LECTURE NOTES WEIGHTED AUTOMATA AND TRANSDUCERS

Lecture | — Exercises with solution

Unless stated otherwise, the alphabet A is A = {a,b}.

1. Semiring structure. Is M = (N,max,+,0,0) a semiring?

No. It is true that 0 is an identity element for both the addition max and the multiplica-
tion + of M but it is not a zero for the multiplication (since it is the identity element) and
axiom ‘SA4’ is not satisfied.

2. Positive semiring. Give an example of a semiring in which the sum of any two non-zero
elements is non-zero but which is not positive.

The subsemiring of N>?2 generated by ((1] 8) and (8 (1)) answers the question.

3. Example of N-automaton. (a) Compute the coefficient of aba?ba in the series
realised by the N-automaton:
o |

a a
b
(b) Give the general formula for the coefficient of every word of A*.

(a) A ‘successful’ computation whose label is a®ba®ba is necessarily of the form
a a a b a a b a
P—T] —>To —q—pP—>8S1 —>q—>pD—>D .
There are 3 possible choices for the pair ry,72: p,p, p,q, and q,q, 2 choices for s;: p

and ¢, hence 6 possible computations, each one with weight 1: the weight of a3ba?ba is 6.

(b) More generally, every word w of {a,b}" with k occurrences of b may be writen as:
a™ba"b---a"tba"rt!

With the same reasonning as above, every factor a™, 1 <1i < k, gives rise to n; computa-

tions, the factor a™*+! to 1 computation: the coefficient of w is Hzlf n; .

4. Examples of Nmin, Nmax-automata. Let &; be the Nmin-automaton over {a}" shown
in Fig. 1 (a) and & the Nmax-automaton shown in the same figure. Similarly, let €3 and &4
be the Nmin and Nmax-automata shown in Fig. 1 (b).

Give a formula for (&1 a™), (&2, a™), €3], a™), and (E4) a™).

all al2 al2 all
Q all Q al2
L T, g
0 0 0 0

(a) The automata &1 and &> (b) The automata &3 and &4

Figure 1: ‘Four’ ‘tropical’ automata
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For every n, there are n + 1 computations with label a™ in each of the four automata.
In & and &4, the ‘victorious’ computation, that is, the one that gives a™ its weight in &
or &4, is the one that stays in state p and, for every n in N:

(&1, a™ =n and (Esa™) =27 .
In & and &, the ‘victorious’ computation, is the one that goes to state ¢ and then:!

(&2 a™) =2n—1 and {(&la™)=n+1 for n>1 and (& 1la),= (&) 1as) =0 .

5. A Z-automaton.
Build a Z-automaton Dy such that (D1}, w) = |w|, — |wly , for every w in A*.

The automaton shown at Figure 2 answers the question. It is derived from the automaton Bj.

Figure 2: The Z-automaton D

6. Support of Z-automata.
Give an example of a Z-automaton A such that the inclusion supp (|A|) C |supp A| is strict.

The automaton D; of the previous Exercise 5. answers the question.

7. Automata construction. Let a* be the characteristic N-series of a* : a* = ZneN a” .
Give an ‘automatic’ proof (that is, by means of automata constructions) for:

@)’ =S (mn+1)a" .

neN

An automaton which realises the series a* is shown at Fig.3(a). The Cauchy product

(a*)® = a*a* is realised by the concatenation of automata, shown at Fig.3(b) with a
spontaneous transition, and at Fig.3 (c)after elimination of that spontaneous transition by
(backward) closure. It is easily seen on this last automaton that there are n + 1 distinct
computations for the word a™, each one with a weight 1.

a a a a a
8 £ g % a 8
(a) (b) (c)

a

Figure 3: Automatic construction of Cauchy product

!This exercise looks somewhat dumb. It gains some more interest when one looks at the decision
of the sequentiality of the series realised by these automata. A subject that has not been treated
this year.
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8. Shortest run and Nmin-automata.
Build a Nmin-automaton JF; such that, for every w in A*, (i} w) is the minimal length of
runs of ‘a’’sinw, thatis, if w=a™ba™ b---a"™*-1ba™*, then (]f1|, w) = min{ng,n1,...,ng}.

