Conjugacy and equivalence of weighted automata

Jacques Sakarovitch

CNRS / Telecom ParisTech

The results presented in this talk are based on a joint work with

Marie-Pierre Béal (Univ. Paris-Est) and Sylvain Lombardy (Univ. Bordeaux)

published in *Proc. of CSR 2006*.

The complete journal version is still in preparation.

Some of the results have been included in the chapter

Rational and recognizable series

of the Handbook of Weighted Automata, Springer, 2009.

Part I

An introductory result

The Rational Bijection Theorem

Theorem

If two rational languages have the same growth function, then there exists a letter-to-letter rational bijection that maps one language onto the other.

An example: a first language

An example: a second language

$$K = (c + dc + dd)^* \setminus \{cc(c+d)^* \cup 1_{B^*}\}$$

$$\forall n \in \mathbb{N}, n > 0$$
 $\mathsf{g}_{K}(n) = \mathrm{Card}(K \cap \{c, d\}^{n}) = 2^{n-1}$

$$L = a(a+b)^* \qquad K = (c+dc+dd)^* \setminus \{cc(c+d)^* \cup 1_{B^*}\}$$

$$a|c \qquad b|c \qquad a|d \qquad a|c \qquad b|d \qquad b|d \qquad b|d \qquad a|c \qquad b|d \qquad a|d \qquad a|c \qquad b|d \qquad a$$

a	aaa	aaaa	abaa	С	cdc	cdcc	dcdd
	aab	aaab	abab		cdd	cddc	ddcc
aa	aba	aaba	abba	dc	dcc	dccc	dddc
ab	abb	aabb	abbb	dd	ddc	dcdc	dddd

$$L = a(a+b)^* K = (c+dc+dd)^* \setminus \{cc(c+d)^* \cup 1_{B^*}\}$$

a	aaa	aaaa	abaa	С	cdc	cdcc	dcdd
	aab	aaab	abab		cdd	cddc	ddcc
aa	aba	aaba	abba	dc	dcc	dccc	dddc
ab	abb	aabb	abbb	dd	ddc	dcdc	dddd

$$L = a(a+b)^*$$
 $K = (c+dc+dd)^* \setminus \{cc(c+d)^* \cup 1_{B^*}\}$

а	aaa	aaaa	abaa	С	cdc	cdcc	dcdd
	aab	aaab	abab		cdd	cddc	ddcc
aa	aba	aaba	abba	dc	dcc	dccc	dddc
ab	abb	aabb	abbb	dd	ddc	dcdc	dddd

$$L = a(a+b)^*$$
 $K = (c+dc+dd)^* \setminus \{cc(c+d)^* \cup 1_{B^*}\}$

a	aaa	aaaa	abaa	С	cdc	cdcc	dcdd
	aab	aaab	abab		cdd	cddc	ddcc
aa	aba	aaba	abba	dc	dcc	dccc	dddc
ab	abb	aabb	abbb	dd	ddc	dcdc	dddd

$$L = a(a+b)^* \qquad K = (c+dc+dd)^* \setminus \{cc(c+d)^* \cup 1_{B^*}\}$$

$$\begin{vmatrix} b \mid c & a \mid d & a \mid c \\ b \mid c & b \mid d & b \mid d \\ a \mid c & b \mid d & b \mid d \end{vmatrix}$$

а	aaa	aaaa	abaa	С	cdc	cdcc	dcdd
	aab	aaab	abab		cdd	cddc	ddcc
aa	aba	aaba	abba	dc	dcc	dccc	dddc
ab	abb	aabb	abbb	dd	ddc	dcdc	dddd

The RBT on this example: construction of the transducer

from the automata

Proof of the Rational Bijection Theorem

- The model of weighted automaton:
 Bridge between growth function and finite automata
- 2. Decidability of equivalence of generating series Taken for granted
- 3. The conjugacy theorem
- 4. Definition of morphisms and the FET for weighted automata
- 5. The harvest

$$\frac{1}{\longrightarrow} p \xrightarrow{b} p \xrightarrow{a} p \xrightarrow{b} q \xrightarrow{1}$$

$$\frac{1}{\longrightarrow} p \xrightarrow{b} q \xrightarrow{2a} q \xrightarrow{2b} q \xrightarrow{1}$$

$$bab \longmapsto 5 \qquad \forall w \in A^* \qquad w \longmapsto \langle w \rangle_2$$

$$\frac{1}{\longrightarrow} p \xrightarrow{b} p \xrightarrow{a} p \xrightarrow{b} q \xrightarrow{1}$$

$$\xrightarrow{1} p \xrightarrow{b} q \xrightarrow{2a} q \xrightarrow{2b} q \xrightarrow{1}$$

$$bab \longmapsto 5 \qquad \forall w \in A^* \qquad w \longmapsto \langle w \rangle_2$$

$$s: A^* \longrightarrow \mathbb{N}$$
 $s: w \longmapsto \langle s, w \rangle$ $s \in \mathbb{N}^{A^*}$

