processes invoke get name with
parameters (ε, 0, 1), which means that they originally compete for names in the
range 1, . . . , 13. Suppose that, after accessing IS [ε], processes with names A,
B and C see all seven processes, processes with names D,E see four processes
D,E, F,G, process with name F sees F and G, and process with name G sees
only itself. One can easily check that these outputs could indeed be produced by
an IS instance.

As their names are not the largest in the set, processes A, B and C invoke
get name with parameters (7, 13,−1), i.e., they compete for names in the range
12, 11, 10, 9, 8 (in descending order). After accessing IS [7], process with name
C sees only itself and outputs 12 (the “first” name in the range). Processes with
names A and B see all of the three processes and invoke get name with parame-
ters (7 · 3, 8, 1) to compete for names in the range 9, 10, 11 (in ascending order).

After accessing IS [7 · 3], process B sees only itself and outputs 9 (the “first”
name in the corresponding range). Process with name A sees both 1 and 2, hence
it invokes get name(7 · 3 · 2, 11,−1) to, finally, output 10.

Correctness

Recall that the implementation of a single update snapshot operation involves
O(n2) read-write steps. Hence:

Lemma 10.4 In every run of the renaming algorithm in Figure 10.4, every correct
process returns in O(n3) read-write steps.

Proof By the algorithm, the participating processes start with calling
get name(ε, 0, 1). We observe first that the participant with the largest input name
will return the value computed in line 15 of this call. Indeed, regardless of the set
of participating processes this participant obtains in line 10, it will always have the
maximal name. The property holds for any recursive call of get name (line 14).
Thus, the number of processes that reach line 14, within a call of get name , is at
least smaller by one than the number of processes that started this call. When the

 10. Immediate Snapshot and Iterated Immediate Snapshot

total number of processes performing a call of get name(L, start , dir) drops to
one, the only participating process will trivially return in line 15.

Thus, in the worst case, a process returns in the n-th recursive call of get name .
Each recursive call involves a single invocation of a single invocation of
update snapshot on a one-shot IS instance, which gives O(n2) read-write com-
plexity per instance, hence O(n3) total step complexity per call of rename(vi).

2Lemma 10.4

The safety properties of renaming (Uniqueness and Name-Adaptivity) are shown
via the following auxiliary lemma:

Lemma 10.5 Suppose that at most k > 0 processes call get name(L, s, d) in
a run of the algorithm in Figure 10.4. Then these calls can only return distinct
values in {s+ d, . . . , s+ d(2k − 1)}.
Proof Consider a process pi that calls get name(L, s, d). Here, L is the list of
sizes of sets received by pi in the preceding calls of IS instances. By the algorithm,
the first such call is performed on IS [ε] within the execution of get name(ε, 0, 1)
(lines 10 and 9). Inductively, since the size of the set returned by a one-shot
IS instance unambiguously identifies the set itself, every two processes that call
get name(L,−,−) agree on the remaining two parameters.

Now we proceed by induction on k, the number of processes that called
get name(L, s, d). The claim holds trivially when k = 1: the only process to
call get name(L, start , dir) obtains a set of size 1 from IS [L] and returns value
start + dir computed in line 15.

Now suppose that the claim holds for all values k′ < k and consider a run in
which k processes call get name(L, start , dir). By the algorithm (line 10), all
these k processes access IS [L], let them obtain sets of distinct sizes 1 ≤ `1 <
. . . < `m from IS [L]. We can show that `m = k and if m ≤ 2, then for all
j = 2 . . . ,m, the number of processes that obtained a set of size `j is `j − `j−1.
We leave it to the reader to prove this claim (Exercise 2).

Note that the process with the largest input name that obtains the smallest set
of size `1 will return in line 15. Indeed, by the Immediacy property of IS , every
process that appears in the set of size `1 has to obtain this set. Thus, at most
`1 − 1 < k processes can recursively call get name(L · `1, s+ d(2`1 − 1),−d).
If `1 > 1, by the induction hypothesis, these at most `1−1 processes can only get
names in the range {s+d(2`1−1)−d, . . . , s+d(2`1−1)−d(2(`1−1)−1)} =
{s+ d, . . . , s+ d(2`1 − 2)} ⊆ {s+ d, . . . , s+ d(2k − 1)}.

Now suppose thatm ≥ 2 and consider j = 2, . . . ,m. By the algorithm, at most
`j − `j−1 < k can recursively call get name(L · `j , s + d(2`j − 1),−d) which,
by the induction hypothesis, can only return names in the range {s+d(2`j−1)−
d, . . . , s+d(2`j−1)−d(2(`j− `j−1)−1)} = {s+ 2`j−1d, . . . , s+d(2`j−2)}
which, as 1 ≤ `j−1 < `j ≤ k, is a subset of {s+ d, . . . , s+ d(2k − 1)}.

10.3. Long-Lived Immediate Snapshot 

Thus, all outputs of recursive calls of get name are distinct subsets of non-
overlapping ranges {s+ d, . . . , s+ 2`1d− 2d)}, {s+ 2`1d, . . . , s+ 2`2d− 2d},
. . ., {s+2`m−1d, . . . , s+2`md−2d}, all of which are subsets of {s+d, . . . , s+
d(2k − 1)}. Moreover, the output names computed in line 13 belong to the set
{s+d(2`1−1), . . . , s+d(2`m−1)} that does not intersect with the ranges above.
Hence, all outputs values are distinct and belong to {s + d, . . . , s + d(2k − 1)}.

2Lemma 10.5

We are finally ready to prove that our algorithm is correct.

Theorem 10.6 The algorithm in Figure 10.4 solves renaming with O(n3) read-
write step complexity.

Proof Consider any run of the algorithm. By Lemma 10.4, every correct process
returns in O(n3) steps, hence the Termination property holds.

Suppose that p processes participate. Since every process obtains a new name
by calling get name(ε, 0, 1), Lemma 10.5 implies that all output names are dis-
tinct and belong to {1, . . . , 2p− 1}—the Uniqueness and Name-Adaptivity prop-
erties are satisfied. Finally, the algorithm only uses input names and not process
identifiers, ensuring the Anonymity property. 2Theorem 10.6

10.3. Long-Lived Immediate Snapshot

We show in this section that the immediate-snapshot (IS) model is equivalent to
the atomic-snapshot (AS) one. We establish the result via two-way simulations,
where one direction (from IS to AS) is straightforward.

10.3.1. Full-information protocols

For convenience, we assume here the processes run the full-information protocol.
In the full-information IS protocol, every process repeatedly executes

update snapshot() operations, the first operation is invoked with the input of the
process as a parameter, and every next update snapshot() operation is invoked
with the outcome of the preceding one.

Similarly, in the full-information update-snapshot protocol, every process alter-
nates updates and snapshots. In the first update, the process uses its input value as
an argument, and in each subsequent update, it writes the result of the preceding
snapshot.

If the local state of the simulated process satisfies a (defined a priori) decided
predicate, the simulated process returns the decided value and stops.

 10. Immediate Snapshot and Iterated Immediate Snapshot

Intuitively, a process cannot attain more knowledge about the system than
by following the full-information protocol. In particular, every algorithm that
solves a distributed input-output task (e.g., consensus) by using updates and
snapshots can be transformed into the full-information protocol with a match-
ing decided predicate.

It is easy to see that the immediate-snapshot (IS) model is at least as powerful
as the AS one. Recall that every run of the full-information IS protocol is a run
of the full-information update-snapshot protocol which can be seen as a sequence
B1, B2, B2, . . ., where each Bi is a non-empty set of processes. The run consists
in B1 performing updates (in an arbitrary order) and then taking snapshots (in
the arbitrary order), followed by all processes in B2 performing updates and then
taking snapshots, and so on. Thus, anything that can be solved in the AS model,
can also be solved in the IS one.

In the rest of this section, we show that the inverse is also true. We present an
algorithm that, in the AS model, simulates the IS model.

10.3.2. Simulating IS: an Overview

The idea behind our simulation is to use the one-shot implementation in Fig-
ure 10.2 on an unbounded number of floors. Intuitively, each floor corresponds to
the total number of write operations a process completes at a given point of a run.
For simplicity, we assume that every process maintains a local counter (initially
0) that is incremented and used as an argument each time the update snapshot
operation is invoked. The operation returns a view: an array of counter values of
all the processes. We can use an additional memory in which every process stores
the value corresponding to each counter value.

In the update snapshot operation, every process pi first updates a snapshot
memory C with its current counter value and then takes a snapshot V . The start-
ing floor for pi, denoted s, is then computed as the sum of counter values in V :∑

j V [j], which, intuitively, corresponds to the number of update snapshot in-
voked so far.

The process then registers its view at floor s (line 19) and, starting from floor
s − 1 downwards, accesses IS instances until it finds a registered view with a
previous value of pi that was “seen” by some process in the view obtained from
the IS instance at that floor. At this moment, pi returns a view constructed as
a “maximum” of the registered view at that floor and the view returned by the
corresponding one-shot IS instance. Intuitively, this will ensure that the returned
views respect the Immediacy property.

For each floor f , the algorithm maintains the following shared variables:

10.3. Long-Lived Immediate Snapshot 

• Viewf , used to store the view associated with this floor;

• IS f , a one-shot IS instance;

• Flagf [1, . . . , n], an array of boolean flags, one for each process. The flag
is used to signal that a non-⊥ value is written in Viewf by a concurrent
process.

When a process pi enters a floor f (starting from s− 1), it first checks if there is a
registered view (Viewf 6= ⊥) and stores the result in Flagf [i]. Then it gets a view
W of concurrently active processes in IS f . To return at floor f , pi must ensure
that at least one process in W has witnessed a previous value of pi in Viewf .

We initialize View0 with [0, . . . , 0] and Flag0 with [true, . . . , true]. Intu-
itively, this guarantees that every invocation of update snapshot can only return
at floor 0 or higher. For f > 1, Viewf initially stores ⊥ and Flagf initially stores
[false, . . . , false].

Shared:
C, a snapshot object, each position C[i] is a counter value for pi
For each floor f ∈ N:

ISf , one-shot IS instance
Viewf , register storing a view, initially ⊥ for f > 0 and [0, . . . , 0] for f = 0
Flagf [1, . . . , n], array of boolean registers, initially [false, . . . , false] for f > 0
and [true, . . . , true] for f = 0

operation update snapshot(count) invoked by pi:
{ count is incremented with each next invocation }

(16) C.update(count); { publish a new distinct value }
(17) V ← C.snapshot(); { get a view }
(18) f ←

∑
j V [j]; { compute the starting floor }

(19) Viewf ← V ; { register at floor f }
(20) Flagf [i]← true; { set the flag at floor f }
(21) repeat forever
(22) f ← f − 1;
(23) U ← View [f]; { Get the floor view }
(24) Flagf [i]← (U 6= ⊥); { check if any process started at floor f }
(25) W ← ISf .update snapshot(count); { Access IS at floor f }
(26) if (for some j ∈ {1, . . . , n}: W [j] 6= ⊥ and Flagf [j] = true

and count > U [i]) then
(27) return max(U,W) { take the maximum of the two views }

Figure 10.6.: A long-lived IS memory implementation

10.3.3. Simulating IS: correctness

First we observe that views registered at the floors are related by containment.

 10. Immediate Snapshot and Iterated Immediate Snapshot

Lemma 10.7 Let U and U ′ be views written, respectively, in Viewf and Viewf ′ ,
such that f ≤ f ′. Then U ≤ U ′. Also, if f < f ′, then U ′ � U .

Proof Recall that every value U written in variables Viewf is a snapshot of
atomic-snapshot memory C of size f , i.e.,

∑
j U [j] = f . Since all such snapshots

are related by containment, every value written in Viewf can only be U , and every
value U ′ witten in Viewf ′ f

′ > f must satisfy U ≤ U ′. 2Lemma 10.7

We then show that the algorithm uses the one-shot IS instances correctly, i.e., no
process accesses a given instance more than once.

Lemma 10.8 No one-shot instance IS f is invoked more than once by any given
process.

Proof A given invocation of update snapshot by a process pi involves at most
one invocation of IS f (when it reaches floor f).

What remains to show is that different invocations of update snapshot by pi,
op1 and op2, do not invoke the same IS instance. Suppose that op1 starts at floor
f (line 18). By the algorithm, within op1, pi writes a view containing its value in
Viewf and accesses IS instances at floors f − 1 and lower.

Each time a process invokes an update snapshot operation, it increments its
counter . Thus, a subsequent operation op2 by pi will take a snapshot of written
values containing a strictly higher value for pi. Hence it will start at floor f + 1 or
higher.

Within op2, pi either returns at a floor> f or reaches floor f and, by Lemma 10.7,
finds out that Viewf contains its previous value and returns before accessing IS
instances at lower floors. 2Lemma 10.8

Lemma 10.9 The algorithm in Figure 10.6 satisfies the Self-Inclusion property.

Proof Let pi return from an invocation of update snapshot(count) at floor f .
Position i in the returned view is the maximum between V [i], where V is found
in Viewf , and W [i], where W is returned by IS f (line 27).

By the condition in line 26, V [i] < count . By the Self-Inclusion property of
one-shot IS instances, W [i] = count . Thus, position i in the returned vector
contains count . 2Lemma 10.9

Lemma 10.10 Let pi return Vi at floor fi and pj return Vj at floor fj , such that
fi < fj . Then Vi ≤ Vj .

Proof Let Ui and Uj be the views found by pi and pj in Viewfi and Viewpj ,
respectively. Note that, by the algorithm (line 26), both Ui and Uj are non-⊥. By
Lemma 10.7, Vi ≤ Vj .

10.3. Long-Lived Immediate Snapshot 

Let Wi be the value obtained by pi from IS fi . We are going to show that
Wi[k] ≤ Vj [k] for all k, such that Wi[k] 6= ⊥, i.e., every value found in Wi is at
most as recent as in Vj . Suppose that Wi[k] = v, i.e., pk invoked IS fi with the
argument of its v-th operation. Let sk be the starting floor of pk when it invoked
update snapshot(v). Note that, by the algorithm, pk can only return at floor
sk − 1 or lower and, thus, View sk−1[k] = v. If sk ≤ fj , then, by Lemma 10.7,
≤ Viewfj ≤≤ Viewfi ≤ Vj .

Now suppose that sk > fj . Thus, pk must have passed floor fj before reaching
floor fi and invoking IS fi . If pj reads v in Viewfj [k], then we are done, as
Viewfj [k] = v ≤ Vj [k].

Now suppose that pj reads a value v′ in Viewfi [k] such that v′ < v. By
Lemma 10.7, if pk reads a (non-⊥) vector in Viewfi , then it must have read the
same value as pj did. Therefore, as v′ < v to pass floor fj , pk must find false
in all Flagfj [x], Wk[x] 6= ⊥, where Wk is the view obtained by pk from IS fj
(line 26).

On the other hand, to return at floor fj , pj must have found true in some
Flagfj [y], py ∈ Wj . By the algorithm, py wrote true to Flagfj [y] before in-
voking IS fj . Thus, if Wk[y] = ⊥: otherwise, pk should have also found true in
Flagfj [y]. But Wk and Wj , as outcomes of IS fj , must be related by containment,
py ∈ Wj and py /∈ Wk, we have Wk < Wj . By the Self-Inclusion property of IS,
Wk[k] = v and, thus, Wi[k] = v = Wk[k] ≤ Vj [k].

As Ui ≤ Uj ≤ Vj and Wi ≤ Vj , we have Vi = max(Ui,Wi) ≤ Vj .
2Lemma 10.10

Lemma 10.11 Algorithm in Figure 10.6 satisfies the Containment property.

Proof Let pi return Vi at floor fi and pj return Vj at floor fj , such that fi < fj .
If fi < fj , then, by Lemma 10.10, Vi ≤ Vj .

Suppose now that fi = fj . By Lemma 10.7, pi and pj find the same view in
Viewfi . The containment property of one-shot IS ensures that the views Wi and
Wj obtained by pi and pj from IS fi are related by containment, as are Vi and Vj .

2Lemma 10.11

Lemma 10.12 Algorithm in Figure 10.6 satisfies the Immediacy property.

Proof Let pi return Vi at floor fi and pj return Vj at floor fj . Let Vi[i] = v and
Vj [i] = v. We show that Vi ≤ Vj .

Suppose that fi > fj . By the condition in line 26, pi read a value < v in
Viewfi [i] and, by Lemma 10.12, pj read a value < v in Viewfj [i]—a contradic-
tion.

If fi < fj , then, by Lemma 10.10, Vi ≤ Vj .

 10. Immediate Snapshot and Iterated Immediate Snapshot

If fi = fj , then, by Lemma 10.7, pi and pj find the same view in Viewfi and,
by the condition in line 26, Viewfi [i] = v. Since Vj [i] = v, we must then have
Wj [i] = v. By the Immediacy property of one-shot IS, we get Wi ≤ Wj and,
thus, Vi ≤ Vj . 2Lemma 10.12

Lemma 10.13 Algorithm in Figure 10.6 is bounded wait-free with O(n3) read-
write step complexity.

Proof Suppose that a process pi starts its v-th operation update snapshot(v),
updates its position in C with v, takes a snapshot of C, and registers the resulting
view V at floor s = |V | =

∑
j V [j]. If s ≤ n, we are done, as pi can only pass

through most n floors before, in the worst case, it returns in floor 0 containing view
[0, . . . , 0] and flags [true, . . . , true]. Since each floor involves accessing a one-
shot IS instance with O(n2) step complexity, we get O(n3) total step complexity.

Suppose now that s > n, i.e., there is a non-empty set of processes that invoked
at least two operations before time t when pi took its v-th snapshot of C. Let pj
be the process in this set that was the last to perform its penultimate update of C
before t, let us assume that it happened at time t′ < t.

As at most n updates of C take place between t′ and t, V ′, the result of the
subsequent snapshot of C taken by pj is such that |V ′| ≥ |V | − n. Since pj
performed exactly one update of C between t′ and t, it must have registered V ′ at
its starting floor s′ = |V ′| ≥ |V |−n = s−n and set Flag [j] to true before t. The
value of pi in V ′ is smaller than v, hence pi must return from its v-th operation at
floor s′ or higher, after passing through at most n floors. 2Lemma 10.13

Lemmas 10.9, 10.11, 10.12, and 10.13 imply:

Theorem 10.14 Algorithm in Figure 10.6 is a bounded wait-free implementation
of the IS memory with O(n3) read-write step complexity.

10.4. Iterated Immediate Snapshot

We now consider iterated shared-memory models. In such models, processes
communicate via a series of shared memories M1, M2, A process proceeds
in consecutive rounds 1, 2, In each round r it accesses memory Mr. In this
section, we assume that every memory Mr is an immediate-snapshot object, and
the process simply applies update snapshot() operation to access it.

Iterated immediate snapshot memory (IIS) is of particular interest for us for
two reasons. First, IIS is equivalent to the conventional (non-iterated) read-write
shared-memory model, as long as we are concerned with solving distributed tasks

10.4. Iterated Immediate Snapshot 

or designing non-blocking algorithms (Section 10.4.1). Second, it has a very sim-
ple geometric representation, enabling a straightforward characterization of read-
write computability (Section 10.4.3).

10.4.1. An Equivalence between IIS and Read-Write

It is straightforward to design a wait-free IIS implementation in the read-write
shared memory model by using the construction in Section 10.1 for each Mr

independently.
We now show that, in a strict sense, one can also implement the read-write

memory model in IIS. It is hopeless, however, to look for implementations in
which every correct process is able to complete each of its operations. Consider,
for example, an IIS run in which a correct process pi is “left behind” in every IIS
iteration and, as a result, it never appears in the view of any other process. In any
read-write implementation based on IIS, no write operation performed by pi, will
be able to affect read operations performed by other processes. Thus, no correct
read-write implementation can guarantee that pi completes any of its writes in that
run. Therefore, no such wait-free implementation is possible.

However, as we will show now, IIS can simulate read-write memory in a non-
blocking way. Recall that a non-blocking implementation guarantees that, in an
infinite execution, at least one process makes progress. We focus on algorithms in
which at least one correct process either completes its computation and terminates
or performs infinitely many reads and writes. Thus, our simulation will guarantee
that either (1) every correct process either terminates or (2) some correct process
performs infinitely many (simulated) reads and writes.

As before, we use IIS to simulate the full-information update-snapshot protocol.
Recall that in this protocol, every process first writes its input value in the snap-
shot memory and then alternates snapshots and updates, where every subsequent
update uses the outcome of the preceding snapshot as a value.

Operation

Our implementation, presented in Figure 10.7, maintains, at every process pi, a
local array c[1 : n], called a vector clock. Each c[j] has two components:

• c[j].clock that contains the number of update operations of pj “witnessed”
by pi so far, and

• c[j].val that contains the most recent value of pj’s vector clock “witnessed”
by pi so far.

The implementation works as follows. To perform an update, pi increments
c[i].clock and sets c[i].clock to be the “most recent” vector clock observed so far.

 10. Immediate Snapshot and Iterated Immediate Snapshot

Shared variables: IS memories IS 1, IS 2, . . .

Local variables at each pi: c[1 : n], initially [⊥, . . . ,⊥]

Code for process pi:
(28) r ← 0; c[i].clock ← 1; c[i].val ← input of pi; { memorize pi’s input }
(29) repeat forever
(30) r ← r + 1;
(31) view ← IS r.update snapshot(c); { update the view using IS r }
(32) c← top(view); { update c vector with the most recent values }
(33) if |c| = r then { if the current snapshot is complete }
(34) if decided(c.val) then { if ready to decide }
(35) return decision(c.val)
(36) c[i].val ← c; { compute the next value to write }
(37) c[i].clock ← c[i].clock + 1; { update the local clock }

Figure 10.7.: Implementing AS using IIS

To take a memory snapshot, pi goes through multiple iterations of IIS until the
“size” of the currently observed vector clock, |c| =

∑
j c[j].clock , gets “large

enough”. We explain what we mean by “most recent” and “large enough” below.
In every round of our implementation, pi writes its current view of the mem-

ory and stores an update of it in a local variable view = view [1], . . . , view [n]
(line 31). Then for every process pj , pi computes the position

k = argmax `view [`][j].clock

and fetches view [k][j].val—the “most recent” value written by pj . The resulting
vector of such “most recent” values is denoted by top(view).

Then pi checks if |c| =
∑

j c[j].clock , the sum of clock values of all the pro-
cesses equals the current round number (line 33). Intuitively, the condition implies
that the currently simulated snapshot of pi relates by containment to the results of
all other simulated snapshot operations. Indeed, as the clock values grow mono-
tonically, snapshots S and S′ produced in IIS rounds r and r′, r ≤ r′, satisfy
S ≤ S′.

Formally, every process pi goes through a number of update-snapshot phases,
where phase k = 1, 2, . . . starts when pi’s local variable c[i].clock is assigned
value k (line 28 for k = 1 or line 37 for k > 1). Phase k ends when pi terminates
after executing line 35 or starts phase k+1. The argument of the update operation
of phase k is the value of c[i].val : the input value of pi if k = 1 and the value
written at the end of phase k− 1 in line 36 if k > 1. The outcome of the snapshot
operation of phase k is chosen to be the last value of c.val computed in line 32 of
the phase.

10.4. Iterated Immediate Snapshot 

Note that a phase may take multiple rounds of the algorithm. In some cases, a
phase may even never terminate. We will show, however, that at least one correct
process will be able to complete every phase it starts.

Correctness

We first prove a few auxiliary lemmas. Let view r
i and cri denote, respectively,

the view and the clock vector evaluated by process pi in round r, i.e., in lines 31
and 32, respectively, of the rth iteration of the algorithm. We say that cri ≤ crj if
∀k : cri [k].clock ≤ crj [k].clock , i.e., cri contains at least as recent perspective on
the simulated state as crj . Recall that |cri | =

∑
j c
r
i [k].clock .

Lemma 10.15 For all r ∈ N, pi, pj ∈ Π, |cri | ≤ |crj | implies cri ≤ crj .

Proof By the Self-Inclusion property of IS (see Section 10.1), the views evaluated
by pi and pj in line 31 of round r are related by containment, i.e., view r

i ≤ view r
j

or view r
j ≤ view r

i . Since cri and crj are computed as the vector of the most up-
to-date values gathered from the respective views (line 32), we have cri ≤ crj or
crj ≤ cri .

Suppose, by contradiction that |cri | ≤ |crj | but cri � crj , i.e., crj ≤ cri but crj 6= cri .
Since the operation |c| sums up the values of c[i].clock , we get |crj | > |cri |—a
contradiction. Thus, |cri | ≤ |crj | indeed implies cri ≤ crj . 2Lemma 10.15

By Lemma 10.15, |cri | = |crj | implies cri = crj . Moreover a process pi completes a
phase when its clock vector we have:

Corollary 10.16 All processes that complete a phase operation in round r, eval-
uate the same clock vector c, |c| = r.

Lemma 10.17 For all r ∈ N, pi ∈ Π, |cri | ≥ r.

Proof By the Self-Inclusion property of IS, c1
i [i].clock = 1, and, thus, |c1

i | ≥ 1.
Suppose, inductively, that for all pi, |cri | ≥ r for some r ≥ 1.

Since the view computed by pi in round r is then written to IS r+1, the values
of |cri | do not decrease with r. Thus, if |cri | > r, then |cr+1

i | ≥ |cri | ≥ r + 1.
If |cri | = r, i.e., pi completes its current phase in round r starts a new one, then

pi must have incremented ci[i].clock (line 37). Thus, |cr+1
i | > |cri | + 1 ≥ r + 1.

In both cases, |crr+1| ≥ r + 1 and the claim follows by induction. 2Lemma 10.17

The values of cri .clock can only increase with r. Thus, by Lemmas 10.15 and 10.17,
we have:

Corollary 10.18 If |cri | = r (i.e., pi completes its current phase in round r), then
for all pj and r′ > r, we have cri ≤ cr

′
j .

 10. Immediate Snapshot and Iterated Immediate Snapshot

Now we show that some correct process always makes progress in the simulated
run. We say that a process terminates once it reaches line 35. Note that if a process
terminates in round r, it does not access any IS r′ , for r′ > r.

Lemma 10.19 For all r ∈ N, if a correct process reaches round r, then, even-
tually, some correct non-terminated process completes its current phase in round
r′ ≥ r.