The Nmin-automaton shown at Figure 4 answers the question. If the shortest run is found
at the beginning of w, that is, if ng = min{ng,n1,...,nt}, then a victorious compu-
tation is found between state i and state ¢; if it is found at the end of w, that is, if
ng = min{ng,n1,...,n;}, then a victorious computation is found between state ¢ and
state t; in all other cases, a victorious computation is found between state i and state ¢.

al0, b|0 all al0, b|0

0 Q b|0 Q b|0
: o/\c']’\o

b

Figure 4: An automaton for computing the length of shortest run

9. Identification of a Q-automaton. Show that the final function of the Q-automaton Q-
over {a}" depicted on the right in Figure 5 (where every transition is labelled by a|1) can
be specified in such a way the result is equivalent to Qy depicted on the left.

al2

Figure 5: Two Q-automata

The representation of Qg is (I, u,T') where

1
1/4
T3
I=(1 0000 0 0), pla)=p= 4
L5
L6

e = ==)
O OO O o O
O O O O O o+
_ o O O = O O
_ o O O O = O
= o O = O O O
— =0 O O o O

~

I

x7
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The equivalence between Qs and Q; implies then the sequence of equations:

I-T=1 which holds
Ip-T=1/4423=2 which implies x5 = 7/4
I~u2~T:x4+x5:4
I~;L3~T:2+£L'6:8 which implies g = 6
Iyt T=5+z;,=16 which implies 7 = 11

It is verified that the computation of I-p® - T, I-puS-T,and I-pu” T all lead to the
condition x4 + x5 = 4. Further developments show then that if this condition is satisfied,
then the two automata are equivalent (cf. Exercise 77).

10. Ambiguous automata. Show that it is decidable whether a Boolean automaton is
unambiguous or not.

11. Representation with finite image. Let s be a K-recognisable series of A*, realised
by a representation (I, u,T) of dimension Q). Show that if u(A*) is a finite submonoid
of K9 then, for every k in K the set s~'(k) = {w € A* | (s,w) =k} is a recognisable
language of A*.

Let M = p(A*) be the finite submonoid of K@@, image of A* by u: p: A* — M . For

every k in K let Py be the subset of M defined by P, = {m € M |I-m-T =k} . Then,
s71(k) = p=1(Py) is a recognisable language of A*, by definition.

12. Support of Z-rational series. (a) Give an example of a Z-rational series over A*
whose support is not a recognisable language of A*.

(b) Give an example of a Z-rational series over A* which is an N-series (that is, all
coefficients are non-negative) and which is not an N-rational series over A*.
Let di = |D1| be the series realised by the Z-automaton D; of Figure 2. Then, supp d; =

{w e A* | |w|s # |w|p} is not a recognisable language of A*. The series dy = d; ® dy has
the same support as d; and all its coefficients, which are squares, are non-negative.

13. Support of Z-rational series. (a) Prove that the support of an N-rational series
over A* is a recognisable language of A*.
(b) Let s be in NRec A*. Prove that for any k in N, the sets
sTHk) ={we A* | (s,w) =k} and s ' (k+N)={we A*| (s,w) >k}
are recognisable languages of A*.

(¢) Give an example of a Z-rational series s over A* such that there exists an integer z
such that s~1(z) is not a recognisable language of A*.

(a) There are many ways to prove the statement. One in the line of the proofs to come is
the following. Let o: N — B be the support map, which is a morphism since N is positive.
The image of a N-rational, hence N-recognisable, series s over A* under ¢ is precisely supp s
and is a B-recognisable series over A*, that is, a recognisable language.

(b) Tt is easy to verify that, for any integer h > 1, the structure Ny, = ([0,1,...,h],8,®)
defined by:

Va,y € [0,1,...,h] x @y =min(z +y,h) and x®y =min(zy,h) .
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is a (finite) semiring. Somehow, h plays the role of an infinity element but ‘at finite distance’

The map op: N — Np defined by op(z) = min(z,h) is a semiring morphism. (Note
that B = N; and that the support map o is o1.)

It then follows that if a N-series s over A* is realised by a representation ( I, u, T) then o4 (s)
is a Np-series realised by the representation ( op (1), up, on(T") ) where pp(a) = op(p(a)), for
every a of A. Moreover, for every w in A*, (s,w) = k if and only if (o,(s),w) = k for
any h > k and (s, w) > k if and only if (o%(s), w) = k, that is, s~'(k) = (on(s)) " (k) and
sH(k+N) = (04(s)) " (k).

Since Ny, is finite, it follows that pp,(A*) is finite and the conclusion follows from Exercise 11..

(c) The series d; of Exercise 12. will serve again as an example:
di ' (0) = {w € A” | [w]a = |w]s}

is not a recognisable language and the same indeed holds for dfl(z) for any z in Z.

14. Support of Zmin-rational series. (a) Let s be a Nmin-rational series over A*.
Prove that for any k in N, the sets

sTHk)={we A* | (s,w) =k} and s 1 (k+N)={weA*|(s,w) >k}
are recognisable languages of A*.

(b) Give an example of a Zmin-rational series s over A* such that there exists an integer z
such that s~1(z) is not a recognisable language of A*.

