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Part I

An introductory result



The Rational Bijection Theorem

Theorem
If two rational languages have the same growth function,
then there exists a letter-to-letter rational bijection
that maps one language onto the other.



An example: a first language

L=a(a+b)"
a
a
A >
b
a aaa aaaa abaa

aab aaab abab
aa aba aaba abba
ab abb aabb abbb

VneN, n>0 g, (n) = Card(LN{a,b}") = 21



An example: a second language

K=(c+dc+dd)" \{cc(c+d) Ulp:}

c cdc cdcc dcdd
cdd cddc ddcc

dc dcc dccc dddc
dd ddc dcdc dddd

VneN, n>0 gi (n) = Card(KnN{c,d}") = 2!



An example: the rational bijection

L=a(a+b)* K=(c+dc+dd)"\{cc(c+d)*Ulg:}

alc

a aaa aaaa abaa c cdc cdcc dcdd
aab aaab abab cdd cddc ddcc
aa aba aaba abba dc dcc dccc dddc

ab abb aabb abbb dd ddc dcdc dddd



An example: the rational bijection

L=a(a+b)* K=(c+dc+dd)"\{cc(c+d)*Ulg:}

alc

a aaa aaaa abaa c cdc cdcc dcdd
aab aaab abab cdd cddc ddcc
aa aba aaba abba dc dcc dccc dddc

ab abb aabb abbb dd ddc dcdc dddd



An example: the rational bijection

L=a(a+b)* K=(c+dc+dd)"\{cc(c+d)*Ulg:}

alc

a aaa aaaa abaa c cdc cdcc dcdd
aab aaab abab cdd cddc ddcc
aa aba aaba abba dc dcc dccc dddc

ab abb aabb abbb dd ddc dcdc dddd



An example: the rational bijection

L=a(a+b)* K=(c+dc+dd)"\{cc(c+d)*Ulg:}

a aaa aaaa abaa c cdc cdcc dcdd
aab aaab abab cdd cddc ddcc
aa aba aaba abba dc dcc dccc dddc

ab abb aabb abbb dd ddc dcdc dddd



An example: the rational bijection

L=a(a+b)* K=(c+dc+dd)"\{cc(c+d)*Ulg:}

a aaa aaaa abaa c cdc cdcc dcdd
aab aaab abab cdd cddc ddcc
aa aba aaba abba dc dcc dccc dddc

ab abb aabb abbb dd ddc dcdc dddd



The RBT on this example: construction of the transducer

al b|c ald ale

from the automata

d

a,b
o and #,/?\./d\
A




Proof of the Rational Bijection Theorem

. The model of weighted automaton:
Bridge between growth function and finite automata

. Decidability of equivalence of generating series
Taken for granted

. The conjugacy theorem
. Definition of morphisms and the FET for weighted automata

. The harvest



Step 1: the model of weighted automaton

a 2a

b 2b
1 b a b 1
—p—p—p—q—>
1 b 2a 2b 1
—p—q——>q ——q —

bab +—— 5 Vw e A* wo o— (w)s



Step 1: the model of weighted automaton

a 2a

b 2b
1 b a b 1
—p—=p -3 p—3q—>
1 b 2a 2b 1
—p—=q g q—
bab +—— 5 Vw e A* wo o— (w)s

s: A" — N s:w — <s,w> s e NA

s=b+ab+2ba+3bb+aab

+2aba+3abb+4baa+bbab+...



Step 1: the model of weighted automaton

a 2a

b 2b
1 b a b 1
—p—=p -3 p—3q—>
1 b 2a 2b 1
—p—=q g q—
bab +—— 5 Vw e A* wo o— (w)s

s:A* — N st w — <s,w> s € N(A*))

s=b+ab+2ba+3bb+aab
+2aba+3abb+4baa+bbab+...



Step 1: the model of weighted automaton(cont.)

