Introduction to weighted automata theory

Lectures given at the 19th Estonian Winter School in Computer Science

Jacques Sakarovitch

CNRS / Telecom ParisTech

Based on

AUTOMATA THEORY

JACQUES SAKAROVITCH

CAMURIE

Heiko Vogler (Eds.) Handbook of Weighted

Manfred Droste

Werner Kuich

🖄 Springer

Automata

Chapter III

Chapter 4

The presentation is very much inspired by a joint work with

```
Marie-Pierre Béal (Univ. Paris-Est)
and
Sylvain Lombardy (Univ. Bordeaux)
```

entitled

On the equivalence and conjugacy of weighted automata,

a first version of which has been published in *Proc. of CSR 2006* and whose final complete version is still in preparation.

Lecture I

The model of (finite) weighted automata

Paradigm of a machine for the computer scientists

Paradigm of a machine for the rest of the world

Paradigm of a machine for the rest of the world

 $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$

Paradigm of a machine for the rest of the world

The input belongs to a *free monoid* A^*

The input belongs to a *free monoid* A^* The output belongs to the *Boolean semiring* \mathbb{B}

The input belongs to a *free monoid* A^* The output belongs to the *Boolean semiring* \mathbb{B} The function realised is *a language*

$$\mathbb{B} \ni k \quad \longleftarrow \quad (u, v) \in A^* \times B^*$$

The input belongs to a *direct product of free monoids* $A^* \times B^*$ The output belongs to *the Boolean semiring* \mathbb{B}

$$\mathbb{B} \ni k \quad \longleftarrow \quad \mathbb{R}$$
$$(u, v) \in A^* \times B^*$$
$$R \subseteq A^* \times B^*$$

The input belongs to a *direct product of free monoids* $A^* \times B^*$ The output belongs to *the Boolean semiring* \mathbb{B} The function realised is *a relation between words*

The simplest Turing Machine

Direction of movement of the read head

The 1 way 1 tape Turing Machine (1W1TM)

bab $\in A^*$

bab $\in A^*$

$$L(\mathcal{B}_1)\subseteq A^*$$

bab $\in A^*$

 $L(\mathcal{B}_1) = \{w \in A^* \mid w \in A^* b A^*\} = \{w \in A^* \mid |w|_b \geqslant 1\}$

Rational (or regular) languages

Languages accepted (or recognized) by finite automata

Languages described by rational (or regular) expressions

Languages defined by MSO formulae

Remarkable features of the finite automaton model

Decidable equivalence (decidable inclusion)

Closure under complement

Canonical automaton (minimal deterministic automaton)

 $L(\mathcal{B}_1)\subseteq A^*$

$$L(\mathcal{B}_1) = L(\mathcal{B}_1') = ig\{ w \in A^* \, ig| \, |w|_b \geqslant 1 ig\}$$

 $L(\mathcal{B}_1) = L(\mathcal{B}_1') = \left\{ w \in \mathcal{A}^* \, \middle| \, |w|_b \geqslant 1
ight\} = \mathcal{A}^* b \mathcal{A}^*$

Here, *automaton* stands for *classical* (Boolean) automaton.

 $\begin{array}{l} \mbox{Definition} \\ \mbox{A (trim) automaton \mathcal{A} is $unambiguous$} \\ \mbox{if no word$} \\ \mbox{is the label of more than one successful computation of \mathcal{A}}. \end{array}$

Here, *automaton* stands for *classical* (Boolean) automaton.

$\begin{array}{l} \mbox{Definition} \\ \mbox{A (trim) automaton \mathcal{A} is $unambiguous$} \\ \mbox{if no word$} \\ \mbox{is the label of more than one successful computation of \mathcal{A}}. \end{array}$

Theorem

It is decidable whether an automaton is ambiguous or not.

Here, *automaton* stands for *classical* (Boolean) automaton.

$\begin{array}{l} \mbox{Definition} \\ \mbox{A (trim) automaton \mathcal{A} is $unambiguous$} \\ \mbox{if no word$} \\ \mbox{is the label of more than one successful computation of \mathcal{A}}. \end{array}$

Theorem

It is decidable whether an automaton is ambiguous or not.

Proof?

$$L(\mathcal{B}_1) = A^* b A^*$$

Counting the number of successful computations $|\mathcal{B}_1|: bab \longmapsto 2 \qquad |\mathcal{B}'_1|: bab \longmapsto 1$

Counting the number of successful computations $|\mathcal{B}_1|: w \longmapsto |w|_b \qquad |\mathcal{B}'_1|: w \longmapsto 1$

The input belongs to a *free monoid* A^*

The output belongs to the *integer semiring* \mathbb{N}

The input belongs to a *free monoid* A^* The output belongs to the *integer semiring* \mathbb{N} The function realised is *a function from* A^* to \mathbb{N}

The input belongs to a *free monoid* A^* The output belongs to the *integer semiring* \mathbb{N} The function realised is *a function from* A^* to \mathbb{N} we call it *a series*

 $s_1 = b + ab + ba + 2bb + aab + \cdots + 2bba + 3bbb + \cdots$

The input belongs to a *free monoid* A^* The output belongs to the *integer semiring* \mathbb{N} The function realised is *a function from* A^* to \mathbb{N} we call it *a series*

- Weight of a path c: product of the weights of transitions in c
- Weight of a word w: sum of the weights of paths with label w

• Weight of a path c: *product* of the weights of transitions in c

Weight of a word w: sum of the weights of paths with label w

 $bab \mapsto 1+4=5$

Weight of a path c: product of the weights of transitions in c

Weight of a word w: sum of the weights of paths with label w

 $b a b \mapsto 1 + 4 = 5 = \langle 101 \rangle_2$

• Weight of a path c: product of the weights of transitions in c

Weight of a word w: sum of the weights of paths with label w

$$bab \mapsto 1+4=5$$
 $|\mathcal{C}_1|: A^* \longrightarrow \mathbb{N}$

• Weight of a path c: *product* of the weights of transitions in c

Weight of a word w: sum of the weights of paths with label w

 $|C_1| = b + ab + 2ba + 3bb + aab + 2aba + \dots + 5bab + \dots$

The input belongs to a *free monoid* A^* The output belongs to a *semiring* \mathbb{K} The function realised is *a function from* A^* to \mathbb{K} : *a series* in $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

Richness of the model of weighted automata

- ► B 'classic' automata
- ▶ N 'usual' counting
- \triangleright Z, Q, R numerical multiplicity
- $\land \ \ \langle \mathbb{Z} \cup +\infty, \min, + \rangle$
- $\mathfrak{P}(B^*) = \mathbb{B}\langle\!\langle B^* \rangle\!\rangle$
- $\mathbb{N}\langle\langle B^* \rangle\rangle$ weighted transducers
- $\mathfrak{P}(F(B))$

Min-plus automata • $\langle \mathbb{Z}, \min, \max \rangle$ fuzzy automata transducers

- pushdown automata

 \mathcal{L}_1

• Weight of a path *c*:

product, that is, the sum, of the weights of transitions in c

Weight of a word w:

sum, that is, the min of the weights of paths with label w.

