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This class is about distributed 
computing:

independent sequential processes 
that communicate



Communication models
§ Shared memory

üProcesses apply operations on 
shared variables

üFailures and asynchrony
§ Message passing

üProcesses send and receive 
messages 

üCommunication graphs
üMessage delays



Distributed ≠ Parallel

The main challenge is synchronization: 
resolving nondeterminism caused by the 
scheduler

Indistinguishability: a local view can be 
compatible with multiple system states

“you know you have a distributed 
system when the crash of a 
computer you’ve never heard of 
stops you from getting any work 
done� (Lamport)
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p0 (red) has view 0

Vertex: a local view



0

p0 has view 0

Simplex: a set of views that 
appear in the same state

1

p1 has view 1

There is a state in which
p0 has view 0 and p1 has view 1

1-dimensional simplex



0

Complex: a set of simplexes that 
represent possible states

1

0 1

p0 and p1 pick up an 
input value in {0,1}

1-dimensional complex



Modeling computations
How the protocol complex looks like?

0 1

0 1

Suppose that p0 and p1 communicate via a 
reliable channel
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Roadmap

§ Topology primer

§ Shared memory models and set consensus

§ Asynchronous Computability 



Topology primer



2-simplex

Simplexes

0-simplex

3-simplex

1-simplex



2-simplex

Simplexes

0-simplex

3-simplex

1-simplex

Combinatorial: a set of vertexes
Geometric: a convex hull on 

linearly independent points

dimension



Simplicial Complex
Combinatorial A :  set of simplices 

closed under inclusion

Geometric |A|:  set of 
geometric simplices, closed 

under containment

A= {{a,b,c},{b,c,d}} + 
all subsets

a

c

b
d



Connectivity

0-sphere

1-disc

0-connected (path connected)



Connectivity

1-sphere

2-disc

1-connected 
(simply connected)

?
Not 1-connected 



2-Connectivity

3-disk

2-sphere



Back to computing



Read-write shared memory
§ N+1 asynchronous (no bounds on relative speeds) 

processes p0,…,pN (N≥1) communicate via atomic 
read-write registers

§ Processes can fail by crashing 
üA crashed process takes only finitely many steps (reads 

and writes)
üUp to t processes can crash: t-resilient system 
üt=N: wait-free 

P0

P1

P2

R1 RM…



Solving 2-process consensus?
Processes propose values and must agree on a 

common decision value so that the decided value 
is a proposed value of some process

Before

0 1

1 1

After

0 0

Key in state-machine 
replication [Paxos,BFT,…]



One-round interaction
Each process pi (i=0,1):

Ri:=vi;      // write the input     
Si := R1-i   // read the input of p1-i

P0 P1

R0 R1



Three cases to consider

§ p0 and p1 go �lock-step�

p0
p1

p0
p1

p0
p1

§ p1 reads before p0 writes

§ p0 reads before p1 writes



One-round protocol complex

p0 p1

p0 reads before 
p1 writes

p0 reads after 
p1 writes

p1 reads after 
p0 writes

p1 reads before 
p0 writes

p0 only 
sees 
itself

p1 only 
sees 
itself

p1 sees p0 p0 sees p1



Two-round protocol complex

p0 p1

p0 only 
sees 
itself

p1 only 
sees 
itself



And so on…

p0 p1

Solo runs remain connected - no 
way to decide! 

p0 only 
sees 
itself

p1 only 
sees 
itself



Connectivity argument

p0 p1

§ p0 proposes 0, p1 proposes 1
§ pi must decide i in a solo run!

There exists a run with conflicting 
decisions!

0 0 0 0 0 110 0 0 0 0 111111111111



Impossibility of wait-free consensus
[FLP85,LA87]

Theorem Consensus has no wait-free solution using 
reads and writes

(Can be strengthened to 1-resilient impossibility)



Immediate Snapshot model

Each process pi (i=0,..,N):
updatei(vi)
Si := snapshot()

Vectors Si satisfy:
§ Self-inclusion: for all i: vi 2Si

§ Containment: for all i and j: Si µ Sj or Sj µ Si

§ Immediacy: for all i and j: vi 2 Sj =>  Si µ Sj

Can be implemented 
from atomic registers!