(a) The proof follows the same pattern as the one of the preceding Exercise 13.. The
structure M, = ([0,1,...,h] U {+o00}, min,®) defined by:
Ve,y € [0,1,...,h] U {+00} x @y =min(z+y,h)
is a (finite) semiring and the map )y : Nmin — M, defined by tn(x) = min(z,h) is a
semiring morphism.

If a Nmin-series s over A* is realised by a representation (I, u, T) then 1y (s) is a Mp-series
realised by the representation (9 (I), un, ¥n(T) ) where pp(a) = ¥n(u(a)), for every a of A.
Moreover, for every w in A*, (s,w) = k if and only if (¢ (s),w) = k for any h > k and
(s,w) > k if and only if (¢y(s), w) = k, that is, s~ (k) = (¥n(s)) "' (k) and s~ (k+N) =
(¢n(s)) " (k) -

Since M, is finite, it follows that pp,(A*) is finite and the conclusion follows from Exercise 11..

(b) The Zmin-series e; defined by (e1,w) = (d1,w) = |w|, —|w|p is a Zmin-recognisable
series accepted by the following Zmin-automaton.

all

b|—1

Figure 6: A Zmin-automaton
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15. Recognisable series in direct product of free monoids. Let K be a commutative
semiring. The two semirings K{A*)) and K{(B*)) are canonically subalgebras of K{{A* x B*));
the injection is induced by

u > (u, 1) and v (1ax,0) ,

for all w in A* and all v in B*. Modulo this identification, a product (ku)(hv) is written
kh(u,v) and the extension by linearity of this notation gives the following definition.
Definition 1. Let s be in K{(A*) and ¢ be in K{(B*)). The tensor product of s and t,
written s®t, is the series of K{A* x B*)) defined by:

V(u,v) € A* x B* (set,(u,v)) = (s,u)(t,v) .

On the other hand, K-recognisable series over a non-free monoid M are defined, exactly as the
K-recognisable series over a free monoid, as the series realised by a K-representation (I, u, T ),
where 1 is a morphism from M into K@<,

Establish:
Proposition 2. A series s of K{A* x B*)) is recognisable if and only if there exists a finite
family {r;}ic1 of series of KRec A* and a finite family {t;};c1 of series of KRec B* such

that
s = Z Tt .
i€l

16. Distance on the semirings of series.

A distance on any set S is a map d: SxS — Ry with the three properties: for all x, y
and z in S it holds:

(i) symmetry: d(z,y) =d(y,z) ;

(ii) positivity: d(z,y) =0 x=1y;

(iii) triangular inequality: d(z,2) < d(z,y)+d (y,2) .
If (iii) is replaced by the stronger property:

(iv) triangular inequality: d(x,z) < max (d(z,y),d (y,2)) ,
then d is said to be an ultrametric distance.

(a) Show that the function defined on S by

0 ifx=y
Vr,y €S d(z,y) =
Y (@y) { 1 otherwise

is an ultrametric distance. We call it the discrete distance on S.

Classically, a sequence (S")n y Of elements of S converges to s in S for the distance d if:

S

Ve>0 INeN Vn>N d(sp,s) <e .

In this way, a distance d defines a topology on S.

(b) Show that if S is equipped with the discrete distance, the only convergent sequences
are the ultimately stationnary sequences.
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Two distances on S are equivalent if the same sequences converge, that is, d and d’ are
equivalent if for any sequence s = (sn)
for d’.

neny S converges for d if and only if it converges

(c) Show that one can always assume that a distance is bounded by 1, that is, if d is a
distance on S, the function f defined by

Vz,y € S f(z,y) =inf{d (z,y),1}

is a distance, equivalent to d.
(d) Let d and d’ be two distances on S. Show that if there exist two constant C and D
in Ry \ {0} such that
Vr,yeS  Cd(zy) <d(z,y) <Dd(z,y)

then d and d’ are equivalent. Is this condition necessary for d and d’ be equivalent?

Let K be a semiring. For s and ¢ in K{A*)), let e(s,t) be the gap between s and t, defined
as the minimal length of words on which s and t are different:

e(s,t)=min{n e N|Jw € A", |w| =n and (s,w) # (t,w)}

The gap is a generalisation of the notion of valuation of a series. The valuation v(s) of s
in K{A*) is defined by:

v(s) = e(s,0) = min{|w| | (s, w) # 0} = min{|w| | w € supp s} .
Conversely, and if K is a ring, e(s,t) =v(s—1t).
(e) Show that the map defined by
Vs, t € K(A*)  d’(s,t) =27 ) (0.1)

is an ultrametric distance on K{{(A*)), bounded by 1.
(f) Let ¢ be a distance on K{(A*)), bounded by 1. Show that the map defined by

Wt eR(A) s =3 Y (maxlellsul () [ul=n})
neN (0.2)
is a distance on K({A*)), bounded by 1.