Weight of a path c: product, that is, the *sum*, of the weights of transitions in c
Weight of a word w:

sum, that is, the min of the weights of paths with label w.

 $b a b \mapsto \min(1 + 0 + 1, 0 + 1 + 0) = 1$ $|\mathcal{L}_1|: A^* \longrightarrow \mathbb{Z}\min(1 + 0 + 1, 0 + 1 + 0) = 1$

Weight of a path c:

product, that is, the sum, of the weights of transitions in c

Weight of a word w: sum, that is, the min of the weights of paths with label w.

 $|C_1| = 01_{A^*} + 0a + 0b + 1ab + 1ba + 0bb + \dots + 1bab + \dots$

Series play the role of languages

 $\mathbb{K}\langle\!\langle A^*
angle$ plays the role of $\mathfrak{P}(A^*)$

Weighted automata theory

is linear algebra

of computer science

The Turing Machine equivalent to finite transducers

Direction of movement of the k read heads

The 1 way k tape Turing Machine (1WkTM)

Outline of the lectures

- 1. Rationality
- 2. Recognisability
- 3. Reduction and equivalence
- 4. Morphisms of automata

$Lecture \ II$

Rationality

Outline of Lecture II

- The set of series $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ is a \mathbb{K} -algebra.
- Automata are (essentially) matrices: $\mathcal{A} = \langle I, E, T \rangle$
- Computing the behaviour of an automaton boils down to solving a linear system $X = E \cdot X + T$ (s)
- Solving the linear system (s) amounts to invert the matrix (Id − E) (hence the name rational)
- ► The inversion of Id E is realised by an infinite sum $Id + E + E^2 + E^3 + \cdots$: the star of E
- What can be computed by a finite automaton is exactly what can be computed by the star operation (together with the algebra operations)

The semiring $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

 $\{(u, v) \mid uv = w\}$ finite \implies Cauchy product well-defined

 $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ is a semiring

The semiring $\mathbb{K}\langle\!\langle M \rangle\!\rangle$

 $\forall m \{(x,y) \mid xy = m\}$ finite \implies Cauchy product well-defined

The semiring $\mathbb{K}\langle\!\langle M \rangle\!\rangle$

Conditions for $\{(x, y) | xy = m\}$ finite for all *m* Definition *M* is graded if *M* equipped with a length function φ $\varphi: M \to \mathbb{N}$ $\varphi(mm') = \varphi(m) + \varphi(m')$

$$M$$
 f.g. and graded $\implies \mathbb{K}\langle\!\langle M \rangle\!\rangle$ is a semiring

Examples

 \mathbb{M} trace monoid, then $\mathbb{K}\langle\!\langle M \rangle\!\rangle$ is a semiring $\mathbb{K}\langle\!\langle A^* \times B^* \rangle\!\rangle$ is a semiring

F(A), the free group on A, is not graded

The algebra $\mathbb{K}\langle\!\langle M \rangle\!\rangle$

 $\mathbb{K}\langle\!\langle M \rangle\!\rangle$ is an algebra

$$t \in \mathbb{K}$$
 $t^* = \sum_{n \in \mathbb{N}} t^n$

How to define infinite sums ?

One possible solution

Topology on $\ \mathbb{K}$

Definition of summable families and of their sum

 t^* defined if $\{t^n\}_{n\in\mathbb{N}}$ summable

Other possible solutions

axiomatic definition of star, equational definition of star

- $orall \mathbb{K}$ $(0_{\mathbb{K}})^* = 1_{\mathbb{K}}$
- $\mathbb{K} = \mathbb{N}$ $\forall x \neq 0$ x^* not defined.
- $\mathbb{K} = \mathcal{N} = \mathbb{N} \cup \{+\infty\}$ $\forall x \neq 0$ $x^* = \infty$.
- $\mathbb{K} = \mathbb{Q}$ $(\frac{1}{2})^* = 2$ with the natural topology, $(\frac{1}{2})^*$ is undefined with the discrete topology.

In any case

 $t^* = 1_{\mathbb{K}} + t \, t^*$

Star has the same flavor as the inverse

If \mathbb{K} is a ring

 $t^*(1_{\mathbb{K}}-t)=1_{\mathbb{K}}$

$$\frac{1_{\mathbb{K}}}{1_{\mathbb{K}}-t}=1_{\mathbb{K}}+t+t^2+\cdots+t^n+\cdots$$

Star of series

$$s \in \mathbb{K}\langle\!\langle A^*
angle$$
 When is $s^* = \sum_{n \in \mathbb{N}} s^n$ defined ?

Topology on \mathbb{K} yields topology on $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

s proper $s_0 = \langle s, 1_{\mathcal{A}^*} \rangle = 0_{\mathbb{K}}$

$$s$$
 proper \implies s^* defined

Rational series

 $\mathbb{K}\langle A^*\rangle\subseteq\mathbb{K}\langle\!\langle A^*\rangle\!\rangle\qquad \text{ subalgebra of polynomials}$

 \mathbb{K} Rat A^* closure of $\mathbb{K}\langle A^* \rangle$ under

- sum
- product
- exterior multiplication
- and star

 \mathbb{K} Rat $A^* \subseteq \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

subalgebra of rational series

Fundamental theorem of finite automata

Theorem $s \in \mathbb{K}\operatorname{Rat} A^* \quad \iff \quad \exists \mathcal{A} \in \mathsf{WA}(A^*) \quad s = |\mathcal{A}|$

Fundamental theorem of finite automata

Theorem

 $s \in \mathbb{K}\operatorname{Rat} A^* \quad \iff \quad \exists \mathcal{A} \in \mathsf{WA}(A^*) \quad s = |\mathcal{A}|$

Kleene theorem ?

Fundamental theorem of finite automata

Theorem $s \in \mathbb{K}\operatorname{Rat} A^* \iff \exists A \in \mathsf{WA}(A^*) \quad s = |A|$

Kleene theorem ?

Theorem *M* finitely generated graded monoid $s \in \mathbb{K} \operatorname{Rat} M \iff \exists A \in \operatorname{WA}(M) \quad s = |A|$

Automata are matrices

$$\mathcal{C}_1 = \langle I_1, E_1, T_1 \rangle = \left\langle \begin{pmatrix} 1 & 0 \end{pmatrix}, \begin{pmatrix} a+b & b \\ 0 & 2a+2b \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle$$
.

