LECTURE NOTES WEIGHTED AUTOMATA AND TRANSDUCERS

Lecture | — Exercises
Unless stated otherwise, the alphabet A is A = {a, b}.

1. Semiring structure. Is M = (N, max,+,0,0) a semiring?

2. Positive semiring. Give an example of a semiring in which the sum of any two non-zero
elements is non-zero but which is not positive. [Hint: consider a sub-semiring of N*>2 ]

3. Example of N-automaton. (a) Compute the coefficient of aba?ba in the series
realised by the N-automaton:

(b) Give the general formula for the coefficient of every word of A*.

4. Examples of Nmin, Nmax-automata. Let & be the Nmin-automaton over {a}" shown
in Fig.1(a) and & the Nmax-automaton shown in the same figure. Similarly, let &5 and &,
be the Nmin and Nmax-automata shown in Fig. 1 (b).

Give a formula for (|51 |7 a), (]52|, a"), <|<‘,‘3|7 a™), and (]54|, a").

all al2 al2 all
all al2
0 0
0 0 0 0
(a) The automata & and &> (b) The automata &3 and &4

Figure 1: Four ‘tropical’ automata

5. A Z-automaton. Build a Z-automaton D such that (D], w) = |w|, —|w|, , for every w
in A*.

6. Support of Z-automata. Give an example of a Z-automaton A such that the inclusion
supp (|A]) C [supp A| is strict.

7. Automata construction. Let a* be the characteristic N-series of a*: a* = ZneN a™ .
Give an ‘automatic’ proof (that is, by means of automata constructions) for:

(@)=Y (n+1)a" .

neN

8. Shortest run and Nmin-automata. Build a Nmin-automaton F7 such that, for every w
in A*, <|.7:1 |7 w) is the minimal length of runs of ‘a’’sin w, that is, if w = a™ ba™ b---a™~1ba"*,
then <|.7-"1|, w) = min{ng,n1,..., Nk}

9. Identification of a Q-automaton. Show that the final function of the Q-automaton Q-

over {a}” depicted on the right in Figure 2 (where every transition is labelled by a|1) can
be specified in such a way the result is equivalent to Q1 depicted on the left.
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1/4 ? ?

al2

?ﬁ/ ?

Figure 2: Two QQ-automata

10. Ambiguous automata. Show that it is decidable whether a Boolean automaton is
unambiguous or not. [Hint: Note that this is not a result nor a proof on weighted automata
but on Boolean automata. It is put here in view of Example 49. |

11. Representation with finite image. Let s be a K-recognisable series of A*, realised
by a representation (I, p,T) of dimension Q. Show that if u (A*) is a finite submonoid
of K@@ then, for every k in K the set s'(k) = {w € A* | (s,w) =k} is a recognisable
language of A*.

12. Support of Z-rational series. (a) Give an example of a Z-rational series over A*
whose support is not a recognisable language of A*.

(b) Give an example of a Z-rational series over A* which is an N-series (that is, all
coefficients are non-negative) and which is not an N-rational series over A*.

13. Support of Z-rational series. (a) Prove that the support of an N-rational series
over A* is a recognisable language of A*.

(b) Let s be in NRec A*. Prove that for any & in N, the sets
sTH(k) ={we A* | (s,w) =k} and s 1(k+N)={we A*| (s,w) >k}
are recognisable languages of A*.

(¢) Give an example of a Z-rational series s over A* such that there exists an integer z
such that s~1(2) is not a recognisable language of A*.

14. Support of Zmin-rational series. (a) Let s be a Nmin-rational series over A*.
Prove that for any &k in N, the sets
sTHk)={we A* | (s,w) =k} and s Hk+N)={weAd*|(s,w) >k}
are recognisable languages of A*.
(b) Give an example of a Zmin-rational series s over A* such that there exists an integer z
such that s~1(2) is not a recognisable language of A*.

