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Abstract. We give a new and conceptually different proof for the de-
cidability of k-valuedness of transducers (a result due to Gurari and
Ibarra), without resorting to any other kind of machines than transduc-
ers. In contrast with the previous proof, our algorithm takes into account
the structure of the analysed transducers and yields better complexity
bounds. With the same techniques, we also present a new proof, hopefully
more easily understandable, for the decidability of bounded valuedness
(a result due to Weber).

Extended abstract

1 Introduction

This communication is part of a complete reworking of the theory of k-valued
rational relations and transducers which makes it appear as a natural gener-
alisation of the theory of rational functions (the 1-valued ones) and functional
transducers, not only at the level of results but also at the level of proofs.

In one word, it is decidable whether a finite transducer is functional (Schützen-
berger [1]), the equivalence of functional transducers is decidable (consequence
of the previous result), and every functional transducer is equivalent to an un-
ambiguous one (Eilenberg [2]). These results generalise in a remarkable way to
bounded valued transducers: it is decidable whether the cardinality of the image
of every word by a given transducer is bounded (Weber [3]) and whether it is
bounded by a given integer k (Gurari and Ibarra [4], by reduction to the empti-
ness problem for a class of multi-counter automata); the equivalence of k-valued
transducers is decidable (Culik and Karhumäki [5] in the context of the study
of Ehrenfeucht’s conjecture, and Weber [6]), and every k-valued transducer is
equivalent to the sum of k functional and unambiguous ones (Weber [7]).

In [8], we have given a new and shorter proof for this last result, with a gain
of one exponential in the size of the result with respect to the original proof. It
is based on a construction that we call the lag separation covering (of real-time
transducers). This construction itself uses the Lead or Delay Action (LDA for
short) introduced in [9] to describe an efficient construction for the decidability
of the functionality of transducers.

In this communication we present a new proof for the following result:
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ies is gratefully acknowledged by this author.



Theorem 1 (Gurari-Ibarra [4]). Let T be a transducer and k a positive in-
teger. It is decidable in polynomial time whether T is k-valued.

We also present here a new proof for the decidability of the bounded valued-
ness, which comes very naturally together with the proof of Theorem 1:

Theorem 2 (Weber [3]). Let T be a transducer. It is decidable in polynomial
time whether there exists an integer k such that T is k-valued.

In a third part [10], we tackle the decidability of the equivalence of k-valued
transducers by using together the methods we present here and in [8].

In the original proof of Theorem 1 by Gurari and Ibarra, a nondeterministic
k(k + 1)-counter 1-turn automaton A (see [11] for definitions) is built. A com-
putation in A corresponds to k + 1 computations of T with the same input,
and each pair of these computations of T is associated with two counters. The
counters are incremented by the lengths of the outputs until a position, guessed
nondeterministically, where these outputs become different, and a computation
of A is successful iff the outputs of its k+1 projections are pairwise distinct. The-
orem 1 follows then from the decidability, in polynomial time, of the emptiness
of a finite turn r-counter automaton, another result due to Ibarra [11].

If this theoretical scheme is clear, the actual complexity of the correspond-
ing procedure is difficult to estimate beyond the fact that “it is polynomial”.
This is particularly true for the procedure which decides of the emptiness of
a multi-counter automaton, for it is based on general arguments of complexity
theory: if the r-counter automaton accepts some input, then there exists a con-
stant c such that it accepts an input of length bounded by (rm)cr (where m is
the number of transitions); it is possible to test these bounded inputs with a
nondeterministic Turing machine working in space proportional to cr log(rm);
for each nondeterministic Turing machine working in space f(n) there exists an
equivalent deterministic one working in time df(n), for some constant d (cf. [12]).
It is not clear how these two constants c and d can be effectively computed and
if their actual values have any relationship with the transducer under inspection.

Our proof of Theorem 1 (Section 3) stems from a generalisation of the char-
acterisation of functional transducers with the Lead or Delay Action (LDA) G
in [9]. Roughly speaking, a computation in the product T ×T = T 2 projects on
two computations with equal inputs in T , thus T is functional iff every successful
computation in T 2 outputs a pair of equal words. Differences between words are
witnessed by the LDA G, and T is functional iff the product T 2×G is isomorph
to T 2 (being hence finite) and assigns the empty word to the final states of T 2.