$$s = b + ab + 2ba + 3bb + aab$$

+ $2aba + 3abb + 4baa + 5bab + \dots$

$$\frac{1}{\longrightarrow} p \xrightarrow{b} p \xrightarrow{a} p \xrightarrow{b} q \xrightarrow{1}$$

$$\xrightarrow{1} p \xrightarrow{b} q \xrightarrow{2a} q \xrightarrow{2b} q \xrightarrow{1}$$

$$bab \longmapsto 5 \quad \forall w \in A^* \quad w \longmapsto \langle w \rangle_2$$

$$s:A^*\longrightarrow \mathbb{N} \qquad s: \ w \quad \longmapsto \quad \langle s,w \rangle \qquad \qquad s\in \mathbb{N}\langle\!\langle A^* \rangle\!\rangle$$

$$s = b + ab + 2ba + 3bb + aab + 2aba + 3abb + 4baa + 5bab + ...$$

$$\mathcal{M} = \langle \mathbb{N} \cup \{+\infty\}, \min, + \rangle$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$\textit{bab} \quad \longmapsto \quad 1 \qquad \qquad \forall w \in \textit{A}^* \qquad w \quad \longmapsto \quad \min\{|w|_{\textit{a}},|w|_{\textit{b}}\}$$

$$s \colon A^* \longrightarrow \mathcal{M} \qquad s \ \colon \ w \quad \longmapsto \quad \langle s, w \rangle \qquad \qquad s \in \mathcal{M} \langle\!\langle A^* \rangle\!\rangle$$

$$s = 01_{A^*} \oplus 0a \oplus 0b \oplus 0aa \oplus 1ab \oplus 1ba \oplus 0bb \ \oplus 0aaa \oplus 1aab \oplus 1aba \oplus 1abb \oplus \dots$$

Series play the role of languages

 $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ plays the role of $\mathfrak{P}\left(A^*\right)$

Automata are matrices

$$\mathcal{A} = \langle I, E, T \rangle = \left\langle \begin{pmatrix} 1 & 0 \end{pmatrix}, \begin{pmatrix} a+b & b \\ 0 & 2a+2b \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle$$

$$|\mathcal{A}| = I E^* T$$

A language
$$K = (c + dc + dd)^* \setminus \{cc(c + d)^* \cup 1_{B^*}\}$$
 that is,

an unambiguous automaton:

is transformed into an automaton over $\{z\}^*$ with weight in $\mathbb N$

which realises the generating series $G_K(z) = \sum_{n \in \mathbb{N}^1} g_K(n) z^n$.

Growth functions

are realised

by weighted automata.

(i) Two unambiguous finite automata $\,\mathcal{A}\,$ and $\,\mathcal{B}\,$,

- (i) Two unambiguous finite automata ${\mathcal A}$ and ${\mathcal B}$,
- (ii) transformed into \mathcal{A}' and \mathcal{B}' , over $\{z\}^*$ with multiplicity in \mathbb{N} , which realise the generating functions $\mathsf{G}_L(z)$ and $\mathsf{G}_K(z)$:

$$\mathsf{G}_{L}(z) = \sum_{n \in \mathbb{N}} \mathsf{g}_{L}(n) \ z^{n}$$
 and $\mathsf{G}_{K}(z) = \sum_{n \in \mathbb{N}} \mathsf{g}_{K}(n) \ z^{n}$,

- (i) Two unambiguous finite automata A and B,
- (ii) transformed into \mathcal{A}' and \mathcal{B}' , over $\{z\}^*$ with multiplicity in \mathbb{N} , which realise the generating functions $\mathsf{G}_L(z)$ and $\mathsf{G}_K(z)$:

$$\mathsf{G}_{L}(z) = \sum_{n \in \mathbb{N}} \mathsf{g}_{L}(n) \ z^{n}$$
 and $\mathsf{G}_{K}(z) = \sum_{n \in \mathbb{N}} \mathsf{g}_{K}(n) \ z^{n}$,

- (i) Two unambiguous finite automata ${\mathcal A}$ and ${\mathcal B}$,
- (ii) transformed into \mathcal{A}' and \mathcal{B}' , over $\{z\}^*$ with multiplicity in \mathbb{N} , which realise the generating functions $\mathsf{G}_L(z)$ and $\mathsf{G}_K(z)$:

$$\mathsf{G}_{L}\left(z
ight) = \sum_{n \in \mathbb{N}} \mathsf{g}_{L}\left(n
ight) z^{n} \qquad \text{and} \qquad \mathsf{G}_{K}\left(z
ight) = \sum_{n \in \mathbb{N}} \mathsf{g}_{K}\left(n
ight) z^{n} \;\; ,$$

(iii) and whose equivalence is decidable (Chomsky-Miller 1958).

Step 3: The conjugacy theorem

Theorem (BLS)

Two \mathbb{N} -automata are equivalent if and only if they are conjugate to a same third \mathbb{N} -automaton.