15. Recognisable series in direct product of free monoids. Let K be a commutative
semiring. The two semirings K{A*)) and K({B*)) are canonically subalgebras of K{A* x B*));
the injection is induced by

u > (u,1px) and v (1as,0)
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for all w in A* and all v in B*. Modulo this identification, a product (ku)(hv) is written
kh(u,v) and the extension by linearity of this notation gives the following definition.
Definition 1. Let s be in K{A*)) and ¢ be in K{(B*)). The tensor product of s and t,
written s ot , is the series of K{(A* x B*)) defined by:

V(u,v) € A*x B* (set,(u,v)) = (s,u)(t,v) .

On the other hand, K-recognisable series over a non-free monoid M are defined, exactly as the
K-recognisable series over a free monoid, as the series realised by a K-representation ( I, u, T'),
where i is a morphism from M into K@@,

Establish:
Proposition 2. A series s of K{A* x B*)) is recognisable if and only if there exists a finite
family {r;}ic1 of series of KRec A* and a finite family {t;}ic1 of series of KRec B* such

that
S:Z’I’i(@ti .

i€l

16. Distance on the semirings of series.

A distance on any set S is a map d: SxS — R, with the three properties: for all z, y
and z in S it holds:
(i) symmetry: d(z,y) =d(y,x) ;

(ii) positivity: d(z,y) =0z =1y;

(iii) triangular inequality: d(z,2) < d(z,y) +d(y,2) .
If (iii) is replaced by the stronger property:

(iv) triangular inequality: d(x,z) < max(d (z,y),d (y,2)) ,
then d is said to be an ultrametric distance.

(a) Show that the function defined on S by

Ve,y € S d(:c,y){o if =y
1 otherwise
is an ultrametric distance. We call it the discrete distance on S.
Classically, a sequence (S”)n N of elements of S converges to s in S for the distance d if:
Ve>0 INeN Vn>N d(sp,s) <e .

In this way, a distance d defines a topology on S.

(b) Show that if S is equipped with the discrete distance, the only convergent sequences
are the ultimately stationnary sequences.

Two distances on S are equivalent if the same sequences converge, that is, d and d’ are

equivalent if for any sequence s = (sn)
for d’.

neny S converges for d if and only if it converges

(c) Show that one can always assume that a distance is bounded by 1, that is, if d is a
distance on S, the function f defined by

Ve,ye S  f(x,y) =inf{d(z,y),1}

is a distance, equivalent to d.
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(d) Let d and d’ be two distances on S. Show that if there exist two constant C' and D
in Ry \ {0} such that

VeyeS  Cd(ay) <d(ay) <Dd(ry)

then d and d’ are equivalent. Is this condition necessary for d and d’ be equivalent?

Let K be a semiring. For s and ¢ in K{A*), let e(s,t) be the gap between s and t, defined
as the minimal length of words on which s and ¢ are different:

e(s,t)=min{n e N|Jw € A", |w|=n and (s,w) # (t,w)}

The gap is a generalisation of the notion of valuation of a series. The valuation v(s) of s
in K{A*) is defined by:

v(s) =e(s,0) = min {|w| | (s,w) # 0} = min{|w| | w € supp s} .
Conversely, and if K is a ring, e(s,t) =v(s—1).
(e) Show that the map defined by
Vs, t € K(A*)  d’(s,t) =27 (0.1)

is an ultrametric distance on K{A*)), bounded by 1.
(f) Let c be a distance on K{A*)), bounded by 1. Show that the map defined by

Vst € K(A™)  d(s,t) = % 3 (2% max {c ((s,w), (t, w)) | || = n})
neN
0.2)

is a distance on K{A*)), bounded by 1.
(g) Show that, whatever the distance ¢, d(s,t) < d’(s,t) holds.

(h) Show that if c is the discrete distance, then d’(s,t) < 2 d(s,t) holds, hence that (0.1)
and (0.2) define two equivalent distances on K{A*) if K is equipped with the discrete
distance.

(i) Show that the topology defined by d on K{(A*)) is the topology of the simple conver-
gence.

(j) Show that if K is a topological semiring, then so are K@@ (@ finite) and K{{A*)).
(k) Let (S")neN and (t")neN be two sequences of series in the topological semiring K{A*)).

Verify that (sn + t”)nEN or (sn t”)nEN may be convergent sequences, without (sn)
or (t")neN being convergent sequences.

neN
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