At first we generalise the LDA to an action Gk+1 which measures the dif-
ferences between the outputs in the (k + 1)-tuples of computations of T . It is
not difficult to get a necessary and sufficient condition on T k+1 × Gk+1 for T
be k-valued (Proposition 1). The problem is that this condition is not effective
anymore for T k+1 × Gk+1 may be infinite for k > 1 even if T is k-valued. The
core of our method – and this is of course more complicated – is the proof that it
is possible to attach to every state of T k+1 a finite set of information, effectively
computable from T , which retains all the useful information from T k+1×Gk+1



to decide whether T is k-valued (Theorem 3). These sets are what we call the
Lead or Delay Valuation of T k+1 (LDV). We explain in Section 3.4 how the
LDV can be constructed in O(ℓnk+1mk+1), where n and m are the numbers of
states and transitions of T and ℓ is the maximal length of outputs of transitions.
By comparison with the complexity of the procedure to decide the functionality
in [9], this is probably the best that can be hoped for. On the other hand it
is to be acknowledged that the constant hidden in the “big O” is handed by a
function which grows exponentially fast with the valuedness k, namely, 25(k+1)4 .

Weber’s proof of Theorem 2 is somewhat similar to the classical character-
isation of bounded N-automata of Mandel and Simon [13] (made more explicit
in [14]): T is bounded valued iff T does not contain certain forbidden computa-
tions (Theorem 4). Weber gives in [3] an algorithm to detect these computations.

We give another proof for Theorem 2, which uses a construct, the lag sepa-
ration covering, that we have defined in [8] in order to establish the decompo-
sition resulted quoted above. We first describe the forbidden computations in a
slightly different way (Theorem 5). With the help of the lag separation covering,
the proof that the absence of these computations implies the bounded valued-
ness is straightforward: if this holds for T , then the covering has an equivalent
subtransducer whose underlying input automaton is finitely ambiguous; in other
words, every input word can be read by a bounded number of computations in
T , thus T is bounded valued. We explain in Section 4.2 how this characterisation
can be tested in a certain subtransducer of the product of T 3 by the LDA in
complexity O(ℓn3(n3 + m3)). To some extent the complexity claimed in [3] is of
the same order as it is in O(ℓ2n9) but the proof is indeed difficult to follow.

Due to space constraints most of the proofs have not been included, but
they can be found in [15] and hopefully in a forthcoming paper which is in
preparation. We have tried our best to give here the ideas underlying the proofs.
This is anyway a highly technical matter of which it would be futile to disguise
the intrinsic complexity.

2 Preliminaries

We follow the definitions and notation in [16,2,17]. The set of words over a finite
alphabet A (the free monoid over A) is denoted by A∗, and the empty word by
1A∗ , or simply 1 in figures. The length of a word u in A∗ is denoted by |u|.

Let M be a monoid. An automaton A = (Q,M,E, I, T ) is a directed graph
given by sets Q of states, I, T ⊆ Q of initial and final states, respectively, and
E ⊆ Q × M × Q of transitions labelled by M . It is finite if Q and E are finite.

A computation in A is a sequence of transitions c : p0
m1−−→ p1

m2−−→ . . .
ml−−→ pl,

also denoted by c : p0
m1...ml−−−−−→ pl. Its label is the element m1 . . . ml of M and

its length is |c| = l. It is successful if p0 ∈ I and pl ∈ T . The behaviour of A
is the set |||A||| ⊆ M of labels of successful computations. The behaviour of finite
automata over M coincide with the family RatM of rational subsets of M [2].

If M is a free monoid A∗ and the labels of transitions are letters, then A is a
(boolean) automaton over A. If M is a product A∗×B∗, then every transition is



labelled by an input word u ∈ A∗ and an output one x ∈ B∗ — this is denoted
by u|x — and A is a transducer realising a rational relation from A∗ to B∗.

The image of a word u by a transducer T is the set of outputs of the successful
computations reading u; T is called k-valued (for an integer k > 0) if the cardina-
lities of these images are at most k, and bounded valued if there exists such k.