Automata are matrices

$$\mathcal{A} = \langle I, E, T \rangle$$
 $E = \text{incidence matrix}$
$$\mathcal{A} = \langle I, E, T \rangle$$
 $E = \text{incidence matrix}$

Notation wl(x) = weighted label of xIn our model, e transition $\Rightarrow wl(e) = k a$

$$\mathcal{A} = \langle I, E, T \rangle$$
 $E = \text{incidence matrix}$

Notation $wl(x) = weighted \ label of \ x$ In our model, e transition $\Rightarrow wl(e) = k a$

$$E_{p,q} = \sum \left\{ \mathsf{wl}(e) \mid e \quad \text{transition from } p \text{ to } q \right\}$$

$$\mathcal{A} = \langle I, E, T \rangle$$
 $E = \text{incidence matrix}$

Notation $wl(x) = weighted \ label \ of \ x$ In our model, e transition $\Rightarrow wl(e) = k a$

$${\sf E}_{
ho,q} = \sum \left\{ {f wl}(e) \, | \; e \; \; \; {
m transition} \; {
m from} \; p \; {
m to} \; q
ight\}$$

Lemma

$$E_{p,q}^{n} = \sum \{ wl(c) \mid c \text{ computation from } p \text{ to } q \text{ of length } n \}$$

 $\mathcal{A} = \langle I, E, T \rangle$ E = incidence matrix

 $E_{p,q} = \sum \{ \mathbf{wl}(e) \mid e \text{ transition from } p \text{ to } q \}$

 $\mathcal{A} = \langle I, E, T \rangle$ E =incidence matrix

 $E_{p,q} = \sum \{ \mathbf{wl}(e) \mid e \text{ transition from } p \text{ to } q \}$

$$E^* = \sum_{n \in \mathbb{N}} E^n$$

 $E_{p,q}^* = \sum \left\{ \mathbf{wl}(c) \mid c \text{ computation from } p \text{ to } q \right\}$

 $\mathcal{A} = \langle I, E, T \rangle$ E =incidence matrix

 $E_{p,q} = \sum \{ \mathbf{wl}(e) \mid e \text{ transition from } p \text{ to } q \}$

$$E^* = \sum_{n \in \mathbb{N}} E^n$$

 $E_{p,q}^* = \sum \left\{ \mathbf{wl}(c) \mid c \text{ computation from } p \text{ to } q \right\}$

$$|\mathcal{A}| = I \cdot E^* \cdot T$$

 $\mathbb{K} \text{ semiring} \qquad M \text{ graded monoid}$ $\mathbb{K}\langle\!\langle M \rangle\!\rangle^{Q \times Q} \text{ is isomorphic to } \mathbb{K}^{Q \times Q} \langle\!\langle M \rangle\!\rangle$ $E \in \mathbb{K}\langle\!\langle M \rangle\!\rangle^{Q \times Q} \qquad E \text{ proper } \Longrightarrow E^* \text{ defined}$ $\frac{\mathsf{Theorem}}{\mathsf{The entries of } E^* \text{ are}}$

in the rational closure of the entries of E

Fundamental theorem of finite automata

K semiring M graded monoid $\mathbb{K}^{Q \times Q} \langle\!\langle M \rangle\!\rangle$ $\mathbb{K}\langle\!\langle M \rangle\!\rangle^{Q \times Q}$ is isomorphic to $E \in \mathbb{K}\langle\!\langle M \rangle\!\rangle^{Q \times Q}$ E^* defined *E* proper \implies Theorem The entries of E^* are in the rational closure of the entries of E

Theorem

The family of behaviours of weighted automata over Mwith coefficients in \mathbb{K} is rationally closed.

The collect theorem

 $\mathbb{K}\langle\!\langle A^* \times B^* \rangle\!\rangle \text{ is isomorphic to } [\mathbb{K}\langle\!\langle B^* \rangle\!\rangle] \langle\!\langle A^* \rangle\!\rangle$

Theorem

Under the above isomorphism,

 \mathbb{K} Rat $A^* \times B^*$ corresponds to $[\mathbb{K}$ Rat $B^*]$ Rat A^*

Lecture III

Recognisability

Outline of Lecture III

- Representation and recognisable series.
- Automata over free monoids are representations
- The notion of action and deterministic automata
- The reachability space and the control morphism
- The notion of quotient and the minimal automaton
- The observation morphism
- The representation theorem

 \mathbb{K} semiring A^* free monoid **K**-representation *Q* finite $\mu: A^* \to \mathbb{K}^{Q \times Q}$ morphism (I, μ, T) $I \in \mathbb{K}^{1 \times Q}$ $\mu \colon A^* \to \mathbb{K}^{Q \times Q}$ $T \in \mathbb{K}^{Q \times 1}$ (I, μ, T) realises (recognises) $s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $\forall w \in A^* \qquad \langle s, w \rangle = I \cdot \mu(w) \cdot T$

K semiring **■** A^* free monoid \mathbb{K} -representation *Q* finite $\mu: A^* \to \mathbb{K}^{Q \times Q}$ morphism $(I, \mu, T) \qquad I \in \mathbb{K}^{1 \times Q} \qquad \mu \colon A^* \to \mathbb{K}^{Q \times Q} \qquad T \in \mathbb{K}^{Q \times 1}$ (I, μ, T) realises (recognises) $s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $\forall w \in A^* \qquad \langle s, w \rangle = I \cdot \mu(w) \cdot T$

 $s \in \mathbb{K}\langle\!\langle A^*
angle
angle$ recognisable if s realised by a \mathbb{K} -representation

K semiring **■** A^* free monoid \mathbb{K} -representation $\mu \colon A^* \to \mathbb{K}^{Q \times Q}$ morphism Q finite $(I, \mu, T) \qquad I \in \mathbb{K}^{1 \times Q} \qquad \mu \colon A^* \to \mathbb{K}^{Q \times Q} \qquad T \in \mathbb{K}^{Q \times 1}$ (I, μ, T) realises (recognises) $s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $\forall w \in A^* \qquad \langle s, w \rangle = I \cdot \mu(w) \cdot T$

 $s \in \mathbb{K}\langle\!\langle A^*
angle
angle$ recognisable if s realised by a \mathbb{K} -representation

 $\mathbb{K} \operatorname{Rec} A^* \subseteq \mathbb{K} \langle\!\langle A^* \rangle\!\rangle$ submodule of recognisable series

K semiring **■** A^* free monoid **K**−representation *Q* finite $\mu: A^* \to \mathbb{K}^{Q \times Q}$ morphism $(I, \mu, T) \qquad I \in \mathbb{K}^{1 \times Q} \qquad \mu \colon A^* \to \mathbb{K}^{Q \times Q} \qquad T \in \mathbb{K}^{Q \times 1}$ (I, μ, T) realises (recognises) $s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $\forall w \in A^* \qquad \langle s, w \rangle = I \cdot \mu(w) \cdot T$ Example $I = \begin{pmatrix} 1 & 0 \end{pmatrix}, \quad \mu(a) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mu(b) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad T = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (I, μ, T) realises $\sum |w|_b w \in \mathbb{K} \operatorname{Rec} A^*$ $w \in A^*$

 \mathbb{K} semiring M monoid **K**-representation *Q* finite $\mu: A^* \to \mathbb{K}^{Q \times Q}$ morphism (I, μ, T) $I \in \mathbb{K}^{1 \times Q}$ $\mu \colon A^* \to \mathbb{K}^{Q \times Q}$ $T \in \mathbb{K}^{Q \times 1}$ (I, μ, T) realises (recognises) $s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $\forall w \in A^* \qquad \langle s, w \rangle = I \cdot \mu(w) \cdot T$