Proof By contradiction, assume that there is an execution in which some correct
process is in round r and no correct non-terminated process ever completes its
current phase. In particular, no process pi ever increases the value of ci[i].clock in
rounds r or higher. Thus, there exists a clock vector c̃ such that ∀r′ ≥ r, ∀pi ∈ Π:
cr

′
i = c̃. By Lemma 10.17, for all pi and r′ ≥ r, |c̃| = |cr′i | ≥ r.

Consider round r′ = |c| ≥ r. Every correct non-terminated process pi will
eventually reach round r′ and evaluate cr

′
i = c. By the algorithm, pi will then

complete its phase in round r′—a contradiction. 2Lemma 10.19

Now we are ready to prove that our simulation is correct.

Theorem 10.20 The algorithm in Figure 10.7 simulates an AS run, in which ei-
ther every correct process terminates in line 35 or some correct process performs
infinitely many steps.

Proof Let R be a run of the algorithm. The simulated AS run denoted Rs is
constructed as follows.

If pi completes its kth phase in r, we denote by W k
i and Ski , respectively, the

corresponding simulated update and snapshot operations. First, we order all re-
sulting Ski according to the round numbers in which they were completed. Then
we place each W k

i just before the first snapshot that contains the kth simulated
view of pi.

By Corollary 10.16, all snapshot outcomes produced in the same round are
identical. By Corollary 10.18, snapshot outcomes grow with the round numbers.
Thus, inRs, every two snapshots are related by containment, and every next snap-
shot includes the previous one. Furthermore, the Self-Inclusion property of one-
shot IS instances used in the algorithm implies that every Ski contains the kth
simulated view of pi. Thus, in Rs, every pi executes the operations appear in the
order they take place in R: W 1

i , S1
i , W 2

i , S2
i ,

By construction, the outcome of every Sri contains the most recent written value
for each process.

By inductively applying Lemma 10.19, we derive that either every correct (in
R) process terminates in Rs or some correct process completes infinitely many
phases in R and, thus, performs infinitely many steps in Rs. 2Theorem 10.20

10.4. Iterated Immediate Snapshot 

10.4.2. Solving Tasks in IIS

Let us consider a specific class of distributed computing problems, called (dis-
tributed) tasks. In a distributed task, every participating process starts with a
unique input value and, after the computation, is expected to return a unique out-
put value, so that the inputs and the outputs across the processes satisfy certain
properties. More precisely, a task is defined by a set I of input vectors (one in-
put value for each process), a set O of output vectors (one output value for each
process), and a total relation ∆ : I 7→ 2O that associates each input vector with
a set of possible output vectors. A specific value ⊥ denotes a non-participating
process in an input vector and an undecided process in an output vector.

For example, in the colorless binary consensus task (studied in more detail in
the next chapter), input values are in {⊥, 0, 1}, output values are in {⊥, 0, 1}, and
for each input vector I and output vector O, (I,O) ∈ ∆ if the set of non-⊥ values
in O is a subset of values in I of size at most 1.

More generally, in the task of k-set agreement, input values are in {⊥, 0, . . . , k},
output values are in {⊥, 0, . . . , k}, and for each input vector I and output vector
O, (I,O) ∈ ∆ if the set of non-⊥ values in O is a subset of values in I of size
at most k. Note that consensus is the special case of 1-set agreement. The task
of (n − 1)-set agreement (among n processes) is sometimes simply called set
agreement.

An algorithm solves a task if in every run with an input vector I ∈ I, where
every participating process is assigned a non-⊥ input, every correct process even-
tually produces an irrevocable non-⊥ output value so that the vector O of all
produced outputs, where all processes without outputs are assigned ⊥, satisfies
O ∈ ∆(I).

Now suppose that a given task is solvable in the AS model: in every run, ev-
ery correct process eventually reaches a decided state, captured in line 34 of our
algorithm.

Assuming, without loss of generality, that a decided process simply stops taking
steps, our non-blocking solution brings the next correct process to the output, then
the next one, and so on, until every correct process outputs. Note that there is no
loss of generality in assuming that a process stops after producing an output, as
this simply corresponds to the execution in which the process crashes immediately
after deciding.

Therefore, Theorem 10.20 implies that IIS is equivalent to AS (or, more gener-
ally the read-write model) in terms of task solving:

Corollary 10.21 A task is solvable in IIS if and only if it is solvable in the read-
write asynchronous model.

 10. Immediate Snapshot and Iterated Immediate Snapshot

Note that the proof of Theorem 10.20 does not use the Immediacy property
of IS. Thus, the simulation would still be correct, even if we replace

view ← IS r.update snapshot(c);

in line 31 of the algorithm in Figure 10.7 with

AS r.update(c); view ← AS r.snapshot();

where each AS r is a snapshot object.

10.4.3. Geometric Representation of IIS

We conclude this chapter with a short discussion of the geometric properties of
the IIS model. Using elements of combinatorial topology, we can show that one-
round IIS runs can be represented as a structure, called standard chromatic subdi-
vision.

More formally, a simplex models a global state of the system via the set of
local states (views) of distinct processes that are observed in this state. The same
local state can be part of multiple global states, i.e., the same vertex can be part of
multiple simplices. A set of global states is modeled as a simplicial complex, i.e.,
a set of simplices closed under containment: a subset (a face) of a simplex in the
complex is also included in the complex.

The example depicted in Figure 10.8 describes the views obtained by three pro-
cesses, p1, p2, and p3, after each of them completes one IIS round. For example,
the red corner of the triangle models the view of p1 in a run where it only sees it-
self. The internal points on the red-blue face model the views of p1 and p2 in runs
where they see each other but miss p3. Finally, the internal points of the triangle
model the views of the processes in which they see all three.

A triangle in the subdivision models the set of views that can be obtained in the
same run. Say, we explicitly depict the “ordered” run in which p2 sees only itself,
then p1 sees itself p2, and, finally, p3 sees everyone. Also, we can see that the
“synchronous run” in the three processes obtain the same snapshot resides on the
three internal vertices.

The resulting views and runs result in a nice simplicial complex that is a sub-
division (called standard chromatic subdivision) of the triangle corresponding to
the initial state of the system. Multiple rounds of the IIS model can thus be rep-
resented as an iterated standard chromatic subdivision, where each of the trian-
gles is subdivided, then each of the resulting triangles is subdivided, and so on.
Intuitively, the IIS model preserves the geometrical structure of the input config-
uration. This observation enabled the celebrated impossibility result: there is no

10.5. Chapter Notes 

Synchronous
run: {p1, p2, p3}

Ordered run:
{p2}, {p1}, {p3}

p1 sees {p1, p2} p3 sees {p2, p3}

p2 sees {p1, p2} p2 sees {p2, p3}

p2 sees {p1, p2, p3}

p1 sees {p1} p3 sees {p3}

p2 sees {p2}

Figure 10.8.: One round of 3-process IIS as a standard chromatic subdivision of a
chromatic 2-simplex: red vertices model possible resulting states of
p1, blue–p2, and white–p3.

algorithm that solves the task of set agreement in the AS model [59, 100, 14].
Notice that one round of the (full-information) AS algorithm produces runs

that do not fit the subdivision depicted in Figure 10.8. For example, the AS model
permits a run in which p1 only sees itself and p2, but both p2 and p3 see all three
processes. In Figure 10.8 this runs corresponds to the triangle formed by the
blue vertex on the face (p1, p2) and the green and red vertices in the interior that
“overlaps” with other triangles in the subdivision. But, since this run does not
satisfy the Immediacy property of IS, it is excluded by the IS model.

For three processes, the fact that one round of the IS model is captured by
this subdivision is obvious from Figure 10.8. For higher dimension, showing
the resulting simplicial complex is indeed a subdivision is much less straightfor-
ward [74].

10.5. Chapter Notes

Borowsky and Gafni [15] introduced the notion of an immediate snapshot (IS)
and gave the first one-shot IS implementation in the read-write model.

The task of renaming was originally stated and solved by Attiya et al. [7] for
the message-passing model. The adaptive renaming algorithm in Figure 10.3 is
by to Attiya and Welch [11, Chapter 16] who adapted the algorithm by Attiya
et al. [7] to the read-write shared-memory model. Attiya, Fouren, and Gafni [9]
claimed that this algorithm and several alternative algorithms published at the time
expose exponential (in p) read-write step complexity in some executions. The
O(p3) renaming algorithm described in Figure 10.4 was proposed by Borowsky
and Gafni [15].

 10. Immediate Snapshot and Iterated Immediate Snapshot

By relating adaptive renaming to set agreement, Gafni et al. [46] showed that
adaptive renaming with the output name range of size 2p − 2 cannot be imple-
mented using reads and writes. The bounds on the output range for non-adaptive
renaming were established by Castañeda and Rajsbaum [21, 22].

The bootstrapping challenge of simulating single-writer multi-reader registers
in the renaming context was addressed in [29, 30]. The long-lived IS simula-
tion described in Section 10.3 is a simplified and slightly corrected version of the
adaptive simulation by Attiya, Fouren, and Gafni [8]. The IIS-based simulation of
the conventional read-write model presented in Section 10.4 is due to Gafni and
Rajsbaum [47].

Elements of combinatorial topology have been used to establish the impossibil-
ity of set agreement independently discovered by Borowsky and Gafni [14], Saks
and Zaharaglou [100] and Herlihy and Shavit [59]. The proof that Chrs is indeed
a subdivided simplex was sketched by Linial [85] and independently fixed by
Kozlov [74]. A thorough discussion of the combinatorial methods in distributed
computing can be found in the book by Herlihy, Kozlov, and Rajsbaum [55].

10.6. Exercises

1. Show that the IS object does not have a sequential specification.

2. Suppose that k processes accessed a one-shot IS objects and obtained sets
of distinct sizes 1 ≤ `1 < . . . < `m.

Show that `m = k and if m ≤ 2, then for all j = 2 . . . ,m, the number of
processes that obtained a set of size `j is `j − `j−1.

3. Assuming the full information protocol, show that the IS model is stronger
that the AS model: every run of the IS model can be represented as a run of
AS model.

4. Prove that the algorithm described in Figure 10.3 is correct. Will the al-
gorithm remain correct if we replace update and snapshot with store and
collect , respectively?

5. Does the AS-based renaming algorithm in Figure 10.3 have a run in which
n processes output names 1, 2, . . . , n? What about the IS-based algorithm
in Figure 10.4?

Part IV.

Consensus Objects

11. Consensus and Universality

In the first parts of this book, we considered multiple powerful abstractions that
can be implemented, in a wait-free manner, from read-write registers. In this
chapter, we address a more general question:

Given object types T and T ′, is there a wait-free implementation of
an object of type T from objects of type T ′?

We define a fundamental consensus object type and show that consensus objects
are universal: any object type can be implemented, in a wait-free manner, using
read-write registers and consensus objects. In the next chapter, we show that read-
write registers cannot, by themselves, implement a consensus object shared by 2
processes, hence they are not universal even in a system of 2 processes. This
observation brings up the notion of a consensus number of an object type: the
maximal number of processes in which the type is universal.

Overall, in this chapter, we give a definition of consensus and demonstrate its
power in implementing arbitrary object types. In the next chapter, we discuss the
downside of this abstraction, specifically, the difficulty of its implementations.

11.1. Consensus Object: Specification

The consensus object type exports one operation propose() that takes one input
parameter v in a value set V (|V | ≥ 2) and returns a value in V . Let ⊥ denote a
default value that cannot be proposed by any process (⊥ /∈ V). Then V ∪ {⊥} is
the set of states a consensus object can take,⊥ is its initial state, and its sequential
specification is defined in Figure 11.1.

operation propose(v):
if (x = ⊥) then x← v;
return (x)

Figure 11.1.: Sequential specification of consensus

 11. Consensus and Universality

A consensus object can be seen as a “write-once” register that forever keeps
the value of the first propose() operation. Any subsequent propose() opera-
tion returns the first written value.

Given a linearizable implementation of the consensus object type, we say that
a process pi proposes v if pi invokes propose(v). We say accordingly that pi is
a participant in consensus. If the invocation of propose(v) returns a value v′,
we say that the invoking process pi decides v′, or v′ is decided by the consensus
object. We observe now that every execution of a wait-free linearizable imple-
mentation of the consensus object type satisfies the following three properties:

• Agreement: no two processes decide different values.

• Validity: every decided value was previously proposed by some process.

Otherwise, there would be no way to linearize the execution with respect to
the sequential specification in Figure 11.1, which only permits to decide on
the first proposed value.

• Termination: Every correct process eventually decides a value.

This property is implied by wait-freedom: every process taking sufficiently
many steps of the consensus implementation must decide.

11.2. A Wait-Free Universal Construction

In this section, we show that if, in a system of n processes, we can wait-free
implement consensus, then we can implement any total object type. We do that
by presenting an algorithm, called a universal construction, that implements any
such type.

Recall that a total object type can be represented as a tuple (Q, q0, O,R, δ),
where Q is a set of states, q0 ∈ Q is an initial state, O is a set of operations,
R is a set of responses, and δ is a binary relation on O × Q × R × Q, total on
O ×Q: (o, q, r, q′) ∈ δ if operation o is applied when the object’s state is q, then
the object can return r and change its state to q′. Note that for non-deterministic
object types, there can be multiple such pairs (r, q′) for any given o and q.

The purpose of our universal construction is, given an object type
τ = (Q,O,R, δ), to provide a wait-free linearizable implementation of τ using
read-write registers and atomic consensus objects.

11.2. A Wait-Free Universal Construction 

11.2.1. Deterministic Objects

For deterministic object types, δ can be seen as a function O ×Q → R ×Q that
associates each state and operation with a unique response and a unique resulting
state. The state of a deterministic object is thus determined by a sequence of
operations applied to the initial state of the object. The universal construction of
an object of a deterministic type is presented in Figure 11.2.

Shared objects:
REQ , collect object, initially ⊥
C1, C2, . . . , consensus objects

Local variables, for each process pi:
integer seq i, initially 0; { the number of executed requests of pi }
integer ki, initially 0; { the number of batches of executed requests }
sequence linearized i, initially empty; { the sequence of executed requests }

Code for operation op executed by pi:
1 seq i ← seq i + 1;
2 REQ .store(op, i, seq i); { publish the request }
3 repeat
4 V ← REQ .collect(); { collect all current requests }
5 requests ← V − {linearized i}; { choose not yet linearized requests }
6 ki ← ki + 1;
7 decided ← C[ki].propose(requests);
8 linearized i ← linearized i.decided ; { append decided requests }
9 until (op, i, seq i) ∈ linearized i;
10 return the result of (op, i, seq i) in linearized i using δ and q0

Figure 11.2.: Universal construction for deterministic objects

Every process pi maintains a local variable linearized i that stores a sequence
of operations that are executed on the implemented object do far. Whenever pi
has a new operation op to be executed on the implemented object, pi “registers”
op in the shared memory using a collect object REQ . As long as pi finds new op-
erations that were invoked (by pi itself or any other process) but not yet executed
in REQ , pi tries to agree on the order in which operations must be executed by
using the “next” consensus object C[ki] that was not yet accessed by pi. If the
set of operations returned C[ki] contains op, pi deterministically computes the
response of op using the specification of the implemented object and linearized i.
Otherwise, pi proceeds to the next consensus object C[ki + 1].

Intuitively, the processes make sure that their perspectives on the evolution of
the implemented object’s state are mutually consistent.

 11. Consensus and Universality

Lemma 11.1 At all times, for all processes pi and pj , linearized i and linearized j
are related by containment.

Proof We observe that each linearized i is constructed by adding the batches of
requests decided by consensus objects C1, C2, . . ., in that order. The agreement
property of consensus (applied to each of these consensus objects) implies that, for
each pj , either linearized i is a prefix of linearized j , or vice versa. 2Lemma 11.1

Lemma 11.2 Every operation returns in a finite number of its steps.

Proof Assume by contradiction, that a process pi invokes an operation op and
executes infinitely many steps without returning. By the algorithm in Figure 11.2,
pi continuously blocks in the repeat-until clause in lines 3-9. Thus, pi proposes
batches of requests containing its request (op, i, seq i) to an infinite sequence of
consensus instancesC1, . . . but the decided batches never contain (op, i, seq i). By
validity of consensus, there exists a process pj 6= pi that accesses infinitely many
consensus objects. By the algorithm, before proposing a batch to a consensus
object, pj first collects the batches currently stored by other processes in a collect
object REQ . Since pi stores its request in REQ and has never updated it since
then, eventually, every such process pj must collect the pi’s request and propose it
to the next consensus object. Thus, every value returned by the consensus objects
from some point on must contain pi’s request; contradiction. 2Lemma 11.2

Theorem 11.3 For each type τ = (Q, q0, O,R, δ), the algorithm in Figure 11.2
describes a wait-free linearizable implementation of τ using consensus objects
and atomic registers.

Proof Let H be any history of an execution of the algorithm in Figure 11.2.
By Lemma 11.1, local variables linearized i are prefixes of some sequence of
requests linearized . Let L be the legal sequential history, where operations are
ordered by linearized and responses are computed using q0 and δ. We construct
H ′, a completion of H , by adding responses to the incomplete operations in H
that are present in L. By construction, L agrees with the local history of H ′ for
each process.

We then show that L respects the real-time order of H . Consider any two
operations op and op′ such that op →H op′ and assume, by contradiction that
op′ →L op. Let (op, i, si) and (op′, j, sj) be the corresponding requests issued by
the processes invoking op and op′, respectively. Thus, in linearized , (op′, j, sj)
appears before (op, i, si), i.e., before op terminates, it witnesses (op′, j, sj) being
decided by consensus objects C1, C2, . . . before (op′, j, sj). By our assumption
however, op→H op′, hence (op′, j, sj) has been stored in the collect object REQ

11.2. A Wait-Free Universal Construction 

after op has returned. Yet, the validity property of consensus does not allow to
decide a value that has not yet been proposed—a contradiction. Thus, op→L op

′,
and we conclude that H is linearizable. 2Theorem 11.3

11.2.2. Bounded Wait-Free Universal Construction

The implementation described in Figure 11.2 is wait-free but not bounded wait-
free. A process can take arbitrarily many steps in the repeat-until clause in lines 3-
9 to “catch up” with the current consensus object.

It is straightforward to turn this implementation into a bounded wait-free one.
Before returning an operation’s response (line 10), a process pi posts in the shared
memory the sequence of requests pi has witnessed committed, together with the
identity of the last consensus object pi has accessed. Upon invoking an operation,
a process reads the memory to obtain the “most recent” state on the implemented
object and the “current” consensus identifier. Note that multiple processes con-
currently invoking different operations might get the same estimate of the “current
state” of the implementation. In this case, only one of them can “win” in the cur-
rent consensus instance and execute its request. But we argue that the requests
of “lost” processes must be then committed by the next consensus object, which
implies that every operation returns in a bounded number of its own steps.

The resulting implementation is presented in Figure 11.3.
To prove the following theorem, we recall that collect objects REQ and S can

be implemented with O(n) read-write step complexity (Chapter 9).

Theorem 11.4 For any type τ = (Q, q0, O,R, δ), the algorithm in Figure 11.3 is
a wait-free linearizable implementation of τ using consensus objects and atomic
registers, where every operation returns in O(n2) shared-memory steps.

Proof As before, all invoked operations are ordered in the same way by using a
sequence of consensus objects, hence the proof of linearizability is similar to the
one of Theorem 11.3.

To prove bounded wait-freedom, consider a request (op, i, `) issued by a pro-
cess pi. By the algorithm, pi first publishes its request and obtains the current
state of the implemented object (line 13), denoted k and s, respectively. Then pi
proposes all requests it observes to be published but not yet committed to consen-
sus object Ck. If (op, i, `) is committed by Ck, then pi returns after taking O(n)
read-write steps (both collect operations involve n read-write steps).

Assume now that (op, i, `) is not committed by Ck. Thus, another process pj
has previously proposed to Ck a set of requests that did not include (op, i, `).
Thus, pj collected requests in line 15 before or concurrently with the store op-
eration in which pi published (op, i, `) (line 12). Moreover, pj did not store the
result of its operation in S (line 21) before pi performed its collect of S in line 13.

 11. Consensus and Universality

Shared objects:
REQ , collect object, initially ⊥; { published requests }
C1, C2, . . . , consensus objects;
S, collect object, initially (1, ε);

{ the current consensus object and the last committed sequence of requests }

Local variables, for each process pi:
integer seq i, initially 0; { the number of executed requests of pi }
integer ki, initially 0; { the number of batches of executed requests }
sequence linearized i, initially ε; { the sequence of executed requests }

Code for operation op executed by pi:
11 seq i ← seq i + 1;
12 REQ .store(op, i, seq i); { publish the request }
13 (ki, linearized i)← max(S.collect());

{ get the current consensus object and the most recent state }
14 repeat
15 V ← REQ .collect(); { collect all current requests }
16 requests ← V − {linearized i}; { choose not yet linearized requests }
17 decided ← C[ki].propose(requests);
18 linearized i ← linearized i.decided ; { append decided requests }
19 ki ← ki + 1;
20 until (op, i, seq i) ∈ linearized i;
21 S.store((ki + 1, linearized i)); { publish the current consensus object and state }
22 return the result of (op, i, seq i) in linearized i using δ and q0

Figure 11.3.: Bounded wait-free universal construction for deterministic objects

The situation can repeat when pi proceeds to consensus object Ck+1, but only
if there is another process pk that previously “won” Ck+1 with a sequence not
containing (op, i, `), but has not yet stored its state in S. Note that pk must be
different from pj . Otherwise , pj would store ki + 1 in S before collecting REQ
which, as (op, i, `) was not found in REQ by pj should have happened before, or
concurrently with, the store in S performed by pi.

There can be at most n−1 processes that can prevent pi from “winning” consen-
sus objects, hence pi can perform at most n− 1 iterations in lines 14-20. As each
iteration consists of O(n) shared-memory steps, we get O(n2) step complexity
for individual operations. 2Theorem 11.4

11.2.3. Non-Deterministic Objects

The universal construction in Figure 11.2 assumes that the object type is deter-
ministic: for each state and each operation, there exists exactly one resulting

11.3. Chapter Notes 

state-response pair. Thus, given a sequence of requests, there is exactly one cor-
responding sequence of responses and state transitions.

A “dumb” way to use our universal construction is to consider any deterministic
restriction of the given object type, i.e., to deterministically choose one of possible
transitions for state-operation pair. But this might not be desirable if we indeed
expect the shared object to behave non-deterministically (e.g., if we want to use
it in a randomized algorithm). A “fair” non-deterministic universal construction
can be derived from the algorithm in Figure 11.3 as follows. Instead of proposing
only a sequence of requests in line 17, process pi (using a local random number
generator) proposes a sequence of responses and state transitions corresponding to
a sequence of operations requests applied to the last state in linearized i. One of
the proposed sequences of responses and state transitions will “win” the consensus
instance and will be used to compute the new object state.

11.3. Chapter Notes

Lamport, Shostak, and Pease introduced the “Byzantine Generals” problem that
consists in reaching agreement in a synchronous system of processes subject to
Byzantine (arbitrary) failures [96, 83]. Fisher, Lynch, and Paterson considered
the problem of reaching agreement in asynchronous crash-prone systems and in-
troduced the notion of consensus [37].

The universality of consensus is inspired by the replicated state machine ap-
proach, proposed by Lamport [81] and elaborated by Schneider [101]. The
consensus-based universal construction that gives a wait-free implementation of
any (total) sequential type was proposed by Herlihy [54]. Hadzilacos and Toueg
defined a closely related abstraction of total-order broadcast and showed that it is
equivalent to consensus (assuming a reliable communication media) [51].

11.4. Exercises

1. Show that the two definitions of consensus given in Section 11.1 are equiv-
alent: A wait-free linearizable consensus object (Figure 11.1) satisfies the
properties of Agreement, Validity, and Termination and, vice versa, any
algorithm using atomic base objects satisfying these three properties is a
wait-free linearizable consensus implementation.

2. Find algorithms that solve relaxations of consensus in which only two out
of the three properties are satisfied.

3. Show that the algorithm described in Figure 11.2 is not bounded wait-free.

12. Consensus Number and
Hierarchy

In the previous chapter, we introduced the notion of a universal object type. Using
read-write registers and objects of a universal type, we can implement an object of
any object type in a wait-free manner. The seminal example of a universal type is
consensus. Therefore, the power of an object type can be measured by the ability
of its objects to implement consensus.

In this chapter, we show that atomic registers cannot implement a consensus
object shared by two processes, hence the register type is not universal even in a
system of two processes. If, however, in addition to registers, we can use queue
objects, then we can implement 2-process consensus, but not 3-process consensus.

More generally, we introduce the notion of consensus number of an object type
T , the largest number of processes for which T is universal. Consensus numbers
are fundamental in capturing the relative power of object types, and we show how
to evaluate the consensus power of various object types.

12.1. Consensus Number
Definition 12.1 The consensus number of an object type T , denoted by cons(T),
is the highest number n such that it is possible to wait-free implement a consensus
object from atomic registers and objects of type T , in a system of n processes. If
there is no such largest n, i.e., consensus can be implemented in a system of an
arbitrary number of processes, the consensus number of T is said to be infinite.

Note that a wait-free implementation of an object in a system of n processes
implies a wait-free implementation in a system of any n′ < n processes. In
this sense, the notion of consensus number is well-defined. By the definition, if
cons(T) < cons(T ′), then there is no wait-free implementation of an object of
type T ′ from objects of type T and registers in a system of cons(T) + 1 or more
processes.

If atomic registers are strong enough to wait-free implement consensus for any
number of processes, i.e., cons(register) = ∞, then all object types would have
the same consensus number, and the very notion of consensus number would be
useless. We show below that this is not the case. Moreover, we show that for each

 12. Consensus Number and Hierarchy

n, there is an object type T , such that cons(T) = n, i.e., the consensus hierarchy
is populated for each level n.

12.2. Preliminary Definitions

In this section, we first introduce some machinery that will be used to compute
consensus numbers of object types. Consider an algorithm A that implements a
wait-free consensus object, assuming that processes only propose values 0 and 1.
This object is called a binary consensus object.