We shall only consider real-time transducers: their labels are pairs a|K formed
by a letter a and a set K ∈ Rat B∗, and I and T are functions from Q to
Rat B∗. By using classical constructions on automata, every transducer can be
transformed into a real-time one. For bounded valued relations we may suppose
that the transitions output a single word, and in order to avoid inessential details
we can also suppose that the image of every initial or final state is the empty
word.3 In this case, the transducer is denoted rather as T = (Q,A,B∗, E, I, T ).

We shall make systematic use of product of automata. For real-time transduc-
ers, this operation is defined in the same way as for boolean automata, with the
difference that the outputs have to be taken into account. Formally, the square of
T = (Q,A,B∗, E, I, T ) is the transducer T 2 = (Q2, A,B∗2, E(2), I2, T 2) where

(p, q)
a|(u,v)
−−−−→ (p′, q′) is in E(2) iff both p

a|u
−−→ p′ and q

a|v
−−→ q′ are in E (see [9]

for details). We define likewise the product of T by itself l times: a transducer
T l labelled by A×B∗l whose state set is Ql, and the set of transitions is E(l).

p

q

r

a |1
b |1

b |1

a |1
a |1

b |a

p q ra |1
b |1

b |1
a |1

a |1

b |a

ppp pqp prp

ppq prq

ppr pqr

a |(1, 1, 1)
b |(1, 1, 1)

b |(1, 1, 1)

b |(1, 1, 1)

a |(1, 1, 1)

a |(1, 1, 1)

b |(1, 1, a)

a |(1, 1, 1)

a |(1, 1, 1)

b |(1, a, 1)

b |(1, 1, a)

b |(1, a, 1)

a |(1, 1, 1)
a |(1, 1, 1)

Fig. 1: A transducer T1 (drawn on the left and above), and the part of T 3

1 accessible
from (p, p, p) and co-accessible to (p, q, r). All states are final.

A last, and useful, convention: all automata (or transducers) considered or
built by the various algorithms described here are implicitly assumed to be
accessible. In particular, we write that Ql is the set of states of T l, but indeed
when we say that q is a state4 of T l, we mean that q is accessible in T l.

3 Such transducers are also called nondeterministic generalised sequential machines.
4 We write tuples of states, or of words, with bold letters.



3 Deciding k-valuedness

Our proof for Theorem 1 consists in testing the k-valuedness of a transducer T
in the cartesian product T k+1 in the same way as the functionality may be
witnessed in the product of T 2 by the Lead or Delay Action (LDA) G [9].

At first, the road to the generalisation seems easy: (k + 1)-tuples of distinct
computations in T with the same input are seen as computations in T k+1 and T
is k-valued if in such computations at least two of the outputs are equal. To that
end, the LDA is generalised to a Pairwise Lead or Delay Action, denoted Gk+1,
and the wanted property is expressed in T k+1×Gk+1 (Proposition 1).

The difficulty arises with the fact that T k+1×Gk+1 may be infinite for k > 1,
even if T is k-valued (as in Figure 2). Here comes the crux of the proof: with the
definition of partially defined pairwise differences, or PDPD (Section 3.3), we are
able to attach to every state q of T k+1 a finite set m(q) of PDPDs. This m(q)
subsumes the essential information contained in the states of T k+1×Gk+1 that
map onto q and makes it possible to characterise the k-valuedness within a finite
object, the Lead or Delay Valuation (LDV) of T k+1 (Theorem 3). As we explain
in Section 3.4, the LDV can be built in polynomial time with a traversal of T k+1.

3.1 The Lead or Delay Action

Let B be an alphabet and B a disjoint copy of B. The underlying structure
of the LDA is the free group F (B) generated by B, that is, the quotient of
(B ∪ B)∗ by the relations xx = xx = 1B∗ , for every x in B. The inverse of
an element u in F (B) is denoted by u (for example, xxy = y xx). We write
∆ = B∗ ∪ B

∗
∪ {0}, where 0 is a new element, a zero, not in F (B), and define

a function ρ : F (B) ∪ {0} → ∆ by wρ = w , if w ∈ ∆, and wρ = 0 otherwise.5

Definition 1 ([9,17]). The Lead or Delay Action (LDA) of B∗×B∗ on ∆,
denoted by G, is defined as follows: for every w ∈ ∆ and (u, v) ∈ B∗×B∗,
w · (u, v) = (uwv)ρ (where the product is taken with the rules 0u = u0 = 0).

