Combinatorial Structures
for Distributed Computing Models

Petr Kuznetsov
Telecom ParisTech

CIRM, 2019

This class is about distributed
computing:

iIndependent sequential processes
that communicate

Communication models

« Shared memory

v'Processes apply operations on
shared variables

v'Failures and asynchrony
« Message passing
v'Processes send and receive
messages
v'Communication graphs

v'Message delays

Distributed # Parallel

The main challenge is synchronization:
resolving nondeterminism caused by the
scheduler

/“you know you have a distributed
system when the crash of a
computer you've never heard of
stops you from getting any work
@one” (Lamport) ch

Indistinguishability: a local view can be
compatible with multiple system states

Vertex: a local view

0
O

Py (red) has view 0

Simplex: a set of views that
appear in the same state

0 1
O O
Py has view 0 P, has view 1

There is a state in which
Py has view 0 and p4 has view 1

1-dimensional simplex

Complex: a set of simplexes that
represent possible states

0 1
O O
Po and p4 pick up an
O () input value in {0,1}
0 1

1-dimensional complex

Modeling computations

How the protocol complex looks like?

Suppose that p, and p; communicate via a
reliable channel

N - 1 [0,1] [0,1]
A [0,0] ®—C 11,1]
— T 1
[1,1]
Or r 00 O @

1 [1,0] [1,0]

Roadmap

= Topology primer
» Shared memory models and set consensus

« Asynchronous Computability

Topology primer

r=

s

Simplexes
O e O

O-Slmp|eX 1_S|mp|ex

<

Simplexes

O @ O
0-simplex 1-simplex
d dimension

2-simplex 3-simplex

Combinatorial: a set of vertexes

Geometric: a convex hull on
linearly independent points

Simplicial Complex

Combinatorial A : set of simplices
closed under inclusion

A= {{a,b,c}{b,c,d}} +
all subsets

b

Geometric | Al: set of d

geometric simplices, closed
under containment

Connectivity

O-sphere
o o)

~ ~
~ \N ’f

~

A g

N‘--——’

0-connected (path connected)

Connectivity

1-connected
(simply connected)

9 Not 1-connected

3-disk

2-Connectivity

Back to computing

Read-write shared memory

- N+1 asynchronous (no bounds on relative speeds)
processes po,...,pN (N=1) communicate via atomic

read-write registers

» Processes can fail by crashing

v'A crashed process takes only finitely many steps (reads
and writes)

v'Up to t processes can crash: t-resilient system
v't=N: wait-free

P1

Po P2

R1 Rm

Solving 2-process consensus?

Processes propose values and must agree on a
common decision value so that the decided value
IS a proposed value of some process

0 1 3
) & S

Before After

Key In state-machine
replication [Paxos,BFT,...]

One-round interaction

Each process p, (i=0,1):
Ri:=v,; // write the input
S, ;= Ry, // read the input of p;.

Po P1

| >

RO R1

Three cases to consider

. po reads before p, writes py ——@—>
—_—
P1

= p, reads before py writes Po

pl—.—‘_V

= Ppo and py go “lock-step” p) —— >
D1 ——

One-round protocol complex

Po
O

()

po reads before
p,; writes

Py only
sees

itself

P1

N>

p, reads after
po Writes

P4 S€€eS Po

po reads after

p; writes

Po Sees p;

O

p, reads before

po Writes

P+ only
sSees

itself

Two-round protocol complex

Po P1
® o o ()—e—0—@ o——)
Po only p; only
sees sees

itself itself

And so on...

Po P1
@ v+ o006 e0-e0e00-@ 0000006)
Po only p; only
sees sees
itself itself

Solo runs remain connected - no
way to decide!

Connectivity argument

" Ppo proposes 0, p; proposes 1
= p; must decide i in a solo run!

Po P1
\

00000000001 11 11127111 1111

There exists a run with conflicting
decisions!

Impossibility of wait-free consensus
[FLP85,LA87]

Theorem Consensus has no wait-free solution using
reads and writes

(Can be strengthened to 1-resilient impossibility)

Immediate Snapshot model

Each process p; (i=0,..,N): Po| . |Pi| . |PN
updatei(vi) } . snapshot()
S,:= snapshot) J Aonea! ||
update;(v;)
Ro Ri v. RN

Vectors S, satisfy:

« Self-inclusion: for all i: v; €S,

- Containment: for alliand j: S; C Sjor S; C S
» Immediacy: foralliand j: v, € S, => S, C S

Can be implemented
from atomic registers!

|

Immediate snapshot execution

updatey,(1) ok snapshot() [1,-,-]

Eupdatel(l) ok snapshot() [1,1,1]

y——————— O

snapshot() [1,1,1]

—————

update,(1) ok
{Po} {P1> P2}

Initial state I for three processes

P>

One round

P> Standard chromatic
subdivision x'(I)

Po sees {po,P,}

p; sees {py,p,}

P, S¢es {po,P1, Py}

P, sees {py,p,}
P, sees {pg,P,}

Py sees {po}

O
Po P1

O

Two rounds: x2(I)

P2 Preserves the
“geometry” of the
iInput complex

/(?/‘ %‘E\}{\\\\‘ Thce:o%?aﬁ(;f(orlemains
// ‘;":"1// '»\\%‘%\\X N-connected

—/

Po

k-set consensus

\ /
)
oy
AN

Processes start with private inputs

k-set consensus

11
§ﬂ\ Y/

I.f

N
AN

Outputs should form a k-bounded
subset of inputs

k-set consensus

2-set consensus

1-set consensus = consensus

N-set consensus = set consensus
(for N+1 processes)