Theorem (BLS)

Two \mathbb{N} -automata are equivalent if and only if they are conjugate to a same third \mathbb{N} -automaton.

Automata are matrices

Theorem (BLS)

Two \mathbb{N} -automata are equivalent if and only if they are conjugate to a same third \mathbb{N} -automaton.

Automata are matrices

$$\mathcal{A}' = \langle I, E, T \rangle = \left\langle (1 \quad 0), \begin{pmatrix} 0 & z \\ 0 & 2z \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle$$

Theorem (BLS)

Two \mathbb{N} -automata are equivalent if and only if they are conjugate to a same third \mathbb{N} -automaton.

Definition

Let $A = \langle I, E, T \rangle$ and $B = \langle J, F, U \rangle$ be two \mathbb{K} -automata.

 ${\cal A}$ is conjugate to ${\cal B}$ if

 $\exists X \quad \mathbb{K}$ -matrix IX = J, EX = XF, and T = XU

Theorem (BLS)

Two \mathbb{N} -automata are equivalent if and only if they are conjugate to a same third \mathbb{N} -automaton.

Definition

Let $A = \langle I, E, T \rangle$ and $B = \langle J, F, U \rangle$ be two \mathbb{K} -automata.

 ${\cal A}$ is conjugate to ${\cal B}$ if

$$\exists X \quad \mathbb{K}$$
-matrix $IX = J$, $EX = XF$, and $T = XU$

This is denoted as

$$\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$$
.

Theorem (BLS)

Two \mathbb{N} -automata are equivalent if and only if they are conjugate to a same third \mathbb{N} -automaton.

Conjugacy is a preorder
 (transitive and reflexive, but not symmetric).

Theorem (BLS)

Two \mathbb{N} -automata are equivalent if and only if they are conjugate to a same third \mathbb{N} -automaton.

- Conjugacy is a preorder
 (transitive and reflexive, but not symmetric).
- $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$ implies that \mathcal{A} and \mathcal{B} are *equivalent*.

$$IEET = IEEXU = IEXFU = IXFFU = JFFU$$

Theorem (BLS)

Two \mathbb{N} -automata are equivalent if and only if they are conjugate to a same third \mathbb{N} -automaton.

- Conjugacy is a preorder
 (transitive and reflexive, but not symmetric).
- $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$ implies that \mathcal{A} and \mathcal{B} are *equivalent*.

$$IEET = IEEXU = IEXFU = IXFFU = JFFU$$

and then $IE^*T = JF^*U$

Theorem (BLS)

Two \mathbb{N} -automata \mathcal{A} and \mathcal{B} are equivalent if and only if there exists an \mathbb{N} -automaton \mathcal{C} (and \mathbb{N} -matrices X and Y) such that

$$\mathcal{A} \stackrel{\mathcal{X}}{\longleftarrow} \mathcal{C} \stackrel{\mathcal{Y}}{\Longrightarrow} \mathcal{B}$$

Moreover, $\mathcal C$ is effectively computable from $\mathcal A$ and $\mathcal B$.

Theorem (BLS)

Two \mathbb{N} -automata \mathcal{A} and \mathcal{B} are equivalent if and only if there exists an \mathbb{N} -automaton \mathcal{C} (and \mathbb{N} -matrices X and Y) such that

$$\mathcal{A} \stackrel{\mathcal{X}}{\longleftarrow} \mathcal{C} \stackrel{\mathcal{Y}}{\Longrightarrow} \mathcal{B}$$

Moreover, $\mathcal C$ is effectively computable from $\mathcal A$ and $\mathcal B$.

Step 3: The conjugacy theorem

Theorem (BLS)

Two \mathbb{N} -automata \mathcal{A} and \mathcal{B} are equivalent if and only if there exists an \mathbb{N} -automaton \mathcal{C} (and \mathbb{N} -matrices X and Y) such that

$$\mathcal{A} \stackrel{\mathcal{X}}{\longleftarrow} \mathcal{C} \stackrel{\mathcal{Y}}{\Longrightarrow} \mathcal{B}$$

Moreover, $\mathcal C$ is effectively computable from $\mathcal A$ and $\mathcal B$.

with
$$X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 2 \end{pmatrix}$$
 and $Y = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 \end{pmatrix}$

Step 3: The conjugacy theorem

$$\mathcal{C}' = \left\langle (1 \ 0 \ 0), \begin{pmatrix} 0 & z & 0 \\ 0 & 0 & z \\ 0 & 0 & 2z \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \right\rangle \qquad \mathcal{A}' = \left\langle (1 \ 0), \begin{pmatrix} 0 & z \\ 0 & 2z \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle$$

$$(1 \ 0 \ 0) \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 2 \end{pmatrix} = (1 \ 0),$$

$$\begin{pmatrix} 0 & z & 0 \\ 0 & 0 & z \\ 0 & 0 & 2z \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 & z \\ 0 & 2z \end{pmatrix},$$

$$\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Step 4: Morphisms and the Decomposition theorem

1. Morphisms

1. Morphisms

1. Morphisms

A map $\,\, \varphi \colon \mathcal{D}' o \mathcal{A}' \,\,$ defines a matrix $\,\, H_{\!arphi} \,$:

$$H_{\varphi} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$$

1. Morphisms

Definition

Let $\mathcal{D}' = \langle I, E, T \rangle$ and $\mathcal{A}' = \langle J, F, U \rangle$ be two \mathbb{K} -automata.