Intuitively, 1B∗ ·(u, v) represents the “difference” of the words u and v, being
a positive word if u is a prefix of v (the lead of v with respect to u), a negative
word if v is a prefix of u (the delay of v with respect to u), and 0 if u and v

are not prefixes of a common word. In [9], an effective characterisation of the
functionality is made with the product T 2×G (cf. Definition 3), which shows the
differences between pairs of computations of T : T is functional iff T 2×G assigns
an unique value of ∆−{0} to every useful state of T 2 and 1B∗ to the final ones.

3.2 The Pairwise Lead or Delay Action

In order to deal with the differences between the outputs of an arbitrary number
l (l > 1) of computations in parallel, we generalise the LDA as follows. Let us

5 We use a postfix notation for relations: xτ is the image of x by the relation τ .



write Dl = {(i, j) | 1 ≤ i < j ≤ l}. We write ∆l for ∆Dl , that is, the set of
vectors of dimension Dl with entries in ∆, which we call pairwise differences or
PD for short. The entry at the coordinate (i, j) of a PD δ is denoted by δi,j . The
PD with all entries equal to the empty word is denoted by η.

Definition 2. For every integer l > 1, the Pairwise Lead or Delay Action of
B∗l on ∆l is the function Gl : ∆l×B∗l → ∆l which maps every (δ,u) in ∆l×B∗l

to the PD γ in ∆l such that, for every (i, j) in Dl, γi,j = δi,j · (ui,uj).

(Gl is indeed an action for the LDA is applied independently to each coordinate.)

Definition 3. For every integer l > 1, the product of T l by Gl is the (accessible)

transducer T l×Gl = (Ql×∆l, A,B∗l, F, I l×{η}, T l×∆l) where (p, δ)
a|u
−−→ (q, δ′)

is a transition in F iff p
a|u
−−→ q is a transition in E(l) and δ′ = δ · u.

The k-valuedness of T is witnessed by the final states of T k+1×Gk+1:

Proposition 1. A transducer T is k-valued iff for every final state (q, δ) of
T k+1×Gk+1, δ has at least one entry equal to 1B∗ . ⊓⊔

This condition is not however effective. For every state q of T k+1, let us write
X(q) for the set of PDs in the states of T k+1×Gk+1 projecting on q: X(q) =
{δ ∈ ∆k+1 | (q, δ) state of T k+1×Gk+1}. Contrary to the characterisation of the
functionality in [9], X(q) may be infinite, even if T is k-valued (as in Figure 2).

3.3 A Finite Characterisation of k-valuedness

The main concept for the definition of the Lead or Delay Valuation is that of
traverse of a set of PDs. Intuitively, a traverse for X ⊆ ∆l is a PD γ in ∆l such
that for every δ in X, there exists a coordinate (i, j) satisfying δi,j 6= 0 and
γi,j = δi,j . In other words, each PD in X has a non null “intersection” with γ.

It may well exists some (i, j) in which no intersection arises. Such coor-
dinates are not really useful. For this reason, we embed ∆l in a larger set
Hl = [∆ ∪ {⊥}]

Dl of partially defined pairwise differences (PDPD), where ⊥

fills undefined entries. Now, we say that a traverse for a set X ⊆ Hl of PDPDs is
a PDPD γ ∈ Hl satisfying: for every δ ∈ X, there exists a coordinate (i, j) such
that δi,j 6= 0, δi,j 6= ⊥, and γi,j = δi,j ; for every (i, j) such that γi,j 6= ⊥, there
exists at least one δ in X such that δi,j 6= 0 and γi,j = δi,j . A traverse has at
least one defined entry, and has no entry equal to 0. We denote by tv (X) the
set of traverses for X. As before, tv (X) may be infinite or empty.

The set Hl is naturally ordered by β ⊑ γ iff γ coincides with β on the defined
entries of β. We denote by m(X) = min(tv (X)) the set of minimal traverses for
X, and for a state q of T k+1 we write m(q) = m(X(q)). The set m(q) is what we
call the value of q, the family of these sets is the Lead or Delay Valuation (LDV)
of T k+1. It is not difficult to restate Proposition 1 in terms of this concept:

Theorem 3. A transducer T is k-valued iff for every final state q of T k+1 there
exists at least one γ in m(q) whose defined entries are all equal to 1B∗ . ⊓⊔
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Fig. 2: The product by G3 of the part of T 3

1 in Figure 1. Gray regions gather states
which project on a same state of T 3. The output of the dotted transitions is (1, 1, 1).