Oa la
M= (NU{rcc},min,+) 2 @ 0 O 0
1b 0b
0 1b 0a 1b 0
—p—=p p p—
0 0b 1a 0b 0
— q——q q qg—
bab +— 1 Vw € A* w  —  min{|w|a, |w|p}
s: AY — M st w —  <s,wd> s € M(A*)

s=01s« ® 0a ® 0b ® O0aa ® lab ® 1ba ® 0bb
@® Oaaa ® laab ® laba ® labb @ ...



Step 1: the model of weighted automaton

Series play the role of languages

K{A*)) plays the role of 3 (A¥)



Step 1: the model of weighted automaton

a 2a
b 2b

Automata are matrices

A=<I,E,T>=<(1 0>7<a§b 2ai2b>’<?>>

Al =1E"T



Step 2: the generating series

Alanguage K = (c+dc+dd)"\{cc(c+d)" Ulg-} thatis,

c
d
c,d
an unambiguous automaton: ?
c d dJ
B
is transformed into an automaton over {z}* with weight in N
1z

1z
2z
b e e el
1z l 1z 17

which realises the generating series Gy (z) = ZgK (n) z".
neN



Step 2: the generating series

Growth functions
are realised

by weighted automata.



Step 2: the generating series

(i) Two unambiguous finite automata A and 5,

a,b

A —O

P -



Step 2: the generating series

(i) Two unambiguous finite automata A and 5,

(ii) transformed into A" and B’ over {z}* with multiplicity in N,
which realise the generating functions G, (z) and G, (z) :

G (z)=) g (nz" and  Gy(z)=) gx(n)z",

neN neN

a,b
d
Q C’d
a
> )— B

A —O




Step 2: the generating series

(i) Two unambiguous finite automata A and 5,

(ii) transformed into A" and B’ over {z}* with multiplicity in N,
which realise the generating functions G, (z) and G, (z) :

G (z)=) g (nz" and  Gy(z)=) gx(n)z",

neN neN

1
1z z

2z
12 Q -~ B

1z

A —@




Step 2: the generating series

(i) Two unambiguous finite automata A and 5,

(ii) transformed into A" and B’ over {z}* with multiplicity in N,
which realise the generating functions G, (z) and G, (z) :

G (z)=) g (nz" and  Gy(z)=) gx(n)z",

neN neN

(iii) and whose equivalence is decidable (Chomsky—Miller 1958).

1
1z z

2z
12 Q -~ B

1z

A —@




A/

1z

Step 3: The conjugacy theorem

2z

3 .

2z

1z

1z

B/



Step 3: The conjugacy theorem

Theorem (BLS)

Two N-automata are equivalent if and only if

they are conjugate to a same third N-automaton.

2 1
z 1z z
2z

1z



A/

Step 3: The conjugacy theorem

Theorem (BLS)

Two N-automata are equivalent if and only if

they are conjugate to a same third N-automaton.

Automata are matrices

2 1
z 15 z

1z



A/

Step 3: The conjugacy theorem

Theorem (BLS)

Two N-automata are equivalent if and only if
they are conjugate to a same third N-automaton.

Automata are matrices

A =(1LE,T) = <(1 9, (8 2Zz>’ ((1))>

2 1
z 1z z
2z

1z

B/



Step 3: The conjugacy theorem

Theorem (BLS)

Two N-automata are equivalent if and only if
they are conjugate to a same third N-automaton.

Definition
Let A=(/,E,T) and B=(J,F,U) be two K-automata.

A is conjugate to B if

X K-matrix IX=J, EX=XF, and T=XU

1z

2
‘ 1z
12 Q -~ B

1z

A —@



Step 3: The conjugacy theorem

Theorem (BLS)

Two N-automata are equivalent if and only if
they are conjugate to a same third N-automaton.

Definition
Let A=(/,E,T) and B=(J,F,U) be two K-automata.

A is conjugate to B if
X K-matrix IX=J, EX=XF, and T=XU
This is denoted as AL B,
1z

2
‘ 1z
12 Q -~ B

1z

A —@



Step 3: The conjugacy theorem

Theorem (BLS)

Two N-automata are equivalent if and only if

they are conjugate to a same third N-automaton.

e Conjugacy is a preorder

(transitive and reflexive, but not symmetric).