12.2.1. Schedule, Configuration, and Valence

We consider a system in which n processes communicate by invoking operations
on “base” (low-level) atomic (linearizable) objects of types T1, . . . , Tx. As the
base objects are atomic, an execution in this system can be modeled by a sequen-
tial history that (1) includes all the operations on base objects issued by the pro-
cesses (except possibly the last operation of a process if that process crashes), (2)
is legal with respect to the type of each base object, and (3) respects the real-time
occurrence order on the operations. Recall that this sequential history is called a
linearization.

A schedule is a sequence of base-object operations. In the following, we assume
that the base object types are deterministic and the processes run deterministic
wait-free consensus algorithms. Thus, we can represent an operation in a schedule
only by the identifier of the process that issues that operation.

A configuration C is a global state of the system execution at a given point in
time. It includes the state of each base object, plus the local state of each process.
Configuration p(C) is that obtained from C by applying an operation issued by
the process p. More generally, given a schedule S and a configuration C, S(C)
denotes the configuration obtained by applying to C the sequence of operations
defining S.

In an input configuration of an algorithm A, base objects and processes are in
their initial states. In particular, for binary consensus, the initial state of a process
can be 0 or 1, depending on the value the process is about to propose.

The notion of valence is fundamental in proving consensus impossibility re-
sults. LetC be any configuration that results from a finite execution of algorithm A.

We say that configuration C is v-valent if (a) there is a schedule applied to C in
which v is decided and (b) there is no schedule applied to C in which a value v′

different from v is decided. We say that v is the valence of that configuration C.
Respectively, C is bivalent if both 0 and 1 are decided in some schedules applied
to C. A 0-valent or 1-valent configuration is said to be monovalent.

12.2. Preliminary Definitions 

By the definition, every descendant configuration S(C) of a monovalent con-
figuration C must be monovalent. Similarly, if a configuration C has a bivalent
descendant S(C), then C is bivalent.

Lemma 12.2 Every configuration of a wait-free consensus implementation A is
monovalent or bivalent.

Proof Let S(C) a configuration of A reachable from an initial configuration C
by a finite schedule S. Since the algorithm is wait-free, for any sufficiently long
schedule S′, some process must decide in S′(S(C)). Since only 0 and 1 can be
proposed and, thus, decided, the set of values that can be decided in extensions of
S(C) is a non-empty subset of {0, 1}. 2Lemma 12.2

Lemma 12.3 A configuration in which a process decides is monovalent.

Proof Assume, by contradiction, that a process p decides v ∈ {0, 1} in a bi-
valent configuration S(C). Since C is bivalent, there is a schedule S′(S(C)) in
which value 1− v is decided, contradicting the agreement property of consensus.

2Lemma 12.3

The corollary of Lemmas 12.2 and 12.3 is that no process can decide in a biva-
lent configuration.

12.2.2. Bivalent Initial Configuration

Our next observation is that any wait-free consensus algorithm must have a biva-
lent initial configuration C. In other words, for some distribution of input values,
the decided value can depend on the schedule: in some S(C), 0 is decided and in
some S′(C), 1 is decided.

Lemma 12.4 Any wait-free consensus implementation for 2 or more processes
has a bivalent initial configuration.

Proof LetC0 be the initial configuration in which all processes propose 0, andCi,
1 ≤ i ≤ n, the initial configuration in which the processes from p1 to pi propose
value 1, whereas all other processes propose 0. So, all processes propose 1 in Cn.
Thus, any two adjacent configurations Ci−1 and Ci, 1 ≤ i ≤ n, differ only in
pi’s proposed value: pi proposes 0 in Ci−1 and 1 in Ci. The validity property of
consensus and Lemma 12.2 imply that C0 is 0-valent and Cn is 1-valent.

Assume that all configurations C0, . . . , Cn are monovalent. As n ≥ 2, we have
two consecutive configurations Ci−1 and Ci, such that Ci−1 is 0-valent and Ci is
1-valent.

Since the algorithm is wait-free, for any sufficiently long schedule S, some
process pj decides in S(Ci−1), and since Ci−1 is 0-valent, the decided value must
be 0. Assume pi takes no steps in S.

 12. Consensus Number and Hierarchy

As every process besides pi has the same inputs in Ci−1 and Ci and the states
of base objects in the two initial configurations are identical, no process besides
pi can distinguish S(Ci−1) and S(Ci). Thus, pj must also decide 0 in S(Ci),
contradicting the assumption that Ci is 1-valent. 2Lemma 12.4

It is important to notice that the proof above would work, even if we assume
that at most one process might initially crash. In particular, if pi crashes
before taking any steps, then no other process can distinguish an execution
starting from Ci−1 from an execution starting from Ci.

12.2.3. Critical Configurations

We now show that every wait-free consensus algorithm involving at least two
processes has a critical configuration D with the following properties:

• D is bivalent;

• for every process pi, pi(D) is monovalent;

• there is an object X , such that every process pi is about to access X in its
next step in D.

In other words, one step of any given process applied to a critical configuration
determines the decision value.

Lemma 12.5 Any wait-free consensus implementation A for 2 or more processes
has a critical configuration.

Proof By Lemma 12.4, A has a bivalent initial configuration C. We show that C
has a critical descendant configuration S(C).

Assume not, i.e., assume that for every schedule S, there is a process pi such
that pi(S(C)) is bivalent. Starting from C, we inductively construct an infinite
schedule S̃ that, when applied toC, goes only through bivalent configurations: for
every its prefix S, S(C) is bivalent. Indeed, let q1 be any process such that q1(C)
is bivalent, q2 be any process such that q2(q1(C)), etc. Then, by Lemma 12.3,
starting from C, the resulting infinite schedule S̃ = q1, q2, . . . can never reach
a configuration in which a process decides—a contradiction with the assumption
that A is a wait-free consensus algorithm.

Thus,C has a bivalent descendant configurationD such that for every pi, pi(D)
is monovalent.

12.3. Consensus Number of Atomic Registers 

Now assume by contradiction, that there are two processes p and q that access
different objects in their next steps enabled in D. We can safely assume that p(D)
is 0-valent and q(D) is 1-valent. We encourage the reader to see why this is the
case.

Then the steps of p and q applied to D commute, i.e., q(p(D)) and p(q(D)) are
identical: in the two configurations, base-objects states and process states are the
same (Figure 12.1).

Bivalent configuration D

X .op1() by p

0-valent configuration p(D) 1-valent configuration q(D)

X .op1() by p

Y .op2() by q

Y .op2() by q

q(p(D)) ≡ p(q(D))

Figure 12.1.: Operations issued on distinct objects

Since p(D) is 0-valent, q(p(D)) is 0-valent, and since q(D) is 1-valent, p(q(D))
is 1-valent—a contradiction.

Thus, D is indeed a critical configuration of algorithm A. 2Lemma 12.5

Note that Lemma 12.5 holds for any wait-free consensus algorithm. By
analyzing steps that processes can apply to a critical configuration and using
the number of available processes, we can deduce the consensus number of a
given object type.

12.3. Consensus Number of Atomic Registers

Atomic registers are fundamental objects in concurrent shared-memory systems.
In this section, we show that they are however too weak to solve consensus even
for two processes. Put differently, the consensus number of the object type regis-
ter is 1.

 12. Consensus Number and Hierarchy

Theorem 12.6 There is no wait-free consensus implementation for two processes
from atomic registers.

Proof By contradiction, assume there is a wait-free consensus algorithm A for
two processes, p and q, using atomic registers. By Lemma 12.5, A has a critical
configuration D, i.e., D is bivalent, p(D) and q(D) are monovalent, and the two
processes are about to access the same register R in their next steps enabled in D.
Since p(D) and q(D) are the only two one-step descendants ofD, p(D) and q(D)
have different valences. Without loss of generality, assume that p(D) is 0-valent
and q(D) is 1-valent.

Let OP1 and OP2 be base-object operations performed by, respectively, pro-
cesses p and q in their next steps enabled in configuration D.

The following cases are then possible:

• OP1 and OP2 are read operations

As a read operation on an atomic register does not modify its value, this
case is the same as the previous one where p and q access distinct registers.

• One of the two operations OP1 and OP2 is a write. Without loss of generality,
assume that q is about to write in R in D (Figure 12.2).

Schedule S ′ (only by q)

D

W riteq(D) (1-valent)Readp(D) (0-valent)

Writeq(Readp(D))

Schedule S ′

q decides

q decides

Figure 12.2.: Read and write issued on the same register

12.4. Objects with Consensus Numbers 2 

Consider configurations q(p(D) and q(D). Since p accessed R in OP1 and
q writes in R in OP2, the state of D is the same in the two configurations.
Thus, the only difference between the two is the local state of p: p took one
more step after D in q(p(D), but not in q(D).

Recall that q(p(D) is 0-valent and q(D) is 1-valent. Take any sufficiently
long schedule S only containing steps of q, such that some process q decides
in S(q(p(D))). Since q cannot distinguish S(q(p(D))) from S(q(D)), it
should decide the same value in S(q(D)).

But q(p(D)) is 0-valent and p(D) is 1-valent—a contradiction.

The case when p writes in its next step in D is symmetric.

2Theorem 12.6

As solving consensus for one process is trivial, the following result is immedi-
ate from Theorem 12.6.

Corollary 12.7 cons(register) = 1

12.4. Objects with Consensus Numbers 2

In this section, we show that objects types test&set and queue have consensus
number 2.

12.4.1. Consensus from Test&Set Objects

An object of type test&set stores a binary value, initially 0, and exports a sin-
gle (atomic) test&set operation that writes 1 to it and returns the old value. Its
sequential specification is defined as follows:

operation X.test&set ():
loc← X;
X ← 1;
return (prev).

Thus, the first process to access a (non-initialized) test&set object gets 0 (we call
it a winner) and all subsequent processes get 1.

The consensus algorithm described in Figure 12.3 uses one test&set object TS
and two 1W1R atomic registers REG [0] and REG [1].

When process pi (for convenience, we assume that i ∈ {0, 1}) invokes
propose(v) on the consensus object, pi “publishers” its input value v in REG [i]
(line 1).

 12. Consensus Number and Hierarchy

operation propose(v) issued by pi:
(1) REG [i]← v;
(2) test← TS .test&set ();
(3) if (test = 0) then return (v)
(4) (test = 1) else return (REG [1− i])

Figure 12.3.: From test&set to consensus

Then pi accesses TS (line 2). If it wins, it decides its own input value (line 3).
Otherwise, pi decides the value proposed by the other process p1−i (line 4). In-
tuitively, as exactly one process wins TS, only the value proposed by the winner
can be decided.

Theorem 12.8 The algorithm in Figure 12.3 is a wait-free consensus implemen-
tation for two processes using test&set objects and atomic registers.

Proof As every process performs at most three shared-memory steps before de-
ciding, the algorithm is wait-free.

Let pi be the process that, in a given execution of the algorithm, accesses TS
first and decides its own input value v. By the algorithm, pi previously wrote v in
atomic register REG [i]. Thus, p1−i that accesses TS after pi, will after that find
v in REG [i] and return it.

Thus, the two processes can only return that input value of the winner, and the
agreement and validity properties of consensus are satisfied.. 2Theorem 12.8

12.4.2. Consensus from Queue Objects

Recall that a queue type exports two operations enqueue , and dequeue, where
enqueue(v) adds element v to the end of the queue and dequeue() removes the
element at the head of the queue and returns it; if the queue is empty, the default
value ⊥ is returned.

A wait-free consensus algorithm for two processes, which uses two registers
and a queue, is presented in Figure 12.4. The algorithm assumes that the queue is
initialized with the sequence of items < w, ` >. The first process first to perform
a dequeue operation on this queue obtains w and considers itself a winner. As in
the previous algorithm, the value proposed by the winner is decided.

Using the arguments of the proof of Theorem 12.8, we obtain:

Theorem 12.9 The algorithm in Figure 12.4 is a wait-free consensus implemen-
tation for two processes using queue objects and atomic registers.

12.4. Objects with Consensus Numbers 2 

operation propose(v) issued by pi:
(5) REG [i]← v;
(6) test← Q.dequeue();
(7) if (test = w) then return (REG [i])
(8) (test = `) else return (REG [1− i])

Figure 12.4.: From queue to consensus

12.4.3. Consensus Numbers of Test&Set and Queue

As we have shown, test&set and queue objects, combined with atomic registers,
can be used to wait-free implement consensus in a system of two processes. We
show below that these object types have consensus number 2, i.e., they cannot be
used to solve consensus for three or more processes.

Theorem 12.10 There is no wait-free consensus implementation for three pro-
cesses from objects of types in {test&set,queue, register}.

Proof By contradiction, assume there is a wait-free consensus algorithm A for
two processes, p, q, and r using atomic registers, test&set objects, and queues.

By Lemma 12.5, A has a critical configuration D, i.e., D is bivalent, p(D),
q(D), and r(D) are monovalent, and all the three processes are about to access
the same objectX . Without loss of generality, assume that p(D) is 0-valent, while
q(D) and r(D) are 1-valent.

It is immediate from the proof of Theorem 12.6 thatX must be a test&set object
or a queue.

1. X is a test&set object.

The two test&set operations on X performed by p and q result in two
configurations q(p(D)) and p(q(D)) that only p and q can distinguish: the
state of r and the states of all objects (including X) are identical in the two
configurations.

Consider a schedule S in which r runs solo (neither p nor q appear in
S) starting from q(p(D)) and r decides in S(q(p(D))). Since p(D) is
0-valent, r must decide 0 in S(q(p(D))). But S(q(p(D)) is indistinguish-
able to r from S(p(q(D)))—a contradiction with the assumption that q(D)
is 1-valent.

2. X is a queue.

Let OPp the operation issued by p that leads from D to p(D), OPq the oper-
ation issued by q that leads from D to q(D), and OPr the operation issued
by r that leads from D to r(D).

 12. Consensus Number and Hierarchy

Here we consider the following possible subcases:

• OPp and OPq are dequeue operations.

Then, regardless of the state of X in D, q(p(D)) and p(q(D)) are
identical, except for the local states of P and q. Thus, in a solo sched-
ule, r can never distinguish two configurations of opposite valences—
a contradiction.

• OPp is an enqueue operation and OPq is a dequeue operation.

If in configuration D, X is empty, then q(p(D)) and q(D) only differ
in the local states of p and q, and X is left empty in both configura-
tions.

If X is non-empty in D, then q(p(D)) and p(q(D)) are identical.

In both cases, in solo extensions, r cannot distinguish two configura-
tions of opposite valences—a contradiction.

• We are left with the most interesting case: OPp and OPq are enqueue
operations. Let a and b be, respectively, the arguments of the two
operations.

Configurations q(p(D)) and p(q(D)) differ only in the state of X: in
q(p(D)), the element enqueued by p precedes the element enqueued
by q, and in p(q(D))—vice versa.

Consider a solo schedule of p applied to q(p(D)). To decide, p must
be able to distinguish the schedule from that applied to q(p(D)). Note
that the states of X in q(p(D)) and p(q(D)) differ only in the order
between a and b (Figure 12.5). Thus, in a solo schedule applied to
q(p(D)), p should eventually dequeue all k elements that precede a in
X in q(p(D)) and then dequeue a.

a

k ≥ 0 items

enqueue() side dequeue() sideb

Figure 12.5.: The state of the queue object X in configuration q(p(D)); the state
of X in p(q(D)) differs only in the order between a and b.

Let Sp be the solo schedule of p such that in Sp(q(p(D))), p is about
to dequeue a. Note that p still cannot distinguish Sp(q(p(D))) and
Sp(p(q(D))).

Similarly, consider a solo schedule of q applied to Sp(q(p(D))). To
decide, q should eventually dequeue a inX , as otherwise, it would not

12.5. Objects of n-Consensus Type 

be able to distinguish the schedule from that applied to Sp(p(q(D))),
of the opposite valence. Let Sq be the solo schedule of p such that in
Sq(Sp(q(p(D)))), q is about to dequeue element a. Again, q cannot
distinguish Sq(Sp(q(p(D)))) and Sq(Sp(p(q(D)))).

Finally, we observe that D′ = Sq(Sp(q(p(D)))) and
D′′ = Sq(Sp(p(q(D)))) still differ only in the state of X: in the first
configuration, X contains b; a and in the second—a; b. Thus, config-
urations q(p(D′) and p(q(D′′), obtained after the dequeue operations
of p and q are applied to D′ in different orders, are identical. But the
two configurations have opposite valences—a contradiction.

Thus, the algorithm cannot have a critical configuration, contradicting Lemma 12.5.
2Theorem 12.10

Theorems 12.8, 12.9, and 12.10 imply

Corollary 12.11 cons(test&set) = cons(queue) = 2.

12.5. Objects of n-Consensus Type

In this section, we show that the hierarchy of object types based on consensus
numbers is “populated”: for each n ∈ N, there is an object type T , such that
cons(T) = n.

The sequential specification of the n-consensus object type is given in Fig-
ure 12.6. The state of an n-consensus object is defined by two variables: x
(initially ⊥)—the value to be decided and ` (initially 0)—the number of propose
operations performed on the object so far. As with the consensus type, the ar-
gument of the first propose operation fixes x. However, only the first n propose
operation return a decided value. All subsequent operations return ⊥.

operation propose(v):
`← `+ 1;
if (x = ⊥) then x← v;
if (` ≤ n) then

return (x)
else

return (⊥)

Figure 12.6.: Consensus specification: sequential execution of propose(v)

 12. Consensus Number and Hierarchy

We suggest the reader to compute the consensus number of the type, following
the lines of the proofs above (Exercise 2):

Theorem 12.12 For all n ∈ N, cons(n-consensus) = n.

12.6. Objects with Consensus Number +∞
We now complete the picture by showing that some object types have an infinite
consensus number: atomic objects of these types, combined with atomic registers
can be used to solve consensus among any number of processes. We discuss two
such object types: compare&swap and augmented queue.

12.6.1. Consensus from Compare&Swap Objects

A compare&swap object that stores a value x exports a single compare&swap()
operation that takes two values as arguments, old and new , with the following
sequential specification:

operation compare&swap(old ,new):
prev ← x;
if (x = old) then x← new;
return (prev)

From Compare&Swap Objects to Consensus. Implementing consensus
from a single compare&swap object in a system of any number n of processes
is straightforward (Figure 12.7) The base compare&swap object CS is initialized
to ⊥, a default value that cannot be proposed to the consensus object. When a
process proposes a value v, it invokes CS .compare&swap(⊥, v) (line 9). If ⊥ is
returned, the process decides its value (line 10). Otherwise, it decides the value
returned by the compare&swap object (line 11).

operation propose(v) issued by pi:
(9) test ← CS .compare&swap(⊥, v);
(10) if test = ⊥ then return(v)
(11) else return(test)

Figure 12.7.: From compare&swap to consensus

Theorem 12.13 cons(compare&swap) =∞.

Proof The algorithm in Figure 12.7 is clearly wait-free. Let pi be the first process
to execute CS .compare&swap () operation in a given execution. (Recall that “the

12.7. Consensus Hierarchy 

first” is defined based on the linearization order on operations on CS .) Clearly,
any subsequent call of CS.compare&swap () returns the input value of pi and,
thus, only this value can be decided. 2Theorem 12.13

12.6.2. Consensus from Augmented Queue Objects

An augmented-queue object is a previously considered queue with an additional
peek() operation that returns the first item of the queue without removing it. In-
tuitively, the object type has infinite consensus power, as the first element to be
enqueued can then be “peeked” and returned as a decision value (assuming that
the queue is initially empty).

operation propose(v) issued by pi:
Q.enqueue(v);
return(Q.peek())

Figure 12.8.: From an augmented queue to consensus

Figure 12.8 gives a simple wait-free implementation of a consensus object from
an augmented queue. The construction is pretty simple. The augmented queue Q
is initially empty. A process first enqueues its input value and then invokes the
peek() operation to obtain the first value that has been enqueued. It is easy to
see that the construction works for any number of processes, and we have the
following theorem:

Theorem 12.14 cons(augmented-queue) =∞.

12.7. Consensus Hierarchy

Consensus numbers establish a hierarchy on the power of object types to wait-
free implement a consensus object, i.e., to wait-free implement any object defined
by a sequential specification on total operations. As we have shown, the lowest
level object types (of consensus number 1) include register, the second weak-
est class of object types (of consensus number 2) includes test&set and queue,
and the strongest class (of consensus number ∞) includes compare&swap and
augmented-queue. We also showed that for all n ∈ N, there are object types,
e.g., n-consensus, that have consensus number exactly n, i.e., every level in the
hierarchy is “populated.”

Consensus numbers also enable ranking the power of classic synchronization
primitives (provided by shared memory parallel machines) in presence of process
crashes: compare&swap is stronger than test&set that is, in turn, stronger than

 12. Consensus Number and Hierarchy

atomic read/write operations. Interestingly, they also show that classic objects
encountered in sequential computing, such as stacks and queues, are as powerful
as the test&set or fetch&add synchronization primitives when one is interested in
providing upper layer applications with wait-free objects.

Fault-tolerance can be impossible to achieve if the designer is not provided
with powerful enough atomic synchronization operations. For example, a FIFO
queue that has to tolerate the crash of a single process, cannot be built from atomic
registers. This follows from the fact that the consensus number of the queue type
is 2, whereas the consensus number of the register time is 1.

12.8. Chapter Notes

The hierarchy of object types based on consensus numbers was introduced by
Herlihy [54]. The article also contains multiple examples of how the consensus
number of an object type can be computed. Jayanti observed that the consensus
hierarchy, as defined originally by Herlihy, is not robust: there are combinations
of lower level types that turn out to be stronger than a higher level type [66]. To
fix this, Jayanti proposed a refined definition that has been used since then. How-
ever, the question of the robustness of the resulting consensus hierarchy remains
open. Lo and Hadzilacos [87] give examples of non-deterministic types that give a
higher level type under composition, but it remains unclear whether deterministic
types are robust.

The impossibility of implementing wait-free consensus for two processes by us-
ing atomic registers presented in this chapter involves elements (valence and crit-
ical configurations) of the original proof by Fisher, Lynch and Paterson [37] who
showed that even 1-resilient (i.e., tolerating the failure of a single process) con-
sensus is impossible to solve in an asynchronous message-passing system. Loui
and Abu-Amara extended the proof to read-write shared-memory systems [89].

In this book, we obtain the 1-resilient consensus impossibility (Chapter 13) by
a simulation-based reduction to the wait-free impossibility.

12.9. Exercises

1. Prove Corollary 12.11.

2. Prove Theorem 12.12.

3. Determine the consensus number of type FAI (fetch-and-increment) (Sec-
tion 3.4.1).

Part V.

Schedulers

13. Resilience

In Chapter 11, we introduced the consensus abstraction and showed its universal-
ity: any sequential object type can be implemented using read-write registers and
consensus objects. In Chapter 12, we showed that there is, however, no wait-free
implementation of consensus using only read-write registers.

In this chapter, we strengthen this impossibility result, assuming a restricted
scheduler that can only fail a limited number of processes. We show that in a
system of n ≥ 2 processes using reads and writes, consensus cannot be solved
1-resiliently, i.e., even tolerating only one failure. Notice that a wait-free solution
can be seen as an (n − 1)-resilient one. Therefore, we show that a read-write
consensus algorithm cannot tolerate the failure of a single process, let alone n−1.

To derive this impossibility, we introduce the abstraction of safe agreement.
Safe agreement can be seen as a relaxation of consensus where, in certain cases, a
process might take infinitely many steps without deciding. The abstraction guar-
antees the Validity and Agreement properties of consensus but can sacrifice Termi-
nation if some participating process fails before terminating the protocol. Recall
that a process is considered participating if it performs at least one step of the
algorithm.

We show that safe agreement enables an instrumental simulation: it allows a set
of k + 1 simulators to “mimic” a k-resilient execution of an arbitrary algorithm
running on n > k processes. In particular, using our simulation, two processes can
simulate any 1-resilient algorithm. An immediate implication of this simulation
is that, for all n ≥ 2, 1-resilient n-process consensus is impossible: otherwise, we
would obtain a wait-free consensus algorithm for the two simulators.

13.1. Safe Agreement

As in consensus, to access the safe agreement (SA) abstraction, a process pro-
poses values and tries to decide on one of the proposed values. For convenience,
we assume here that the abstraction exports two operations: propose, taking the
proposed value as a parameter, that can be only invoked once, and, resolve, that
can be invoked multiple times. The resolve operation can return either one of the
proposed values or a predetermined abort value ⊥.

 13. Resilience

13.1.1. Specification

It is assumed that a process first proposes a value by invoking propose, then re-
peatedly invokes resolve until a non-⊥ value, called a decided value, is returned,
in which case, we say that the process decides.

The SA abstraction ensures the Validity and Agreement properties of consensus
(Section 11.1)—every decided value was previously proposed, and no two differ-
ent values are decided. But instead of the Termination property of consensus, SA
ensure the following SA-Termination property:

(1) Both propose and resolve operations are wait-free.

(2) Every correct process eventually decides if (a) some process decides, or
(b) no process fails while executing the propose operation.

Liveness of SA does not depend on the processes that do not invoke the
propose operation. To prevent correct processes from deciding, at least one
process should invoke the (wait-free) propose operation and fail before the
operation returns.

13.1.2. Solving Safe Agreement

Our safe-agreement algorithm uses two snapshot objects A and B, and a register
D in Figure 13.1.

To propose a value, a process writes the value in A (line 1). To get a vector of
values (line 2), the process takes a snapshot of A. The process then writes this
subset in B (line 3).

To decide on a value, the process first checks if a non-⊥ value is already written
in the “decision” register D and if so, returns the value. Otherwise, the process
takes a snapshot of B (line 5) to get vectors of values sets written in B so far. If
every process in the smallest such vector U (containing the smallest number of
non-⊥ values) performed its write in B, then the minimal value in U is written in
a distinct “decision” register D and returned (decided). Recall that for every two
snapshot results, U and U ′, we have U ≤ U ′ or U ′ ≤ U , i.e., one is a subvector
of the other. Thus, there indeed exists the unique smallest set of values written in
B.

Theorem 13.1 The algorithm in Figure 13.1 solves safe agreement.