Theorem 3 is the finite characterisation of the k-valuedness we are aiming at
because the sets m(q) are finite and computable. The finiteness holds indeed for
the set of minimal traverses of every set of PDs:

Proposition 2. For every l > 1, for every X ⊆ ∆l, card(m(X)) ≤ 2l4 . ⊓⊔

3.4 Making the Characterisation Effective

The effective construction of the LDV is based on two properties. The first one
is a stability property in the strongly connected components (SCCs) of T k+1.
The second one states that every m(q) depends uniquely on the values of the
states which precede the SCC of q.

We say that a PDPD γ is stable in q if for every circuit q
f |u
−−→ q, γ · u = γ.

Proposition 3. Every γ ∈ m(q) is stable in q. Thus, for every p in the same

SCC as q and every computation q
f |u
−−→ p, m(p) = m(q) · u. ⊓⊔

(Here Gl is extended to sets of PDPDs: for every X ⊆ Hl and every l-tuple of
words u, X ·u = {δ ·u | δ ∈ X}, where undefined entries of δ remains undefined
in δ · u). For X ⊆ Hk+1, we denote stq (X) = {γ ∈ X | γ stable in q}.



In order to explain the second property, we define a commutative and as-
sociative operation between sets of PDPDs. Given β and γ in (the partially
ordered set) Hl, let β ∨∨∨ γ be their least upper bound (which exists iff β

and γ are compatible on the defined coordinates). For X,Y ⊆ Hl, we define
X ⊕ Y = min({β ∨∨∨ γ | β ∈ X, γ ∈ Y }). If X and Y are finite, then X ⊕ Y is
clearly finite. Let us also fix a notation. For every SCC C of T k+1, let I(C) be

the set of transitions incoming in C: I(C) = {p
a|u
−−→ r | p 6∈ C, r ∈ C}. For

every e : p
a|u
−−→ r in I(C) and every state q in C, let ve,q be the output of an

arbitrary but fixed computation from r to q, and Xe,q = stq (m(p) · (uve,q)).

Proposition 4. For every q (in the SCC C of T k+1), m(q) = ⊕e∈I(C)Xe,q. ⊓⊔

Propositions 3 and 4 yield a construction of the LDV of T k+1 with a topo-
logical traversal of the SCCs of T k+1. It starts at a hidden initial state i with
outgoing transitions labelled by 1B∗ ending in the initial states of T k+1; m(i) is
the set of PDPDs having exactly one defined entry which is equal to 1B∗ .

We express the complexity of the algorithm on the following parameters of
T : n (number of states), m (number of transitions) and ℓ (maximal length of
the outputs of transitions)6. The analysis depends on the following:

Proposition 5. For every γ ∈ m(q), if γi,j is defined, then7 |γi,j | ≤ ℓnk+1. ⊓⊔

Testing whether a PDPD is stable in a SCC with s transitions can be made
in time O(k2ℓnk+1s). By Proposition 2, the cardinality of every m(q) is finite
and does not depend on the transducer T . Therefore, the construction of each
set Xe,q can be made in O(k2ℓnk+1s) and each operation ⊕ in O(k2ℓnk+1).
It follows that the overall complexity of our algorithm is O(ℓnk+1mk+1). The
multiplicative constant hidden in the “big O” comes from the bound established
in Proposition 2 and is thus at most 2(k+1)4 .

Example 1. In this example and in the figures, PDs are represented as upper
triangular matrices indexed by {p, q}×{q, r} (in this order).

Let q = (p, q, r) be a state of T 3
1 (Figure 1). The set of PDs in T 3

1×G3 attached

to q is X(q) =
{

(

1 at

at

)

| t > 0
}

∪
{

(

at 1
at

)

| t > 0
}

(see Figure 2). The set of

traverses of X(q) is tv (X(q)) =
{(

1 1
at

)

| t > 0
}

∪
{(

1 1
at

)

| t > 0
}

∪
{(

1 1
⊥

)}

.