2 1
z 1z z
2z

1z



A/

Step 3: The conjugacy theorem

Theorem (BLS)

Two N-automata are equivalent if and only if
they are conjugate to a same third N-automaton.

e Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

° AéB implies that A and B are equivalent.

IEET=IEEXU=IEXFU=IXFFU=JFFU

1
1z z

2z
12 Q -~ B

1z

—Q@




A/

Step 3: The conjugacy theorem

Theorem (BLS)

Two N-automata are equivalent if and only if
they are conjugate to a same third N-automaton.

e Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

° AéB implies that A and B are equivalent.

IEET=IEEXU=1EXFU=IXFFU=JFFU
and then [EXT =JF"U

1
1z z

2z
12 Q -~ B

1z

—Q@




Step 3: The conjugacy theorem

Theorem (BLS)

Two N-automata A and B are equivalent if and only if there
exists an N-automaton C (and N-matrices X and Y') such that

AZcX B

Moreover, C is effectively computable from A and B .

1
1z z

2z
12 Q -~ B

1z

A —@




Step 3: The conjugacy theorem

Theorem (BLS)

Two N-automata A and B are equivalent if and only if there
exists an N-automaton C (and N-matrices X and Y') such that

AZcX B

Moreover, C is effectively computable from A and B .

2z 2z 1z
1z
1z §X 1z leE 2 Y; N\;Q-
1z 1z 12
A’ c’ B



Step 3: The conjugacy theorem

Theorem (BLS)

Two N-automata A and B are equivalent if and only if there
exists an N-automaton C (and N-matrices X and Y') such that

AZcX B

Moreover, C is effectively computable from A and B .



Step 3: The conjugacy theorem

()

0 2z

o — N

- O O

(10o0)-

0 =z
0 2z)’

)

o — N

— O O

o - N

- O O

N
o N q
N © O

o O o

C/

A/



Step 4: Morphisms and the Decomposition theorem

2z 2z
1
o— L _ougilg: L _gomel ?~\2_/Q-
1
A/ C/



Step 4: 1. Morphisms

1z
A —0——8—



Step 4: 1. Morphisms

A/

2z



Step 4: 1. Morphisms

A map ¢: D' — A defines a matrix H,, :

1
0
0
0

H, =

= = = O




Step 4: 1. Morphisms

Definition
Let D'=(/,E,T) and A" = (J,F,U) be two K-automata.
o: D' — A" is an Out-morphism or A’ is a quotient of D’

H
if D' is conjugate to A’ by H, : D= A

IH§0:J, EHQO:HQOF, and T:H¢U.
2z




Step 4: 1. Morphisms

Definition
Let D'=(/,E,T) and A" = (J,F,U) be two K-automata.

o: D' — A" is an Out-morphism or A’ is a quotient of D’
H
if D' is conjugate to A’ by H, : D= A

IH,=J, EH,=H,F, and T=H,U .

2z
Q 1
1 1z —
; 1z
R 1
1z —
2z

1z T 1z Q_g
—Q@—0— c’



Step 4: 1. Morphisms
Definition
Let D'=(I,E, T) and C"=(J,F,U) be two K-automata.
@: D' — C" is an In-morphism or C’ is a co-quotient of D’

tH,
if C’' is conjugate to D' by H, : =17

IH,=J, EH,=H,F, and T=H,U .




Step 4:

1z
A —0——8—

2. The Decomposition theorem



Step 4: 2. The Decomposition theorem

Theorem (BLS)

Let C' and A’ be two N-automata, C' conjugate to A’ .
Then, there exists an N-automaton D’
such that A’ is a quotient of D’

and C' is an co-quotient of D' .

Moreover, D' is effectively computable from C' and A’ .