Atomically
in batches

{ P0 Pi PN

R0 RN…

… …

Ri …

updatei(vi)

snapshot()

vi



Immediate snapshot execution

p0

p1

p2

snapshot()     [1,-,-]update0(1)   ok

update2(1) ok

update1(1)   ok snapshot()     [1,1,1]

snapshot()     [1,1,1]

{p0} {p1, p2}



Initial state I for three processes

p0 p1

p2



One round

p0 p1

p2

p2 sees {p0,p2}

p0 sees {p0,p2}

p1 sees {p0,p1,p2}
p2 sees {p1,p2}

p1 sees {p1,p2}

p0 sees {p0}

Standard chromatic 
subdivision χ1(I)



Two rounds: χ2(I)

p0 p1

p2 Preserves the 
“geometry” of the 
input complex
The protocol 

complex remains 
N-connected



k-set consensus

Processes start with private inputs 



k-set consensus

Outputs should form a k-bounded
subset of inputs



k-set consensus

2-set consensus

1-set consensus = consensus

N-set consensus = set consensus 
(for N+1 processes)



Impossibility of wait-free set consensus
[BG93,HS93,SZ93]

Theorem  No (N+1)-process wait-free algorithm can 
solve N-set consensus in the iterated immediate 
snapshot model (IIS)

(and, thus, using read-write)

Reduces to Sperner’s lemma: impossibility of Sperner
coloring on a manifold

Gödel prize, 2004



Sperner Coloring



Sperner Coloring

Corners get distinct 
colors



Sperner Coloring

Corners get distinct 
colors

Edges get corner 
colors



Sperner Coloring

Corners get distinct 
colors

Edges get corner 
colors

Every vertex gets 
colors of its 
carrier face

You only decide on a 
value you heard of



Sperner’s Lemma

Every Sperner 
coloring has a 
simplex with all 
N+1 colors

In at least one run, all N+1 values are decided => 
N-set consensus is impossible



Sperner’s lemma: inductive step
Claim: for each k=0,…,N, face {0,…,k} contains an odd 

number of k-dimensional simplexes colored          
0,…,k

By induction: k=0 - trivial (exactly one)

k=1, simple counting

Suppose the claim holds for k=N-1 and consider the 
face 0,…,N

0 10 1 0 1 0 1



Sperner: rooms and doors 
Each N-simplex is a room

An (N-1)-dimensional face 
(a subset of N-1 vertices) 
of a room colored in 
0,…,N-1 is a door 

A door is an exit if it 
belongs to the boundary

0 1

2

exits

room

door



Sperner: exits 

There is an odd number of 
exits!

§ No face other than 0,…,N-1 
can contain simplexes 
colored 0,…,N-1

§ Exits may only be contained 
in  0,…,N-1

Red not 
allowed

White not 
allowed

0 1

2



Sperner: passages and dead ends

A room with a door is either:

§ A passage (has two doors), 
or

§ A dead end (has no doors)

We must show that there is an 
odd number of dead ends 
(fully colored simplexes)

dead end

passage



Sperner: counting fully colored rooms

Start with an exit and walk 
through the doors

Two cases are possible:
§ Stop in a dead end
§ Reach another exit

The number of exit doors 
is odd =>
The total number of fully 
colored rooms is odd

0 1

2
Fully colored 

(dead end)



Sperner: internal dead ends

The number of 
inaccessible dead 
ends must be even

0 1

2



Impossibility of wait-free set consensus
[BG93,HS93,SZ93]

Theorem  No (N+1)-process wait-free algorithm can 
solve N-set consensus in the iterated immediate 
snapshot model (IIS)

(and, thus, using read-write)

Generalization [BG93]: there is no k-resilient algorithm 
for k-set consensus

(BG agreement simulation technique)



Asynchronous computability 



Task specification

(I, O, ¢)

Input complex

Output complex

Carrier map
¢: I! 2O



Asynchronous Computability 
Theorem [HS99]

A task (I,O,Δ) is wait-free read-write solvable if 
and only if there is a chromatic simplicial map 
from a subdivision χr(I) to O carried by Δ

For colorless tasks (e.g., k-set consensus):

… there exists a continuous map from |I| to |O| 
carried by Δ



Generalizing ACT [KRH18]
§ Models with stronger object 

(e.g., RW+TAS) 
§ Adversarial models specifying 

the possible correct sets (non-
uniform/correlated faults)

Model A corresponds to an affine 
tasks RA (a subset of χ2(I))

(a) Complex R1 (b) Complex R2

Figure 3: R1 and R2 (in blue) for 3 processes.

and IS2, has only three singleton as contending sets. All other simplices include a contention set of
two processes which consists of the vertices at the boundary.