There is only one minimal one: m(q) =
{(

1 1
⊥

)}

. This is the value of q, also

obtained by applying the operation ⊕ to the PDPDs
(

1 ⊥
⊥

)

and
(

⊥ 1
⊥

)

incoming
in the SCC of q (see Figure 3).

4 Deciding Finite Valuedness

Weber’s proof for Theorem 2 [3] is in two steps: first, the bounded valuedness
is characterised by three conditions on the computations of the transducer T

6 Recall that the valuedness k is considered as a constant.
7 Recall that γi,j , if defined, is a word in B∗ ∪ B

∗

; |γi,j | is as usual the length of it.
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ā

«

. . .

„

1 ⊥
⊥

«

„

a ⊥
⊥

«

„

1 ⊥
⊥

«

„

a ⊥
⊥

«

. . .

b |(1, 1, a)

b |(1, a, 1)

Fig. 3: The values m(q) for the states of T 3

1 (filled regions) accessible from (p, p, p) and
co-accessible to (p, q, r). Dashed transitions have output equal to (1B∗ , 1B∗ , 1B∗).

(Theorem 4); next, it is shown that these conditions can be tested by means of a
construction with the underlying graph of T . The proof is difficult due in part to
the fact that besides the decidability it gives an upper bound for the valuedness.

Our proof is akin to Weber’s one, but on the other hand is different in both
steps. We first describe other conditions, C1 and C2 (Theorem 5), and prove
that they characterise the bounded valuedness. That stating these new condi-
tions is useful comes from the fact that they are well-fitted with the use of a
construction for transducers which we defined in [8], the lag separation cover-
ing. This construction together with the characterisation of bounded ambiguity
for N-automata due to Mandel and Simon (Theorem 7) yields a straightforward
proof that C1 and C2 imply the bounded valuedness of T : if T satisfies C1 and
C2, then with the construction of a lag separation covering on T we obtain a
transducer which is equivalent to T , and whose underlying input automaton,
say A, satisfies the conditions S1 and S2 in Theorem 7; thus, A realises a series
which is bounded by some integer k; as the number of outputs in T for every
input word u is at most the number of successful computations in A labelled
by u, the valuedness of T is at most k. The condition C1 is easily testable. In
order to test C2, the LDA will be useful again, and we describe in Section 4.2 a
condition on T 3×G equivalent to C2 which can be tested in polynomial time. It
turns out that the product T 3×G captures the technicalities of the constructions
underlying Weber’s algorithm (Section 3 of [3]).



4.1 A Characterisation of Bounded Valuedness

Weber’s conditions for bounded valuedness are better described with the help
of Figure 4. Let us call a computation p −→ p −→ q −→ q with p 6= q a dumbbell-
computation, and a computation such as on the right of Figure 4 a W-computation.

p q

i t

u |x1

u |x2

u |x3

i tp1

p2

p3

q1 q2

u |x1

v |x2

w |x3

u |y1

v |y2

w |y3

u |z1

v |z2

w |z3

Fig. 4: A dumbbell-computation and a W-computation.

Theorem 4 (Weber [3]). A trim transducer T is bounded valued iff:8 W1)
T does not contain co-terminal9 circuits with same input and distinct outputs;

W2) T does not contain a dumbbell-computation p
u|x1

−−−→ p
u|x2

−−−→ q
u|x3

−−−→ q with
x1x2 6= x2x3; W3) T does not contain a W-computation with |x1| 6= |y2|. ⊓⊔

It is not so difficult to see that these three conditions are necessary for the
bounded valuedness. The substance of the theorem is that they are sufficient.

The idea of our new conditions is to adjoin a restriction on the lag between
the computations which allows to capture W2 and W3 on a single statement.10

Theorem 5. A trim transducer T with n states and output lengths bounded by ℓ

is bounded valued iff: C1) T does not contain a circuit which contain co-terminal

transitions p
a|u
−−→ q and p

a|v
−−→ q such that u 6= v; C2) T does not contain a

dumbbell-computation c1 : p
u|x1

−−−→ p, c2 : p
u|x2

−−−→ q, c3 : q
u|x3

−−−→ q where either
x1x2 6= x2x3 or x1x2 = x2x3 and 〈c1c2, c2c3〉 > ℓn3.