1z é 1z T 1z Q_g
A —0——&— ~0— O

C/



Step 4: 2. The Decomposition theorem

Theorem (BLS)

Let C' and A’ be two N-automata, C' conjugate to A’ .
Then, there exists an N-automaton D’
such that A’ is a quotient of D’
and C' is an co-quotient of D' .
Moreover, D’ is effectively computable from C' and A’ .

C/



Step 4: 3. Conjugacy and Decomposition theorems together

A structural interpretation of equivalence

D’ g

co-quotient

quotient quotient

co-quotient

A/ P — C/ — Bl



Step 4: 3. Conjugacy and Decomposition theorems together

A structural interpretation of equivalence

D *HKQ N ¢
o)

co-quotient

quotient quotient

co-quotient



Step 4: 3. Conjugacy and Decomposition theorems together

A structural interpretation of equivalence




Step 5: 1. A technical proposition




Step 5:

1. A technical proposition




1. A technical proposition

Step 5




2. The harvest

Step 5




2. The harvest

Step 5




2. The harvest

Step 5




2. The harvest

Step 5




2. The harvest

Step 5




2. The harvest

Step 5




2. The harvest

Step 5




Step 5: 2. The harvest




Part 11

The foundations



[

. Representation
The representability theorem

. Reduction
Decidability of equivalence

. Joint reduction
The conjugacy theorem

. Morphisms
The decomposition theorem



Chapter 1

Representation



Automata are matrices
a 2a
“8 : g
b 2b
B a+b b 0
Cl_<(1 0)’<0 2a+2b>’<1>>'

A=(1LE,T) A= "1-E"T=1-E"-T

neN



Automata over free monoids are representations

@ =5 5)

A={lpuT)

a 2a
8 b 87
b 2b



The control morphism

A= < Ia Hs T>
Reachability set Reachability space
Ra={l p(w)| we A"} R4 C K (Ra)
W4 K(AY) — K9 Yw e A Wa(w) =1 p(w)
Ra=V4(AY) ImW 4 =W 4(K(A")) = (Ra)
K(A*)
WVa Va
KQ X

The control morphism



The control morphism

A= <I7N7 T>
Reachability set Reachability space
Ra={l p(w)| we A"} R4 C K (Ra)
W4 K(AY) — K9 Yw e A Wa(w) =1 p(w)
Ra=V4(AY) ImW 4 =W 4(K(A")) = (Ra)
A*
K(A*) ——s K(A*) Ub————— ua
WVa Va

KQ

x

The control morphism



The control morphism

A={lpuT)

Reachability set

Ra={/ - p(w)| we A"}

V4 K(AY) — K@

R4 = W4(AY)
A*
K(A*) =————s K(A*)
Vy Yy
A*

Reachability space

R4 CK? (Ra)

Vw e AY Wyu(w) =1 p(w)

ImW 4 =W 4(K(A")) = (Ra)

The control morphism is a morphism of actions



The observation morphism

Quotient of series

s € K{(A*) ve A vils= Z <s,vwdw
weA*
vl K(A*) — K(A®) endomorphism of K-modules
A*
K({(A*)) =———> K(A*) s——— vl

Quotient is a (right) action of A* on K({(A*))



The observation morphism

A={luT)

.41 K9 — K(A) Ou() =06 Tl = 32 (epa(w)-T)w
wEA*

s =[(1,1, T)|= ®a(1)

K@ X

K{A*) t



The observation morphism

A= </,,U,, T>
® 40 K9 — K(A") Sa(x) =[x, TH =Y (xp(w)-T)w
wEA*
s=|{1,p, T)|=®a(l) wls =|(1 - p(w), p, T)|

w4 (x) = G a(x - u(w))

K@ X

K{A*) t



The observation morphism

A={luT)
® 4 KO — K(A") (%) =[x, T = D (xpa(w) T)w
weA*
s=|(1,u, T)|=da(l) wls =|(1-p(w),p, T)|
w4 (x) = Pa(x - p(w))
A*