 \mathbb{K} semiring M monoid **K**-representation *Q* finite $\mu: M \to \mathbb{K}^{Q \times Q}$ morphism (I, μ, T) $I \in \mathbb{K}^{1 \times Q}$ $\mu \colon M \to \mathbb{K}^{Q \times Q}$ $T \in \mathbb{K}^{Q \times 1}$ (I, μ, T) realises (recognises) $s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $\forall w \in A^* \qquad \langle s, w \rangle = I \cdot \mu(w) \cdot T$

 \mathbb{K} semiring M monoid **K**-representation *Q* finite $\mu: M \to \mathbb{K}^{Q \times Q}$ morphism (I, μ, T) $I \in \mathbb{K}^{1 \times Q}$ $\mu \colon M \to \mathbb{K}^{Q \times Q}$ $T \in \mathbb{K}^{Q \times 1}$ (I, μ, T) realises (recognises) $s \in \mathbb{K}\langle\!\langle M \rangle\!\rangle$ $\forall m \in M$ $\langle s, m \rangle = I \cdot \mu(m) \cdot T$

 \mathbb{K} semiring M monoid **K**−representation Q finite $\mu \colon M \to \mathbb{K}^{Q \times Q}$ morphism (I, μ, T) $I \in \mathbb{K}^{1 imes Q}$ $\mu \colon M \to \mathbb{K}^{Q imes Q}$ $T \in \mathbb{K}^{Q imes 1}$ (I, μ, T) realises (recognises) $s \in \mathbb{K}\langle\!\langle M \rangle\!\rangle$ $\forall m \in M$ $\langle s, m \rangle = I \cdot \mu(m) \cdot T$

 $s \in \mathbb{K}\langle\!\langle M \rangle\!\rangle$ recognisable if s realised by a \mathbb{K} -representation

K semiring **■** M monoid **K**−representation *Q* finite $\mu: M \to \mathbb{K}^{Q \times Q}$ morphism (I, μ, T) $I \in \mathbb{K}^{1 imes Q}$ $\mu \colon M \to \mathbb{K}^{Q imes Q}$ $T \in \mathbb{K}^{Q imes 1}$ (I, μ, T) realises (recognises) $s \in \mathbb{K}\langle\!\langle M \rangle\!\rangle$ $\forall m \in M$ $\langle s, m \rangle = I \cdot \mu(m) \cdot T$ $s \in \mathbb{K}\langle\langle M \rangle\rangle$ recognisable if s realised by a \mathbb{K} -representation

 $\mathbb{K} \mathrm{Rec} \ M \subseteq \mathbb{K} \langle\!\langle M \rangle\!\rangle \qquad \text{submodule of recognisable series}$

$\mu \colon A^* \to \mathbb{K}^{Q \times Q}$	defined by	$\{\mu(a)\}_{a\in A}$
p	aonnoa aj	(r~(~)) aer

 \mathbb{K} semiring M monoid

 $\mu \colon A^* \to \mathbb{K}^{Q \times Q}$ defined by $\{\mu(a)\}_{a \in A}$

$\mu \colon A^* \to \mathbb{K}^{Q \times Q}$	defined by	$\{\mu(a)\}_{a\in A}$
p	aonnoa aj	(r~(~)) aer

$$\mathcal{C}_1 = \langle I_1, E_1, T_1 \rangle = \left\langle \begin{pmatrix} 1 & 0 \end{pmatrix}, \begin{pmatrix} a+b & b \\ 0 & 2a+2b \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle .$$

$$\mathcal{C}_{1} = \langle I_{1}, E_{1}, T_{1} \rangle = \left\langle \begin{pmatrix} 1 & 0 \end{pmatrix}, \begin{pmatrix} a+b & b \\ 0 & 2a+2b \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle \\ E_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} a + \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} b$$

$$\begin{aligned} \mathcal{C}_1 &= \langle I_1, E_1, T_1 \rangle = \left\langle \begin{pmatrix} 1 & 0 \end{pmatrix}, \begin{pmatrix} a+b & b \\ 0 & 2a+2b \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle \\ \mathcal{E}_1 &= \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} a + \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} b \\ \mathcal{C}_1 &= \begin{pmatrix} I_1, \mu_1, T_1 \end{pmatrix} \qquad \mu_1(a) = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \quad \mu_1(b) = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \end{aligned}$$

$$C_{1} = \langle I_{1}, E_{1}, T_{1} \rangle = \left\langle \begin{pmatrix} 1 & 0 \end{pmatrix}, \begin{pmatrix} a+b & b \\ 0 & 2a+2b \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle .$$
$$E_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} a + \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} b$$

$$C_1 = (I_1, \mu_1, T_1)$$
 $\mu_1(a) = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $\mu_1(b) = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$

$$|\mathcal{C}_1| = I_1 \cdot E_1^* \cdot T_1 = \sum_{w \in A^*} (I_1 \cdot \mu_1(w) \cdot T_1) w$$

$$\mathcal{C}_1 \xrightarrow{a} p \xrightarrow{b} q \xrightarrow{2a} q \xrightarrow{b} q$$

$$C_{1} = \langle I_{1}, E_{1}, T_{1} \rangle = \left\langle \begin{pmatrix} 1 & 0 \end{pmatrix}, \begin{pmatrix} a+b & b \\ 0 & 2a+2b \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle .$$
$$E_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} a + \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} b$$

$$\mathcal{C}_1 = (I_1, \mu_1, T_1)$$
 $\mu_1(a) = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $\mu_1(b) = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$

$$|\mathcal{C}_1| = I_1 \cdot E_1^* \cdot T_1 = \sum_{w \in A^*} (I_1 \cdot \mu_1(w) \cdot T_1) w \qquad |\mathcal{C}_1| \in \mathbb{K} \operatorname{Rec} A^*$$

$$\mathcal{C}_1 \xrightarrow{a} p \xrightarrow{b} q \xrightarrow{2a} q \xrightarrow{b} p \xrightarrow{b} q \xrightarrow{2b} q$$

$$C_{1} = \langle I_{1}, E_{1}, T_{1} \rangle = \left\langle \begin{pmatrix} 1 & 0 \end{pmatrix}, \begin{pmatrix} a+b & b \\ 0 & 2a+2b \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle .$$
$$E_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} a + \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} b$$
$$C_{1} = (I_{1}, \mu_{1}, T_{1}) \qquad \mu_{1}(a) = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \quad \mu_{1}(b) = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$