If the valuedness of T is bounded, clearly the condition C1 must hold, and
every c1c2c3 in C2 must satisfy x1x2 = x2x3. The proof that every dumbbell-
computation must satisfy 〈c1c2, c2c3〉 ≤ ℓn3 is a pumping argument showing
that such a lag would imply a W-computation which does not satisfies W3.

The proof of the sufficiency of the conditions C1 and C2 is straightforward
with the use of two tools. The first one is the lag separation covering of T , a

8 Weber’s conditions are slightly different (but equivalent), for W1 and W2 are stated
together. We chose other presentation in order to make clear the comparison with
the statements to come.

9 With same origin and same end.
10 The notation 〈c, d〉 in this statement stands for the lag between two computations

c and d and is defined in [8].



construction parametrised by an integer N > 0 of a new and larger transducer
UN with a morphism from UN to T inducing a bijection between their successful
computations.11 This covering allows to avoid pairs of computations such that
the differences of lengths of outputs along them (their “lag”) are bounded by N :

Theorem 6 ([8]). For every N > 0, the lag separation covering UN contains
a subtransducer VN equivalent to T where distinct successful computations with
same label have lag larger than N . ⊓⊔

The second tool is a classical characterisation of boundedness of N-automata:

Theorem 7 (Mandel-Simon [13], Seidl-Weber [14]). A trim N-automaton
A realises a bounded N-series iff:12 S1) A does not contain a circuit which
contains a transition with multiplicity greater than 1; S2) A does not contain a
dumbbell-computation. ⊓⊔

The idea is to show, starting from Theorem 6, that if T satisfies C1 and C2,
then the underlying input automaton A of VN (with N = ℓn3) satisfies S1 and
S2. Now, by Theorem 7, A is of bounded ambiguity, and thus the valuedness of
VN (and that of T , for VN is equivalent to it) is bounded.

4.2 Testing the Characterisation in T 3×G

The condition C1 in Theorem 5 is easily testable. The substance of our algorithm
is a characterisation of C2 within the product of T 3 by the LDA G. In Section 3.2,
we defined T 3×G3, the LDA applied to every pair of projections of T 3. The
product T 3×G is defined likewise but in this case G acts on a single pair of
projections, the first and the second one. Let W be the part of T 3×G consisting
of states accessible from some state of form ((p, p, q), 1B∗) and co-accessible to
some state of form ((p, q, q), v) (where p and q are distinct states of T ).

Lemma 1. The transducer T (with n states and lengths of outputs bounded by
ℓ) satisfies C2 iff for every state ((r, s, t), w) of W, w 6= 0 and |w| ≤ ℓn3. ⊓⊔

Thus, W allows to test C2. But this subtransducer seems to be very large, for
there are exponentially many words of length at most ℓn3. In order to obtain a
polynomial time complexity, the idea is to consider only the harder part of W,
the subtransducer W ′ consisting of states which are co-accessible to some circuit
whose output (x, y, z) is such that either x 6= 1B∗ or y 6= 1B∗ :

Lemma 2. If all the states of W ′ satisfy the conditions in Lemma 1, then the
same is true for the states of W. ⊓⊔

It turns out that this part is not so large due to the following lemma13:

11 For the definition of covering of automata see [18].
12 The original statement in [13] reads instead of S1 that S1’: A contains neither a

circuit with multiplicity greater than 1 nor distinct co-terminal circuits with the
same input. In the presence of S2 both formulations are equivalent.

13 Let us note the similarity of this lemma with a critical property to establish the
polynomial complexity of the procedure given in [9] to test the sequentiality of
transducers.



Lemma 3. In states of W ′ projecting on a same state of T 3 the words in the
second component must be prefix of a common word or C2 is not satisfied. ⊓⊔

Thus, in order to construct W ′ we can maintain for every state (r, s, t) of T 3 only
two words of length at most ℓn3, a positive and a negative one, whose prefixes
represent the states of W ′ already constructed. Each prefix implies a traversal
of T 3, thus the complexity of our algorithm to test the bounded valuedness of
T is O(ℓn3(n3 + m3)) (where m is the number of transitions of T ).
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