KQ —=—=—> K©? x ———— x - pu(a)
P4 D4 D4 D4
K{(A*) ;» K{A*) t —————— a7t

The observation morphism is a morphism of actions



The observation morphism

A={luT)
® 4 KO — K(A") (%) =[x, T = D (xpa(w) T)w
weEA*
s=|(l,pu, T)|=da(l) w s =|(1- p(w), p, T)
WP 4(x) = D(x - p(w))

K(A*) % K(A*) U wa
WA‘ " ‘WA Yy Yy

KO —— KO X ——— x - u(a)
d 4 " d 4 d 4 “DA
K{A*) =——> K({(A*) t ————— a7t

The observation morphism is a morphism of actions



The representability theorem
U C K{A™) submodule U stable (by quotient)

Theorem (Schiitzenberger 61, Fliess 71, Jacob 74)
s € KRec A* — dU stable finitely generated s € U



The representability theorem

U C K{A™) submodule U stable (by quotient)

Theorem (Schiitzenberger 61, Fliess 71, Jacob 74)
s € KRec A* — dU stable finitely generated s € U

A*
V4 V4
A*
KQ > K@
d 4 b4
A*




The representability theorem

U C K{A™) submodule U stable (by quotient)

Theorem (Schiitzenberger 61, Fliess 71, Jacob 74)
s € KRec A* = dU stable finitely generated s € U

A*
1a € K(A*) =—————s K(A")
Yy Yy
A*
| €lmW 4 KQ > K@
by D4
A*




The representability theorem

U C K{A™) submodule U stable (by quotient)

Theorem (Schiitzenberger 61, Fliess 71, Jacob 74)
s € KRec A* — dU stable finitely generated s € U

A*
V4 V4
A*
KQ > K@
d 4 b4
A*




The representability theorem

U C K{A™) submodule U stable (by quotient)

Theorem (Schiitzenberger 61, Fliess 71, Jacob 74)
s € KRec A* — dU stable finitely generated s € U

A*
V4 V4
A*
KQ > K@
d 4 b4
A*




Chapter 11

Reduction



The representability theorem for recognisable series

Proposition
A= (I,u, T) dimension Q s=|A]
(R4 ) generated by G C K@

3 A¢ of dimension G s =|Ag] A Y Ac



The exploration procedure

K-automaton A = (/,u, T) Search for P C A*
K(A*) P
vy \ vy

ImW 4 KQ W 4(P) generating set of ImW 4




The exploration procedure

K-automaton A= (/,pu, T) Search for P C A*
K(A*) P
U l U
ImW 4 KQ W 4(P) generating set of ImW 4

Halting criterium



The exploration procedure

K-automaton A= (/,pu, T) Search for P C A*
K(A*) P
U l U
ImW 4 KQ W 4(P) generating set of ImW 4

Halting criterium

» B finite finite ImW¥ 4



The exploration procedure

K-automaton A= (/,pu, T) Search for P C A*
K(A*) P
U l V4
ImW 4 KQ W 4(P) generating set of Im W 4

Halting criterium

» B finite finite ImW¥ 4

» [ field finite dimension



The exploration procedure

K-automaton A= (/,pu, T) Search for P C A*
K(A*) P
Wy l Wy
Im W4 KQ (V4(P)) generating set of Im W 4

Halting criterium

» B finite finite ImW¥ 4
» [ field finite dimension
» 7Z ED Noetherian



The exploration procedure

K-automaton A= (/,pu, T) Search for P C A*
K(A*) P
Wy l Wy
Im W4 KQ (V4(P)) generating set of Im W 4

Halting criterium

» B finite finite ImW¥ 4
» [ field finite dimension
» 7Z ED Noetherian

» N well partial ordered set



The exploration procedure

K-automaton A = (/,u, T) Search for P C A*
K(A*) P
vy l vy
Im W 4 K@ (W4(P)) generating set of ImW 4
Result



Chapter 111

Joint reduction



The joint exploration

K-automata A= (/,p, T) and B = (J,m,U) Search for
P C A*

K(A*) P K(A*)
\UA ‘-UA | \UB \UB
K? (Wa(P)) [ (Vs(P)) K({A™)

Result



The conjugacy theorem

Theorem

Let K be B, N, Z, or any (skew) fields.