(g) Show that, whatever the distance ¢, d(s,t) < d’(s,t) holds.

(h) Show that if c is the discrete distance, then d’(s,t) < 2 d(s,?) holds, hence that (0.1)
and (0.2) define two equivalent distances on K{A*)) if K is equipped with the discrete
distance.

(i) Show that the topology defined by d on K{{A*) is the topology of the simple conver-
gence.

(j) Show that if K is a topological semiring, then so are K@@ (Q finite) and K{{A*)).
(k) Let (S”)nEN and (t")nEN be two sequences of series in the topological semiring K{A*)).

Verify that (sn + t")nEN or (sn tn)nGN may be convergent sequences, without (sn)
or (tn)n N being convergent sequences.

neN
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Lecture Il — Exercises with solution

Unless stated otherwise, the alphabet A is A = {a,b}.

1. Compute the (minimal) quotient of the following B-automaton:

2. Let Dy be the B-automaton below. Compute the (minimal) quotient of Dy, the co-quotient
of Dy, the co-quotient of the quotient of Dy, etc.

3. Calculate all the quotients and all the co-quotients of the N-automaton:
M
—D—O—

4. Coloured Transition Lemma. Establish the following statement:

Let A be a (Boolean) automaton on a monoid M the transitions of which are coloured in
red or in blue. Then, the set of labels of computations of A that contain at least one red
transition is a rational set (of M ).

We construct a covering B of A: B' = (M, Qx{0,1}, F,Ix{0},Tx{0,1}), in the following
manner (the Out-morphism from B’ to A is the projection on the first component):

F= {((p,()),m, (q,O)) ‘ (p,m,q) € E and (p,m,q) is blue}
U {((p70)ama (g, 1)) | (p,m,q) € E and (p,m,q) is red}
u{((p,1),m,(q,1)) | (p,m,q) € E} .

A successful computation of B’ which ends in a state (¢,0) contains only blue transitions, by
construction. Hence the behaviour of B = (Qx{0,1}, M, F,Ix{0},Tx1) is the rational
set we seek.

5. Show that any Z-rational series is the difference of two N-rational series.
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6. Construct the Schiitzenberger covering S of the following B-automaton A.

a+b

How many S-immersions are there in this covering (that is, how many sub-automata T of S
that are unambiguous and equivalent to A)?

La Figure 1 montre A, A et le revétement de Schiitzenberger S.

Les transitions de S qui arrivent dans un méme état et se projettent sur une méme transition
de A sont marquées avec des lignes doubles. On notera qu’on a fait de méme pour les fleches
finales des états de S notés u et v (qu’on peut voir comme deux transitions qui arrivent sur
I’état final subliminal de S et qui se projettent sur la méme transition finale de A.

Pour avoir une S-immersion, il faut supprimer un élément de chacun de ces couples, ce qui
donne 23 = 8 possibilités distinctes.

Figure 1: L’automate A, son déterminisé, et son revétement de Schiitzenberger

7. Compute the Schiitzenberger covering of the B-automaton B; of the Figure 2.

Le revétement de Schiitzenberger de 'automate B est dessiné a la Figure 3. Les transitions
concurrentes sont marquées par des lignes doubles.
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Figure 3: The Schiitzenberger covering of By

8. Quotients and product of automata. Let A, B and C be three K-automata on A*.
Show that if B is a quotient of A, then BRC is a quotient of ARC.

9. Quotients and co-quotients of the C,.

The N-automaton C; over {a,b}" shown at Figure 4 (a) associates with every word w the
integer w the binary representation of which is w when a is replaced by the digit 0 and b
by 1.

Let Cy be the tensorial square of C1: Cy = C1®Cy ; Va, shown at Figure 4 (b), is the minimal
quotient of Co and V), shown at Figure 4 (c ), is the minimal co-quotient of C.

(a) Compute the minimal quotient Vs and the minimal co-quotient V4 of C3 = Ca®C; .
(b) Compute the minimal co-quotient V) of C4 = C3®Cy . Compare with V.