Proof SA-Termination is immediate. If every process that executed line 1 also
executes line 3, then, eventually, for every process pj that appears in the smallest
set S found in B within an invoked resolve operation (line 6), we have V [j] 6= ⊥

13.1. Safe Agreement 

Shared objects:
A, B, snapshot objects, initially ⊥, . . . ,⊥;
D, “decision” register, initially ⊥;

propose(v)
1 A.update(v);
2 U ← A.snapshot();
3 B.update(U);

resolve()
4 if (x← D.read()) 6= ⊥ then return x
5 V ← B.snapshot();
6 S ← argminU∈V |U |; { the vector with the smalles number of non-⊥ in V }
7 if for all j, S[j] 6= ⊥⇒ V [j] 6= ⊥ then
8 x← min(S);
9 D ← x;
10 return x
11 else
12 return ⊥

Figure 13.1.: Safe agreement (code for process pi)

(line 7). Further, for some process to decide, the process must have previously
written the decided value in register D (line 9). Hence, eventually, every correct
process decides.

Validity is also immediate: only a previously proposed non-⊥ value can be
found in a snapshot object.

To prove Agreement, consider the process that wrote the smallest vector to B
in line 3. Let that process be pm, and let Um be the vector written by pm to B.
First, we observe that Um[m] 6= ⊥: pm must have found its own value in the
snapshot taken in line 2. By the assumption, Um is a subvector of every other
snapshot ever written in B. In particular, every process pi that reaches line 7 has
S[m] 6= ⊥. Thus, to decide, pi must ensure that it sees the value written by pm in
line 3. Hence, to decide, pi must evaluate Um to be the smallest vector in line 6
and return the smallest value in Um. 2Theorem 13.1

If in the algorithm in Figure 13.1, the snapshot object A is implemented from
atomic registers (Chapter 9), then it is sufficient for every process that invoked
the propose operation to take O(n) read-write steps to ensure that every correct
process eventually decides.

We say that a process is blocked in an instance of safe agreement if the process
completes the (wait-free) propose operation on that instance, but every resolve

 13. Resilience

invocation made by the process so far returned⊥. If a resolve invocation made by
the process returns a non-⊥ value, we say that the process is resolved.

13.2. BG Simulation

We now present BG simulation (BG for Elizabeth Borowsky and Eli Gafni), a
technique by which k+ 1 processes s1, . . . , sk+1 (called simulators) can simulate
a k-resilient execution of any read-write algorithm Alg on n processes p1, . . . , pn
(n > k). Intuitively, s1, . . . , sk+1 use SA to agree on each simulated step of every
process pj .

If one of the simulators slows down while executing an instance of SA, other
correct simulators can block in this instance until the slow simulator wakes up. If
the slow simulator is faulty, no other simulator is guaranteed to decide in the SA
instance, which instantiates as a faulty process in the simulated execution. The
simulation, however, guarantees that a faulty simulator cannot affect more than
one simulated process, thus, as long as at least one of the k + 1 simulators is
correct, at least n − k simulated processes “make progress”. Below we define
precisely what we mean by a simulation and describe the algorithm.

13.2.1. Simulation: Definition

Informally, to simulate a model A in a model B means to guarantee that, in every
execution of B, the processes in B agree on a sequence of steps of the processes
in A. This sequence (1) must be consistent with some execution of A, and (2)
must reflect the inputs provided to the processes in the execution of B. The first
condition means that the simulation is correct, i.e., it indeed produces a run that
could have happened in A. The second condition means that the simulation is
useful, i.e., the simulated run allows the simulators to compute outputs based on
their proper inputs. These outputs depend on the goal of the simulation, which in
turn depends on the kind of relations between the models we intend to capture.

In this chapter, we assume that the simulators intend to solve a colorless task.
Intuitively, in a colorless task, every process starts with a private input and needs
to produce an output, so that the set of produced outputs corresponds to the set
of proposed inputs, i.e., the process identifiers (colors) are not taken into account.
We give a precise definition of a colorless task in Section 13.2.2 below.

We describe below how k + 1 processes can simulate the n-process
full-information update-snapshot protocol (see Section 10.3.1). In the simulation,
the k + 1 simulators use instances of safe agreement to ensure that they perceive

13.2. BG Simulation 

the evolution of every simulated process in the same way. Locally, for each simu-
lated process pj , every simulator si maintains evaluations st i[j, `], ` = 0, 1, 2, . . .,
reflecting the evolution of the state of pj . The state evolves with every next sim-
ulated snapshot taken by pj : st i[j, 0] denotes the input of pj and st i[j, `], ` ≥ 1,
denotes the result of pj’s `-th snapshot, as locally evaluated by si.

Definition 13.2 (Colorless BG simulation) An algorithmA for s1, . . . , sk+1 sim-
ulates the full-information algorithm AFI for p1, . . . , pn (provided with a decided
predicate) if for every run R of A, there exists a run Sim(R) of AFI such that:

BG1: The input of every process pj participating in Sim(R) is the input of some
simulator si participating in R.

BG2: For all pj and si, st i[j, 1], st i[j, 2] . . . is a prefix of the sequence of snap-
shots taken by pj in Sim(R).

BG3: For every correct simulator si, either at least n−k sequences st i[j, 1], st i[j, 2] . . .
grow infinite or there is a process pj and ` ∈ N, such that pj decides in
st i[j, `].

Note that BG3 implies that every correct simulator either locally evaluates steps
of an ever-growing k-resilient run ofAFI or eventually witnesses a simulated state
of a decided process. Recall that a run of an n-process algorithm is k-resilient if
at least n− k processes are correct in it.

We say that AFI solves a task T k-resiliently if in every k-resilient run, every
correct process decides, i.e., reaches a state in the domain of the decided predicate.

13.2.2. Colorless Tasks

Recall that in a distributed task (see Section 10.4.2 for a formal definition), every
participating process starts with a unique input value and, after the computation, is
expected to return a unique output value, so that the inputs and the outputs across
the processes satisfy certain properties. A task (I,O,∆) is defined by a set I of
input vectors (one input value for each process), a set O of output vectors (one
output value for each process), and a total relation ∆ : I 7→ 2O that associates
each input vector with a set of possible output vectors. An input or an output entry
for a process can be ⊥ which models a non-participating or undecided process,
respectively.

In a colorless task, processes are free to use each others’ input and output val-
ues. Hence, the task can be defined in terms of input and output sets instead of
vectors.

 13. Resilience

More specifically, let val(U) denote the set of non-⊥ values in a vector U . In a
colorless task (I,O,∆), for all input vectors I and I ′ in I and all output vectors
O and O′ in O, such that (I,O) ∈ ∆, val(I) ⊆ val(I ′), val(O′) ⊆ val(O), we
have (I ′, O) ∈ ∆ and (I,O′) ∈ ∆.

The tasks of consensus and, more generally, k-set agreement are colorless.

Note that to solve a colorless task, it is sufficient to find an algorithm (a de-
cision predicate for AFI) that, eventually, enables just one process to decide.
Indeed, if such an algorithm exists, we can simply convert it into a protocol
that enables every correct process to decide: every process simply applies the
decision function to the observed state of any other process and adopts the
decision.

13.2.3. Simulation: Algorithm

Below we describe an algorithm that allows k+1 processes to simulate AFI . The
algorithm is presented in Figure 13.2. Here the simulators share their evaluations
of the simulated system state in an atomic-snapshot object S and advance the sim-
ulated processes using safe-agreement instances, where SA[j, `] is used to agree
on the `-th snapshot taken by process pj in the simulated run.

In the algorithm in Figure 13.2, each simulator si repeatedly picks up the next
simulated process pj in a round-robin order (line 13). If the last step of pj sim-
ulated by si is not yet resolved, then si tries to resolve it (line 15) by invoking
the resolve operation on the corresponding SA instance. If the resolve opera-
tion returns a non-⊥ value, si updates its local evaluation of the state of pj and
“publishes” it, which simulates the next update operation of pj (lines 17 and 18).
Finally, if the resolved view is deciding (based on the decided predicate), the sim-
ulator returns it and terminates (line 20).

Otherwise, if the resolve operation returns ⊥, si takes a snapshot of S and
computes a candidate for the next view of pj : an array containing the most recent
simulated state of every process in p1, . . . , pn (line 22). In case no steps of pj
have been simulated so far, si initializes pj using its own input value (line 30).
The resulting view of pj is then proposed by si to the subsequent SA instance
assigned to pj .

Theorem 13.3 LetAFI be the full-information protocol for n processes p1, . . . , pn
provided with a decided predicate. The algorithm in Figure 13.2 simulates AFI .

Proof Consider any run R of the algorithm. Recall that safe agreement ensures
the Validity and Agreement properties of consensus. By the algorithm, the con-
secutive states of every simulated process pj are agreed upon by the simulators

13.2. BG Simulation 

using a series of safe agreement instances SA[j, 0], SA[j, 1], The initial state
of pj , agreed upon using SA[j, 0], is an input value of some simulator. Each sub-
sequent state of pj is a view computed from a snapshot operation performed by
some simulator after its previous view has been agreed upon.

Shared abstractions:
S, snapshot objects, initially ⊥;
SA[j, `], j = 1, . . . , n, ` ∈ {0} ∪ N, instances of safe agreement;

Local variables:
`j , j ∈ {0} ∪ N, initially 0; { the last step of pj simulated by si }
resolved j , boolean, initially true;

{ the flag indicating whether the last simuated step of pj was resolved }
state[j], j = 1, . . . , n, initially ⊥; { the last state of pj observed by si }

j ← 0
repeat forever
13 j ← j mod n+ 1; { take the next simulated process in round-robin }
14 if ¬resolved j then { the last simulated step is still unresolved }
15 x← S[j, `j].resolve();
16 if x 6= ⊥ then
17 state[j]← (`j , x); { the state of pj after step ` }
18 S.update(state); { announce the simulated state }
19 resolved j ← true;
20 if decided(x) then return return decision(x)
21 else
22 v ← getState(j); { evaluate the most recent view of pj }
23 `j ← `j + 1;
24 S[j, `j].propose();
25 resolved j ← false;

function getState(j) { compute the proposed state for pj }
26 snap ← S.snapshot(); { get the “most recent” view }
27 for each s = 1, . . . , n do
28 view [s]← the most recent view of ps in snap;
29 if view [j] = ⊥ then { if the first step of pj }
30 view [j]← input i; { use the input of si for pj }
31 return view

Figure 13.2.: BG simulation (code for simulator si)

We now construct Sim(R), the simulated run of AFI , as a sequence of update
and snapshot operations defined as follows:

• For each simulated process pm and ` ∈ {0} ∪ N, if R contains

 13. Resilience

S.update(state) containing the `-th view of process pm, e.g., executed by
a simulator si with j = m and with `m = ` (line 18), we locate the first
such update operation to be linearized in R.

The linearization point of this update operation in R is chosen as the lin-
earization point of the `-th update performed by pm in Sim(R). Note that
for ` = 0, the update simply publishes the input value of pj adopted from
some simulator.

• For each simulated process pm and every safe-agreement instance SA[m, `],
` ≥ 1 for which a resolve operation returned a view x 6= ⊥ at some sim-
ulator (line 15), we identify the first such snapshot operation (line 26). Note
that this snapshot operation is performed within an execution of getState(m)
(line 22).

The linearization point of this snapshot operation of pm in R is then chosen
as the linearization point of the `-th snapshot taken by pm in Sim(R).

Now, Sim(R) is constructed as the sequence of these updates, and snapshots
put in the order of their linearization points, as they appear in R. By construction,
the first update performed by a simulated process pj in Sim(R) publishes pj’s
input value. Then pj alternates snapshots and updates where each update takes
the result of the preceding snapshot as an argument.

Sim(R) is a run of AFI . A simulator proceeds with simulating the (` + 1)-st
update operation of pm only if it previously resolved the `-th snapshot operation of
pm and published its result. Thus, the linearization point of the `-th update of pm
precedes the linearization point of its `-the snapshot. Furthermore, by the Validity
property of safe agreement, the linearization point of the `-th snapshot operation
of pm must precede the linearization point of its (`+ 1)-st update operation.

By the properties of a snapshot, the outcome of every snapshot operation on S
contains the argument of the last preceding update operation on S of each process
(or ⊥, if there is no such operation). Thus, Sim(R) is indeed a run of AFI .

Sim(R) satisfies BG1, BG2, and BG3. Let st i[j, `] denote the decided value of
SA[j, `] evaluated by a simulator si. By the Agreement property of safe agree-
ment every, for every given process, every simulator witnesses the same evo-
lution view changes. Hence, for each simulator si and simulated process pj ,
st1[j, 0], st2[j, 1], . . . is a prefix of snapshots taken by pj in Sim(R). Hence,
the property BG2 of Definition 13.2 is satisfied. As st i[j, 0] is an input of some
simulator, property BG1 of Definition 13.2 is satisfied too.

Let si be a correct simulator. Suppose that si witnesses a simulated process
pm reaching a deciding view after its `-th snapshot and returning (line 20). By
the SA-Termination property of safe agreement and the fact that the processes

13.3. The Impossibility of 1-Resilient Consensus 

are simulated in a round-robin fashion, eventually, every correct simulator will
compute the `-th snapshot of pm and returns.

Now suppose that a correct simulator si never witnesses a decided simulated
process. A process pm can stop taking simulated steps only if some SA[m, `]
remains blocked. By SA-Termination, this can only happen if some simulator
failed during the execution of its propose operation on SA[m, `]. By the algo-
rithm, a given simulator can only be running a single propose operation at a time
(line 24). As we assume that si is correct and there are k + 1 simulators, at most
k out of the simulated processes can stop taking steps in Sim(R). Thus, as pro-
cesses p1, . . . , pn are simulated in a round-robin fashion, at least n − k out of
them will get infinitely many views simulated by si; property BG3 is satisfied.

2Theorem 13.3

13.3. The Impossibility of 1-Resilient Consensus

Theorem 13.3 implies that for colorless tasks, finding a k-resilient solution for n
processes is equivalent to finding a wait-free solution for k + 1 ≤ n processes
Thus, we get the following corollary:

Corollary 13.4 Let T be any colorless task. T can be solved by n processes
k-resiliently (k < n) with read-write registers if and only if T can be wait-free
solved by k + 1 processes with read-write registers.

Since consensus is a colorless task, Corollary 13.4 immediately implies that n ≥ 2
processes cannot solve consensus in the read-write shared memory model if at
least one of these processes may fail, generalizing Theorem 12.6:

Corollary 13.5 Consensus cannot be solved 1-resiliently by n ≥ 2 processes
using read-write registers.

13.4. Chapter Notes

Simulations were extensively used in establishing equivalences between seem-
ingly different phenomena: message-passing and read-write shared memory [6],
synchrony and asynchrony [39], read-write shared memory and atomic snap-
shot [1], atomic snapshot and immediate snapshot [15], wait-freedom and
t-resilience for colorless tasks [14].

We give in this chapter an intuitive explanation of the celebrated BG simulation
(for Elizabeth Borowsky and Eli Gafni) [14]. The ingenious reduction proposed
in their paper enables us to derive that k-resilient k-set agreement is impossible

 13. Resilience

to solve in the asynchronous read-write shared-memory model from the very im-
possibility of k-set agreement [15, 59, 100]. In this chapter, we use only this
result for the special case of consensus (k = 1). The original conference paper by
Borowsky and Gafni [14] was later extended in a more detailed and formal way
by Borowsky, Gafni, Lynch, and Rajsbaum [16].

The task of k-set agreement was introduced in [25] (where every correct process
is required to output an input value so that at most k different values are output)
were shown to be impossible in the presence of Ak-res in [58, 99, 14].

BG simulation, originally designed to study the computability of colorless tasks,
was later extended to general tasks, resulting in Extended BG simulation by Gafni [40].
More general, so called adversarial fault models [31] (also see Chapter 15) were
related using simulations by Bouzid et al. [17], Gafni et al. [43], Kuznetsov et
al. [76].

Gafni and Guerraoui [42] have established that providing the processes with
k-set agreement objects is, in a precise sense, equivalent to having access to k
state machines, where at least one is guaranteed to progress. In particular, it
is informally shown in [41] that providing k-set agreement is equivalent, with
respect to task solvability, to assuming k-concurrency or active (k−1)-resilience.
A self-contained discussion of this and other simulation techniques can be can be
found in [75].

The notion of a colorless task (also known as convergence tasks [16]) was intro-
duced by Herlihy and Shavit [59]. Colorless tasks are much simpler to study than
generic (“colored”) ones. In particular, the solvability of a colorless task can be
characterized via the existence of a continuous map between point sets describing
possible combinations of inputs and outputs [55].

13.5. Exercises

1. Design a stronger variant of safe agreement with SA-Termination defined
as follows:

Every correct process eventually decides if (a) some process de-
cides, (b) no process fails while executing the propose operation,
or (c) no two different values are proposed.

2. Can we, additionally, guarantee that every correct process decides if some
process takes sufficiently many steps solo from some point on (obstruction-
freedom)?

3. Prove that the task of k-set agreement is colorless.

14. Failure Detectors

Some fundamental objects cannot be implemented in an asynchronous system.
For example, consensus cannot be implemented using read-write objects in a sys-
tem of at least two processes or using queue objects in a system with at least
three processes. This chapter focuses on failure detectors, a popular abstraction
to overcome these impossibilities.

Informally, a failure detector is a distributed oracle that provides processes with
hints about failures. This information can be viewed as information about the
scheduling of process steps in a given execution.

The notion of a weakest failure detector captures the exact amount of infor-
mation about failures needed to solve a given problem: D is the weakest failure
detector for solvingM if (1) D is sufficient to solveM, i.e., there exists an al-
gorithm that solvesM using D, and (2) any failure detector D′ that is sufficient
to solveM provides at least as much information about failures as D does, i.e.,
there exists a reduction algorithm that extracts the output ofD by using the failure
information provided by D′.

One of the most important results in concurrent computing is that the leader
failure detector Ω is necessary and sufficient to solve consensus. The failure de-
tector Ω outputs, when queried, a process identifier, such that, eventually, the same
correct process identifier is output at all correct processes.

In this chapter, we show that Ω is the weakest failure detector to solve consensus
in a system of n crash-prone processes that communicate using read-write objects.
The result holds for any environment, i.e., for any assumptions on when and where
failures might occur.

14.1. Defining and Comparing Failure Detectors

Until now, we assumed that processes are restricted to apply operations on shared
objects. In this chapter, they can also query a failure-detector oracle. But how
exactly is this done? And how can we compare failure detectors, based on the
amount of information about failures they provide?

We first define formally the failure-detector abstraction as a map from a failure
pattern (describing the failures that actually took place) to failure-detector histo-
ries (describing the hints about failures provided by the failure detector). We then
discuss how to solve problems by using failure detectors and introduce a partial

 14. Failure Detectors

order on failure detectors that will enable us to define the notion of a weakest
failure detector for a given problem.

14.1.1. Failure Patterns and Failure Detectors

We assume the existence of a discrete time range T = {0} ∪ N. Each event in
an execution is supposed to take place in a distinct moment of time. Without loss
of generality, and with a little abuse of intuition, we assume that all events in an
execution are totally ordered according to the times they occurred.

A failure pattern F is a function from the time range T = {0} ∪ N to 2Π,
where F (t) denotes the set of processes that have crashed by time t. Once a pro-
cess crashes, it does not recover, i.e., ∀t : F (t) ⊆ F (t + 1). The set of faulty
processes in F , ∪t∈TF (t), is denoted by faulty(F). Respectively, correct(F) =
Π−faulty(F). A process p ∈ F (t) is said to be crashed at time t. An environment
is a set of failure patterns. For example, the t-resilient environment consists of all
failure patterns in which at most t processes are faulty. Without loss of general-
ity, we assume environments that consist of failure patterns in which at least one
process is correct.

A failure detector history H with range R is a function from Π × T to R.
Here H(pi, t) is interpreted as the value output by the failure detector module of
process pi at time t.

Finally, a failure detector D with rangeRD is a function that maps each failure
pattern to a (non-empty) set of failure detector histories with range RD. D(F)
denotes the set of possible failure detector histories permitted by D for failure
pattern F .

For example, the following failure detectors have been defined:

• The perfect failure detector P outputs a set of suspected processes at each
process. P ensures strong completeness: every crashed process is eventu-
ally suspected by every correct process, and strong accuracy: no process is
suspected before it crashes.

Formally, for each failure pattern F , and each history H ∈ P(F) ⇔(
∃t ∈ T ∀p ∈ faulty(F) ∀q ∈ correct(F) ∀t′ ≥ t : p ∈ H(q, t′)

)
∧(

∀t ∈ T ∀p, q ∈ Π− F (t) : p /∈ H(q, t)
)

• The eventually perfect failure detector 3P also outputs a set of suspected
processes at each process. But the guarantees provided by 3P are weaker
than those of P . There is a time after which 3P outputs the set of all faulty
processes at every non-faulty process. More precisely, 3P satisfies strong

14.1. Defining and Comparing Failure Detectors 

completeness and eventual strong accuracy: there is a time after which no
correct process is ever suspected.

Formally, for each failure pattern F , and each history H ∈ 3P(F) ⇔

∃t ∈ T ∀p ∈ correct(F) ∀t′ ≥ t : H(p, t′) = faulty(F)

• The leader failure detector Ω outputs the id of a process at each process.
There is a time after which it outputs the id of the same non-faulty process
at all non-faulty processes.

Formally, for each failure pattern F , and each history H ∈ Ω(F) ⇔

∃t ∈ T ∃q ∈ correct(F) ∀p ∈ correct(F) ∀t′ ≥ t : H(p, t′) = q

• The quorum failure detector Σ outputs a set of processes at each process.
Any two sets (output at any times and at any processes) intersect, and even-
tually, every set consists of only non-faulty processes.

Formally, for each failure pattern F , and each history H ∈ Σ(F) ⇔(
∀p, p′ ∈ Π ∀t, t′ ∈ TH(p, t) ∩H(p′, t′) 6= ∅

)
∧(

∀p ∈ correct(F) ∃t ∈ T ∀t′ ≥ t H(p, t′) ⊆ correct(F)
)
.

14.1.2. Algorithms Using Failure Detectors

We now define what it means for an algorithm to use a failure detector. For-
mally, an algorithm A using a failure detector D is a collection of deterministic
automata, one for each process in the system. Let Ai denote the automaton on
which process pi runs algorithm A. Computation proceeds in atomic steps of A.
In each step of A, process pi

(i) invokes an atomic operation (read or write) on a shared object and receives
a response or queries its failure detector module Di and receives a value
from D, and

(ii) applies its current state, the response received from the shared object or the
value output by D to the automaton Ai to obtain a new state.

A step of A is thus identified by a tuple (pi, d), where d is the failure detector
value output at pi during that step if D was queried, and ⊥ otherwise.

If the state transitions of the automata Ai do not depend on the failure detec-
tor values, the algorithm A is called asynchronous. Thus, for an asynchronous
algorithm, a step is uniquely identified by the process id.

 14. Failure Detectors

14.1.3. Runs

A state of algorithm A defines the state of each process and each object in the
system. An initial state I of A specifies an initial state for every automaton Ai
and every shared object.

A run of algorithm A using a failure detector D in an environment E is a tuple
R = 〈F,H, I, S, T 〉 where F ∈ E is a failure pattern, H ∈ D(F) is a failure
detector history, I is an initial state of A, S is an infinite sequence of steps of A
respecting the automata A and the sequential specification of shared objects, and
T is an infinite list of increasing time values indicating when each step of S has
occurred, such that for all k ∈ N, if S[k] = (pi, d) with d 6= ⊥, then pi /∈ F (T [k])
and d = H(pi, T [k]).

A run 〈F,H, I, S, T 〉 is fair if every process in correct(F) takes infinitely many
steps in S, and k-resilient if at least n − k processes appear in S infinitely often.
A partial run of an algorithm A is a finite prefix of a run of A.

Given two steps, s and s′, of processes pi and pj , respectively, in a (partial) run
R of an algorithm A, we say that s causally precedes s′ if in R, and we write
s → s′, if (1) pi = pj , and s occurs before s′ in R, or (2) s is a write step, s′ is a
read step, and s occurs before s′ inR, or (3) there exists s′′ inR, such that s→ s′′

and s′′ → s′.

Note that not every infinite run 〈F,H, I, S, T 〉 is fair. For example, a run
in which a process in correct(F) takes only finitely many steps in S. Often
one can only solve a given problem in fair runs.

14.1.4. Implementing and Comparing Failure Detectors

The failure detector abstraction intends to capture the minimal information about
failures that suffices to solve a given problem. But what does “minimal” actually
mean? Intuitively, it should mean that any failure detector that enables solutions
to the problem provides at least as much information about failures. But given
that failure detectors can provide their hints about failures in arbitrary formats, it
becomes necessary to introduce a way to compare different failure detectors. Here
we define the notion of a reduction between failure detectors in the algorithmic
sense: a failure detector D provides as much information about failures as failure
detector D′ if there is an algorithm that uses D to implements D′.

More precisely, an implementation of a failure detector D in an environment E
provides a query operation to every process that, when invoked, returns a value in
RD. It is required that in every run of the implementation with a failure pattern
F ∈ E , there exists a history H ∈ D(F) such that, for all times t1, t2 ∈ N, if

14.2. Solving Consensus with Failure Detectors 

process pi queries D at time t1 and the query returns response d at time t2, then
d = H(pi, t) for some t ∈ [t1, t2].

If for failure detectorsD andD′ and an environment E , there is an implementa-
tion of D using D′ in E , then we say that D is weaker than D′ in E , and we write
D �E D′. If D �E D′ and D′ �E D, we say that that D is strictly weaker than
D′ in E , and we write D ≺E D′. If D �E D′ and D′ �E D, we say they are
equivalent in E .

14.1.5. Weakest Failure Detector

Finally, we are ready to define the notion of a weakest failure detector for solving
a given problem (in this section this problem is going to be consensus).
D is a weakest failure detector to solve a problemM (e.g., consensus) in E if

there is an algorithm that solvesM usingD in E andD is weaker than any failure
detector that can be used to solveM in E . 1

Note that, even though the model assumes the existence of a global clock,
the processes can get information about time only by querying their failure-
detector modules. We can, therefore, view failure detectors as abstractions
that encapsulate synchrony assumptions of a model. We may also say that a
failure detectors grasps the amount of synchrony necessary and sufficient for
solving a given problem.