 $\varphi\colon \mathcal{D}'\to \mathcal{A}' \ \text{ is an Out-morphism} \qquad \text{or} \qquad \mathcal{A}' \ \text{ is a quotient of } \ \mathcal{D}'$

 $\text{if } \mathcal{D}' \text{ is conjugate to } \mathcal{A}' \text{ by } H_{\varphi}: \qquad \mathcal{D}' \stackrel{H_{\varphi}}{\Longrightarrow} \mathcal{A}'$

$$I \, H_{arphi} = J, \qquad E \, H_{arphi} = H_{arphi} \, F, \quad {
m and} \quad T = H_{arphi} \, U \ .$$

1. Morphisms

Definition

Let $\mathcal{D}' = \langle I, E, T \rangle$ and $\mathcal{A}' = \langle J, F, U \rangle$ be two \mathbb{K} -automata.

 $\varphi \colon \mathcal{D}' \to \mathcal{A}'$ is an Out-morphism or \mathcal{A}' is a quotient of \mathcal{D}'

if \mathcal{D}' is conjugate to \mathcal{A}' by $H_{\varphi}: \qquad \mathcal{D}' \stackrel{H_{\varphi}}{\Longrightarrow} \mathcal{A}'$

$$IH_{\varphi} = J, \qquad EH_{\varphi} = H_{\varphi}F, \quad \text{and} \quad T = H_{\varphi}U.$$

1. Morphisms

Definition

Let $\mathcal{D}' = \langle I, E, T \rangle$ and $\mathcal{C}' = \langle J, F, U \rangle$ be two \mathbb{K} -automata.

$$\varphi \colon \mathcal{D}' \to \mathcal{C}' \ \text{ is an In-morphism} \qquad \text{or} \qquad \mathcal{C}' \ \text{ is a co-quotient of } \ \mathcal{D}'$$

 $\text{if } \mathcal{C}' \text{ is conjugate to } \mathcal{D}' \text{ by } {}^{\mathrm{t}}H_{\varphi} \ : \qquad \mathcal{C}' \overset{{}^{\mathrm{t}}H_{\varphi}}{\Longrightarrow} \mathcal{D}'$

$$IH_{\varphi} = J, \qquad EH_{\varphi} = H_{\varphi}F, \quad \text{and} \quad T = H_{\varphi}U.$$

Step 4: 2.

2. The Decomposition theorem

2. The Decomposition theorem

Theorem (BLS)

Let C' and A' be two \mathbb{N} -automata, C' conjugate to A'. Then, there exists an \mathbb{N} -automaton \mathcal{D}' such that A' is a quotient of D'and C' is an co-quotient of D'.

Moreover, \mathcal{D}' is effectively computable from \mathcal{C}' and \mathcal{A}' .

Step 4: 2. The Decomposition theorem

Theorem (BLS)

Let \mathcal{C}' and \mathcal{A}' be two \mathbb{N} -automata, \mathcal{C}' conjugate to \mathcal{A}' . Then, there exists an \mathbb{N} -automaton \mathcal{D}' such that \mathcal{A}' is a quotient of \mathcal{D}' and \mathcal{C}' is an co-quotient of \mathcal{D}' . Moreover, \mathcal{D}' is effectively computable from \mathcal{C}' and \mathcal{A}' .

Step 4: 3. Conjugacy and Decomposition theorems together

A structural interpretation of equivalence

Step 4: 3. Conjugacy and Decomposition theorems together

A structural interpretation of equivalence

Step 4: 3. Conjugacy and Decomposition theorems together

A structural interpretation of equivalence

Step 5: 1. A technical proposition

Step 5: 1. A technical proposition

Step 5: 1. A technical proposition

Step 5: 2. The harvest

Part II

 $The\ foundations$

- Representation
 The representability theorem
- 2. Reduction Decidability of equivalence
- 3. Joint reduction

 The conjugacy theorem
- 4. Morphisms

 The decomposition theorem

$Chapter\ I$

Representation

Automata are matrices

$$\mathcal{C}_1 = \left\langle \begin{array}{cc} \left(1 & 0 \right), \left(egin{matrix} a+b & b \\ 0 & 2\,a+2\,b \end{array} \right), \left(egin{matrix} 0 \\ 1 \end{array} \right
angle \right. \; .$$

$$A = \langle I, E, T \rangle$$
 $|A| = \sum I \cdot E^n \cdot T = I \cdot E^* \cdot T$