Impossibility of wait-free set consensus
[BG93,HS93,5793]

Theorem No (N+1)-process wait-free algorithm can
solve N-set consensus in the iterated immediate
snapshot model (lIS)

(and, thus, using read-write)

[Gédel prize, 2004 }

Reduces to Sperner’s lemma: impossibility of Sperner
coloring on a manifold

Sperner Coloring

Sperner Coloring

Corners get distinct
colors

Sperner Coloring

Corners get distinct
colors

Edges get corner
colors

Sperner Coloring

Corners get distinct
colors

Edges get corner
colors

Every vertex gets

colors of its
carrier face

You only decide on a
value you heard of

Sperner’s Lemma

Every Sperner
coloring has a
simplex with all
N+1 colors

In at least one run, all N+1 values are decided =>
N-set consensus is impossible

Sperner’s lemma: inductive step

Claim: for each k=0,...,N, face {0,...,k} contains an odd

number of k-dimensional simplexes colored
0,....k

By induction: k=0 - trivial (exactly one)

k=1, simple counting
0 o 1 o 1 o 1 1

@ oo o () o o @ o—0—()

Suppose the claim holds for k=N-1 and consider the
face 0,...,N

Sperner: rooms and doors

Each N-simplex is a room room

An (N-1)-dimensional face

. d
(a subset of N-1 vertices) o
of a room colored in
0,...,N-11Is a door
0 T / 1

A door is an exit if it

belongs to the boundary exits

Sperner: exits

There is an odd number of White not Red not
. allowed allowed
exits!
» No face other than 0O,...,N-1 ’ /
can contain simplexes

colored 0,...,N-1

« Exits may only be contained
in 0,...,N-1 G

Sperner: passages and dead ends

A room with a door is either:

d end
- A passage (has two doors), dead en

or J

« A dead end (has no doors) /
We must show that there is an Passage
odd number of dead ends J

(fully colored simplexes) [

Sperner: counting fully colored rooms

Start with an exit and walk Fully colored
through the doors (dead end)

Two cases are possible:
« Stop in a dead end
« Reach another exit

The number of exit doors

is odd => 0
The total number of fully
colored rooms is odd

Sperner: internal dead ends

The number of
Inaccessible dead
ends must be even

Impossibility of wait-free set consensus
[BG93,HS93,5793]

Theorem No (N+1)-process wait-free algorithm can
solve N-set consensus in the iterated immediate
snapshot model (lIS)

(and, thus, using read-write)

Generalization [BG93]: there is no k-resilient algorithm
for k-set consensus
(BG agreement simulation technique)

Asynchronous computability

Task specification

4

Input complex

% 7
& W
< Carrier map

A)

AT — 29

Output complex

Asynchronous Computability
Theorem [HS99]

A task (I,0,A) is wait-free read-write solvable if
and only if there is a chromatic simplicial map
from a subdivision x'(I) to O carried by A

For colorless tasks (e.g., k-set consensus):

... there exists a continuous map from |1 to |Ol
carried by A

Generalizing ACT [KRH18]

= Models with stronger object
(e.g., RW+TAS)

= Adversarial models specifying
the possible correct sets (non-
uniform/correlated faults) 4
L DI

Model A corresponds to an affine Y s N
tasks R 4 (a subset of x3(I)) = \

A task (I,0,A) is solvable in model A if and
only if there is a chromatic simplicial map
from a subdivision R ,/(I) to O carried by A

Automatic proofs: decidability?

Can we devise an algorithm to tell
whether a task is wait-free
solvable?

No

3-process wait-free task solvability
IS undecidable [GK95,HR97]

Loop agreement task is equivalent
to loop contractibility
(undecidable)

Under the rug...

= Is x"(I) a subdivision?
» Yes! [Lin11,Koz15]
» RW is a subdivision in general [AG09]
» Isn’t the lterated IS model weaker than read-
write?
» Not for task solvability: [BG93,BG97,GR10]

= Proof of ACT?
= KOnig’s lemma

Takeaways/open questions

Geometrical structure captures the
computational power of a model

v'Combinatorial vs. Operational

Other problems/models?

v'Long-lived abstractions (queues, hash tables,
TMs...)

v'Byzantine adversary: a faulty process
deviates arbitrarily

v'Partial synchrony
Complexity bounds?

Mathematics induced by DC?

Distributed jungle

Message-
passing

Shared-
memory
Adversaries
O

[Distributed computability theory? }

Distributed Computing through
Combinatorial Topology

Maurice Herlihy, Dmitry Kozlov, Sergio Rajsbaum
Morgan Kaufman, 2013

ALGORITHMS
FOR CONCURRENT
SYSTEMS =iy

Rachid Guerraoui, Petr Kuznetsov
EPFL Press, 2019

Slides and exercises: hitps://perso.telecom-
paristech.fr/kuznetso/CIRM2019

https://perso.telecom-paristech.fr/kuznetso/CIRM2019

o]
=
=]
< s
», o e % 25)Y e
o N Orpoc,” . > O 2 . Lapt™e
3 ¢ es DY Ty, BT
% TG PingeonY & g S
% : 2 i 1geUSS
& 2 14 Q d1seus
cutions @) 2. b torial o<
. f\:sxe ﬁ) J,@(% ocom }\Ila o] gy &8 RE O
TC“‘ - - 9 6) '; “ ", }] O
dav structures &C’t&f*@@@, Q) }o% (5{3‘ 104 //)’-II{CJ:!]‘Q}OI\
§ 5 &8 @ 3. g
& e
NQ = () “ I
. & :
Ny

Questions?