Conversely, representations are automata

The Kleene-Schützenberger Theorem

Fundamental Theorem of Finite Automata and Key Lemma yield

Theorem *A finite* \Rightarrow $\mathbb{K}\operatorname{Rec} A^* = \mathbb{K}\operatorname{Rat} A^*$
$$\mathcal{A} = (I, \mu, T)$$

$$\mathcal{A} = (I, \mu, T)$$

Reachability set

$$\mathbf{R}_{\mathcal{A}} = \{ I \cdot \mu(w) \mid w \in A^* \} \qquad \qquad \mathbf{R}_{\mathcal{A}} \subseteq \mathbb{K}^Q \qquad \qquad \langle \mathbf{R}_{\mathcal{A}} \rangle$$

$$\mathcal{A} = (I, \mu, T)$$

Reachability set

Reachability space

 $\mathbf{R}_{\mathcal{A}} = \{ I \cdot \mu(w) \mid w \in A^* \} \qquad \qquad \mathbf{R}_{\mathcal{A}} \subseteq \mathbb{K}^Q \qquad \qquad \langle \mathbf{R}_{\mathcal{A}} \rangle$

 A^* acts on $\mathbf{R}_{\mathcal{A}}$: $(I \cdot \mu(w)) \cdot a = (I \cdot \mu(w)) \cdot \mu(a) = I \cdot \mu(w a)$

$$\mathcal{A} = (I, \mu, T)$$

Reachability set

Reachability space

 $\mathbf{R}_{\mathcal{A}} = \{ I \cdot \mu(w) \mid w \in A^* \} \qquad \qquad \mathbf{R}_{\mathcal{A}} \subseteq \mathbb{K}^Q \qquad \qquad \langle \mathbf{R}_{\mathcal{A}} \rangle$

 A^* acts on $\mathbf{R}_{\mathcal{A}}$: $(I \cdot \mu(w)) \cdot a = (I \cdot \mu(w)) \cdot \mu(a) = I \cdot \mu(w a)$

This action turns

 $\mathbf{R}_{\mathcal{A}}$ into a deterministic automaton $\widehat{\mathcal{A}}$ (possibly infinite)

 $C_1 = (I_1, \mu_1, T_1)$

$$\mathcal{A} = (I, \mu, T)$$

Reachability set

Reachability space

 $\mathbf{R}_{\mathcal{A}} = \{ I \cdot \mu(w) \mid w \in A^* \} \qquad \qquad \mathbf{R}_{\mathcal{A}} \subseteq \mathbb{K}^Q \qquad \qquad \langle \mathbf{R}_{\mathcal{A}} \rangle$

 $\mathbf{R}_{\mathcal{A}}$ is turned into a deterministic automaton $\widehat{\mathcal{A}}$

$$\mathcal{A} = (I, \mu, T)$$

Reachability set

Reachability space

 $\mathbf{R}_{\mathcal{A}} = \{ I \cdot \mu(w) \mid w \in A^* \} \qquad \qquad \mathbf{R}_{\mathcal{A}} \subseteq \mathbb{K}^Q \qquad \qquad \langle \mathbf{R}_{\mathcal{A}} \rangle$

 $\mathbf{R}_{\mathcal{A}}$ is turned into a deterministic automaton $\widehat{\mathcal{A}}$

If $\mathbb{K}=\mathbb{B}$, $\widehat{\mathcal{A}}$ is the (classical) determinisation of \mathcal{A}

$$\mathcal{A} = (I, \mu, T)$$

Reachability set

Reachability space

 $\mathbf{R}_{\mathcal{A}} = \{ I \cdot \mu(w) \mid w \in A^* \} \qquad \qquad \mathbf{R}_{\mathcal{A}} \subseteq \mathbb{K}^Q \qquad \qquad \langle \mathbf{R}_{\mathcal{A}} \rangle$

 $\mathbf{R}_{\mathcal{A}}$ is turned into a deterministic automaton $\widehat{\mathcal{A}}$

If $\mathbb{K}=\mathbb{B}$, $\widehat{\mathcal{A}}$ is the (classical) determinisation of \mathcal{A}

If \mathbb{K} is *locally finite*, $\mathbf{R}_{\mathcal{A}}$ and $\widehat{\mathcal{A}}$ are finite.

$$\mathcal{A} = (I, \mu, T)$$

Reachability set

Reachability space

 $\mathbf{R}_{\mathcal{A}} = \{ I \cdot \mu(w) \mid w \in A^* \} \qquad \qquad \mathbf{R}_{\mathcal{A}} \subseteq \mathbb{K}^Q \qquad \qquad \langle \mathbf{R}_{\mathcal{A}} \rangle$

 $\mathbf{R}_{\mathcal{A}}$ is turned into a deterministic automaton $\widehat{\mathcal{A}}$

If $\mathbb{K}=\mathbb{B}$, $\widehat{\mathcal{A}}$ is the (classical) determinisation of \mathcal{A}

If \mathbb{K} is *locally finite*, $\mathbf{R}_{\mathcal{A}}$ and $\widehat{\mathcal{A}}$ are finite.

Counting in a locally finite semiring is not really counting

$$\mathcal{A} = (I, \mu, T)$$

Reachability set

$$\mathbf{R}_{\mathcal{A}} = \{ I \cdot \mu(w) \mid w \in A^* \} \qquad \qquad \mathbf{R}_{\mathcal{A}} \subseteq \mathbb{K}^Q \qquad (\mathbf{R}_{\mathcal{A}})$$

$$\mathcal{A} = (I, \mu, T)$$

Reachability set

$$\begin{split} \mathbf{R}_{\mathcal{A}} &= \{ I \cdot \mu(w) \mid w \in A^* \} \\ \Psi_{\mathcal{A}} \colon \mathbb{K} \langle A^* \rangle \longrightarrow \mathbb{K}^Q \\ \end{split} \qquad \begin{aligned} \forall w \in A^* \quad \Psi_{\mathcal{A}}(w) &= I \cdot \mu(w) \end{aligned}$$

$$\mathcal{A} = (I, \mu, T)$$

Reachability set

$$\begin{aligned} \mathbf{R}_{\mathcal{A}} &= \{ I \cdot \mu(w) \mid w \in A^* \} & \mathbf{R}_{\mathcal{A}} \subseteq \mathbb{K}^Q & \langle \mathbf{R}_{\mathcal{A}} \rangle \\ \Psi_{\mathcal{A}} \colon \mathbb{K} \langle A^* \rangle \longrightarrow \mathbb{K}^Q & \forall w \in A^* \quad \Psi_{\mathcal{A}}(w) = I \cdot \mu(w) \\ \mathbf{R}_{\mathcal{A}} &= \Psi_{\mathcal{A}}(A^*) & \operatorname{Im} \Psi_{\mathcal{A}} = \Psi_{\mathcal{A}}(\mathbb{K} \langle A^* \rangle) = \langle \mathbf{R}_{\mathcal{A}} \rangle \end{aligned}$$

$$\mathcal{A} = (I, \mu, T)$$

Reachability set

 \mathbb{K}^Q

Reachability space

$$\begin{aligned} \mathbf{R}_{\mathcal{A}} &= \{ I \cdot \mu(w) \mid w \in A^* \} & \mathbf{R}_{\mathcal{A}} \subseteq \mathbb{K}^Q & \langle \mathbf{R}_{\mathcal{A}} \rangle \\ \Psi_{\mathcal{A}} &: \mathbb{K} \langle A^* \rangle \longrightarrow \mathbb{K}^Q & \forall w \in A^* \quad \Psi_{\mathcal{A}}(w) = I \cdot \mu(w) \\ \mathbf{R}_{\mathcal{A}} &= \Psi_{\mathcal{A}}(A^*) & \operatorname{Im} \Psi_{\mathcal{A}} = \Psi_{\mathcal{A}}(\mathbb{K} \langle A^* \rangle) = \langle \mathbf{R}_{\mathcal{A}} \rangle \\ & \mathbb{K} \langle A^* \rangle \\ & \Psi_{\mathcal{A}} & \downarrow \end{aligned}$$