Automata over free monoids are representations

$$\mu_1(a) = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
, $\mu_1(b) = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$, $I_1 = \begin{pmatrix} 1 & 0 \end{pmatrix}$, $I_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$A = \langle I, \mu, T \rangle$$
 $w \mapsto I \cdot \mu(w) \cdot T$ $|A| = \sum_{w \in A^*} (I \cdot \mu(w) \cdot T) w$

The control morphism

$$\mathcal{A} = \langle I, \mu, T \rangle$$

Reachability set

Reachability space

$$\mathbf{R}_{\mathcal{A}} = \{ I \cdot \mu(w) \mid w \in A^* \}$$

$$\mathsf{R}_\mathcal{A}\subseteq\mathbb{K}^Q$$

 $\langle R_A \rangle$

$$\Psi_{\mathcal{A}} \colon \mathbb{K}\langle A^* \rangle \longrightarrow \mathbb{K}^Q$$

$$\forall w \in A^* \quad \Psi_{\mathcal{A}}(w) = I \cdot \mu(w)$$

$$\mathbf{R}_A = \Psi_A(A^*)$$

$$\operatorname{Im}\Psi_{\mathcal{A}}=\Psi_{\mathcal{A}}(\mathbb{K}\langle A^*\rangle)=\left\langle \mathsf{R}_{\mathcal{A}}\right\rangle$$

$$\mathbb{K}\langle \mathcal{A}^*
angle \ \psi_{\mathcal{A}} igg|_{\mathbb{K}^Q}$$

$$\Psi_{\mathcal{A}} \downarrow X$$

The control morphism

The control morphism

$$\mathcal{A} = \langle I, \mu, T \rangle$$

Reachability set

Reachability space

$$\mathbf{R}_{\mathcal{A}} = \{I \cdot \mu(w) \mid w \in A^*\} \qquad \mathbf{R}_{\mathcal{A}} \subseteq \mathbb{K}^{Q} \qquad \langle \mathbf{R}_{\mathcal{A}} \rangle \\
\Psi_{\mathcal{A}} \colon \mathbb{K} \langle A^* \rangle \longrightarrow \mathbb{K}^{Q} \qquad \forall w \in A^* \quad \Psi_{\mathcal{A}}(w) = I \cdot \mu(w) \\
\mathbf{R}_{\mathcal{A}} = \Psi_{\mathcal{A}}(A^*) \qquad \operatorname{Im} \Psi_{\mathcal{A}} = \Psi_{\mathcal{A}}(\mathbb{K} \langle A^* \rangle) = \langle \mathbf{R}_{\mathcal{A}} \rangle \\
\mathbb{K} \langle A^* \rangle \xrightarrow{A^*} \mathbb{K} \langle A^* \rangle \qquad \qquad \qquad \downarrow_{\mathcal{A}} \downarrow \qquad \downarrow_{\mathcal{A}} \downarrow \qquad \qquad \downarrow_{\mathcal{A}$$

The control morphism

The control morphism

$$\mathcal{A} = \langle I, \mu, T \rangle$$

Reachability set

Reachability space

$$\mathbf{R}_{\mathcal{A}} = \{I \cdot \mu(w) \mid w \in A^*\} \qquad \mathbf{R}_{\mathcal{A}} \subseteq \mathbb{K}^{Q} \qquad \langle \mathbf{R}_{\mathcal{A}} \rangle \\
\Psi_{\mathcal{A}} \colon \mathbb{K} \langle A^* \rangle \longrightarrow \mathbb{K}^{Q} \qquad \forall w \in A^* \quad \Psi_{\mathcal{A}}(w) = I \cdot \mu(w) \\
\mathbf{R}_{\mathcal{A}} = \Psi_{\mathcal{A}}(A^*) \qquad \operatorname{Im} \Psi_{\mathcal{A}} = \Psi_{\mathcal{A}}(\mathbb{K} \langle A^* \rangle) = \langle \mathbf{R}_{\mathcal{A}} \rangle \\
\mathbb{K} \langle A^* \rangle \xrightarrow{A^*} \mathbb{K} \langle A^* \rangle \qquad \qquad \downarrow \psi_{\mathcal{A}} \qquad \downarrow \psi_{\mathcal{$$

The control morphism is a morphism of actions

The observation morphism

Quotient of series

$$s \in \mathbb{K}\langle\langle A^* \rangle\rangle$$
 $v \in A^*$ $v^{-1}s = \sum_{w \in A^*} \langle s, v w \rangle w$

$$v^{-1} \colon \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \longrightarrow \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$$

endomorphism of K-modules

$$\mathbb{K}\langle\!\langle A^* \rangle\!\rangle \xrightarrow{A^*} \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$$

$$s \longmapsto v^{-1}s$$

Quotient is a (right) action of A^* on $\mathbb{K}\langle\langle A^*\rangle\rangle$