(c) Generalising the above computation, compute the minimal co-quotient V), of
Cn+1 = C®Cy , for every n.
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a+b 2a+2b 2a+2b 4a+4b a+b 2a4+2b 4a+4b
g g u& oG
O
b
(a) C1 (b) V2 (c) Vs

Figure 4: Three N-automata

10. Conjugacy of an automaton and its determinisation.

(a) Let A; be the (Boolean) automaton of Figure 5 and A, its determinisation. Verify
that .//4\1 X A1 holds, with

100
110

X, —

! 101
11 1

(b) Generalisation. Let A be a (Boolean) automaton and A its determinisation. Show

that there exists an Boolean matrix X such that .Z:X> A.

a a
. a ~ b

J
b b

Figure 5: L’automate 4,

Solution:  (a) Le déterminisé Aj est représenté a la Figure 6. Les automates A; et A;
s’écrivent:

atb a 0 0 . 3“288

Ar={(@1 00, o o b |, |0 Ar={((1 0 0 o), @ , .
0 0 a+bd) \1 0 0 b al{l
) 00 b a 1

S}

Figure 6: L’automate A

On vérifie:
1 00 0 1 00 0
110 0 110
(1000)~1017(100), 1101-((1)), et
111 1 111
b a 00 1 00 a+b a 0 1 00
0 abo|l [t 10| _fatba b 110.“:)“)82
00 b a 1 0 1| |a+db a a+bd 1 0 1 00+b’
00 b a 111 a+b a a+b 111 ¢
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qui est bien 'identité voulue.

~)

(b) Soient A = (I,u,T) un automate booléen de dimension Q et A= <IA,/7,

déterminisé, de dimension R, avec

> sSon

R={I-p(w)[we A"}

[A Iimitation de la matrice X; de la question précédente,] soit X g la Rx@Q-matrice (booléenne)
dont la J-iéme ligne est J. Par définition du déterminisé, on a:

~ {1 si J=1 . {1 si K =J-ula)

)

I;= ; pla)sx =

0 sinon 0 sinon

and fJ:J-T.

Il s’ensuit alors que la J-éme ligne de fi(a) - X est égale & K avec K = J - u(a) et que
puisque la J-iéme ligne de X est J, la J-iéme ligne de Xg - p(a) est J - pu(a) = K. Les
égalités évidentes I Xp=1cet f] = Xp - T achévent la preuve de ce que A X A.

11. Automata with bounded ambiguity and the Schiitzenberger covering. In the
sequel, A is a Boolean automaton, A its determinisation, and S its Schiitzenberger covering.

Definition 3. We call concurrent transition set of S a set of transitions which
(i) have the same destination (final extremity),
(i) are mapped onto the same transition of A.

Two transitions of S are called concurrent if they belong to the same concurrent trans-
ition set.

We also set the folllowing definition:

Definition 4. An automaton A over A* is of bounded ambiguity if there exists an integer k
such that every word w in |A| is the label of at most k distinct computations. The smallest
such k is the ambiguity degree of A.

(a) What can be said of an automaton whose Schiitzenberger covering contains no con-
current transitions?

(b) Show that there exists a computation in S which contains two transitions of the same
concurrent transition set if and only if there exists a concurrrent transition which
belongs to a circuit.

(c) Let p 5 s and ¢ — s be two concurrent transitions of S and
. a Y a z
ci= 21 —p—>5—>q— 8 —t—
s s s s s s s

a computation of S where i is an initial state and t a final state. Show that w = rayaz
is the label of at least two computations of A.

(d) Prove that an automaton A is of bounded ambiguity if and only if no concurrent
transition of its Schiitzenberger covering belongs to a circuit.

(e) Check that By of Figure 2 is of bounded ambiguity.
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(f)

Work

Give a bound on the ambiguity degree of an automaton as a function of the cardinals
of the concurrent transition sets of its Schiitzenberger covering.

Compute that bound in the case of Bj.

Infer from the above the complexity of an algorithm which decide if an automaton is
of bounded ambiguity.

Si S ne contient pas de transitions concurrentes, la projection de S sur .,Zl\, qui est
localement co-surjective par construction, est localement co-bijective. Elle fait de S
un co-revétement de .,Z, et il y a donc bijection entre les calculs de S et ceux de A
Comme il y a, par construction, bijection entre les calculs de S et ceux de A, chaque
mot accepté par A est accepté par un seul calcul dans A donc dans A: A est non
ambigu.

Soient p —— s et ¢ — s deux transitions concurrentes de S. Si i — p —— 5 —»
g s =t est un calcul de S qui les contient toutes les deux, s —— ¢ — s est
un circuit qui contient 'une d’entre elles. Si réciproquement s AN ¢ — s est un
circuit qui contient I'une d’entre elles, alors i —s p —» s AN g — s =5t est un
calcul de S qui les contient toutes les deux.

Notons plus précisément les états de S sous la forme (1,14), (P,p), (P,q), (S,s), (T,t),
et le calcul

c = ?(I,i) (Pp) (SS) 2, (PQ) B (S, s) ; (T,t)?