The control morphism

$$\mathcal{A} = (I, \mu, T)$$

Reachability set

Reachability space

$$\begin{aligned} \mathbf{R}_{\mathcal{A}} &= \{ I \cdot \mu(w) \mid w \in A^* \} & \mathbf{R}_{\mathcal{A}} \subseteq \mathbb{K}^Q & \langle \mathbf{R}_{\mathcal{A}} \rangle \\ \Psi_{\mathcal{A}} \colon \mathbb{K} \langle A^* \rangle \longrightarrow \mathbb{K}^Q & \forall w \in A^* \quad \Psi_{\mathcal{A}}(w) = I \cdot \mu(w) \\ \mathbf{R}_{\mathcal{A}} &= \Psi_{\mathcal{A}}(A^*) & \operatorname{Im} \Psi_{\mathcal{A}} = \Psi_{\mathcal{A}}(\mathbb{K} \langle A^* \rangle) = \langle \mathbf{R}_{\mathcal{A}} \rangle \\ & \mathbb{K} \langle A^* \rangle & \Psi_{\mathcal{A}} \bigg|_{X} & \Psi_{\mathcal{A}} \bigg|_{X} \end{aligned}$$

The control morphism

$$\mathcal{A} = (I, \mu, T)$$

Reachability set

Reachability space

The control morphism

$$\mathcal{A} = (I, \mu, T)$$

Reachability set

Reachability space

The control morphism is a morphism of actions

$$\begin{array}{c} a_1 a_2 \\ a_3 \dots a_n \end{array}$$

 $s \in \mathbb{K}\langle\!\langle A^*
angle\!
angle$

$$\langle s, a_1 \dots a_n \rangle = k$$
 \checkmark $s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

a₁a₂ a₃...a_n $s' \in \mathbb{K}\langle\!\langle A^*
angle$

 $s' \in \mathbb{K}\langle\!\langle A^*
angle$

The series s' is *the quotient* of s by a_1a_2

The series s' is *the quotient* of s by u

The quotient operation

 $s \in \mathbb{K}\langle\!\langle A^*
angle$

$$v \in A^*$$
 $v^{-1}s = \sum_{w \in A^*} \langle s, v w \rangle w$
$s \in \mathbb{K}\langle\!\langle A^*
angle$

$$v \in A^*$$
 $v^{-1}s = \sum_{w \in A^*} \langle s, vw \rangle w$

 $v^{-1} \colon \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \longrightarrow \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

endomorphism of $\mathbb{K}\text{-}\mathsf{modules}$

 $s \in \mathbb{K}\langle\!\langle A^*
angle$

$$v \in A^*$$
 $v^{-1}s = \sum_{w \in A^*} \langle s, vw \rangle w$

$$v^{-1} \colon \mathbb{K}\langle\!\langle A^*
angle \longrightarrow \mathbb{K}\langle\!\langle A^*
angle$$

endomorphism of $\mathbb{K}\text{-}\mathsf{modules}$

$$v^{-1}(s+t) = v^{-1}s + v^{-1}t$$
 $v^{-1}(ks) = k(v^{-1}s)$

 $s \in \mathbb{K}\langle\!\langle A^*
angle$

$$v \in A^*$$
 $v^{-1}s = \sum_{w \in A^*} \langle s, vw \rangle w$

$$v^{-1} \colon \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \longrightarrow \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \qquad \text{endomorphism of } \mathbb{K}\text{-modules}$$
$$\mathbb{K}\langle\!\langle A^* \rangle\!\rangle \xrightarrow{A^*} \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \qquad s \longmapsto v^{-1}s$$

Quotient is a (right) action of A^* on $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

 $s \in \mathbb{K}\langle\!\langle A^*
angle$

$$v \in A^*$$
 $v^{-1}s = \sum_{w \in A^*} \langle s, v w \rangle w$

$$v^{-1} \colon \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \longrightarrow \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \qquad \text{endomorphism of } \mathbb{K}\text{-modules}$$
$$\mathbb{K}\langle\!\langle A^* \rangle\!\rangle \xrightarrow{A^*} \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \qquad s \longmapsto v^{-1}s$$

Quotient is a (right) action of A^* on $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

$$(uv)^{-1}s = v^{-1}(u^{-1}s)$$

The minimal automaton

 $s \in \mathbb{K}\langle\!\langle A^*
angle$

$$\mathbf{R}_s = \left\{ v^{-1} s \, \middle| \, v \in A^* \right\}$$

The minimal automaton

 $s \in \mathbb{K}\langle\!\langle A^*
angle$

 $\mathbf{R}_s = \left\{ v^{-1} s \, \middle| \, v \in A^* \right\}$

Quotient turns

 \mathbf{R}_s into the minimal automaton \mathcal{A}_s of s (possibly infinite)

$$\mathcal{A} = (I, \mu, T)$$
$$\Phi_{\mathcal{A}} \colon \mathbb{K}^{Q} \longrightarrow \mathbb{K} \langle\!\langle A^{*} \rangle\!\rangle \qquad \Phi_{\mathcal{A}}(x) = |(x, \mu, T)| = \sum_{w \in A^{*}} (x \cdot \mu(w) \cdot T) w$$

$$\mathcal{A} = (I, \mu, T)$$

$$\Phi_{\mathcal{A}} \colon \mathbb{K}^{Q} \longrightarrow \mathbb{K} \langle\!\langle A^{*} \rangle\!\rangle \qquad \Phi_{\mathcal{A}}(x) = |(x, \mu, T)| = \sum_{w \in A^{*}} (x \cdot \mu(w) \cdot T) w$$

$$s = |(I, \mu, T)| = \Phi_{\mathcal{A}}(I)$$
 $w^{-1}s = |(I \cdot \mu(w), \mu, T)|$

. .