14.2. Solving Consensus with Failure Detectors

Recall that in the binary consensus problem, every process starts the computation
with an input value in {0, 1} (we say the process proposes the value), and even-
tually reaches a distinct state associated with an output value in {0, 1} (we say
the process decides the value). Recall that an algorithm A solves consensus in an
environment E if in every fair run of A in E :

• Termination: every correct process eventually decides,

• Validity: every decided value was previously proposed, and

• Agreement: no two processes decide different values.

Given an algorithm that solves consensus, it is straightforward to implement
an abstraction that can be accessed with an operation propose(v) (v ∈ {0, 1})

1With a slight abuse of the grammar, we say a weakest failure detector here because there might
be many (equivalent) weakest failure detectors for a given problem in a given environment.

 14. Failure Detectors

returning a value in {0, 1}, and guarantees that every propose operation invoked
by a correct process eventually returns, every returned value that was previously
proposed, and no two different values are ever returned.

14.2.1. The Commit-Adopt Abstraction

In this chapter, we describe an algorithm that solves consensus using Ω, the leader
failure detector, and the commit-adopt abstraction (CA). We define the abstraction
and present a simple CA implementation using reads and writes.

CA, like consensus, exports one operation propose(v) that, unlike in consensus,
returns (commit , v′) or (adopt , v′), where v′ and v are in a (possibly unbounded)
value set V . If propose(v) invoked by a process pi returns (adopt , v ′), we say
that pi adopts v′. If the operation returns (commit , v ′), we say that pi commits on
v′. Intuitively, a process commits on v′ when it is sure that no other process can
commit on a value different from v′. A process adopts v′ when it suspects that
another process might have committed v′.

Formally, CA guarantees the following properties:

C1 every returned value is a proposed value,

C2 if all processes propose the same value then no process adopts,

C3 if a process commits on a value v, then every process that returns adopts v
or commits on v, and

C4 every correct process returns.

Implementing Commit-Adopt. The commit-adopt abstraction can be imple-
mented using two (wait-free) store-collect objects, A and B, as follows. Every
process pi first stores its input v in A and then collects A. If no value other than
v was found in A, pi stores id[true, v] in B. Otherwise, pi stores [false, v] in B.
If all values collected from B are of the form [true, ∗], then pi commits on its
own input value. If this is not the case and at least one of the collected values is
[true, v ′], then pi adopts v′. Intuitively, going first throughA guarantees that there
is at most one such value v′. If pi cannot commit or adopt a value from another
process, it simply adopts its own input value.

Theorem 14.1 The algorithm in Figure 14.1 implements commit-adopt.

Proof We show that the algorithm satisfies properties C1-C4 of commit-adopt.
Property C1 follows trivially from the algorithm and the Validity property of

store-collect (see Section 9.1.1): every returned value was previously proposed
by some process. If all processes propose the same value, then the conditions in

14.2. Solving Consensus with Failure Detectors 

Shared objects:
A, B, store-collect objects, initially ⊥;

propose(v)
1 est ← v;
2 A.store(est);
3 V ← A.collect();
4 if all values in V are est then
5 B.store([true, est]);
6 else
7 B.store([false, est]);
8 V ← B.collect();
9 if all values in V are [true, ∗] then
10 return (commit , est)
11 else if V contains (true, v ′) then
12 est ← v′;
13 return (adopt , est)

Figure 14.1.: A commit-adopt algorithm

the clauses in lines 4 and 9 hold true and, thus, every process that returns must
commit—property C2 is satisfied. Property C4 is implied by the fact that the
algorithm contains only finitely many steps and every store-collect object is wait-
free.

To prove C3, suppose, by contradiction, that two processes, pi and pj , store two
different values, v′ and v′′, respectively, equipped with flag true in B (line 5).
Hence, the collect operation performed by pi in line 3 returns only values v. By
the up-to-dateness property of store-collect and the algorithm, pi has previously
stored v′ in A (line 2). Similarly, pj has stored v′′ in A.

Again, by the up-to-dateness property of store-collect, the A.store(v′′) op-
eration performed by pj does not precede the A.collect() operation performed
by pi. (Otherwise pi would find v′′ in A.) Hence, inv [A.collect()] by pi pre-
cedes resp[A.store(v′′)] by pj in the current execution. But, by the algorithm
resp[A.store(v′)] precedes inv [A.collect()] at pi and, resp[A.store(v′′)] precedes
inv [A.collect()] at pj . Hence, resp[A.store(v′)] by pi precedes inv [A.collect()]
by pj and, by up-to-dateness of store-collect, pj should have found v′ is A—a
contradiction.

Therefore, no two different values can be written toB with flag true . Now sup-
pose that a process pi commits on v. If every process that returns either commits
or adopts a value in line 12, then property C3 follows from the fact that no two
different values with flag true can be found in B. Suppose, by contradiction that
some process pj does not find any value with flag true inB (9) and adopts its own

 14. Failure Detectors

value. By the algorithm, pj has previously stored (false, v′′) in line 7. But, again,
B.store([true, v′]) performed by pi does not precede B.collect() performed by
pj , thus, B.store((false, v′′)) performed by pj precedes B.collect() performed
by pi. Hence, pi should have found (false, v′′) in B—a contradiction. Therefore,
if a process commits on v′, no other process can commit on or adopt a different
value—property C3 holds. 2Theorem 14.1

14.2.2. Solving Consensus with Commit-Adopt and Ω

Commit-adopt can be viewed as a way to establish safety in shared-memory com-
putations.

For example, consider a protocol where every process goes through a series
of instances of commit-adopt protocols, CA1, CA2, . . ., one by one, where each
instance receives a value adopted in the previous instance as an input (for CA1—
the initial input value). One can easily see that once a value v is committed in
some CA instance, no value other than v can ever be committed (properties C1
and C3 above). On the other hand, if at most one value is proposed to some CA
instance, then this value must be committed by every process that takes enough
steps (property C2 above).

This algorithm can be viewed as a safe version of consensus: every committed
value is a proposed value and no two processes commit on different values (prop-
erties C1, C2, and C3 above). Given that every correct process goes from one CA
instance to the other as long as it does not commit (property C4 above), we can
boost the liveness guarantees of this protocol using external oracles.

In fact, the algorithm per se guarantees termination in every obstruction-free
execution, i.e., assuming that eventually at most one process is taking steps. Note
that, as its liveness properties are only guaranteed in obstruction-free runs, the
algorithm is not subject to the FLP impossibility proof (see Exercise 3).

Moreover, we can build a consensus algorithm that terminates almost always
if we allow processes to toss coins when choosing an input value for the next
CA instance. Similarly, one can (deterministically) solve consensus using the Ω
failure detector: before going to the next CA instance, every process waits until
the “leader” (provided by Ω) writes its current value. The value of the leader is
then used as a proposal for the next CA instance. The reader is invited to sort out
the details of this algorithm (see Exercise 4).

14.3. A Weakest Failure Detector for Consensus

LetA be an algorithm that solves consensus using a failure detectorD. The goal is
to construct an algorithm that emulates Ω usingA andD. Recall that to emulate Ω

14.3. A Weakest Failure Detector for Consensus 

means to output, at each time and at each process, a process identifier so that there
is a time after which the same correct process is output at every correct process.

14.3.1. Overview of the Reduction Algorithm

Our reduction algorithm uses the given failure detector D to construct an ever-
growing directed acyclic graph (DAG) that contains a “sample” of the values
output by D in the current run and captures some temporal relations between
them. This DAG can be used by an asynchronous algorithm A′ to simulate a
(possibly “unfair”) run of A. In particular, since the original algorithm A solves
consensus, no two processes can decide differently in a run of A′.

Recall that, using BG simulation, 2 processes can simulate a 1-resilient run
of A′. The fact that wait-free 2-process consensus is impossible implies that the
simulation, when used for all possible inputs provided to the two simulators, must
produce at least one ”non-deciding” 1-resilient run of A′, i.e., in at least one sim-
ulated 1-resilient run of A′, some process takes infinitely many steps without de-
ciding.

In the reduction algorithm, every correct process locally simulates all execu-
tions of BG simulation on two processes q1 and q2 that, in turn, simulate a 1-
resilient run of A′ of the whole system Π. Eventually, every correct process lo-
cates a never-deciding run of A′ and uses this run to extract the output of Ω: It is
sufficient to output the process that takes the least number of steps in the “small-
est” non-deciding simulated run of A′. Indeed, exactly one correct process takes
finitely many steps in the non-deciding 1-resilient run of A′: Otherwise, the run
would simulate a fair and, thus, deciding run of A.

The reduction algorithm extracting Ω from A and D consists of two com-
ponents that are running in parallel: the communication component and the
computation component.

In the communication component, every process pi maintains the ever-
growing directed acyclic graph (DAG) Gi by periodically querying its failure
detector module and exchanging the results with other processes through the
shared memory.

In the computation component, every process simulates a set of runs of A
using the DAG and maintains the extracted output of Ω.

14.3.2. DAGs

The communication component is presented in Figure 14.2. This task maintains
an ever-growing DAG that contains a finite sample of the current failure detector

 14. Failure Detectors

Shared variables:
for all pi ∈ Π: Gi, initially empty graph;

14 ki ← 0;
15 while true do
16 for all pj ∈ Π do Gi ← Gi ∪Gj ;
17 di ← query failure detector D;
18 ki ← ki + 1;
19 add to Gi: vertex [pi, di, ki] and edges from all other vertices of Gi to [pi, di, ki];

Figure 14.2.: Building a DAG in the communication component of the reduction algo-
rithm: the code for each process pi

history. The DAG is stored in a register Gi that can be updated by pi and read by
all processes.

The DAG stored in Gi (we will simply say Gi) has some special properties
that follow from its construction. Let F be the current failure pattern and H ∈
D(F) be the current failure detector history. Then a fair run of the algorithm in
Figure 14.2 guarantees that there exists a map τ : Π×RD×N 7→ T, such that, for
every correct process pi and every time t (x(t) denotes here the value of variable
x at time t):

(1) The vertices of Gi(t) are of the form [pj , d, `] where pj ∈ Π, d ∈ RD and
` ∈ N.

(a) For each vertex v = [pj , d, `], pj /∈ F (τ(v)) and d = H(pj , τ(v)).
That is, d is the value output by pj’s failure detector module at time
τ(v).

(b) For each edge (v, v′), τ(v) < τ(v′). That is, any edge in Gi reflects
the temporal order in which the failure detector values are output.

(2) If v = [pj , d, `] and v′ = [pj , d
′, `′] are vertices of Gi(t) and ` < `′ then

(v, v′) is an edge of Gi(t).

(3) Gi(t) is transitively closed: if (v, v′) and (v′, v′′) are edges of Gi(t), then
(v, v′′) is also an edge of Gi(t).

(4) For all correct processes pj , there is a time t′ ≥ t, a d ∈ RD and a ` ∈ N
such that, for every vertex v of Gi(t), (v, [pj , d, `]) is an edge of Gi(t′).

(5) For all correct processes pj , there is a time t′ ≥ t such that Gi(t) is a
subgraph of Gj(t′).

14.3. A Weakest Failure Detector for Consensus 

The properties imply that ever-growing DAGs at correct processes tend to the
same infinite DAG G: limt→∞Gi(t) = G. It is immediate that in a fair run of the
algorithm in Figure 14.2, the set of processes that obtain infinitely many vertices
in G is the set of correct processes.

14.3.3. Asynchronous Simulation

We show that any infinite DAG G constructed following the algorithm in Fig-
ure 14.2 can be used to simulate partial runs of A in an asynchronous manner:
instead of queryingD, the simulation algorithmA′ uses the samples of the failure
detector output captured in the DAG. The pseudocode of this simulation is pre-
sented in Figure 14.3. The algorithm is hypothetical in the sense that it uses an
infinite input, but this requirement is relaxed later.

Shared variables:
V1, . . . , Vn ← ⊥, . . . ,⊥;

{for each pj , Vj is the vertex of G
corresponding to the latest simulated step of pj}

Shared variables of A;

20 initialize the simulated state of pi in A (from the given input vector I ′);
21 `← 0;
22 while true do

{Simulating the next pi’s step of A}
23 U ← [V1, . . . , Vn];
24 repeat
25 `← `+ 1;
26 wait until G includes [pi, d, `] for some d;
27 until ∀j, U [j] 6= ⊥: (U [j], [pi, d, `]) ∈ G
28 Vi ← [pi, d, `];
29 take the next pi’s step of A using d as the output of D;

Figure 14.3.: DAG-based asynchronous algorithm A′ with input vector I ′: code for
each pi

In the algorithm, each process pi is first initialized with an initial state of A.
Then pi performs a sequence of simulated steps of A. Every process pi maintains
a shared register Vi that stores the vertex of G used for the most recent step of
A simulated by pi. Each time pi is about to perform a step of A it first reads
registers V1, . . . , Vn to obtain the vertexes of G used by processes p1, . . . , pn for
simulating the most recent causally preceding steps of A (line 23 in Figure 14.3).
Then pi selects the next vertex of G that succeeds all these vertices (lines 24-27).
If no such vertex is found, pi blocks forever (line 26).

 14. Failure Detectors

Note that a correct process pi can block ifG contains only finitely many vertices
of pi. As a result, an infinite run of A′ can simulate an unfair run of A: a run in
which some correct process takes only finitely many steps. But, as we show below,
every finite run simulated by A′ is a partial run of A.

Theorem 14.2 Let G be the DAG produced in a fair run R = 〈F,H, I, S, T 〉 of
the communication component in Figure 14.2. Let R′ = 〈F ′, H ′, I ′, S′, T ′〉 be
any fair run of A′ using G. Then the sequence of steps simulated by A′ in R′

belongs to a (possibly unfair) run of A, RA, with input vector of I ′ and failure
pattern F . Moreover, the set of processes that take infinitely many steps in RA is
correct(F) ∩ correct(F ′), and if correct(F) ⊆ correct(F ′), then RA is fair.

Proof Recall that a step of a process pi can be either a memory step in which
pi accesses the shared memory or a query step in which pi queries the failure
detector. Since memory steps simulated in A′ are performed as in A, to show
that algorithm A′ indeed simulates a run of A with failure pattern F , it is enough
to ensure that the sequence of simulated query steps in the simulated run (using
vertices of G) could have been observed in a run RA of A with failure pattern F
and the input vector based on I ′.

Let τ be a map associated with G that carries each vertex of G to an element in
T such that (a) for any vertex v = [p, d, `] ofG, p /∈ F (τ(v)) and d = H(p, τ(v)),
and (b) for every edge (v, v′) of G, τ(v) < τ(v′) (the existence of τ is established
by property (5) of DAGs in Section 14.3.2). For each step s simulated by A′ in
R′, let τ ′(s) denote time when step s occurred inR′, i.e., when the corresponding
line 29 in Figure 14.3 was executed, and let v(s) be the vertex of G used for
simulating s, i.e., the value of Vi when pi simulates s in line 29 of Figure 14.3.

Consider query steps si and sj simulated by processes pi and pj , respectively.
Let v(si) = [pi, di, `] and v(sj) = [pj , dj ,m]. WLOG, suppose that τ([pi, di, `]) <
τ([pj , dj ,m]), i.e., D outputs di at pi before outputting dj at pj .

If τ ′(si) < τ ′(sj), i.e., si is simulated by pi before sj is simulated by pj , then
the order in which si and sj see values di and dj , respectively, in the run produced
by A′ is consistent with the output of D, i.e., the values di and dj indeed could
have been observed in that order.

Suppose now that τ ′(si) > τ ′(sj). If si and sj are not causally related in the
simulated run, then R′ is indistinguishable from a run in which si is simulated by
pi before sj is simulated by pj . Thus, si and sj can still be observed in a run of A.

Since, at any given process, the algorithm simulates steps in the order of its
failure-detector queries, si cannot causally precede sj . Suppose, by contradiction,
that τ ′(si) > τ ′(sj) and sj causally precedes si in the simulated run, i.e., pj
simulated at least one write step s′j after sj , and pi simulated at least one read step
s′i before si, such that s′j took place before s′i in R′. Since before performing the
memory access of s′j , pj updated Vj with a vertex v(s′j) that succeeds v(sj) in G

14.3. A Weakest Failure Detector for Consensus 

(line 28), and s′i occurs in R′ after s′j , pi must have found v(s′j) or a later vertex
of pj in Vj before simulating step si (line 23) and, thus, the vertex of G used for
simulating si must be a descendant of [pj , dj ,m]. By properties (1) and (3) of
DAGs (Section 14.3.2), τ([pi, di, `]) > τ([pj , dj ,m])—a contradiction.

Hence, the sequence of steps ofA simulated in R′ could have been observed in
a run RA of A with failure pattern F .

Since in A′, a process simulates only its own steps of A, every process that
appears infinitely often in RA is in correct(F ′). Also, since each faulty in F
process contains only finitely many vertices in G, eventually, each process in
correct(F ′) − correct(F) is blocked in line 26 in Figure 14.3, and, thus, every
process that appears infinitely often in RA is also in correct(F). Now consider a
process pi ∈ correct(F ′)∩correct(F). Property (4) of DAGs implies that for ev-
ery set V of vertices of G, there exists a vertex of pi in G such that for all v′ ∈ V ,
(v′, v) is an edge inG. Thus, the wait statement in line 26 cannot block pi forever,
and pi takes infinitely many steps in RA.

Hence, the set of processes that appear infinitely often in RA is exactly
correct(F ′) ∩ correct(F). Specifically, if correct(F) ⊆ correct(F ′), then the
set of processes that appear infinitely often in RA is correct(F), and the run is
fair. 2Theorem 14.2

Note that, in a fair run, the properties of the algorithm in Figure 14.3 remain
the same if the infinite DAG G is replaced with a finite ever-growing DAG Ḡ
constructed in parallel (Figure 14.2) such that limt→∞ Ḡ = G. This is because
such a replacement affects only the wait statement in line 26, which blocks pi
until the first vertex of pi that causally succeeds every simulated step recently
”witnessed” by pi is found in G. But this cannot take forever if pi is correct
(properties (4) and (5) of DAGs in Section 14.3.2). The wait blocks if the vertex
is absent in G, which may happen only if pi is faulty.

14.3.4. Three levels of BG simulation

Recall that BG simulation (see Chapter 13) is a technique by which k + 1 sim-
ulators q1, . . . , qk+1 can wait-free simulate a k-resilient execution of any asyn-
chronous n-process protocol. Informally, the simulation works as follows. Every
process qi tries to simulate steps of all n processes p1, . . . , pn in a round-robin
fashion. Simulators run an agreement protocol to make sure that every step is
simulated at most once. Simulating a step of a given process may block forever if
and only if some simulator has crashed in the middle of the corresponding agree-
ment protocol. Thus, even if k out of k + 1 simulators crash, at least n − k
simulated processes can still make progress. The simulation thus guarantees at
least n− k processes in {p1, . . . , pn} accept infinitely many simulated steps.

In the computation component of the reduction algorithm, the BG-simulation

 14. Failure Detectors

simulate runs of A′ on

q2

BG(A′)

p′1 p′2 p′n−1 p′n

simulate runs of A

A′

simulates runs of BG(A′) on

q1

pi

Figure 14.4.: Three levels of simulation: real processes pi simulate a system of two BG-
simulators q1 and q2 that run BG(A′) to simulate an (n− 1)-resilient run
of A′ on p′1, . . . , p

′
n.

technique is used as follows. Let BG(A′) denote the simulation protocol for 2
processes q1 and q2 which enables them to simulate, in a wait-free manner, a 1-
resilient execution of algorithm A′ for n processes p1, . . . , pn. The complete re-
duction algorithm thus employs a triple simulation (Figure 14.4): every process pi
simulates multiple runs of two processes q1 and q2 that use BG simulation to pro-
duce a 1-resilient run of A′ on processes p′1, . . . , p

′
n in which steps of the original

algorithm A are periodically simulated using (ever-growing) DAGs G1, ..., Gn.
(To avoid confusion, we use p′j to denote the process that models pj in a run ofA′
simulated by a “real” process pi.)

We are going to use the following extra property which is trivially satisfied by
BG simulation:

(BG0) A run of BG simulation in which every simulator takes infinitely many
steps simulates a run in which every simulated process takes infinitely many
steps.

Indeed, as the processes are simulated in the round-robin fashion, if no simulator
fails, then no simulated process can appear faulty in the simulated run.

14.3.5. Using Consensus

The triple simulation we will employ faces one complication though. The simu-
lated runs of the asynchronous algorithm A′ can vary, depending on the process
which runs the simulation. This is because G1, ..., Gn are maintained by parallel

14.3. A Weakest Failure Detector for Consensus 

r ← 0;
repeat
r ← r + 1;
if G contains [pi, d, `] for some d then
u← 1;

else
u← 0;

v ← consi,`r .propose(u);
until v = 1
update G;

Figure 14.5.: Expanded line 26 of Figure 14.3: waiting untilG includes a vertex [pi, d, `]

for some d. Here G is any DAG generated by the algorithm in Figure 14.2.

computation components (Figure 14.2), and a process simulating a step of A′ can
perform a different number of cycles reading the current version of its DAG be-
fore a vertex with desired properties is located (line 26 in Figure 14.3). Thus, the
same sequence of steps of q1 and q2 simulated at different processes can result in
different 1-resilient runs of A′ Indeed, the number of local steps a process pj can
take until a vertex [pi, d, `] appears in Gj can be arbitrary, as it depends on the
time when pj executes the wait statement in line 26 of Figure 14.3.

To resolve this issue, the wait statement in line 26 is implemented using a series
of consensus instances consi,`1 , consi,`2 , . . . (Figure 14.5), one consensus instance
per check. (Recall that algorithm A solves consensus using failure detector D.)

If pi is correct, then eventually each correct process will have a vertex [pi, d, `]
in its DAG (property (4) above), hence the code in Figure 14.5 is non-blocking,
and Theorem 14.2 still holds. Furthermore, the use of consensus ensures that
if a process, while simulating a step of A′ at process pi, went through r steps
before reaching line 27 in Figure 14.3, then every process simulating this step
does the same. Thus, a given sequence of steps of q1 and q2 will result in the same
simulated 1-resilient run of A′, regardless of when and where the simulation is
taking place.

14.3.6. Extracting Ω

The computation component of the reduction algorithm is presented in Figure 14.6.
In the component, every process pi locally simulates multiple runs of a sys-
tem of 2 processes q1 and q2 executing algorithm BG(A′). Each simulated run
of BG(A′) produces a 1-resilient run of our asynchronous algorithm A′ (Fig-
ures 14.3 and 14.5). Recall that A′, in its turn, simulates a run of the original
algorithm A, using, instead of D, the values provided by an ever-growing DAG

 14. Failure Detectors

30 for all binary 2-vectors J0 do
{ For all possible consensus inputs for q1 and q2 }

31 σ0 ← the empty string;
32 explore(J0, σ0);

33 function explore(J, σ)
34 for all qj = q1, q2 do
35 ρ← empty string;
36 repeat
37 ρ← ρ · qj ;
38 let p′` be the process that appears the least in SCHA′(J, σ · ρ);
39 Ω−output ← p`;
40 until STA(J, σ · ρ) is decided
41 explore(J, σ · q1);
42 explore(J, σ · q2);

Figure 14.6.: The computation component of the reduction algorithm: code for each
process pi. Here STA(J, σ) denotes the state of A reached by the partial
run ofA′ simulated in the partial run of BG(A′) with schedule σ and input
state J , and SCHA′(J, σ) denotes the corresponding schedule of A′.

G. In simulating the part of A′ of process p′i presented in Figure 14.5, q1 and
q2 count each access of a consensus instance consi,`r as one local step of p′i that
needs to be simulated. Also, in BG(A′), when qj is about to simulate the very
first step of p′i, qj uses its own input value as an input value of p′i.

For each simulated state S of BG(A′), pi periodically checks whether the state
of A in S is deciding, i.e., whether some process has decided in the state of A in
S. As we will show, the same infinite non-deciding 1-resilient run of A′ will be
simulated by all processes, which allows for extracting the output of Ω.

The algorithm in Figure 14.6 explores solo executions of q1 and q2, starting
from growing prefixes. By property (BG0) of BG simulation (Section 13.2), a
run of BG(A′) in which both q1 and q2 participate infinitely often simulates a
run of A′ in which every pj ∈ {p′1, . . . , p′n} participates infinitely often. By
Theorem 14.2, such a run will produce a fair and thus deciding run of A. Thus, if
there is an infinite non-deciding run simulated by the algorithm in Figure 14.3, it
must be a run produced by a solo execution of q1 or q2 starting from some finite
prefix. Formally:

Lemma 14.3 The algorithm in Figure 14.6 executed by a correct process eventu-
ally forever executes lines 36–40.

Proof Consider any run of the algorithm in Figures 14.2, 14.5 and 14.6. Let F

14.3. A Weakest Failure Detector for Consensus 

be the failure pattern of that run. By contradiction, suppose that lines 36–40 in
Figure 14.6 never block at a correct process pi.

Every call of explore(J0, σ0) must return. Suppose that for some initial J0, the
call of explore(J0, σ0) performed by pi in line 32 never returns. Since the cycle
in lines 36–40 in Figure 14.6 always terminates, there is an infinite sequence of
recursive calls explore(J0, σ0), explore(J0, σ1), explore(J0, σ2), . . ., where each
σ` is a one-step extension of σ`−1. Thus, there must exist an infinite schedule σ̃
such that the run of BG(A′) based on σ̃ and J0 produces a never-deciding run of
A′.

Suppose first that both q1 and q2 appear in σ̃ infinitely often. By property
(BG0) of BG simulation (Section 13.2), a run of BG(A′) in which both q1 and
q2 appear infinitely often simulates a run of A′ in which every pj ∈ {p′1, . . . , p′n}
participates infinitely often. By Theorem 14.2, such a run will produce a fair and
thus deciding run of A—a contradiction.