Ce calcul se projette dans A sur un calcul e := — [ % P %) S % T — .
A A A A A

Inversement, le calcul e de A se releve dans S en c, mais il peut également se relever
en un calcul dont la dernie¢re transition est (P,p) — (S,s): par induction sur la

longueur de zay, puisque s S — A est localement co—surjectif7 et en procédant de
la droite vers la gauche, on construit un calcul

ci= 2 (1)) =55 (Pp) = (85) — (T0t) —

dont le premier état est initial.

Par projection sur .4, on a alors deux calculs réussis

/ . Tay a z 1 . Tay a z
c = 21— qg—s—t— et ¢ = =] —=p—s5s—t—
A A A A A A A A A A

qui acceptent w et qui sont distincts puisque p et ¢ le sont.

Montrons d’abord que la condition est nécessaire, c’est-a-dire, que si une transition
concurrente de S appartient & un circuit, A4 n’est pas d’ambiguité bornée.

Pour cela on reprend les notations de la question précédente, et on va montrer que
le mot za(ya)®z est reconnu par (au moins) n + 1 calculs dans A. Avec le méme
raisonnement que précédemment, on observe que xa(ya)™z est accepté par le calcul

n
¢ = ﬁf—”%s(%l’%ﬁ =T —
A A A A A A

qui se reléeve dans S en n + 1 calculs distincts (pour j =0 a n):

2 (1) O () s (5,9) (L (Pa) 2 (59)) Do (T0)
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qui eux-mémes se projettent en n + 1 calcul distincts de A qui ont tous za(ya)™ z
comme étiquette.

Inversement, si aucune transition concurrente de S n’appartient a un circuit, un calcul
réussi de S ne contient jamais deux transitions d’un méme ensemble de concurrence
(question (c)). C’est donc un calcul d’au moins un des sous-automates de S dans
lequel on n’a gardé qu’une seule transition par ensemble de concurrence. Chacun de
ces automates est non ambigu par construction (co-revétement d’un automate non
ambigu), il n’y en a qu'un nombre fini, et leur réunion donne tous les calculs de S donc

de A.

(e) On observe aisément qu’aucune des transitions concurrentes du revétement de la Fig-
ure 3 n’appartient a un circuit.

(f) S’ily a k ensembles de concurrence, et que chaque ensemble de concurrence contient c¢;
transitions, la construction décrite & la question (e) donne [] j=1J = kc; automates
non ambigus dont la réunion recompose 1’ensemble des calculs de A.

Dans le cas de By, il y a 5 ensembles de concurrence (NPO 'ensemble des deux trans-
itions finales des états qui se projettent en 34), chaque ensemble a deux éléments, d’otl
une borne de 32.

(N.B. Le vrai degré d’ambiguité de By est 6, ce que l'on peut découvrir par d’autres
méthodes plus sophistiquées (cf. par exemple J.S. et R. de Souza, Theory of Computing
Systems 47, (2010), 758-785, accessible depuis ma page web) — mais ceci est une autre
histoire.)

(g) Si A a n états et m transitions, S a (au plus) n2™ états et k = m2™ transitions.

La détermination des transitions concurrentes se fait au cours de la construction de &
et celle des circuits par un parcours en profondeur de S, linéaire en k. Au total, une
procédure dont la complexité (dans le cas le pire) est en O(m2™).
(N.B. Cette méthode n’est pas la méthode optimale pour décider si un automate A
est d’ambiguité bornée. Cette propriété peut étre observée sur le cube de A, avec un
algorithme de complexité O(m?), ce qui est évidemment bien meilleur. Dans le cas
de notre automate By, c’est encore plus simple puisque son carré ne contient aucun
circuit: il n’est pas difficile de se convaincre que c’est une condition suffisante mais pas
nécessaire).
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Lecture Il — Exercises with solution

Unless stated otherwise, the alphabet A is A = {a,b}.

1. Compute the reduced representation of the following N-automaton.

0110 0
_ oo 10 |t
Li=@1 000, m@=|5,, 9 T1=]|,
0011 1
On calcule: Lom(la)=(1 0 0 0),
L -p(a)=(0 1 1 0),
(01 1 0)-p(a)=(0 0 1 2),
(00 1 2)-m(a)=(0 0 2 4)=2(0 0 1 2)

Equations qui correspondent a la représentation ci-dessous:

010 0
ILy=(1 0 0), pe(a)=(0 0 1|, Tp=|1
00 2 2

La transposée de la représentation précédente est:

000 1
I3=(0 1 2), ps(a)=1|1 0 0], Tz=10
00 2 0

I-ps(la)=(0 1 2),
I3~‘LL3(0,):(1 2 4);
(1 2 4)-ps(a)=(2 4 8)=2(1 2 4)

On calcule:

Equations qui correspondent a la représentation ci-dessous,

Iy=(1 0), u4(a):<8 ;), T4:((1)),

et dont la transposée correspond a ’automate ci-dessous.
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2. Let A; be the Q-automaton on {a}* shown at Figure 1 (the unique letter a of the alphabet
is not shown on the transitions of the figure). Compute a reduced automaton, equivalent

to Al.