.

$$\mathcal{A} = (I, \mu, T)$$
$$\Phi_{\mathcal{A}} \colon \mathbb{K}^{Q} \longrightarrow \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \qquad \Phi_{\mathcal{A}}(x) = |(x, \mu, T)| = \sum_{w \in A^*} (x \cdot \mu(w) \cdot T) w$$

$$s = |(I, \mu, T)| = \Phi_{\mathcal{A}}(I)$$
 $w^{-1}s = |(I \cdot \mu(w), \mu, T)|$

$$w^{-1}\Phi_{\mathcal{A}}(x) = \Phi_{\mathcal{A}}(x \cdot \mu(w))$$

$$\mathcal{A} = (I, \mu, T)$$

$$\Phi_{\mathcal{A}} \colon \mathbb{K}^{Q} \longrightarrow \mathbb{K} \langle\!\langle A^* \rangle\!\rangle \qquad \Phi_{\mathcal{A}}(x) = |(x, \mu, T)| = \sum_{w \in A^*} (x \cdot \mu(w) \cdot T) w$$

$$w^{-1} \Phi_{\mathcal{A}}(x) = \Phi_{\mathcal{A}}(x \cdot \mu(w))$$

$$\mathcal{A} = (I, \mu, T)$$

$$\Phi_{\mathcal{A}} \colon \mathbb{K}^{Q} \longrightarrow \mathbb{K} \langle\!\langle A^* \rangle\!\rangle \qquad \Phi_{\mathcal{A}}(x) = |(x, \mu, T)| = \sum_{w \in A^*} (x \cdot \mu(w) \cdot T) w$$

$$w^{-1} \Phi_{\mathcal{A}}(x) = \Phi_{\mathcal{A}}(x \cdot \mu(w))$$

The observation morphism is a morphism of actions

$$\mathcal{A} = (I, \mu, T)$$

$$\Phi_{\mathcal{A}} \colon \mathbb{K}^{Q} \longrightarrow \mathbb{K} \langle\!\langle A^{*} \rangle\!\rangle \qquad \Phi_{\mathcal{A}}(x) = |(x, \mu, T)| = \sum_{w \in A^{*}} (x \cdot \mu(w) \cdot T) w$$

$$w^{-1} \Phi_{\mathcal{A}}(x) = \Phi_{\mathcal{A}}(x \cdot \mu(w))$$

The observation morphism is a morphism of actions

 $U \subseteq \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ submodule U stable (by quotient) Theorem (Fliess 71, Jacob 74) $s \in \mathbb{K} \operatorname{Rec} A^* \iff \exists U$ stable finitely generated $s \in U$

 $U \subseteq \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ submodule U stable (by quotient) Theorem (Fliess 71, Jacob 74) $s \in \mathbb{K} \operatorname{Rec} A^* \iff \exists U$ stable finitely generated $s \in U$

 $U \subseteq \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ submodule U stable (by quotient) Theorem (Fliess 71, Jacob 74) $s \in \mathbb{K} \operatorname{Rec} A^* \implies \exists U$ stable finitely generated $s \in U$

 $U \subseteq \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ submodule U stable (by quotient) Theorem (Fliess 71, Jacob 74) $s \in \mathbb{K} \operatorname{Rec} A^* \iff \exists U$ stable finitely generated $s \in U$

 $Lecture \ IV$

Reduction and morphisms

Outline of Lecture IV

- An appetizing theorem
- Reduction of automata with weights in fields
- The decidability of equivalence problem
- The notion of conjugacy of automata
- Out-morphisms and In-morphisms of automata

 \mathbb{K} semiring A^* free monoid

Definition The Hadamard product of $s, t \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ is $\forall w \in A^* \qquad \langle s \odot t, w \rangle = \langle s, w \rangle \langle t, w \rangle$

 \mathbb{K} semiring A^* free monoid

DefinitionThe Hadamard product of $s, t \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ is $\forall w \in A^*$ $\langle s \odot t, w \rangle = \langle s, w \rangle \langle t, w \rangle$

Theorem If K is commutative, then KRec A[∗] is closed under Hadamard product

 \mathbb{K} semiring A^* free monoid

Definition The Hadamard product of $s, t \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ is $\forall w \in A^* \qquad \langle s \odot t, w \rangle = \langle s, w \rangle \langle t, w \rangle$

Theorem If K is commutative, then KRec A[∗] is closed under Hadamard product

 $|(I, \mu, T) \odot (J, \kappa, U)| = |(I \otimes J, \mu \otimes \kappa, T \otimes U)|$

Reduced representation

 $\mathcal{A} = (I, \mu, T)$

 ${\mathcal{A}} \text{ is } \textit{reduced} \text{ if its } \textit{dimension} \text{ is minimal}$

(among all equivalent representations)

We suppose now that \mathbb{K} is a (skew) field

Proposition

 ${\cal A}$ is reduced iff $\Psi_{{\cal A}}$ is surjective and $\Phi_{{\cal A}}$ injective

Theorem

A reduced representation of |A| is effectively computable (with cubic complexity)

Corollary

Equivalence of $\mathbb{K}\text{-}recognisable series is decidable}$

Equivalence of weighted automata

Equivalence of weighted automata with weights in

the Boolean semiring \mathbb{B} decidable a subsemiring of a field decidable $(\mathbb{Z}, \min, +)$ undecidable

Rat B^* underNRat B^* decide

undecidable decidable

Equivalence of weighted automata

Equivalence of weighted automata with weights in

the Boolean semiring \mathbb{B} decidable a subsemiring of a field decidable $(\mathbb{Z}, \min, +)$ undecidable

 $\operatorname{Rat} B^*$ $\operatorname{NRat} B^*$

undecidable decidable

 $\begin{array}{ll} \mbox{functional transducers} & \mbox{decidable} \\ \mbox{finitely ambiguous } (\mathbb{Z}, \min, +) & \mbox{decidable} \end{array}$

Definition Let $\mathcal{A} = \langle I, E, T \rangle$ and $\mathcal{B} = \langle J, F, U \rangle$ be two K-automata. \mathcal{A} is conjugate to \mathcal{B} if $\exists X \quad \mathbb{K}$ -matrix IX = J, EX = XF, and T = XU

DefinitionLet $\mathcal{A} = \langle I, E, T \rangle$ and $\mathcal{B} = \langle J, F, U \rangle$ be two K-automata. \mathcal{A} is conjugate to \mathcal{B} if $\exists X$ K-matrixIX = J, EX = XF, and T = XUThis is denoted as $\mathcal{A} \xrightarrow{X} \mathcal{B}$.

$$\mathcal{C}' = \left\langle (1 \ 0 \ 0), \begin{pmatrix} 0 & z & 0 \\ 0 & 0 & z \\ 0 & 0 & 2z \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \right\rangle \qquad \mathcal{A}' = \left\langle (1 \ 0), \begin{pmatrix} 0 & z \\ 0 & 2z \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle$$
$$(1 \ 0 \ 0) \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 2z \end{pmatrix} = (1 \ 0),$$
$$\begin{pmatrix} 0 & z & 0 \\ 0 & 0 & z \\ 0 & 0 & 2z \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 & z \\ 0 & 2z \end{pmatrix},$$
$$\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 2 \end{pmatrix}$

2*z*

1*z*

 \mathcal{A}'

 \mathcal{C}'

DefinitionLet $\mathcal{A} = \langle I, E, T \rangle$ and $\mathcal{B} = \langle J, F, U \rangle$ be two K-automata. \mathcal{A} is conjugate to \mathcal{B} if $\exists X$ K-matrixIX = J, EX = XF, and T = XUThis is denoted as $\mathcal{A} \xrightarrow{X} \mathcal{B}$.