Now Rk is defined as the set of all simplices in Chr2 s, in which the contention sets of have
cardinalities at most k:

Definition 2 (Complex Rk).

Rk = {� 2 Chr2 s, 8S 2 Cont(�), |S|  k}.

It is immediate that the set of simplices in Rk indeed constitutes a simplicial complex: every
face ⌧ of � 2 Rk is also in Rk.

Examples of R1 and R2 for a 3-process system is shown in Figure 3. Obviously, for the
unrestricted 3-set consensus case, R3 = Chr2 s. Note that R1 only contains six “total order”
simplices, while R2 consists of all simplices of Chr2 s that touch the boundary.

4 From k-set consensus to R
⇤

k
and back

We show that any task solvable with k-set consensus (and read-write shared memory) can be solved
in R

⇤

k, and vice versa. The result is established via simulations: a run of an algorithm solving a
task in one model is simulated in the other.

4.1 From k-set consensus to R
⇤

k

To simulate R
⇤

k it is enough to “solve the Rk task”, i.e., to solve the simplex agreement task on Rk.
By iterating this solution m times we get a solution of the simplex agreement task on R

m
k . Thus, if

a task is solvable in R
⇤

k, it is solvable in the model where Rk can be “solved”.
First we briefly recall how read-write memory and k-set-consensus objects can be used to simulate

a k-concurrent run of any given algorithm. Then we simply use the classical implementation of IS2

(two-rounds of immediate snapshots) as the k-concurrently simulated algorithm, which results in a
subset of IS2 runs that precisely matches Rk.

Simulating k processes using generalized state machine replication. The k-state-machines
simulation was introduced in [12] as a generalization of the classical state machine replication [19,28].
Processes issue k-vectors of commands that they seek to execute on the k state-machines: a
command issued at entry j is to be executed on machine sm[j]. Informally, the construction
proposed in [12] ensures that the local copies of state machine sm[i] (i = 1, . . . , k) progress in the

6

write value is simply changed (line 30), a dummy write thus consists in re-writing the same value. 2

Lemma 5 In R
⇤

k, Algorithm 2 provides a non-blocking simulation of any shared memory algorithm
with access to k-set-agreement objects.

The proof of Lemma 5 is delegated to Appendix B. The main aspects of the proof are taken
from the base algorithm from [17], while the liveness of the agreement objects simulation relies on
the restriction provided by R

⇤

k and the maximal size of contention sets.
Lemma 5 implies the following result:

Theorem 6 Any task solvable in the k-set-consensus model can be solved in R
⇤

k

Proof. To solve in R
⇤

k a task solvable in the k-set-consensus model, we can simply use Algorithm 2,
simulating any given algorithm solving the task in the k-set-consensus model.

The non-blocking simulation provided by Algorithm 2 ensures, at each point, that at least one
live process eventually terminates. As there are only finitely many processes, every live process
eventually terminates. ⇤
Lemma 2, Theorem 4, and Theorem 6 imply the following equivalence result:

Corollary 7 The k-concurrency model, the k-set-consensus model, and R
⇤

k are equivalent regarding
task solvability.

5 Concluding remarks: on minimality of Chr
2
s for k-set consensus

Figure 5: Fully ordered sub-
Chr s

This paper shows that the models of k-set consensus and k-concurrency
are captured by the same a�ne task Rk, defined as a subcomplex of
Chr2 s. One may wonder if there exists a simpler equivalent a�ne task,
defined as a subcomplex of Chr s, the 1-degree of the standard chromatic
subdivision. To see that this is in general not possible, consider the case
of k = 1 (consensus) in a 3-process system. We can immediately see
that the corresponding subcomplex of Chr s must contain all “ordered”
simplexes depicted in Figure 5. Indeed, we must account for a wait-free
1-concurrent IS1 run in which, say, p1 runs first until it completes (and
it must outputs its corner vertex in Chr s), then p2 runs alone until it
outputs its vertex in the interior of the face (p1, p2) and, finally, p3 must
output its interior vertex.

The derived complex is connected. Moreover, any number of its iterations still results in a
connected complex. The simple connectivity argument implies that consensus cannot be solved in
this iterated model and, thus, the complex cannot capture 1-concurrency.