The observation morphism

$$\mathcal{A} = \langle I, \mu, T \rangle$$

$$\mathcal{A} = \langle \mathbf{I}, \mu, \mathbf{I} \rangle$$

$$\Phi_{\mathcal{A}}$$

$$\Phi_{\mathcal{A}} \colon \mathbb{K}^{Q} \longrightarrow \mathbb{K}\langle\!\langle A^{*} \rangle\!\rangle \qquad \qquad \Phi_{\mathcal{A}}(x) = \left| \langle x, \mu, T \rangle \right| = \sum_{w \in A^{*}} (x \cdot \mu(w) \cdot T) w$$

$$s = |\langle I, \mu, T \rangle| = \Phi_{\mathcal{A}}(I)$$

$$egin{array}{c} \mathbb{K} \langle \langle A^*
angle
angle \end{array}$$

The observation morphism

$$\mathcal{A} = \langle I, \mu, T \rangle$$

$$\Phi_{\mathcal{A}} \colon \mathbb{K}^{Q} \longrightarrow \mathbb{K}\langle\!\langle A^{*} \rangle\!\rangle \qquad \qquad \Phi_{\mathcal{A}}(x) = |\langle x, \mu, T \rangle| = \sum_{w \in A^{*}} (x \cdot \mu(w) \cdot T) w$$

$$s = |\langle I, \mu, T \rangle| = \Phi_{\mathcal{A}}(I)$$
 $w^{-1}s = |(I \cdot \mu(w), \mu, T)|$

$$w^{-1}\Phi_{\mathcal{A}}(x) = \Phi_{\mathcal{A}}(x \cdot \mu(w))$$

The observation morphism

$$\mathcal{A} = \langle I, \mu, T \rangle$$

$$\Phi_{\mathcal{A}} \colon \mathbb{K}^{Q} \longrightarrow \mathbb{K}\langle\!\langle A^{*} \rangle\!\rangle \qquad \qquad \Phi_{\mathcal{A}}(x) = |\langle x, \mu, T \rangle| = \sum_{w \in A^{*}} (x \cdot \mu(w) \cdot T) w$$

$$s = |\langle I, \mu, T \rangle| = \Phi_{\mathcal{A}}(I)$$
 $w^{-1}s = |(I \cdot \mu(w), \mu, T)|$

$$w^{-1}\Phi_{\mathcal{A}}(x) = \Phi_{\mathcal{A}}(x \cdot \mu(w))$$

$$\mathbb{K}^{Q} \xrightarrow{A} \mathbb{K}^{Q} \qquad \qquad x \longmapsto x \cdot \mu(a)$$

$$\Phi_{\mathcal{A}} \downarrow \qquad \qquad \downarrow \Phi_{\mathcal{A}} \qquad \downarrow \Phi_{\mathcal{A}} \qquad \qquad \downarrow \Phi_{\mathcal{A}$$

The observation morphism is a morphism of actions

The observation morphism

$$\mathcal{A} = \langle I, \mu, T \rangle$$

$$\Phi_{\mathcal{A}} \colon \mathbb{K}^{Q} \longrightarrow \mathbb{K}\langle\!\langle A^{*} \rangle\!\rangle \qquad \qquad \Phi_{\mathcal{A}}(x) = |\langle x, \mu, T \rangle| = \sum_{w \in A^{*}} (x \cdot \mu(w) \cdot T) w$$

$$s = |\langle I, \mu, T \rangle| = \Phi_{\mathcal{A}}(I)$$
 $w^{-1}s = |\langle I \cdot \mu(w), \mu, T \rangle|$

$$w^{-1}\Phi_{\mathcal{A}}(x) = \Phi_{\mathcal{A}}(x \cdot \mu(w))$$

$$\mathbb{K}\langle A^* \rangle \xrightarrow{A^*} \mathbb{K}\langle A^* \rangle \qquad \qquad u \longmapsto w a$$

$$\psi_{\mathcal{A}} \downarrow \qquad \psi_{\mathcal{A}} \qquad \qquad \psi_{\mathcal{A}} \downarrow \qquad \psi_{\mathcal{A}} \qquad \qquad \psi_{\mathcal{A}} \downarrow \qquad \psi_{\mathcal{A}} \downarrow$$

The observation morphism is a morphism of actions

 $U\subseteq \mathbb{K}\langle\!\langle A^*
angle\!
angle$ submodule U stable (by quotient)

Theorem (Schützenberger 61, Fliess 71, Jacob 74)

 $s \in \mathbb{K} \operatorname{Rec} A^* \iff \exists U \text{ stable finitely generated } s \in U$

 $U\subseteq \mathbb{K}\langle\!\langle A^*
angle\!
angle$ submodule U stable (by quotient)

Theorem (Schützenberger 61, Fliess 71, Jacob 74)

 $s \in \mathbb{K}\mathrm{Rec}\,A^* \qquad \Longleftrightarrow \qquad \exists U \quad \textit{stable finitely generated} \quad s \in U$

$$\mathbb{K}\langle A^* \rangle \xrightarrow{A^*} \mathbb{K}\langle A^* \rangle$$

$$\psi_{\mathcal{A}} \downarrow \qquad \qquad \downarrow \psi_{\mathcal{A}}$$

$$\mathbb{K}^Q \xrightarrow{A^*} \mathbb{K}^Q$$

$$\Phi_{\mathcal{A}} \downarrow \qquad \qquad \downarrow \Phi_{\mathcal{A}}$$

$$\mathbb{K}\langle \langle A^* \rangle \rangle \xrightarrow{A^*} \mathbb{K}\langle \langle A^* \rangle \rangle$$

$$U\subseteq \mathbb{K}\langle\!\langle A^*
angle\!
angle$$
 submodule U stable (by quotient)