Thus, if there is an infinite non-deciding run simulated by the algorithm in Fig-
ure 14.3, it must be a run produced by a solo extension of q1 or q2 starting from
some finite prefix. Let σ̄ be the first such prefix in the order defined by the algo-
rithm in Figure 14.3 and q` be the first process whose solo extension of σ is never
deciding. Since the cycle in lines 36–40 always terminates, the recursive explo-
ration of finite prefixes σ in lines 41 and 42 eventually reaches σ̄, the algorithm
reaches line 35 with σ = σ̄ and qj = q`. In the resulting execution, the succeeding
cycle in lines 36–40 never terminates—a contradiction.

Thus, for all inputs J0, the call of explore(J0, σ0) performed by pi in line 32
returns. Hence, for every finite prefix σ, any solo extension of σ produces a finite
deciding run ofA. We establish a contradiction, by deriving a wait-free algorithm
that solves consensus among q1 and q2.

Wait-free consensus. Let G be the infinite limit DAG constructed by the algo-
rithm in Figure 14.2. Let β be a map from vertices of G to N defined as follows:
for each vertex [pi, d, `] in G, β([pi, d, `]) is the value of variable r at the mo-
ment when any run of A′ (produced by the algorithm in Figure 14.3) exits the
cycle in Figure 14.5, while waiting until [pi, d, `] appears in G. If there is no such
run, β([pi, d, `]) is set to 0. Note that the use of consensus (Figure 14.5) implies
that if in any simulated run of A′, [pi, d, `] has been found after r iterations, then
β([pi, d, `]) = r, i.e., β is well-defined.

Now we consider an asynchronous read-write algorithm A′β that is defined
exactly like A′, but instead of going through the consensus invocations in Fig-
ure 14.5,A′β performs β([pi, d, `]) local steps. Now consider the algorithm BG(A′β)
that is defined exactly as BG(A′) except that in BG(A′β), q1 and q2 BG-simulate
runs of A′β . For every sequence σ of steps of q1 and q2, the runs of BG(A′)
and BG(A′β) agree on the sequence of steps of p′1, . . . , p

′
n in the corresponding

runs of A′ and A′β , respectively. Moreover, they agree on the runs of A resulting

 14. Failure Detectors

from these runs of A′ and A′β . This is because the difference between A′ and A′β
consist only in the local steps and does not affect the simulated state of A.

We say that a sequence σ of steps of q1 and q2 is deciding with J0, if, when
started with J0, the run of BG(A′β) produces a deciding run of A. By our hy-
pothesis, every eventually solo schedule σ is deciding for each input J0. As we
showed above, every schedule in which both q1 and q2 appear sufficiently often
is deciding by property (BG0) of BG simulation. Thus, for each possible input,
every schedule of BG(A′β) is deciding.

Consider the trees of all deciding schedules of BG(A′β) for all possible inputs
J0. All these trees have finite branching (each vertex has at most 2 descendants)
and finite paths. By König’s lemma (see Section 2.4), the trees are finite. Thus,
the set of vertices of G used by the runs of A′ simulated by deciding schedules of
BG(A′β) is also finite. Let Ḡ be a finite subgraph of G that includes all vertices
of G used by these runs.

Finally, we obtain a wait-free consensus algorithm for q1 and q2 that works as
follows. Each qj runs BG(A′β) (using a finite graph Ḡ) until a decision is obtained
in the simulated run ofA. At this point, qj returns the decided value. But BG(A′β)
produces only deciding runs of A, and each deciding run of A solves consensus
for inputs provided by q1 and q2 — a contradiction with the wait-free consensus
impossibility (Chapter 11). 2Lemma 14.3

Finally, we are ready to show our main result.

Theorem 14.4 In every environment E , if a failure detector D can be used to
solve consensus in E , then Ω is weaker than D in E .

Proof Consider any run of the algorithm in Figures 14.2, 14.5 and 14.6 with
failure pattern F .

By Lemma 14.3, at some point, every correct process pi gets stuck in lines 36–
40 simulating longer and longer qj-solo extension of some finite schedule σ with
input J0. Since, processes p1, . . . , pn use a series of consensus instances to simu-
late runs of A′ in exactly the same way, the correct processes eventually agree on
σ and qj .

Let e be the sequence of process identifiers in the 1-resilient execution of A′
simulated by q1 and q2 in schedule σ · (qj) with input J0. Since a 2-process BG
simulation produces a 1-resilient run of A′, at least n − 1 simulated processes in
p′1, . . . , p

′
n appear in e infinitely often. Let U (|U | ≥ n − 1) be the set of such

processes.
Now we show that exactly one correct (in F) process appears in e only finitely

often. Suppose not, i.e., correct(F) ⊆ U . By Theorem 14.2, the run of A′
simulated a fair run of A, and, thus, the run must be deciding—a contradiction.
Since |U | ≥ n−1, exactly one process appears in the run ofA′ only finitely often.
Moreover, the process is correct.

14.4. Chapter Notes 

Thus, eventually, the correct processes in F stabilize at simulating longer and
longer prefixes of the same infinite non-deciding 1-resilient run of A′.

Hence, there is a time after which the same correct process will be observed to
take the least number of steps in the run. This process will be eventually forever
output in line 39 — the output of Ω is extracted. 2Theorem 14.4

Thus, for every environment E , Ω is sufficient (Section 14.2) and necessary (The-
orem 14.4) for solving consensus in E (using read-write registers).

Corollary 14.5 For every environment E , $omega is a weakest failure detector
for solving consensus in E .

14.4. Chapter Notes

Failure detectors were introduced by Chandra and Toueg [24]. Chandra, Hadzila-
cos and Toueg derived the first “weakest failure detector” result by showing that Ω
is necessary to solve consensus in the message-passing model in their fundamen-
tal paper [23]. The result was later generalized to the read-write shared memory
model [88, 49]. Jayanti and Toueg refined the formalism used by Chandra et
al. [24] and showed that strictly speaking, every problem has a weakest failure
detector [69].

The proof technique in [23] establishes a framework for determining the weak-
est failure detector for any problem. The reduction algorithm of [23] works as
follows. Let D be any failure detector that can be used to solve consensus. Pro-
cesses periodically query their modules of D, exchange the values returned by
D, and arrange the accumulated output of the failure detector in the form of ever-
growing directed acyclic graphs (DAGs). Every process periodically uses its DAG
as a stimulus for simulating multiple runs of the given consensus algorithm. It is
shown in [23] that, eventually, the collection of simulated runs will include a crit-
ical run in which a single process p “hides” the decided value, thus, no extension
of the run can reach a decision without the cooperation of p. As long as a pro-
cess performing the simulation observes a run that the process suspects to remain
critical, it outputs the “hiding” process identifier of the “first” such run as the
extracted output of Ω. The existence of a critical run and the fact that the correct
processes agree on ever-growing prefixes of simulated runs imply that, eventually,
the correct processes will always output the identifier of the same correct process.

Crucially, the existence of a critical run is established in [23] using the notion of
valence [37]: a simulated finite run is called v-valent (v ∈ {0, 1}) if all simulated
extensions of it decide v. If both decisions 0 and 1 are “reachable” from the finite
run, then the run is called bivalent. Recall that in [37], the notion of valence is
used to derive a critical run, and then it is shown that such a run cannot exist in an

 14. Failure Detectors

asynchronous system, implying the impossibility of consensus. In [23], a similar
argument is used to extract the output of Ω in a partially synchronous system
that enables to solve consensus. Thus, in a sense, the technique of [23] rehashes
arguments of [37]. In this chapter, we derive Ω from the very fact that 2-process
wait-free consensus is impossible.

The technique presented in this chapter builds atop two fundamental results.
The first is the celebrated BG simulation [14, 16] that enables k + 1 processes to
simulate, in a wait-free manner, a k-resilient run of any n-process asynchronous
algorithm. The second is a brilliant observation made by Zieliński [114] that any
run of an algorithm A using a failure detector D induces an asynchronous algo-
rithm that simulates (possibly unfair) runs of A. The recursive structure of the
algorithm in Figure 14.6 is also borrowed from [114]. However, unlike [114], the
reduction algorithm of this chapter assumes the conventional read-write memory
model without using immediate snapshots [15]. Also, instead of growing ”prece-
dence” and ”detector” maps of [114], this chapter uses directed acyclic graphs á
la [23].

A related problem is determining the weakest failure detector for a generaliza-
tion of consensus, (n, k)-set agreement, in which n processes have to decide on at
most k distinct proposed values. The weakest failure detector for (n, 1)-set agree-
ment (consensus) is Ω. For (n, n − 1)-set agreement (sometimes called simply
set agreement in the literature), it is anti-Ω, a failure detector that outputs, when
queried, a process identifier, so that some correct process identifier is output only
finitely many times [114]. Finally, the general case of (n, k)-set agreement was
resolved by Gafni and Kuznetsov [45] using an elaborated and extended version
of the technique proposed in this chapter.

A survey of the failure-detector literature can be found in [38].
The notion of causality in the read-write shared-memory model can be seen

as a weaker version of the happened-before relation proposed by Lamport for
message-passing systems [79].

14.5. Exercises

1. Show that in any environment E , Ω is weaker than 3P and 3P is weaker
than P , i.e., Ω �E 3P and 3P �E P .

In which environments, the relations are strict, i.e., Ω ≺E 3P and 3P ≺E
P?

2. Design a simple algorithm that solves consensus using reads-write registers
and the perfect failure detector P .

3. Recall the obstruction-free consensus algorithm sketched in Section 14.2.2.

14.5. Exercises 

The processes go through a series of commit-adopt instances CA1,CA2,
the process invokes CA1 with its input value, and every next CA instance is
invoked with the value adopted from the preceding CA instance. The first
committed value is output as the consensus decision.

Explain why the algorithm is not subject to the FLP impossibility proof
(Chapter 12).

4. Give an algorithm that solves consensus using read-write registers and the
Ω failure detector.

Hint: use the obstruction-free consensus algorithm sketched above as the
basis.

5. The eventually strong failure detector 3S outputs a set of suspected pro-
cesses at each process. 3S satisfies strong completeness and eventual weak
accuracy: there is a time after which some correct process is never sus-
pected by any correct process.

Formally, for each failure pattern F and each history H ∈ 3S(F) ⇔(
∃t ∈ T ∀p ∈ faulty(F) ∀q ∈ correct(F) ∀t′ ≥ t : p ∈ H(q, t′)

)
∧(

∃t ∈ T ∃p ∈ correct(F) ∀t′ ≥ t ∀q ∈ correct(F) : p /∈ H(q, t′)
)

Show that, in every environment, 3S and Ω are equivalent.

Hint: think if you can solve consensus using read-write registers and 3S.

6. Consider a system model in which the processes have local synchronized
clocks. Assume that there exist an upper bound on the time it takes for
a process to perform a shared-memory step. Show that it is possible to
implement Ω in this system using read-write registers.

7. Show that BG simulation (see Chapter 13) indeed satisfies the BG0 property
(see Section 14.3.4).

15. Adversaries

In defining failure models so far, we assumed that processes fail in a “uniform”
manner. More precisely, processes are equally probable to fail and a failure of
one process does not affect the failures of the others. In real systems, however,
processes might not be equally reliable. Moreover, failures may be correlated
because of software or hardware features shared by subsets of processes.

In this chapter, we address the question of what can and what cannot be com-
puted in systems with non-identical and non-independent failures. Here such a
non-uniform model is defined through the notion of an adversarial scheduler. The
scheduler makes sure that only specified a priori subsets of processes can appear
correct. We discuss how to characterize the power of such adversarial models
to solve colorless tasks. We briefly cover the elegant approach to characterize a
subset of such models based on combinatorial topology and then give a complete
characterization using shared-memory simulations.

15.1. Non-Uniform Failure Models

A failure model describes the assumptions of where and when failures might oc-
cur in a distributed system. The classical “uniform” failure model assumes that
processes fail with equal probabilities, independently of each other. This enables
reasoning about the maximal number of processes that may, with a non-negligible
probability, fail in any given execution of the system. It is natural to ask questions
of the kind: what problems can be solved t-resiliently, i.e., assuming that at most
t processes may fail. In particular, the wait-free (or (n − 1)-resilient, where n is
the number of processes) model assumes that any subset of processes may fail.

However, in real systems, processes do not always fail in the uniform manner.
Processes may be unequally reliable and prone to correlated failures. A soft-
ware bug makes all processes using the same build vulnerable, a router’s failure
may render all processes behind it unavailable, a successful malicious attack on
a given process increases the chances to compromise processes running the same
software, etc. Therefore, understanding how to deal with non-uniform failures is
crucial.

Adversaries. Consider a system of three processes, p, q, and r. Suppose that
p is very unlikely to fail, and otherwise, all failure patterns are allowed. Since we

 15. Adversaries

only exclude executions in which p fails, the set of correct processes in any given
execution must belong to {p, pq, pr, pqr}1.

Now consider an example of correlated failures. Suppose that p and q share a
software component x, p and r share a software component y, and q and r are
built atop the same hardware platform z (Figure 15.1). Further, let x, y, and z
be prone to failures, but suppose that it is very unlikely that two failures occur
in the same execution. Hence, the only possible sets of correct processes in our
system are: pqr (no failures), p (hardware platform z fails), q (component y fails),
r (component x fails).

q

p r

x

y

z

Figure 15.1.: A system modeled by the adversary {pqr, p, q, r}: p and q share
component x, p and r share component y, and q and r run atop the
same hardware platform z.

The notion of a generic adversary intends to model such scenarios. An adver-
sary A is defined as a set of possible correct process subsets. E.g., the t-resilient
adversary At-res in a system of n processes consists of all sets of n − t or more
processes. We say that an execution isA-compliant if the set of processes that are
correct in that execution belongs to A. Hence, an adversary A describes a model
consisting of A-compliant executions.

The formalism of adversaries assumes that processes fail only by crashing, and
adversaries only specify the sets of processes that may be correct in an execu-
tion, regardless of the timing of failures. Of course, this sorts out many kinds of
possible adversarial behavior, such as malicious attacks or timing failures. How-
ever, it is arguably the simplest model that still captures important features of
non-uniform failures.

Distributed Tasks. Recall that a task (see Section 10.4.2) can be seen as a
distributed variant of a function from classical (centralized) computing: given a

1For brevity, we simply write pqr when referring to the set {p, q, r}.

15.1. Non-Uniform Failure Models 

distributed input (an input vector, specifying one input value for every process)
the processes are required to produce a distributed output (an output vector, spec-
ifying one output value for every process), such that the input and output vectors
satisfy the given task specification.

The classical theory of computational complexity theory categorizes functions
based on their inherent difficulty (e.g., with respect to solving them on a Turing
machine). In the distributed setting, the difficulty in solving a task also depends
on the adversary we are willing to consider. There are tasks that can be trivially
solved on a Turing machine but cannot be solved in the presence of some dis-
tributed adversaries. For example, the task of consensus, in which the processes
must agree on one of the input values, cannot be solved assuming the 1-resilient
adversary A1-res (Section 13.3). 2

Most of this chapter deals with colorless tasks (see Section 13.2.2). Informally,
a colorless task allows every process to adopt an input or output value from any
other participating process.

The Relative Power of Adversaries. This chapter primarily addresses the
following question. Given a task T and an adversary A, is T solvable in the
presence of A?

Intuitively, the more sets an adversary comprises, the more executions our sys-
tem may expose, hence, the more powerful is the adversary in “disorienting” the
processes. In this sense, the wait-free adversary Awf = A(n−1)-res is the most
powerful adversary, since it describes the set of all possible executions.

In contrast, a “singleton” adversary A = {S} that consists of only one set
S ⊆ P is very weak. For example, we can use any process in S as the “leader”
that never fails. Assuming that read-write registers are provided as base objects,
this weak adversary allows us to solve consensus and, thus, to implement any
sequential data type (Chapter 11).

But in general, there are exponentially many adversaries defined for n pro-
cesses. Therefore, it may be difficult to say a priori which of two given adver-
saries is stronger.

Superset-Closed Adversaries. We start by defining the model of dependent
failures in terms of cores and survivor sets. In brief, a survivor set is a minimal
subset of processes that can be the set of correct processes in some execution, and
a core is a minimal set of processes that do not all fail in any execution.

We show that, in fact, this formalism describes a special class of superset-closed
adversaries: every superset of an element of such an adversary A is also an ele-

2More generally, the task of k-set agreement, where every correct process is required to decide on
an input value so that at most k different values are decided, cannot be solved in the presence of
Ak-res [58, 99, 14].

 15. Adversaries

ment of A. The minimal elements of A (no subset of which are in A) are the
survivor sets of the resulting model.

It turns out that the power of a superset-closed adversaryA in solving colorless
tasks is precisely characterized by the size of its minimal core, i.e., the minimal-
cardinality set of processes that cannot all fail in any A-compliant execution. A
superset-closed adversary with minimal core size c allows for solving a colorless
task T if and only if T can be solved (c − 1)-resiliently. In particular, if c = 1,
then any task can be solved in the presence ofA, and if c = n, thenA only allows
for solving wait-free solvable tasks. Therefore, all superset-closed adversaries can
be categorized in n classes, based on their minimal core sizes.

We present two ways of deriving this result: first, using the elements of mod-
ern topology (Section 15.3.1) and second, through shared-memory simulations
(Section 15.3.2).

Characterizing Generic Adversaries. The dependent-failure formalism is
however not expressive enough to capture the task solvability in generic non-
uniform failure models. It is easy to construct an adversary that has the minimal
core size n but allows for solving tasks that cannot be wait-free solved. One exam-
ple is the “bimodal” adversary {pqr, p, q, r} (Figure 15.1) that allows for solving
2-set agreement.3

Therefore, to characterize the power of a generic adversary, we need a more
sophisticated criterion than the minimal core size. Such a criterion, that we call
set consensus power, is not difficult to find. Suppose that we can partition an
adversary A into k sub-adversaries, each powerful enough to solve consensus.
We conclude that A allows for solving k-set agreement: simply run k consen-
sus algorithms in parallel, each assuming a distinct sub-adversary. Moreover, we
show that the set consensus power of A, defined as the minimal such number of
sub-adversaries, precisely characterizes the power ofA in solving colorless tasks.

Therefore, generic adversaries defined on n processes can still be split into n
equivalence classes. Each class j consists of adversaries of set consensus power
j that agree on the set of colorless tasks they allow for solving: namely, tasks
that can be solved (j − 1)-resiliently and not j-resiliently. In particular, class n
contains adversaries that only allow for solving tasks that can be solved wait-free,
and class 1 allows for solving consensus, thus, any task.

In this chapter, we discuss several approaches to model non-uniform failures:
dependent failure model, adversaries, and asymmetric progress conditions.

Then we present a complete characterization of superset-closed adversaries.
We first briefly overview how to establish such a characterization using elements
of combinatorial topology. Then we derive the same result through a simple ap-

3It has been shown that k-set agreement cannot be solved k-resiliently. Thus, 2-set agrement
cannot be wait-free solved by three processes.

15.2. Non-Uniform Failures in Shared-Memory Systems 

plication of BG simulation.
We then characterize generic (not necessarily superset-closed) adversaries us-

ing the notion of set consensus power.

15.2. Non-Uniform Failures in Shared-Memory
Systems

In this section, we recall our system model and review several approaches to
model non-uniform failures: (1) survivor sets and cores, (2) adversaries and
(3) asymmetric progress conditions.

15.2.1. Model

Recall that we consider a system Π of n processes, p1, . . . , pn, that communicate
via reading and writing in the shared memory. As usual, we assume that the sys-
tem is asynchronous, i.e., relative speeds of the processes are unbounded. Without
loss of generality, let the processes share an atomic snapshot memory, where ev-
ery process may update its dedicated element and take a snapshot of the whole
memory (Chapter 9).

A process may only fail by crashing, and, otherwise, it must respect the algo-
rithm it is given. A correct process never crashes.

We assume that every process runs the full-information update-snapshot pro-
tocol (Section 10.3.1): initially, it writes its input value and then alternates be-
tween taking snapshots of the memory and writing back the result of its latest
snapshots. After a certain number of such (asynchronous) rounds, a process may
gather enough state to decide, i.e., i.e., to produce an irrevocable non-⊥ output
value.

Recall that in a colorless task (Section 13.2.2), processes are free to use each
others’ input and output values, so the task can be defined in terms of input and
output sets instead of vectors.

To solve a colorless task, it is sufficient to find a protocol (a decision function)
that allows just one process to decide. Indeed, if such a protocol exists, we can
simply convert it into a protocol that allows every correct process to decide: every
process simply applies the decision function to the observed state of any other
process and adopts the decision.

15.2.2. Survivor Sets and Cores

Non-uniform failures have been originally modeled by Junqueira and Marzullo [71,
70] using the language of survivor sets and cores. A survivor set S ⊆ Π if a set
of processes such that:

 15. Adversaries

(a) in some execution, S is the set of correct processes, and

(b) S is minimal: for every proper subset S′ of S, there is no execution in which
S′ is the set of correct processes.

A collection S of survivor sets describes a system such that the set of correct
processes in every execution contains a set in S.

Respectively, a core C is a set of processes such that:

(a) in every execution, some process in C is correct, and

(b) C is minimal: for every proper subset C ′ of C, there is an execution in
which every process in C ′ fails.

Hence, a core is a minimal set of processes that cannot be all faulty in any execu-
tion of our system. Note that the set of cores is unambiguously determined by the
set of survivor sets.

A core is actually a minimal hitting set of the set system built of survivor
sets, and a core of smallest size is a corresponding minimum hitting set. De-
termining minimum hitting set of a set system is known to be NP-complete.

The language of cores and survivor sets proved to be convenient in understand-
ing the ability of a system with non-uniform failures to solve consensus or build
a fault-tolerant replicated storage. Below we show how to model these notions
using the adversarial formalism.

15.2.3. Adversaries

Formally, an adversary defined for a set of processes Π is a non-empty set of pro-
cess subsets A ⊆ 2Π . We say that an execution is A-compliant if the correct set,
i.e., the set of correct processes, in that execution belongs to A. Hence, assuming
an adversary A, we only consider the set of A-compliant executions. By conven-
tion, we assume that in every execution, at least one process is correct, i.e., no
adversary contains ∅.

Given a task T and an adversary A, we say that T is A-resiliently solvable if
there is a protocol such that in every execution, the outputs match the inputs with
respect to the specification of T , and in everyA-compliant execution, each correct
process eventually produces an output.

It is easy to see that the language of survivor sets describes a special class of
superset-closed adversaries. Formally, the set SC of superset-closed adversaries
consists of allA such that for all S, S′ ⊆ Π such that S ∈ A and S ⊆ S′, we have
S′ ∈ A.

15.2. Non-Uniform Failures in Shared-Memory Systems 

For example, consider the t-resilient adversaryAt-res = {S ⊆ Π, |S| ≥ n− t}.
By definition, At-res ∈ SC. The survivor sets of At-res are all sets of n − t pro-
cesses, and the cores are all sets of t+1 processes. The (n−1)-resilient adversary
AWF = An−1-res is also called wait-free. An AWF -resilient task solution must
ensure that every process obtains an output in a finite number of its own steps,
regardless of the behavior of the rest of the system.

Another example ALp = {S ⊆ Π|p ∈ S} ∈ SC describes a system in which
p never fails. ALp has one survivor set {p} and one core {p}. Intuitively, p may
then act as a correct leader in a consensus protocol. Hence, every task can be
solved in the presence of ALp .

The k-obstruction-free adversary Ak-OF is defined as {S ⊆ Π | 1 ≤ |S| ≤
k}. In every Ak-OF-compliant run, at most k processes are correct. In particular,
AOF = A1-OF allows us to solve consensus (see Section 14.2.2 and Exercise 3 in
Chapter 14). Clearly, Ak-OF for 1 ≤ k < n is not in SC.

The “bimodal” adversary {pqr, p, q, r} (Figure 15.1) is not in SC either: it
contains the singleton p but not its supersets pq and pr.

15.2.4. Failure Patterns and Environments

An adversary is, in fact, a special case of a failure environment (see Section 14.1)
introduced by Chandra et al. [23]. Recall that an environment E is a set of failure
patterns. For a given run, a failure pattern F is a map that associates each time
value t ∈ Twith a set of processes crashed by time t. The set of correct processes,
denoted correct(F), is thus defined as Π− ∪t∈TF (t).

Since an adversaryA only defines sets of correct processes and does not specify
the timing of failures, it can be viewed as a specific environment EA that is closed
under changing the timing of failures. More precisely, EA = {F | correct(F) ∈
A}. Clearly, if F ∈ EA and correct(F) = correct(F ′), then F ′ ∈ EA.

Hence, we can rephrase the statement “task T can be solved A-resiliently” as
“task T can be solved in environment EA”. All environments can be split into
n equivalence classes, and each class j agrees on the set of tasks it can solve:
namely, tasks that can be solved (j − 1)-resiliently and not j-resiliently. There-
fore, each adversary belongs to one such equivalence class. However, this charac-
terization does not give us an explicit algorithm to compute the class to which a
given adversary belongs.

15.2.5. Asymmetric Progress Conditions

The notion of asymmetric progress conditions introduced by Imbs et al. [65] al-
lows us to specify different progress guarantees for different processes. Infor-
mally, for sets of processes X and Y , X ⊆ Y ⊆ Π, (X,Y)-liveness guaran-
tees that every process in X makes progress regardless of other processes (wait-

 15. Adversaries

freedom for processes in X) and every process in Y − X makes progress if it
is eventually the only process in Y − X taking steps (obstruction-freedom for
processes in Y −X).

With respect to solving colorless tasks, it is easy to represent (X,Y)-liveness
using the formalism of adversaries. The equivalent adversaryAX,Y consists of all
subsets of Π that intersect with X and all sets {pi} ∪S such that pi ∈ Y −X and
S ⊆ Π−Y . It is easy to see that a colorless task is (read-write) solvable assuming
(X,Y)-liveness if and only if it is solvable in the presence of AX,Y .

One can also think of a refined condition that associates each process pi with
a set Pi of process subsets (each containing pi). Then pi is expected to make
progress (e.g., output a value in a task solution) only if the current set of correct
processes is in Pi. Similarly, with respect to the question of solvability of color-
less tasks, every such progress condition can be modeled as an adversary, defined
simply as the union ∪iPi.