Figure 1: The Q-automaton A;

Solution: La représentation correspondant & A; est

0 1 0 1 0
-1 2 0 0 1
L= 0 0 0), pi(a)= L1 1 ol T = 1
-2 0 -1 3 0

On calcule:?

3 -1 2 =3)=3(1 00 0—(0 1 0 1)4+2(0 0 1 -1)

Equations qui correspondent a la représentation ci-dessous, et donc a I'automate de la Fig-

0 1 0 0
Li=(1 00, pa=(-3 2 -1|, Ta=|[1
3 -1 2 -1

La transposée de la représentation précédente est:

0 -3 3 1
Is=(0 1 -1), p3(a)=(1 2 -1|, Tz=1|0
0 -1 2 0

I3 pz(la) = (0 1 —-1),
I3-pz(a)=(1 3 =3)=3(0 1 —-1)+(1 0 0),
(1 0 0)-psz(a)=(0 -3 3)=-3(0 1 -1)

ure 2 (a)

On calcule:

20On choisit de mettre les pivots & 1 pour suivre les calculs de Awali (cf.
vaucanson-project.org/Awali).
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Equations qui correspondent a la représentation ci-dessous,

Li=( 0), N4(a):(_33 (1))’ T4:<(1)) ’

et dont la transposée correspond a automate de la Figure 2 (b).

(a) Semi-réduction gauche-droite (b) Semi-réduction droite-gauche

Figure 2: Réduction de Ay

3. Consider the minimal (Boolean) automaton of {a" | n =0,1,2,4 (mod 7)} as an auto-
maton with multiplicity in Z/27 and reduce it. Comment.

4. Let F be a field. Show that two F-recognisable series over A* are equal if and only if they
coincide on all the words of length less than the sum of the dimensions of the representations
which realise them.

Show the bound is sharp.

- O0——0—"—0—~  —O0=——0—"=0—

a

5. Discriminating length. We call the discriminating length between two non-equivalent
(Boolean) automata A and B the length of a shortest word which is accepted by one and not
the other. We write L4(n,m) (resp. Lnda(n,m) ) for the maximum of the discriminating
lengths when A and B have respectively n and m states and are deterministic (resp. and
are non-deterministic).

(a) With methods relevant to Boolean automata, show that L4(n,m) < nm.
(b) Compute Lg4(n,m).

(¢) Give an upper bound for Ln4(n,m) .
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Lecture IV — Exercises with solution

Unless stated otherwise, the alphabet A is A = {a,b}.

1. Orders. The alphabet A is totally ordered and this order is denoted by <.

The lexicographic order, denoted by <, extends the order on A to an order on A* and is
defined as follows. Let v and w be two words in A* and u their longest common prefiz.
Then, v < w if v =w or,if v =uas, w=wubt with a and b in A, then a < b.

(a) Give a finite transducer over A* x A* which realises <, that is, which asssociates with
every word u of A* the set of words which are equal to or greater than w.

The radiz order (also called the genealogical order or the short-lex order), denoted by C, is
defined as follows: v C w if |v| < |w| or |v| = |w| and v 5 w.

(b) Give a finite transducer over A* x A* which realises C,

For every language L of A*, we denote by minlg (L) (resp. Maxlg (L)) the set of words of L
which have no smaller (resp. no greater) words in L of the same length in the lexicographic
order.

(c) Show that if L is a rational language, so are minlg (L) and Maxlg (L).

2. Number representation.
Let Ao = {0,1} and A3 = {0, 1,2} be two alphabets of digits.

The alphabet A3 can be first considered as a non-canonical alphabet for the representation
of integers in base 2: 12 =4, 201 =9, etc.

Let vo: A5 — A5 be the normalisation in base 2, that is, the relation which associates with
a word of A% the word of A5 which represents the same integer in base 2.

(a) Give a transducer which realises vo. Comment.

Let ¢: A5 — AZ be the function which maps the binary representation of every integer
onto its representation in base 3, e.g. ¢(1000) = 22.

(b) Show that ¢ is not a rational relation.

3. Operation on numbers.

(a) Give a transducer which realises the multiplication by 9 on the integers written in

binary representation, that is, the relation 7: A5 — A% such that T(w) =9 - w.

(b) Let p: A5x A5 — A} be the relation which realises the multiplication, that is, such
that p(u,v) =w where W=1u-7.

Show that u is not a rational relation.
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4. Map equivalence of a morphism.

Let ¢1: {a,b,c}* — {x,y}* be the morphism defined by:
pr(a) =z, @) =yz, wilc)=2y.