Interestingly, the complex in Figure 5 precisely captures the model in which, instead of consensus,
weaker test-and-set (TS) objects are used: (1) using TS, one easily make sure that at most one
process terminates at an IS level, and (2) in IS runs defined by this subcomplex, any pair of

2Note that our agreement algorithm is far from e�cient for multiple reasons. Progress could be validated at every
round and not only when a write is validated. Moreover, processes could also preventively decide the output for
objects not yet accessed. Lastly, processes could also adopt proposals from non-leaders when no visible leader has a
proposition.

13

A task (I,O,Δ) is solvable in model A if and 
only if there is a chromatic simplicial map 
from a subdivision RA

r(I) to O carried by Δ



Automatic proofs: decidability?
Can we devise an algorithm to tell 
whether a task is wait-free 
solvable?

No
3-process wait-free task solvability 

is undecidable [GK95,HR97]

Loop agreement task is equivalent 
to loop contractibility 
(undecidable)

M. Herlihy, S. Rajsbaum /Theoretical Computer Science 291 (2003) 55–77 63

x0

x0

Fig. 4. Contractible and non-contractible loops.

The loop that wraps around the circle once in the clockwise direction corresponds to
the generator 1, and counter-clockwise to the generator −1. Any loop is homotopic to
one that “wraps” around the circle k times, where positive k is clockwise, and negative
k is counter-clockwise.
If the complex K is connected (there is a path between any two of its points), its

fundamental group is independent of the base point, up to isomorphism. In this paper
all the complexes are connected, so we often write !1(K) in place of !1(K; x̃0).
Let f : |K|→ |L| be a continuous map, and " a loop in |K|. The composition f◦"

is a loop in |L|. De!ne the homomorphism induced by f, f∗ : !1(K)→ !1(L), to be
f∗(["])= [f◦"].

3.2.3. Edge groups
Notice that the construction of the fundamental group does not use the complex K

itself. Everything is de!ned in terms of the underlying space |K|. Thus, any topological
space X has an associated fundamental group. However, when working with spaces that
come from complexes, there is a systematic way of calculating the fundamental group
[2, p. 131]. An edge loop # is a sequence of vertexes such that each two consecutive
vertexes are the vertexes of a 1-simplex (called an edge of the loop) of K, and the
initial and !nal vertexes are equal. For technical reasons it is convenient to allow two
consecutive vertexes to be equal. Two edge loops are equivalent if they are homotopic
(as loops), or more precisely, if one can be transformed into the other by a sequence
of operations of the following types. If ṽ ṽ appears in the loop, replace it by ṽ, and
vice versa. If ṽ0; ṽ1; ṽ2 appears in the loop and these three vertexes span a simplex
of K, replace it by ṽ0̃v2, and vice versa. The edge group E(K; x̃0) is the set of
equivalence classes of edge loops, with loop concatenation as the group operator. The
groups E(K; x̃0) and !1(K; x̃0) are isomorphic, as follows. Each edge loop corresponds
to a loop that traverses its edges “at the same speed”. Each loop with a vertex as a
base point is homotopic to a loop on the 1-skeleton, skel1(K), of K, and this loop



Under the rug…

§ Is χr(I) a subdivision?
§Yes! [Lin11,Koz15]
§RW is a subdivision in general [AG09]

§ Isn’t the Iterated IS model weaker than read-
write? 
§Not for task solvability: [BG93,BG97,GR10]

§ Proof of ACT?
§König’s lemma



Takeaways/open questions

§ Geometrical structure captures the 
computational power of a model
üCombinatorial vs. Operational

§ Other problems/models?
üLong-lived abstractions (queues, hash tables, 

TMs…)
üByzantine adversary: a faulty process 

deviates arbitrarily
üPartial synchrony

§ Complexity bounds?
§ Mathematics induced by DC?



Blockchain!

CAS

Locks

Byzantine Message-
passing

Shared-
memory

Distributed  computability theory?

Distributed jungle

Adversaries



Distributed Computing through 
Combinatorial Topology
Maurice Herlihy, Dmitry Kozlov, Sergio Rajsbaum
Morgan Kaufman, 2013

Algorithms for Concurrent Systems
Rachid Guerraoui, Petr Kuznetsov
EPFL Press, 2019

Slides and exercises: https://perso.telecom-
paristech.fr/kuznetso/CIRM2019

https://perso.telecom-paristech.fr/kuznetso/CIRM2019


Questions?