15.3. Characterizing Superset-Closed Adversaries

Intuitively, the size of a smallest-cardinality core of an adversary A, denoted
csize(A), is related to its ability to “confuse” the processes (preventing them
from reaching agreement). Indeed, since in every execution, at least one pro-
cess in a minimal core C is correct, we can treat C as a collection of leaders. For
a superset-closed adversary, every non-empty subset of C can be precisely the set
of correct processes in C in some execution. Therefore, intuitively, the system be-
haves like a wait-free system on c = |C| processes, where c quantifies the “degree
of disagreement” that we can observe among all the processes in the system.

In this section, we show that csize(A) precisely captures the power of A with
respect to colorless tasks. We overview two approaches to address this question,
each interesting in its own right: using combinatorial topology and using shared-
memory simulations.

15.3.1. Side Remark: a Topological Approach

Herlihy and Rajsbaum [57] derived a characterization of superset-closed adver-
saries using the Nerve Theorem of modern combinatorial topology [12]. A set
of finite executions is modeled as a simplicial complex, a geometric (or combi-
natorial) structure where each simplex models a set of local states (views) of the
processes resulting after some execution (see also Section 10.4.3). This allows for
reasoning about the power of a model using topological properties (e.g., connec-
tivity) of simplicial complexes it generates.4

4For more details on the applications of algebraic and combinatorial topology in distributed com-
puting, check the book by Herlihy, Kozlov, and Rajsbaum [55].

15.3. Characterizing Superset-Closed Adversaries 

Here we consider the model of iterated computations (see Section 10.4): each
process pi proceeds in (asynchronous) rounds, where every round r is associated
with a shared array of registers M [r, 1], . . . ,M [r, n]. When pi reaches round r, it
updates M [r, i] with its current view and takes an atomic snapshot of M [r, .]. In
the presence of a superset-closed adversary A, the set of processes appearing in
a snapshot should be an element of A. We call the resulting set of executions the
A-compliant iterated model.

Naturally, given an adversary A, it is easy to implement an iterated model with
desired properties in the classical (non-iterated) shared memory model. To imple-
ment a round of the iterated model, every process writes its value in the memory
and takes atomic snapshots until all processes in some survivor set (minimal ele-
ment inA) are observed to have written their values. The result of this snapshot is
then returned. In an A-compliant execution, this allows for simulating infinitely
many iterated rounds.

Surprisingly, we can also use the A-compliant iterated model to simulate an
A-compliant execution in the read-write model where some participating set of
processes in A takes infinitely many steps (this can be achieved by a variation of
the simulation algorithm presented in Section 10.4). In particular, for the wait-free
adversaryAWF , the simulation is non-blocking: at least one participating process
accepts infinitely many steps in the simulated execution.

Note that if the simulatedA-compliant execution is used for anA-resilient pro-
tocol solving a given task, then we are guaranteed that at least one process obtains
an output. But to solve a colorless task it is sufficient to produce an output for one
participating process (all other participants may adopt this output). Therefore:

Theorem 15.1 Let A be a superset-closed adversary. A colorless task can be
solved in the A-compliant iterated model if and only if it can be solved in the
A-compliant model.

This result allows us to apply the topological formalism as follows. The set of
r-round executions of the A-compliant iterated model applied to an initial sim-
plex σ generates a protocol complex Kr(σ). By a careful reduction to the Nerve
Theorem [12], Kr(σ) can be shown to be (c− 2)-connected, i.e., Kr(σ) contains
no “holes” in dimensions c−2 or less (any (c−2)-dimensional sphere can be con-
tinuously contracted to a point). The Nerve theorem establishes the connectivity
of a complex from the connectivity of its components.

Roughly, the argument of [57] is built by induction on n, the number of pro-
cesses. For a given adversary A on n processes with the minimal core size c,
the A-compliant protocol complex Kr(σ) can be represented as a union of proto-
col complexes, each corresponding to a sub-adversary of A on n − 1 processes
with core size c − 1. By induction, each of these sub-adversaries is at least

 15. Adversaries

(c− 3)-connected. Applying the Nerve theorem, we derive that Kr(σ) is (c− 2)-
connected. The base case n = 1 and c = 1 is trivial, since every non-empty
complex is, by definition, (−1)-connected.

Hence,Kr(σ) is (c−2)-connected. Hence, no task that cannot be solved (c−1)-
resiliently, in particular (c− 1)-set agreement, can be solved A-resiliently.

The continuous formulation of the asynchronous computability theo-
rem [59, 55] reduces the question ofA-resilient solvability of a colorless task
T = (I,O,∆) to the existence of a continuous map f from |skelc−1(I)|, the
Euclidean embedding of the (c−1)-skeleton (the complex of all simplexes of
dimension c−1 and less) of the input complex I, to |O|, the Euclidean embed-
ding of the output complexO, such that f is carried by ∆, i.e., f(σ) ⊆ ∆(σ).

The fact that Kr(σ) is (c − 2)-connected (thus, d-connected for all 0 ≤ d ≤
c − 2) implies that every continuous map from d-sphere of Kr(σ) extends to the
(d + 1)-disk, for 0 ≤ d ≤ c − 2. Intuitively, we can thus inductively construct a
continuous map from |skelc−1(I)| to |O|, starting from any map sending a vertex
of I to a vertex of O (for d = 0).

On the other hand, one can construct anA-resilient protocol solving a colorless
task T , given a continuous map from the (c− 1)-skeleton of the input complex of
T to the output complex of T . Hence:

Theorem 15.2 [57] An adversary A ∈ SC with the minimal core size c allows
for solving a colorless task T = (I,O,∆) if and only if there is a continuous map
from |skelc−1(I)| to |O| carried by ∆.

Therefore, two adversaries inA,B ∈ SC with the same minimal core size c agree
on the set of tasks they allow for solving, which is exactly the set of tasks that can
be solved (c− 1)-resiliently (since csize(A(c−1)-res) = c).

15.3.2. A Simulation-Based Approach

The topological approach briefly sketched above heavily relies on combinatorial
constructs, such as the Nerve Theorem [12]. Besides, it translates the problem to
the iterated immediate-snapshot model (Section 10.4), which builds upon some
non-trivial simulation algorithms.

We now show that it is comparatively straightforward to characterize superset-
closed adversaries directly, using BG simulation (see Section 13.2). We present a
complete characterization below.

Theorem 15.3 Let A be a superset-closed adversary. A colorless task T is A-
resiliently solvable if and only if T is (c − 1)-resiliently solvable, where c is the
minimal core size of A.

15.4. Measuring the Power of Generic Adversaries 

Proof Let a colorless task T be (c − 1)-resiliently solvable and let Pc be the
corresponding algorithm. Let C = {q1, . . . , qc} be a minimal-cardinality core of
A (|C| = c).

Let the processes in C BG-simulate the algorithm Pc running on all processes
in Π. Here each simulator qi tries to use its input value of task T as an input
value of every simulated process. Since C is a core of A, in every A-compliant
execution, at most c− 1 simulators may fail. Since a faulty simulator can cause at
most one simulated process to fail, the produced simulated execution is (c − 1)-
resilient. Since Pc gives a (c − 1)-resilient solution of T , at least one simulated
process must eventually decide in the simulated execution. The output value is
then adopted by every correct process. Moreover, the decided value is based on
the “real” inputs of some processes. Since T is colorless, the decided values are
correct with respect to the input values, thus, we obtain an A-resilient protocol to
solve T .

For the other direction, suppose, by contradiction that there exists anA-resilient
protocol PA to solve a colorless task T , but T is not possible to solve (c − 1)-
resiliently.

We claim that A(c−1)-res ⊆ A, i.e., each (c − 1)-resilient execution is
A-compliant. Suppose otherwise, i.e., some set S of n − c + 1 processes is not
in A. Since A is superset-closed, no subset of S is in A (otherwise, S would be
in A). No process in S belongs to any set in A, thus, the smallest core of A must
be a subset of Π− S. But |Π− S| = c− 1—a contradiction with the assumption
that the size of a minimal cardinality core of A is c.

Hence, every (c − 1)-resilient execution is also A-compliant, which implies
that PA is, in fact, a (c − 1)-resilient solution to T—a contradiction with the
assumption that T is not (c− 1)-resiliently solvable. 2Theorem 15.3

Theorem 15.3 implies that the adversaries in SC can be categorized into n equiv-
alence classes, SC1, . . ., SCn. Here class SCk consists of adversaries with cores
of size k. Two adversaries that belong to the same class SCk agree on the set of
colorless tasks they are able to solve, and it is exactly the set of all colorless task
that can be solved (k − 1)-resiliently, e.g., k-set agreement.

15.4. Measuring the Power of Generic Adversaries

Let us come back to the “bimodal” adversaryABM = {pqr, p, q, r} (Figure 15.1).
Its only core is {p, q, r}. Does it mean that ABM only allows for solving trivial
(wait-free solvable) tasks? Not really: by splitting ABM into two sub-adversaries
AFF = {pqr} and AOF = {p, q, r} and running two consensus algorithms in
parallel, one assuming no failures (AFF) and one assuming that exactly one pro-
cess is correct (AOF), gives us a solution to 2-set agreement.

 15. Adversaries

15.4.1. Solving Consensus with ABM
But can we solve more in the presence of ABM? E.g., is there a protocol Alg that
solves consensus ABM -resiliently? We derive that the answer is no by showing
how processes, s0 and s1, can wait-free solve consensus by simulating an ABM -
compliant execution of any such algorithm Alg.

Initially, the two processes act as BG simulators trying to simulate an execution
of Alg on all three processes p, q, and r. When a simulator si (i = 0, 1) finds
out that the simulation of some step is blocked (which means that the other sim-
ulator s1−i started but has not yet completed the corresponding instance of safe
agreement), si switches to simulating a solo execution of the next process (in the
round-robin order) in {p, q, r}. If the blocked simulation eventually resolves (s1−i
finally completes its propose operation on an SA instance), then si switches back
to simulating all p, q, and r.

If no simulator blocks a simulated step forever, the simulated execution contains
infinitely many steps of every process, i.e., the set of correct processes in it is
{p, q, r}. Otherwise, eventually, some simulated process forever runs in isolation
and the set of correct processes in the simulated execution is {p}, {q}, or {r}. In
both cases, the simulated execution of Alg is ABM -compliant, and the algorithm
must output a value, contradicting the consensus impossibility. This argument can
be easily extended to show that ABM cannot be used to solve any colorless task
that cannot be solved 1-resiliently.

15.4.2. Set Consensus Power of an Adversary

We, therefore, need a more sophisticated criterion to evaluate the power of a
generic adversary A. It appears natural to study the set consensus power of
A, i.e., the smallest k such that k-set agreement can be solved in the presence of
A.

15.4.3. Defining setcon

LetA be an adversary and let S ⊆ P be any subset of processes. ThenAS denotes
the adversary that consists of all elements of A that are subsets of S (including
S itself if S ∈ A). E.g., for A = {pq, qr, q, r} and S = qr, AS = {qr, q, r}.
For S ∈ A and a ∈ S, let AS,a denote the adversary that consists of all elements
of AS that do not include a. E.g., for A = {pq, qr, q, r}, S = qr, and a = q,
AS,a = {r}.

Now we define a quantity denoted setcon(A), which we will show to be the set
consensus power of A. Intuitively, our goal is to split A into the minimal number

15.4. Measuring the Power of Generic Adversaries 

k of sub-adversaries, such that every sub-adversary allows for solving consen-
sus. Then A allows for solving k-set agreement, but not (k − 1)-set agreement
(otherwise, k would not be minimal).

Definition 15.4 setcon(A) is defined as follows:

• If A = ∅, then setcon(A) = 0

• Otherwise, setcon(A) = maxS∈Amina∈S setcon(AS,a) + 1

Hence, setcon(A), for a non-empty adversary A, is determined as
setcon(AS̄,ā) + 1 where S̄ is an element of A and ā is a process in S̄ that “max-
minimize” setcon(AS,a). Note that for A 6= ∅, setcon(A) ≥ 1.

We say that S ∈ A is proper if it is not a subset of any other element in A.
Let proper(A) denote the set of proper elements in A. Note that since for all
S′ ⊂ S, mina∈S′ setcon(AS′,a) ≤ mina∈S setcon(AS,a), we can replace S ∈ A
with S ∈ proper(A) in Definition 15.4.

q r

rq

{pqr, pq, pr, p}

p q r

{q, r}

p

Figure 15.2.: Adversary A = {pqr, pq, pr, p, q, r} decomposed in two sub-
adversaries, {pqr, pq, pr, p} and {q, r}, each with setcon = 1.

15.4.4. Calculating setcon(A): Examples

Consider an adversary A = {pqr, pq, pr, p, q, r}. It is easy to see that
setcon(A) = 2: for S = pqr and a = p, we have AS,p = {q, r} and
setcon(AS,a) = 1. Therefore, we decompose A into two sub-adversaries
{pqr, pq, pr, p} and {q, r}, each strong enough to solve consensus (Figure 15.2).
Intuitively, in an execution where the correct set belongs to A − AS,a =
{pqr, pq, pr, p}, process p can act as a leader for solving consensus. If the correct
set belongs to AS,a = {q, r} (either q or r eventually runs solo) then q and r can

 15. Adversaries

solve consensus using an obstruction-free algorithm. Running the two algorithms
in parallel, we obtain a solution to 2-set agreement. The reader can easily verify
that any other choice of a ∈ pqr results in three levels of decomposition.

As another example, consider the t-resilient adversary At-res = {S ⊆ Π, |S| ≥
n − t}. It is easy to verify recursively that setcon(At-res) = t + 1: at each level
1 ≤≤ t+1 of recursion we consider a set S of n−j+1 elements, pick up a process
p ∈ S and delegate the set of n− j processes that do not include p to level j + 1.
At level t+1 we get one set of size n− t and stop. Hence, setcon(At-res) = t+1.

More generally, for any superset-closed adversary A (A ∈ SC), setcon(A) =
csize(A), the size of a smallest-cardinality core of A. To show this, we pro-
ceed by induction. The statement is trivially true for an empty adversary A with
csize(A) = setcon(A) = 0. Now suppose that for all 0 ≤ j < k and all
A′ ∈ SC with csize(A′) = j, we have setcon(A′) = j. Consider A ∈ SC such
that csize(A) = k. Note that the only proper element ofA is the whole set of pro-
cesses Π. Hence, setcon(A) = mina∈Π setcon(AΠ,a) + 1. By the induction hy-
pothesis and the fact that csize(A) = k, we have mina∈Π setcon(AΠ,a) = k− 1.
Hence, setcon(A) = k.

By Theorem 15.3, setcon() indeed characterizes the disorienting power
of adversaries A ∈ SC: a task is A-resiliently solvable if and only if it is
(c− 1)-resiliently solvable, where c = setcon(A). In the rest of this section,
we extend this result from SC to the universe of all adversaries.

15.4.5. Solving Consensus with setcon = 1

Before we characterize the ability of adversaries to solve colorless tasks, we con-
sider the special case of adversaries with setcon = 1.

Consider an adversaryA and S ∈ A. Suppose that csize(AS) = 1, and let {a}
be a core of AS . Obviously, AS,a = ∅. On the other hand, if AS,a = ∅, then {a}
is a core of AS . Hence, setcon(A) = 1 if and only if ∀S ∈ A, csize(AS) = 1

Suppose setcon(A) = 1. If S is the only proper element of A, then we can
easily solve consensus (thus, any other task), by deciding on the value proposed
by the only member of a core of AS . The process is guaranteed to be correct in
every execution.

Now we extend this observation to the case when A contains multiple proper
elements. The consensus algorithm, presented in Figure 15.3 is based on the
“rotating coordinator” principle.

The algorithm proceeds in rounds. In each round r, every process pi first tries
to commit its current decision estimate in a new instance of commit-adopt CAr.
If pi succeeds in committing the estimate, the committed value is written in the

15.4. Measuring the Power of Generic Adversaries 

Shared variables:
D, initially ⊥;
R1, . . . , Rn, initially ⊥;

propose(v)
1 est ← v;
2 r ← 0;
3 S ← P ;
4 repeat
5 r ← r + 1;
6 (flag, est)← CAr.propose(est);
7 if flag = commit then
8 D ← est ; return(est) {Return the committed value}
9 Ri ← (est , r);
10 wait until ∃S ∈ A, ∀pj ∈ S: Rj = (vj , rj) where rj ≥ r or D 6= ⊥

{Wait until a set in A moves}
11 if pr mod n+1 ∈ S then
12 est ← vr mod n+1; {Adopt the estimate of the current leader}
13 until D 6= ⊥
14 return(D)

Figure 15.3.: Consensus with a “One-Level” Adversary A, setcon(A) = 1

“decision” register D and returned. Otherwise, pi adopts the returned value as
its current estimate and writes it in Ri equipped with the current round number
r. Then pi takes snapshots of {R1, . . . , Rn} until either a set S ∈ A reaches
round r or a decision value is written in D (in which case the process returns the
value found in D). If no decision is taken yet, then pi checks if the coordinator of
this round, pr mod n, is in S. If so, pi adopts the value written in Rr mod n and
proceeds to the next round.

Theorem 15.5 If setcon(A) = 1, then consensus can be solved A-resiliently.

Proof The properties of commit-adopt imply that no two processes return differ-
ent values. Indeed, the first round in which some process commits on some value
v (line 8) “locks” the value for all subsequent rounds, and no other process can
return a value different from v.

Suppose, by contradiction, that some correct process never returns in some A-
compliant execution E. Recall that A-compliant means that some set in A is
exactly the set of correct processes in E. If a process returns, then it has previ-
ously written the returned value in D. Since in each round, a process performs
a bounded number of steps, by our assumption, no process ever writes a value in
D and every correct process goes through infinitely many rounds in E without
returning.

 15. Adversaries

Let S̄ ∈ A be the set of correct processes in E. After a round r′ when all
processes outside S̄ have failed, every element ofA evaluated by a correct process
in line 10 is a subset of S̄. Finally, since the minimal core size ofAS̄ is 1, all these
elements of A overlap on some correct process pj .

Consider round r = mn + j ≥ r′ − 1. In this round, pj not only belongs
to all sets evaluated by the correct processes, but it is also the coordinator (j =
r mod n + 1). Hence, the only value that a process can propose to commit-
adopt in round r + 1 is the value previously written by pj in Rj . Hence, every
process that returns from commit-adopt in round r+1 must commit and return—a
contradiction. 2Theorem 15.5

15.4.6. Adversarial Partitions

One way to interpret Definition 15.4 is to say that setcon(A) captures the size of
a minimal-cardinality partitioning of A into sub-adversaries A1, . . . ,Ak, each of
setcon = 1.

Indeed, for a proper set S ∈ A, selecting an element a ∈ S allows for splitting
AS into two sub-adversariesAS−AS,a andAS,a. AS−AS,a is the set of elements
of AS that contain a, thus, setcon(AS − AS,a) = 1 (a can act as a leader).
Moreover, selecting a so that setcon(AS,a) is minimized makes sure that AS,a =
setcon(AS)− 1.

Intuitively, A1, the first such sub-adversary, is the union of AS − AS,a, for
all such proper S ∈ A and a ∈ S. Adversaries A2, . . . ,Ak are obtained by a
recursive partitioning of A−A1.

Hence, given an adversaryA such that setcon(A) = k, we derive thatA allows
for solving k-set agreement. Just take the described above partitioning of A in to
k sub-adversaries, A1, . . . ,Ak such that, for all j = 1, . . . , k, setcon(Aj) = 1.
Then every process can run k parallel consensus algorithms, one for each Aj ,
proposing its input value in each of these consensus instances (such algorithm
exist by Theorem 15.5). Since the set of correct processes in every A-compliant
execution belongs to some Aj , at least one consensus instance returns. The pro-
cess decides on the first such returned value. Moreover, at most k different values
are decided and each returned value was previously proposed. Therefore:

Theorem 15.6 If setcon(A) = k, then A allows for solving k-set agreement.

15.4.7. Characterizing Colorless Tasks

But can we solve (k−1)-set agreement in the presence ofA such that setcon(A) =
k? The answer is no: A does not allow for solving any colorless task that cannot
be solved (k− 1)-resiliently. The result can be derived by a simple application of
BG simulation.

15.5. Chapter Notes 

The intuition here is the following. Suppose, by contradiction, that we are given
an adversary A such that setcon(A) = k and a colorless task T that is solvable
A-resiliently but not (k − 1)-resiliently. Let Alg be the corresponding A-resilient
algorithm. Then we can construct a (k−1)-resilient simulation of anA-compliant
execution of Alg. Roughly, we build upon BG simulation, except that the order in
which steps of Alg are simulated is not fixed in advance to be round-robin. Instead,
the order is determined online, based on the currently observed set of participating
processes.5

We start with simulating steps of processes in S ∈ A such that setcon(AS) = k
(by Definition 15.4, such a set S exists). If the outcome of a simulated step of
some process a cannot be resolved (the corresponding safe agreement is blocked),
we proceed with simulating processes in an element S′ ∈ AS,a with the largest
setcon (if there is any). As soon as the blocked safe agreement on the step of a
resolves, the simulation returns to simulating S. Since setcon(A) = k, we can
obtain exactly k levels of simulation. Therefore, in a (k − 1)-resilient execution,
at most k − 1 simulated processes (each in a distinct sub-adversary of A) can
be blocked forever. Since A contains k such sub-adversaries, at least one set in
A accepts infinitely many simulated steps. The resulting execution is thus A-
compliant, and we obtain a (k − 1)-resilient solution for T—a contradiction.

In fact, the set of colorless tasks that can be solved given an adversary A such
that setcon(A) = k is exactly the set of colorless tasks that can be solved (k−1)-
resiliently, but not k-resiliently. Indeed, A allows for solving k-set agreement,
and we can employ the generic algorithm of [42] that solves any (k − 1)-resilient
colorless task using the k-set agreement algorithm as a black box. Therefore:

Theorem 15.7 Let A be an adversary such that setcon(A) = k and T be a
colorless task. Then A solves T if and only if T is (k − 1)-resiliently solvable.

Recall that the set consensus power of an adversary A is the smallest k such that
A can solve k-set agreement.

By Theorem 15.3, determining setcon(A) may boil down to determining the
minimum hitting set size of A, thus :

Corollary 15.8 Determining the set consensus power of an adversary is NP-
complete.

15.5. Chapter Notes

Non-uniform failure models were described by Junqueira and Marzullo [71, 70]
using the language of cores and survivor sets. A more general approach was
taken by Delporte-Gallet et al. [31] who defined an adversary via live sets. They

5Recall the special case of ABM considered in Section 15.4.1.

 15. Adversaries

also introduced the notion of disagreement power of an adversary as a way to
characterize its power in solving k-set agreement. The notion is similar to set
consensus power considered in this chapter.

Herlihy and Rajsbaum [57] used elements of modern topology to characterize
the ability of superset-closed adversaries (that can also be described via survivor
sets and cores) to solve colorless tasks. Gafni and Kuznetsov derived this result
using simulations and extended it to generic tasks [45], as well as to generic ad-
versaries [44]. In a similar vein, Imbs et alii [65] and Taubenfeld [104] considered
a related model of asymmetric progress conditions.

In this chapter, we primarily talked about colorless tasks in the read-write
shared memory systems where processes may fail by crashing in a non-uniform
(non-identical and correlated) way. We modeled such non-uniform failures using
the language of adversaries [31] and we derived a complete characterization of
an adversary via its set consensus power [44] (or, equivalently its disagreement
power [31]).

The techniques discussed here can be extended to models where processes may
also communicate through stronger objects than just read-write registers (e.g.,
k-process consensus objects). In particular, BG simulation is used in [44] to cap-
ture the ability of leveled adversaries of [104] to prevent processes from solving
consensus among n processes using k-process consensus objects (k < n).

However, the power of an adversary with respect to generic (not necessarily
colorless) tasks is not always captured by set consensus power. Consider, for
example, a task Tpq which requires processes p and q (in a system of three pro-
cesses p, q, and r) to solve consensus and allows r to output any value. The
task is obviously not colorless: the output of r cannot always be adopted by
p or q. The 2-obstruction-free adversary A2-OF = {pq, pr, qr, p, q, r} does not
allow for solving Tpq: otherwise, we would get a wait-free 2-process consen-
sus algorithm. On the other hand, Apq = {pqr, pq, p, r} (p is correct when-
ever q is correct) allows for solving Tpq (just use p as a leader for p and q). But
setcon(A2-OF) = setcon(Apq) = 2!

Generalizing this approach based on set consensus power, Kuznetsov, Rieutord
and He [76] proposed a combinatorial characterization of computability of a large
class of fair adversarial models. Informally, an adversary is said to be fair if a
subset of the participating processes P cannot achieve a better level of set con-
sensus than P . Fair adversaries include but are not restricted to, symmetric and
superset-closed ones. Task computability of a fair adversary is captured via an
affine task: a combinatorial construct that can be expressed sub-complexes of the
second iteration of the standard chromatic subdivision.

Finally, this chapter focuses on non-uniform crash faults in asynchronous shared-
memory systems. Non-uniform patterns of generic (Byzantine) types of faults
are explored in the context of Byzantine quorum systems [91] (see also a survey

15.6. Exercises 

in [112]) and secure multi-party computations [63]. Both approaches assume that
a faulty process can deviate from its expected behavior in an arbitrary (Byzantine)
manner. In particular, in [91], Malkhi and Reiter address the issues of non-uniform
failures in the Byzantine environment by introducing the notion of a fail-prone
system (adversarial structure in [63]): a set B of process subsets such that no el-
ement of B is contained in another, and in every execution, some B ∈ B contains
all faulty processes. Determining the set of tasks solvable in the presence of a
given generic adversarial structure is an interesting open problem.

The reader is referred to [72] for NP-completeness of determining the minimum
hitting set size of a set system.

15.6. Exercises

Consider a set L = {`1, . . . , `m} ⊆ {1, . . . , n}. The “symmetric” adversary AL
is then defined as {S ⊆ Π : |S| ∈ L}, i.e., as the set of all process subsets that
have sizes in L.

1. Determine setcon(AL).

2. Give a direct algorithm solving setcon(AL)-set agreement in the presence
of AL.

16. Bibliography

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic
snapshots of shared memory. J. ACM, 40(4):873–890, 1993.

[2] Y. Afek, E. Weisberger, and H. Weisman. A completeness theorem for a
class of synchronization objects (extended abstract). In PODC, pages 159–
170, 1993.

[3] B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett.,
21(4):181–185, Oct. 1985.