Two K-automata A and B are equivalent if, and only if, there
exist a K-automaton C (and K-matrices X and Y') such that

AZLcLB
Moreover, C is effectively computable from A and B .



Chapter IV

Morphisms



Morphisms of weighted automata

Definition
A=(ILE,T) and B=(J,F,U) K-automata
of dimension @ and R.

A map ¢: Q@ — R defines an Out-morphism ¢: A — B

if A is conjugate to B by the matrix  H,, : A % B
IH, = J, EH,=H,F, T=H,U

B isa quotient of A



Morphisms of weighted automata

Definition
A=(ILE,T) and B=(J,F,U) K-automata
of dimension @ and R.

A map ¢: Q@ — R defines an Out-morphism ¢: A — B

if A is conjugate to B by the matrix  H,, : A % B
IH, = J, EH,=H,F, T=H,U

B isa quotient of A

Directed notion



Morphisms of weighted automata

Definition
A=(ILE,T) and B=(J,F,U) K-automata
of dimension @ and R.

A map ¢: @ = R defines an Out-morphism ¢: A — B

H
if A is conjugate to B by the matrix  H,, : A= B
IH,=J, EH,=H,F, T=H,U

B isa  quotient of A

Directed notion Price to pay for the weight



Morphisms of weighted automata

Definition
A=(ILE,T) and B=(J,F,U) K-automata
of dimension @ and R.

A map ¢: @ — R defines an In-morphism ¢: A— B

H
if A is conjugate to B by the matrix  H,, : A= B
IH,=J, EH,=H,F, T=H,U

B isa  quotient of A

Directed notion Price to pay for the weight



Morphisms of weighted automata

Definition
A=(ILE,T) and B=(J,F,U) K-automata
of dimension @ and R.

A map ¢: @ — R defines an In-morphism ¢: A— B
tH
if B is conjugate to A by the matrix 'H, : B= A
JtH, =1,  F'H,=‘H, E, U='H, T

B is a co-quotient of A

Directed notion Price to pay for the weight



Morphisms of weighted automata

Definition
A=(ILE,T) and B=(J,F,U) K-automata
of dimension @ and R.

A map ¢: @ — R defines an In-morphism ¢: A— B
tH
if B is conjugate to A by the matrix 'H, : B= A
JtH, =1,  F'H,=‘H, E, U='H, T

B is a co-quotient of A

Proposition
Every K-automaton has a minimal (co-)quotient
that is effectively computable (by the Moore algorithm).



Morphisms of weighted automata




Morphisms of weighted automata

302 {j7 r’s’ u} _> {i’q7 t}

o O o

O = = O

— O O O



Morphisms of weighted automata

Co

1
. . 0
QOQZ{_],F,S,U}—){I,q,t} Hgoz_ 0
0
Va2 b b V3

a 2a 4a a 2a 4a

2b 8 2b E b 8 4b E
b 2b 4b b 2b 4b

H.
CQZW%V2 Vé :>CQ

o = = O

— O O O



Morphisms of weighted automata

Minimal quotients and co-quotients
D

PZRN /N
A B

A B



Morphisms of weighted automata

Minimal quotients and co-quotients
D

/D\
A B A B
\C/ \C/



Morphisms of weighted automata

Minimal quotients and co-quotients
D D
7\ 7\
A B A B
AN . 7/ N\ . 7/

Equisubtractive commutative monoid, semiring

ptg=r+s —
dx,y,z, t p=x+y,q=z+t,r=x+z,s=y+t



Morphisms of weighted automata

Minimal quotients and co-quotients
D D
7\ 7\
A B A B
AN . 7/ N\ . 7/

Equisubtractive commutative monoid, semiring

ptg=r+s —
dx,y,z, t p=x+y,q=z+t,r=x+z,s=y+t

Filling diagrams backwards

A B A B A B

N 7/ N 7/ N 7/

C C C



Morphisms of weighted automata

Minimal quotients and co-quotients
A\ /B A\ /B
C C

Equisubtractive commutative monoid, semiring
ptg=r+s —

dx,y,z, t p=x+y,q=z+t,r=x+z,s=y+t
Filling diagrams backwards

D

7 N\ 7 N\
A B A B A B
N N N



The Decomposition theorem

Theorem
K =B o N, A and B two trim K-automata.
X
A= B <+—
3C A co-quotient of C and B quotient of C .