Theorem (Schützenberger 61, Fliess 71, Jacob 74)

$$s \in \mathbb{K}\mathrm{Rec}\,A^* \qquad \Longrightarrow \qquad \exists U \quad \textit{stable finitely generated} \quad s \in U$$

$$1_{A^*} \in \qquad \mathbb{K}\langle A^* \rangle \xrightarrow{A^*} \mathbb{K}\langle A^* \rangle$$

$$\downarrow \Psi_{\mathcal{A}} \qquad \qquad \downarrow \Psi_{\mathcal{A}} \qquad \qquad \downarrow \Psi_{\mathcal{A}}$$

$$\downarrow \Phi_{\mathcal{A}} \qquad \qquad \downarrow \Phi_{\mathcal{A}} \qquad \qquad \downarrow \Phi_{\mathcal{A}}$$

$$s \in \Phi_{\mathcal{A}}(\operatorname{Im} \Psi_{\mathcal{A}}) \qquad \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \xrightarrow{A^*} \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$$

 $U\subseteq \mathbb{K}\langle\!\langle A^*
angle\!
angle$ submodule U stable (by quotient)

Theorem (Schützenberger 61, Fliess 71, Jacob 74)

 $s \in \mathbb{K}\mathrm{Rec}\,A^* \qquad \Longleftrightarrow \qquad \exists U \quad \textit{stable finitely generated} \quad s \in U$

 $U\subseteq \mathbb{K}\langle\!\langle A^*
angle\!
angle$ submodule U stable (by quotient)

Theorem (Schützenberger 61, Fliess 71, Jacob 74)

 $s \in \mathbb{K}\mathrm{Rec}\,A^* \qquad \Longleftrightarrow \qquad \exists U \quad \textit{stable finitely generated} \quad s \in U$

$Chapter\ II$

Reduction

The representability theorem for recognisable series

Proposition

$$\mathcal{A}=\langle \mathit{I},\mu,\mathit{T}\,
angle \,$$
 dimension Q $s=|\mathcal{A}|$ $\langle \mathsf{R}_{\mathcal{A}} \rangle$ generated by $\mathit{G} \subset \mathbb{K}^{\mathit{Q}}$

$$\exists \ \mathcal{A}_G \ \text{of dimension} \ G \qquad s = |\mathcal{A}_G| \qquad \qquad \mathcal{A} \stackrel{M_G}{\longleftarrow} \mathcal{A}_G$$

$$s = |\mathcal{A}_G|$$

$$4 \stackrel{M_G}{\rightleftharpoons} A_G$$

Halting criterium

lacksquare lacksquare finite $\mathop{\mathsf{Im}}
olimits\Psi_{\mathcal{A}}$

- $\blacktriangleright \ \ \mathbb{B} \ \ \mathsf{finite} \qquad \qquad \mathsf{finite} \ \ \mathsf{Im} \ \Psi_{\mathcal{A}}$
- lacksquare $\mathbb F$ field finite dimension

- $\blacktriangleright \ \ \mathbb{B} \ \ \mathsf{finite} \qquad \qquad \mathsf{finite} \ \ \mathsf{Im} \ \Psi_{\mathcal{A}}$
- $ightharpoonup \mathbb{F}$ field finite dimension
- $ightharpoonup \mathbb{Z}$ ED Noetherian

- $\blacktriangleright \ \ \mathbb{B} \ \ \mathsf{finite} \qquad \qquad \mathsf{finite} \ \ \mathsf{Im} \ \Psi_{\mathcal{A}}$
- ▶ 𝔻 field finite dimension
- $ightharpoonup \mathbb{Z}$ ED Noetherian
- $ightharpoonup \mathbb{N}$ well partial ordered set

$$\mathbb{K}$$
-automaton $\mathcal{A} = \langle I, \mu, T \rangle$

Search for $P \subseteq A^*$

Result

$$\mathcal{A} \stackrel{\mathit{IMP}}{\longleftarrow} \mathcal{C}$$

Joint reduction

Chapter III

The joint exploration

 \mathbb{K} -automata $\mathcal{A}=\langle I,\mu,T\, \rangle$ and $\mathcal{B}=\langle J,\pi,U\, \rangle$ Search for $P\subseteq A^*$

$$\begin{array}{cccc}
\mathbb{K}\langle A^* \rangle & P & \mathbb{K}\langle A^* \rangle \\
\Psi_{\mathcal{A}} \downarrow & & & \downarrow \Psi_{\mathcal{B}} & & \downarrow \Psi_{\mathcal{B}} \\
\mathbb{K}^{Q} & & & \langle \Psi_{\mathcal{A}}(P) \rangle \mid \langle \Psi_{\mathcal{B}}(P) \rangle & & \mathbb{K}\langle A^* \rangle
\end{array}$$

Result

$$\mathcal{A} \stackrel{M_P}{\longleftarrow} \mathcal{C} \stackrel{N_P}{\Longrightarrow} \mathcal{B}$$

The conjugacy theorem

Theorem

Let \mathbb{K} be \mathbb{B} , \mathbb{N} , \mathbb{Z} , or any (skew) fields.