[4] G. Amdahl. Validity of the single processor approach to achieving large-
scale computing capabilities. In AFIPS Conference Proceedings, vol-
ume 30, page 483–485, 1967.

[5] J. Aspnes and O. Waarts. Modular competitiveness for distributed algo-
rithms. In Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24,
1996, pages 237–246, 1996.

[6] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message
passing systems. J. ACM, 42(2):124–142, Jan. 1995.

[7] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, and R. Reischuk.
Achievable cases in an asynchronous environment. In Proceedings of the
28th Symposium on Foundations of Computer Science, pages 337–346.
IEEE Computer Society Press, Oct. 1987.

[8] H. Attiya, A. Fouren, and E. Gafni. An adaptive collect algorithm with
applications. Distributed Computing, 15(2):87–96, 2002.

[9] H. Attiya, A. Fouren, and E. Gafni. A polynomial adaptive algorithm
for long-lived (2k − 1)-renaming. Technical report, 2003. Unpublished
manuscript, private communication.

[10] H. Attiya, R. Guerraoui, and P. Kouznetsov. Computing with reads and
writes in the absence of step contention. In Proceedings of the 19th Inter-
national Conference on Distributed Computing, DISC’05, pages 122–136,
2005.

 Bibliography

[11] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simula-
tions, and Advanced Topics. John Wiley & Sons, 2004.

[12] A. Björner. In R. L. Graham, M. Grötschel, and L. Lovász, editors, Hand-
book of Combinatorics (Vol. 2), chapter Topological Methods, pages 1819–
1872. 1995.

[13] B. Bloom. Constructing two-writer atomic registers. In Proceedings of the
Sixth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’87, pages 249–259, 1987.

[14] E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-
resilient asynchronous computations. In STOC, pages 91–100, May 1993.

[15] E. Borowsky and E. Gafni. Immediate atomic snapshots and fast renaming.
In PODC, pages 41–51, 1993.

[16] E. Borowsky, E. Gafni, N. A. Lynch, and S. Rajsbaum. The BG distributed
simulation algorithm. Distributed Computing, 14(3):127–146, 2001.

[17] Z. Bouzid, E. Gafni, and P. Kuznetsov. Strong equivalence relations for
iterated models. In Principles of Distributed Systems - 18th International
Conference, OPODIS 2014, Cortina d’Ampezzo, Italy, December 16-19,
2014. Proceedings, pages 139–154, 2014.

[18] H. P. Brinch, editor. The Origin of Concurrent Programming. Springer
Verlag, 2002. 534 pages.

[19] J. E. Burns and G. L. Peterson. Constructing multi-reader atomic values
from non-atomic values. In Proceedings of the Sixth Annual ACM Sympo-
sium on Principles of Distributed Computing, PODC ’87, pages 222–231,
1987.

[20] C. Cachin, R. Guerraoui, and L. E. T. Rodrigues. Introduction to Reliable
and Secure Distributed Programming (2. ed.). Springer, 2011.

[21] A. Castañeda and S. Rajsbaum. New combinatorial topology bounds for re-
naming: the lower bound. Distributed Computing, 22(5-6):287–301, 2010.

[22] A. Castañeda and S. Rajsbaum. New combinatorial topology bounds for
renaming: The upper bound. J. ACM, 59(1):3, 2012.

[23] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector
for solving consensus. J. ACM, 43(4):685–722, July 1996.

Bibliography 

[24] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable dis-
tributed systems. J. ACM, 43(2):225–267, Mar. 1996.

[25] S. Chaudhuri. More choices allow more faults: Set consensus problems in
totally asynchronous systems. Information and Computation, 105(1):132–
158, 1993.

[26] S. Chaudhuri, M. Kosa, and J. Welch. One-write algorithms for multivalued
regular and atomic register. Acta Informatica, 37(161-192), 2000.

[27] S. Chaudhuri and J. L. Welch. Bounds on the costs of multivalued register
implementations. SIAM J. Comput., 23(2):335–354, 1994.

[28] O.-J. Dahl, E. Dijkstra, and H. C.A.R. Structured Programming. Academic
Press, 1972. 220 pages.

[29] C. Delporte-Gallet, H. Fauconnier, E. Gafni, and L. Lamport. Adaptive
register allocation with a linear number of registers. In International Sym-
posium on Distributed Computing, DISC ’13, pages 269–283, 2013.

[30] C. Delporte-Gallet, H. Fauconnier, E. Gafni, and S. Rajsbaum. Linear
space bootstrap communication schemes. Theoretical Computer Science,
561:122–133, 2015.

[31] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and A. Tielmann. The
disagreement power of an adversary. Distributed Computing, 24(3-4):137–
147, 2011.

[32] E. Dijkstra. Solution of a problem in concurrent programming control.
Communications of the ACM, 8, 1965.

[33] D. Dolev and N. Shavit. Bounded concurrent time-stamping. SIAM Journal
on Computing, 26(2):418–455, 1997.

[34] C. Dwork and O. Waarts. Simple and efficient bounded concurrent times-
tamping and the traceable use abstraction. J. ACM, 46(5):633–666, Sept.
1999.

[35] F. Fich, M. Herlihy, and N. Shavit. On the space complexity of randomized
synchronization. J. ACM, 45(5):843–862, Sept. 1998.

[36] F. E. Fich, V. Luchangco, M. Moir, and N. Shavit. Obstruction-free al-
gorithms can be practically wait-free. In Proceedings of the International
Symposium on Distributed Computing, pages 493–494, 2005.

 Bibliography

[37] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, Apr. 1985.

[38] F. C. Freiling, R. Guerraoui, and P. Kuznetsov. The failure detector abstrac-
tion. ACM Comput. Surv., 2011.

[39] E. Gafni. Round-by-round fault detectors (extended abstract): Unifying
synchrony and asynchrony. In PODC, 1998.

[40] E. Gafni. The extended BG-simulation and the characterization of t-
resiliency. In STOC, pages 85–92, 2009.

[41] E. Gafni and R. Guerraoui. Simulating few by many: Limited concurrency
= set consensus. Technical report, 2009.

[42] E. Gafni and R. Guerraoui. Generalized universality. In Proceedings of
the 22nd international conference on Concurrency theory, CONCUR’11,
pages 17–27, Berlin, Heidelberg, 2011. Springer-Verlag.

[43] E. Gafni, Y. He, P. Kuznetsov, and T. Rieutord. Read-write memory and
k-set consensus as an affine task. In 20th International Conference on
Principles of Distributed Systems, OPODIS 2016, December 13-16, 2016,
Madrid, Spain, pages 6:1–6:17, 2016.

[44] E. Gafni and P. Kuznetsov. Turning adversaries into friends: Simplified,
made constructive, and extended. In OPODIS, pages 380–394, 2010.

[45] E. Gafni and P. Kuznetsov. Relating L-Resilience and Wait-Freedom via
Hitting Sets. In ICDCN, pages 191–202, 2011.

[46] E. Gafni, A. Mostéfaoui, M. Raynal, and C. Travers. From adaptive renam-
ing to set agreement. Theor. Comput. Sci., 410(14):1328–1335, 2009.

[47] E. Gafni and S. Rajsbaum. Distributed programming with tasks. In
OPODIS, pages 205–218, 2010.

[48] R. Guerraoui, M. Kapaĺka, and P. Kouznetsov. The weakest failure detec-
tors to boost obstruction-freedom. In Proceedings of the 20th International
Conference on Distributed Computing, DISC’06, pages 399–412, 2006.

[49] R. Guerraoui and P. Kouznetsov. Failure detectors as type boosters. Dis-
tributed Computing, 20(5):343–358, 2008.

[50] R. Guerraoui and E. Ruppert. Linearizability is not always a safety prop-
erty. In Networked Systems - Second International Conference, NETYS
2014, pages 57–69, 2014.

Bibliography 

[51] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broad-
casts and related problems. Technical Report TR 94-1425, Department of
Computer Science, Cornell University, May 1994.

[52] S. Haldar and K. Vidyasankar. Constructing 1-writer multireader multival-
ued atomic variables from regular variables. J. ACM, 42(1):186–203, Jan.
1995.

[53] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):123–149, Jan. 1991.

[54] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):123–149, 1991.

[55] M. Herlihy, D. N. Kozlov, and S. Rajsbaum. Distributed Computing
Through Combinatorial Topology. Morgan Kaufmann, 2013.

[56] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization:
Double-ended queues as an example. In ICDCS, pages 522–529, 2003.

[57] M. Herlihy and S. Rajsbaum. The topology of shared-memory adversaries.
In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Princi-
ples of Distributed Computing, PODC ’10, pages 105–113, 2010.

[58] M. Herlihy and N. Shavit. The asynchronous computability theorem for
t-resilient tasks. In STOC, pages 111–120, May 1993.

[59] M. Herlihy and N. Shavit. The topological structure of asynchronous com-
putability. J. ACM, 46(2):858–923, 1999.

[60] M. Herlihy and N. Shavit. On the nature of progress. In OPODIS, pages
313–328, 2011.

[61] M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan
Kaufmann, 2012.

[62] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492,
1990.

[63] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable
in secure multi-party computation (extended abstract). In Proceedings of
the Sixteenth Annual ACM Symposium on Principles of Distributed Com-
puting, PODC ’97, pages 25–34, 1997.

 Bibliography

[64] C. A. R. Hoare. Monitors: an operating system structuring concept. Com-
munications of the ACM, 17(10):549–557, 1974.

[65] D. Imbs, M. Raynal, and G. Taubenfeld. On asymmetric progress condi-
tions. In PODC, 2010.

[66] P. Jayanti. Robust wait-free hierarchies. Journal of the ACM, 44(4):592–
614, 1997.

[67] P. Jayanti, J. Burns, and G. Peterson. Almost optimal single reader sin-
gle writer atomic register. Journal of Parallel and Distributed Computing,
60:150–168, 2000.

[68] P. Jayanti, T. Chandra, and S. Toueg. Fault-tolerant wait-free shared ob-
jects. Journal of the ACM, 45(3):451–500, 1998.

[69] P. Jayanti and S. Toueg. Every problem has a weakest failure detector. In
PODC, pages 75–84, 2008.

[70] F. Junqueira and K. Marzullo. A framework for the design of dependent-
failure algorithms. Concurrency and Computation: Practice and Experi-
ence, 19(17):2255–2269, 2007.

[71] F. P. Junqueira and K. Marzullo. Designing algorithms for dependent pro-
cess failures. In Future Directions in Distributed Computing, pages 24–28,
2003.

[72] R. M. Karp. Reducibility among combinatorial problems. Complexity of
Computer Computations, pages 85–103, 1972.

[73] D. König. Sur les correspondances multivoques des ensembles. Funda-
menta Mathematicae, 8:114–134, 1926.

[74] D. N. Kozlov. Chromatic subdivision of a simplicial complex. Homology,
Homotopy and Applications, 14(1):1–13, 2012.

[75] P. Kuznetsov. Universal model simulation: BG and extended BG as ex-
amples. In Stabilization, Safety, and Security of Distributed Systems - 15th
International Symposium, SSS 2013, Osaka, Japan, November 13-16, 2013.
Proceedings, pages 17–31, 2013.

[76] P. Kuznetsov, T. Rieutord, and Y. He. An asynchronous computability the-
orem for fair adversaries. In Proceedings of the 2018 ACM Symposium on
Principles of Distributed Computing, PODC 2018, Egham, United King-
dom, July 23-27, 2018, pages 387–396.

Bibliography 

[77] L. Lamport. Concurrent reading and writing. Communications of the ACM,
20(11):806–811, 1977.

[78] L. Lamport. Proving the correctness of multiprocessor programs. Transac-
tions on software engineering, 3(2):125–143, Mar. 1977.

[79] L. Lamport. Time, clocks, and the ordering of events in a distributed sys-
tem. Commun. ACM, 21(7):558–565, July 1978.

[80] L. Lamport. How to make a multiprocessor computer that correctly ex-
ecutes multiprocess programs. IEEE Trans. Comput., C-28(9):690–691,
Sept. 1979.

[81] L. Lamport. Using time instead of timeout for fault-tolerant distributed
systems. ACM Trans. Program. Lang. Syst., 6(2):254–280, Apr. 1984.

[82] L. Lamport. On interprocess communication; part I: Basic formalism; part
II: Algorithms. Distributed Computing, 1(2):77–101, 1986.

[83] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[84] M. Li, J. Tromp, and P. Vitányi. How to share concurrent wait-free vari-
ables. Journal of the ACM, 43(4):723–746, 1996.

[85] N. Linial. Doing the IIS. Unpublished manuscript, 2010.

[86] B. Liskov and S. Zilles. Specification techniques for data abstraction. IEEE
Transactions on Software Engineering, SE1:7–19, 1975.

[87] W. Lo and V. Hadzilacos. All of us are smarter than any of us: Nondeter-
ministic wait-free hierarchies are not robust. SIAM J. Comput., 30(3):689–
728, 2000.

[88] W.-K. Lo and V. Hadzilacos. Using failure detectors to solve consensus
in asynchronous shared memory systems. In WDAG, LNCS 857, pages
280–295, Sept. 1994.

[89] M. Loui and H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. Advances in Computing Research,
4:163–183, 1987.

[90] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[91] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Com-
puting, 11?(?):203–213, 1998.

 Bibliography

[92] J. Misra. Axioms for memory access in asynchronous hardware systems.
ACM Transactions on Programming Languages and Systems, 8(1):143–
153, 1986.

[93] S. Owicki and D. Gries. Verifying properties of parallel programs: An
axiomatic approach. Communications of the ACM, 19(5):279–285, 1976.

[94] D. Parnas. On the criteria to be used in decomposing systems in to module.
Communications of the ACM, 15(2):1053–1058–336, 1972.

[95] D. Parnas. A technique for software modules with examples. Communica-
tions of the ACM, 15(2):330–336, 1972.

[96] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. J. ACM, 27(2):228–234, Apr. 1980.

[97] G. Peterson. Concurrent reading while writing. ACM Transactions on
Programming Languages and Systems, 5(1):46–55, 1983.

[98] M. Raynal. Algorithms for mutual exclusion. The MIT Press, 1986.

[99] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The
topology of public knowledge. In STOC, pages 101–110, May 1993.

[100] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The
topology of public knowledge. SIAM J. on Computing, 29:1449–1483,
2000.

[101] F. B. Schneider. Implementing fault-tolerant services using the state ma-
chine approach: A tutorial. ACM Computing Surveys, 22(4):299–319, Dec.
1990.

[102] A. K. Singh, J. Anderson, and M. Gouda. The elusive atomic register.
Journal of the ACM, 41(2):331–334, 1994.

[103] G. Taubenfeld. Synchronization algorithms and concurrent programming.
Pearson Prentice-Hall, 2006.

[104] G. Taubenfeld. The computational structure of progress conditions. In
DISC, 2010.

[105] J. Tromp. How to construct an atomic variable (extended abstract). In
WDAG, pages 292–302, 1989.

[106] J. Tromp. Aspects of Algorithms and Complexity. PhD thesis, Universiteit
van Amsterdam, 1993.

Bibliography 

[107] K. Vidyasankar. Converting Lamport’s regular register to atomic register.
Information Processing Letters, 28(6):287–290, 1988.

[108] K. Vidyasankar. An elegant 1-writer multireader multivalued atomic regis-
ter. Information Processing Letters, 30(5):221–223, 1989.

[109] K. Vidyasankar. A very simple cosntruction of 1-writer multireader multi-
valued atomic variable. Information Processing Letters, 37:323–326, 1991.

[110] P. M. B. Vitányi. Simple wait-free multireader registers. In Proceedings
of the 16th International Conference on Distributed Computing, DISC ’02,
pages 118–132, 2002.

[111] P. M. B. Vitányi and B. Awerbuch. Atomic shared register access by asyn-
chronous hardware. In Proceedings of the 27th Annual Symposium on
Foundations of Computer Science, SFCS ’86, pages 233–243, 1986.

[112] M. Vucolić. The origin of quorum systems. Bulletin of EATCS, 101:125–
147, June 2010.

[113] W. E. Weihl. Atomic data types. IEEE Database Eng. Bull., 8(2):26–33,
1985.

[114] P. Zieliński. Anti-omega: the weakest failure detector for set agreement.
Distributed Computing, 22(5-6):335–348, 2010.

Index

17. Index

ABA problem, 130
adversary, 22, 218, 222

k-obstruction-free, 223
t-resilient, 223
asymmetric progress conditions,

223
core, 221
minimal hitting set, 224
survivor set, 221
vs. failure patterns, 223

atomic snapshot, see snapshot

BG simulation, 188
colorless algorithm, 190
definition, 188

collect, 20, 117, 117
implementation, 118
not an atomic object, 119

commit-adopt
implementation, 200
specification, 200
using for obstruction-free consen-

sus, 202
concurrency, 14

concurrent data structures, 14
consensus, 21

1-resilient impossibility, 193
binary consensus, 170
binary consensus task, 155
operational definition, 162
sequential specification, 161
wait-free impossibility, 173

consensus number, 21, 169

configuration, 170
consensus hierarchy, 170, 181
critical configuration, 172
input configuration, 170
valence, 170

digest, 90

execution, 20, 28, 47, 49

FAI, fetch-and-increment, 17
failure detector, 21
failure detecter

failure pattern, 196
failure detector, 195

Ω, leader, 195, 197
Σ, quorum, 197
3P , eventually perfect, 196
P , perfect, 196
algorithms, 197
environment, 196
failure detector history, 196
run, 198
weakest, 199
weakest for consensus, 202

full-information protocol
immediate snapshot, 145
update-snapshot, 145, 188

handshaking, 95
history, 20, 28, 31

complete, 31
concurrent, 32
equivalent histories, 31
legal, 33

 Index

local, 31
sequential, 29, 32
well-formed, 31

immediate snapshot, 21, 135
block runs, 136
long-lived implementation, 145
one-shot implementation, 137

implementation, 48
lock-based, 51
not using locks, 51

iterated immediate snapshot, 21, 150
geometric representation, 156
non-blocking implementation, 151

König’s Lemma, 42

linearizability, 16, 20, 27, 34
compositional, 39
linearizable FAI, 53
linearizable queue, 54
linearization, 34
linearization point, 33
non-blocking, 38
safe, 42

liveness, 17, 20, 41, 52
lock, 18, 50

new/old inversion, 63, 77
non-blockingness, 51

object, 28, 29
deterministic, 30
non-deterministic, 30
sequential specification, 29
total, 30

object type, 15
obstruction-freedom, 51
operation, 29

complete, 31
concurrent operations, 32

primitive, low-level instruction, 48

process, 14, 28
correct process, 50

progress, see liveness

queue, 17, 27, 30
consensus number, 177

reading function, 64
atomic, 64
regular, 64

register, 17, 30, 61
atomic, 62, 63
binary, 61
bounded, 61
consensus number, 173
multi-writer, MW, 62
multivalued, 61
regular, 62, 62
safe, 62, 62
single-reader, 1R, 61
single-reader, MR, 62
single-writer, 1W, 61
unbounded, 61

register transformations, 67
atomic bit, 89
basic reductions, 69
bounded multivalued register, 105
unbounded, timestamp-based, 81

renaming, 21, 139
implementation with immediate

snapshots, 140
run, see execution

safe agreement
implementation, 186
specification, 186

safety, 20, 41
schedule, 170
scheduler, 19

adversary, 217
resilience, 185
via failure detector, 195

Index 

sequential consistency, 40
non-compositional, 40

set agreement, 155
set consensus power, 228

function setcon, 228
simplex, 156
simplicial complex, 156
snapshot, 20, 120

binary handshaking, 130
bounded implementation, 129
double collect, 123, 129
helping, 125, 129
non-blocking implementation, 122
sequential specification, 120
wait-free implementation, 125

standard chromatic subdivision, 156
step, 17, 48

task, 155, 189
colorless, 189

test & set
consensus number, 177

test&set, 175
timestamp, 81

universal construction
deterministic objects, 163

universal construction
bounded, 165
non-deterministic objects, 166

wait-freedom, 17, 20, 51
bounded, 52

	Introduction
	A Broad Picture: the Concurrency Revolution
	The Topic: Shared Objects
	Correctness (Part I): Linearizability
	Correctness (Part II): Wait-Freedom
	Reducibility of Algorithms
	Organization
	The Context of This Book
	Acknowledgments
	Chapter Notes

	Correctness
	Linearizability
	Introduction
	The Players
	Processes
	Objects
	Histories
	Sequential Histories
	Legal Histories

	Linearizability
	Complete Histories
	Incomplete Histories and Completions
	Linearizability is Non-Blocking
	Composition

	Safety
	Summary
	Chapter Notes
	Exercises

	Progress
	Introduction
	Implementation
	High-Level and Low-Level Objects
	Zooming into Histories

	Progress Properties
	Variations
	Bounded Termination
	Liveness

	Linearizability and Wait-Freedom
	A Simple Example
	A More Sophisticated Example

	Summary
	Chapter Notes
	Exercises

	Read-Write objects
	The Semantics of Read-Write Objects
	Register Properties
	The Three Dimensions
	The Concurrent Behavior
	The Extreme Cases

	Register Correctness
	Reading Function
	Proving Regularity
	Proving Atomicity

	Register Reductions: Roadmap
	Chapter Notes
	Exercises

	Basic Register Reductions
	Reducing Multi-Reader to Single-Reader (Safe and Regular)
	Safety
	Regularity
	Atomicity

	Reducing Regular to Safe (Binary)
	Writing Only for Changing
	Reduction

	Reducing b-Valued to Binary (Safe)
	Binary Encoding
	Reduction

	Reducing b-Valued to Binary (Regular)
	Unary Encoding
	Reduction
	Correctness

	Reducing b-Valued to Binary (Atomic)
	Atomic Bits Do Not Help
	Reduction
	Correctness

	The Importance of a Bound
	Chapter Notes
	Exercises

	Timestamp-Based Reductions
	Reducing Atomic to Regular (Unbounded)
	Reducing Multi-Reader to Single-Reader (Atomic Unbounded)
	Preventing New/Old Inversions by Having Readers Communicate
	Reduction

	Reducing Multi-Writer to Single-Writer (Atomic Unbounded)
	Preventing New/Old Inversions by Having Writers Communicate
	Reduction

	Chapter Notes
	Exercises

	Optimal Atomic Bit
	The Reader Has to Write
	Digests
	Repeated Digests
	Impossibility Result
	Lower Bound

	Reducing an Atomic Bit to Three Safe Bits
	Regularity
	Handshaking (with the Writer)
	Reading: an Incremental Approach
	The Complete Algorithm

	Chapter Notes
	Exercises

	Bounded Atomic Multivalued Register
	A Hybrid Reduction Using an Atomic Control Bit
	The Complete Reduction
	Chapter Notes
	Exercises

	Snapshot Objects
	Collects and Snapshots
	Collect Object
	Definition and Implementation
	A Collect Object has no Sequential Specification

	Snapshot Object
	Definition
	The Sequential Specification of Snapshot
	Non-Blocking Snapshot
	Wait-Free Snapshot
	The Snapshot Implementation is Bounded Wait-Free
	The Snapshot Object Implementation is Atomic

	Bounded Snapshot
	Double Collect and Helping
	Binary Handshaking
	Bounded Snapshot with Handshaking
	Correctness

	Chapter Notes
	Exercises

	Immediate Snapshot and Iterated Immediate Snapshot
	Immediate Snapshots
	Definition
	Block Runs
	A One-Shot Implementation

	Fast Renaming
	Renaming with Snapshots
	Renaming with Immediate Snpahsots

	Long-Lived Immediate Snapshot
	Full-information protocols
	Simulating IS: an Overview
	Simulating IS: correctness

	Iterated Immediate Snapshot
	An Equivalence between IIS and Read-Write
	Solving Tasks in IIS
	Geometric Representation of IIS

	Chapter Notes
	Exercises

	Consensus Objects
	Consensus and Universality
	Consensus Object: Specification
	A Wait-Free Universal Construction
	Deterministic Objects
	Bounded Wait-Free Universal Construction
	Non-Deterministic Objects

	Chapter Notes
	Exercises

	Consensus Number and Hierarchy
	Consensus Number
	Preliminary Definitions
	Schedule, Configuration, and Valence
	Bivalent Initial Configuration
	Critical Configurations

	Consensus Number of Atomic Registers
	Objects with Consensus Numbers 2
	Consensus from Test&Set Objects
	Consensus from Queue Objects
	Consensus Numbers of Test&Set and Queue

	Objects of n-Consensus Type
	Objects with Consensus Number +
	Consensus from Compare&Swap Objects
	Consensus from Augmented Queue Objects

	Consensus Hierarchy
	Chapter Notes
	Exercises

	Schedulers
	Resilience
	Safe Agreement
	Specification
	Solving Safe Agreement

	BG Simulation
	Simulation: Definition
	Colorless Tasks
	Simulation: Algorithm

	The Impossibility of 1-Resilient Consensus
	Chapter Notes
	Exercises

	Failure Detectors
	Defining and Comparing Failure Detectors
	Failure Patterns and Failure Detectors
	Algorithms Using Failure Detectors
	Runs
	Implementing and Comparing Failure Detectors
	Weakest Failure Detector

	Solving Consensus with Failure Detectors
	The Commit-Adopt Abstraction
	Solving Consensus with Commit-Adopt and

	A Weakest Failure Detector for Consensus
	Overview of the Reduction Algorithm
	DAGs
	Asynchronous Simulation
	Three levels of BG simulation
	Using Consensus
	Extracting

	Chapter Notes
	Exercises

	Adversaries
	Non-Uniform Failure Models
	Non-Uniform Failures in Shared-Memory Systems
	Model
	Survivor Sets and Cores
	Adversaries
	Failure Patterns and Environments
	Asymmetric Progress Conditions

	Characterizing Superset-Closed Adversaries
	Side Remark: a Topological Approach
	A Simulation-Based Approach

	Measuring the Power of Generic Adversaries
	Solving Consensus with ABM
	Set Consensus Power of an Adversary
	Defining setcon
	Calculating setcon(A): Examples
	Solving Consensus with setcon=1
	Adversarial Partitions
	Characterizing Colorless Tasks

	Chapter Notes
	Exercises

	Bibliography
	Index