DefinitionLet $\mathcal{A} = \langle I, E, T \rangle$ and $\mathcal{B} = \langle J, F, U \rangle$ be two K-automata. \mathcal{A} is conjugate to \mathcal{B} if $\exists X$ K-matrix IX = J, EX = XF, and T = XUThis is denoted as $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

• Conjugacy is a *preorder*

(transitive and reflexive, but not symmetric).

DefinitionLet $\mathcal{A} = \langle I, E, T \rangle$ and $\mathcal{B} = \langle J, F, U \rangle$ be two K-automata. \mathcal{A} is conjugate to \mathcal{B} if $\exists X$ K-matrix IX = J, EX = XF, and T = XUThis is denoted as $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

• Conjugacy is a *preorder* (transitive and reflexive, but not symmetric).

• $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$ implies that \mathcal{A} and \mathcal{B} are *equivalent*.

DefinitionLet $\mathcal{A} = \langle I, E, T \rangle$ and $\mathcal{B} = \langle J, F, U \rangle$ be two K-automata. \mathcal{A} is conjugate to \mathcal{B} if $\exists X$ K-matrix IX = J, EX = XF, and T = XUThis is denoted as $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

• Conjugacy is a *preorder* (transitive and reflexive, but not symmetric).

• $\mathcal{A} \xrightarrow{X} \mathcal{B}$ implies that \mathcal{A} and \mathcal{B} are *equivalent*. *IEET*

DefinitionLet $\mathcal{A} = \langle I, E, T \rangle$ and $\mathcal{B} = \langle J, F, U \rangle$ be two K-automata. \mathcal{A} is conjugate to \mathcal{B} if $\exists X$ K-matrix IX = J, EX = XF, and T = XUThis is denoted as $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

• Conjugacy is a *preorder* (transitive and reflexive, but not symmetric).

• $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$ implies that \mathcal{A} and \mathcal{B} are *equivalent*. I E E T = I E E X U

DefinitionLet $\mathcal{A} = \langle I, E, T \rangle$ and $\mathcal{B} = \langle J, F, U \rangle$ be two K-automata. \mathcal{A} is conjugate to \mathcal{B} if $\exists X$ K-matrix IX = J, EX = XF, and T = XUThis is denoted as $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

- Conjugacy is a *preorder* (transitive and reflexive, but not symmetric).
- $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$ implies that \mathcal{A} and \mathcal{B} are *equivalent*.

I E E T = I E E X U = I E X F U

DefinitionLet $\mathcal{A} = \langle I, E, T \rangle$ and $\mathcal{B} = \langle J, F, U \rangle$ be two K-automata. \mathcal{A} is conjugate to \mathcal{B} if $\exists X$ K-matrix IX = J, EX = XF, and T = XUThis is denoted as $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

- Conjugacy is a *preorder* (transitive and reflexive, but not symmetric).
- $\mathcal{A} \xrightarrow{X} \mathcal{B}$ implies that \mathcal{A} and \mathcal{B} are *equivalent*.

I E E T = I E E X U = I E X F U = I X F F U

DefinitionLet $\mathcal{A} = \langle I, E, T \rangle$ and $\mathcal{B} = \langle J, F, U \rangle$ be two K-automata. \mathcal{A} is conjugate to \mathcal{B} if $\exists X$ K-matrix IX = J, EX = XF, and T = XUThis is denoted as $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

• Conjugacy is a *preorder* (transitive and reflexive, but not symmetric).

• $\mathcal{A} \xrightarrow{\chi} \mathcal{B}$ implies that \mathcal{A} and \mathcal{B} are *equivalent*.

I E E T = I E E X U = I E X F U = I X F F U = J F F U
Conjugacy of automata

DefinitionLet $\mathcal{A} = \langle I, E, T \rangle$ and $\mathcal{B} = \langle J, F, U \rangle$ be two K-automata. \mathcal{A} is conjugate to \mathcal{B} if $\exists X$ K-matrix IX = J, EX = XF, and T = XUThis is denoted as $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$.

- Conjugacy is a *preorder* (transitive and reflexive, but not symmetric).
- $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$ implies that \mathcal{A} and \mathcal{B} are *equivalent*. I E E T = I E E X U = I E X F U = I X F F U = J F F Uand then $I E^* T = J F^* U$

Definition A map $\varphi: Q \to R$ defines a $(Q \times R)$ -amalgamation matrix H_{φ} $\varphi_2: \{j, r, s, u\} \to \{i, q, t\}$ defines $H_{\varphi_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Directed notion

Morphisms of weighted automata b а а b \mathcal{C}_2 2*b* 2a b b 2 b 4*a* 2*b* S U 2*b* 4*b*

Definition $\mathcal{A} = \langle I, E, T \rangle$ and $\mathcal{B} = \langle J, F, U \rangle$ K-automata of dimension Q and R. A map $\varphi \colon Q \to R$ defines an In-morphism $\varphi \colon \mathcal{A} \to \mathcal{B}$ if \mathcal{B} is conjugate to \mathcal{A} by the matrix ${}^{t}H_{\varphi} : \mathcal{B} \stackrel{{}^{t}H_{\varphi}}{\Longrightarrow} \mathcal{A}$ $\int {}^{t}H_{\varphi} = I, \qquad F {}^{t}H_{\varphi} = {}^{t}H_{\varphi} E, \qquad U = {}^{t}H_{\varphi} T$ \mathcal{B} is a co-quotient of \mathcal{A}

Morphisms of weighted automata а Ь \mathcal{C}_2 2.b 2.a b b 2 b 4 a $H_{\varphi_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 2 b φ_2 : $\{j, r, s, u\} \rightarrow \{i, q, t\}$ S *u*)-2 b 4*b*

 $\begin{array}{l} \begin{array}{l} \text{Definition} \\ \mathcal{A} = \langle I, E, T \rangle \ \text{and} \ \mathcal{B} = \langle J, F, U \rangle \\ & \mathbb{K} \text{-automata} \\ & \text{of dimension} \ \mathcal{Q} \ \text{and} \ \mathcal{R}. \end{array} \\ \text{A map} \ \varphi \colon \mathcal{Q} \to \mathcal{R} \ \text{defines} \ \text{ an Out-morphism} \ \varphi \colon \mathcal{A} \to \mathcal{B} \\ & \text{if } \mathcal{A} \ \text{is conjugate to} \ \mathcal{B} \ \text{ by the matrix} \ H_{\varphi} \colon \mathcal{A} \xrightarrow{H_{\varphi}} \mathcal{B} \\ & \mathcal{B} \ \text{ is a quotient of} \ \mathcal{A} \end{array}$

Theorem Every ℝ-automaton has a minimal quotient that is effectively computable (by Moore algorithm).

Documents for these lectures

To be found at

http://www.telecom-paristech.fr/~jsaka/EWSCS2014/

In particular, a set of instructions for downloading

a $-\alpha$ release of a pre-experimental version of

the VAUCANSON 2 platform

implemented as a virtual machine interfaced with IPython