The Decomposition theorem

Theorem
K =B o N, A and B two trim K-automata.

X
A= B <+
3C A co-quotient of C and B quotient of C .

C
In—morphisy \O\ut—morphism

A— B




The Decomposition theorem

Theorem
K = 7Z orfield F, A and B two K-automata.

A :X> B <= dC, D, and a circulation matrix D
A co-quotient of C, B quotient of D, and C L. p



The Decomposition theorem

Theorem
K = 7Z orfield F, A and B two K-automata.

AZX B — 13cC , D, and a circulation matrix D
A co-quotient of C, B quotient of D, and C L. p

C

. — D, .
In—morphlsy Yut—morphlsm

A B




The Decomposition theorem

Theorem
K = 7Z orfield F, A and B two K-automata.

A :X> B <= 3C, D, and a circulation matrix D
A co-quotient of C, B quotient of D, and C L. p

C

. — D .
In—morphlsy Yut—morphlsm

A % B

circulation matrix = diagonal matrix of units



The Decomposition theorem

Theorem
K = 7Z orfield F, A and B two K-automata.

A :X> B <= dC, D, and a circulation matrix D
A co-quotient of C, B quotient of D, and C L. p



The Decomposition theorem

Theorem
K = 7Z orfield F, A and B two K-automata.

A :X> B <= dC, D, and a circulation matrix D
A co-quotient of C, B quotient of D, and C L. p

K has property (SU) = every element of K is a sum of units



The Decomposition theorem

Theorem
K = 7Z orfield F, A and B two K-automata.

A :X> B <= dC, D, and a circulation matrix D
A co-quotient of C, B quotient of D, and C L. p

K has property (SU) = every element of K is a sum of units

K (SU) = VX matrix X=CDR
C co-amalgamation D circulation R amalgamation



The Decomposition theorem

Theorem
K = 7Z orfield F, A and B two K-automata.

A :X> B <= dC, D, and a circulation matrix D
A co-quotient of C, B quotient of D, and C L. p

K has property (SU) = every element of K is a sum of units

K (SU) = VX matrix X=CDR
C co-amalgamation D circulation R amalgamation

K equisubtractive —
given C co-amalgamation and R amalgamation matrices,
one can construct C and D
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The Decomposition theorem

Theorem
K =B o N, A and B two trim K-automata.

AL B
3C A co-quotient of C and B quotient of C .

The Finite Equivalence Theorem

Theorem
Two irreducible sofic shifts are finitely equivalent
if, and only if, they have the same entropy.

left- resolwy \w\ght resolving

same entropy X=> Y Fiirstenberg lemma



The Conjugacy and Decomposition theorems together

A structural interpretation of equivalence
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Part 111

Questions



v

v

v

Richness of the model of weighted automata

B ‘classic’ automata

N ‘usual’ counting

Z, Q, R numerical multiplicity

(Z U +o0, min, +) Min-plus automata
B (B*) =B(B*) transducers

(
N{(B*)) weighted transducers
B(F(B)) pushdown automata



Equivalence of weighted automata

Equivalence of weighted automata with weights in

the Boolean semiring B
a subsemiring of a field
(Z, min, +)

Rat B*
NRat B*

Equivalence of
transducers
transducers with multiplicity in N

functional transducers
polynomially ambiguous (Z, min, +)

decidable
decidable
undecidable

undecidable
decidable

undecidable
decidable

decidable
decidable