(a) Give a subnormalised transducer which realises 7.

(b) Give a subnormalised transducer which realises @1 1.

(c) Compute a subnormalised transducer which realises ¢1~* o ¢.

5. Iteration Lemma. Let 0: A* — B* be a rational relation.

(a) Show that there exists an integer N such that for every pair (u,v) in 0 whose length?®
is greater than N, there exists a factorisation:

(u,v) = (s,t) (2, y) (0, 2)
such that: (1) 1<|z[+|y/<N and (i) (u,v)=(s,t)(z,y)" (w,2z) C 0.
(b) Show that the mirror function p: A* — A*:
plaraz- - an) =anan-1--- a1 ,

is not a rational relation.

6. Conjugacy. Let Conj: A* — A* be the relation which associates with every word w
the set of its conjugates: Conj(w) = {vu |u,v € A* uwv=w}.

(a) Show that if L is a rational language, then so is Conj(L).

(b) Give a transducer which associates with every word w of {a,b}" the word obtained by
moving the first letter of w to its end.

(c) Compose this transducer with itself.

(d) Show that Conj is not a rational relation.

(b) Dans le transducteur suivant, la premiére lettre ne donne lieu & aucune sortie mais
est mémorisée dans 1’état d’arrivée. On a ensuite une recopie de la suite du mot. On
quitte ’état en sortant la lettre mémorisée.

ala, b|b

all

b1 1b

ala,blb

3The length of a pair is the sum of the lengths of its components.
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(c) Si on applique la construction de la composition de ce transducteur avec lui-méme, on
obtient le transducteur suivant. (On a posé D = ala, b|b.)
On observe que le transducteur composé consiste bien & mémoriser les deux premieres
lettres du mot lu, a recopier la suite, et a sortir enfin les lettres mémorisées.

o0— (a) 1/b
a
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Lecture V — Exercises with solution

1. Apply the construction of the proof of Theorem 3 in order to build real-time transducers
from the two transducers below which realise the universal relation on {a}*x {b}".

all 11

1|b 1
b | al 0

(a) U (b) Uo

2. Give a realisation by representation of the following relations:

(a) the complement of the identity;  (b) the lexicographic order;  (c) the radix
order.

3. Finite and infinite components of a rational relation. Let 7: A* — B* be a
relation. The finite and infinite components 7¢ and 7, of T are defined by:

7(w) otherwise

{ T(w) if ||T(w)]|| is finite { 0 if ||7(w)]| is finite
i (w) = et Too(w) =
0 otherwise

Show that if T is rational, then 7+ and T, are rational and effectively computable from .

Let T be a real-time transducer which realises 7; it is an automaton over M = A* x B*. The
transitions the label of which have a second component which is an infinite subset of B* are
said to be ‘red’.

A word of A* is in the domain of 7o, if and only if it is the first component of a label of at
least one successful computation of 7 which contains at least one red transition. (Remark:
such a word may also be the first component of the label of a successful computation of T
which contains no red transitions.)

Let a: A* — B* be the relation realised by the computations of 7 which contain at least one
red transition. By the Coloured Transition Lemma proved in Exercise 11.4., « is a rational
relation that iseffectively computable from 7T .

It follows that 7oc = 7[)(Doma x B*) and that 77 = 7()[(Dom7 \ Dom 1) x B*] , and
both are rational subsets of A* x B*.

4. Fibonacci reduction. Give a transducer which realises the composition of the relations

realised by the transducers below (the transducer on the left by the transducer on the right).
blb ala b|ba blb ala

alab

1la b1 1lab
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5. Choosing the uniformisation. Let A = {a,b,c} be a totally ordered alphabet, where
a < b < c, and let 6 be the rational relation from A* into itself whose graph is:

6= (a,a)" (5,1)" (1,) U (a,1)" (b,a)" (L,¢) -

Show that neither the radix uniformisation 6,,4 nor the lexicographic selection 0. are ra-
tional functions.

Le domaine de 0 est a*b* et on a 6(a™b™) = {a"b,a™c}, d’ott on déduit

a"b sin<m, ab sin>m,

Orad(a”™ b™) = { et Oiex(a"0™) = {

ac  sinon, a™ ¢  sinon.

Il s’en ensuit que ni (6raq) "1 (a*b) ni (01ex) "1 (a*b) ne sont rationnels, ce qui établit la pro-
priété.
6. Inherently ambiguous rational relation. Let V; and W, be the transducers of
Example 1V.2:

[Vi|= {(a"b™,c™) | n,m € N} and  |[Wi|={(a"b™,c™) | n,m € N} .

Show that the rational relation |V1 | U |W1| is inherently ambiguous.
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