Two \mathbb{K} -automata \mathcal{A} and \mathcal{B} are equivalent if, and only if, there exist a \mathbb{K} -automaton \mathcal{C} (and \mathbb{K} -matrices X and Y) such that

$$\mathcal{A} \stackrel{\mathcal{X}}{\longleftarrow} \mathcal{C} \stackrel{\mathcal{Y}}{\Longrightarrow} \mathcal{B}$$

Moreover, C is effectively computable from A and B.

$Chapter\ IV$

Morphisms

Definition

$$\mathcal{A}=\langle \mathit{I}, \mathit{E}, \mathit{T} \, \rangle$$
 and $\mathcal{B}=\langle \mathit{J}, \mathit{F}, \mathit{U} \, \rangle$ \mathbb{K} -automata of dimension Q and R .

A map
$$\varphi \colon Q \to R$$
 defines an Out-morphism $\varphi \colon A \to B$

if
$$\mathcal A$$
 is conjugate to $\mathcal B$ by the matrix $H_{\varphi}: \mathcal A \stackrel{H_{\varphi}}{\Longrightarrow} \mathcal B$

$$I H_{\varphi} = J, \qquad E H_{\varphi} = H_{\varphi} F, \qquad T = H_{\varphi} U$$

$$\mathcal{B}$$
 is a quotient of \mathcal{A}

Definition

$$\mathcal{A}=\langle \mathit{I}, \mathit{E}, \mathit{T} \, \rangle$$
 and $\mathcal{B}=\langle \mathit{J}, \mathit{F}, \mathit{U} \, \rangle$ \mathbb{K} -automata of dimension Q and R .

A map
$$\varphi \colon Q \to R$$
 defines an Out-morphism $\varphi \colon A \to B$

if
$$\mathcal A$$
 is conjugate to $\mathcal B$ by the matrix $H_{\varphi}: \mathcal A \stackrel{H_{\varphi}}{\Longrightarrow} \mathcal B$

$$I H_{\varphi} = J, \qquad E H_{\varphi} = H_{\varphi} F, \qquad T = H_{\varphi} U$$

$$\mathcal{B}$$
 is a quotient of \mathcal{A}

Directed notion

Definition

$$\mathcal{A}=\langle \mathit{I}, \mathit{E}, \mathit{T} \, \rangle$$
 and $\mathcal{B}=\langle \mathit{J}, \mathit{F}, \mathit{U} \, \rangle$ \mathbb{K} -automata of dimension Q and R .

A map
$$\varphi \colon Q \to R$$
 defines an Out-morphism $\varphi \colon A \to B$

if
$$\mathcal A$$
 is conjugate to $\mathcal B$ by the matrix $H_{\varphi}: \mathcal A \stackrel{H_{\varphi}}{\Longrightarrow} \mathcal B$

$$I H_{\varphi} = J, \qquad E H_{\varphi} = H_{\varphi} F, \qquad T = H_{\varphi} U$$

$$\mathcal{B}$$
 is a quotient of \mathcal{A}

Directed notion

Price to pay for the weight

Definition

$$\mathcal{A}=\langle \mathit{I}, \mathit{E}, \mathit{T} \, \rangle$$
 and $\mathcal{B}=\langle \mathit{J}, \mathit{F}, \mathit{U} \, \rangle$ \mathbb{K} -automata of dimension Q and R .

A map
$$\varphi \colon Q \to R$$
 defines an In-morphism $\varphi \colon A \to B$

if
$$\mathcal A$$
 is conjugate to $\mathcal B$ by the matrix $H_{\varphi}: \mathcal A \stackrel{H_{\varphi}}{\Longrightarrow} \mathcal B$

$$I H_{\varphi} = J, \qquad E H_{\varphi} = H_{\varphi} F, \qquad T = H_{\varphi} U$$

$$\mathcal{B}$$
 is a quotient of \mathcal{A}

Directed notion

Price to pay for the weight

Definition

$$\mathcal{A}=\langle \mathit{I}, \mathit{E}, \mathit{T} \, \rangle$$
 and $\mathcal{B}=\langle \mathit{J}, \mathit{F}, \mathit{U} \, \rangle$ \mathbb{K} -automata of dimension Q and R .

A map
$$\varphi \colon Q \to R$$
 defines an In-morphism $\varphi \colon A \to B$

$$\text{if } \mathcal{B} \ \text{ is conjugate to } \mathcal{A} \ \text{ by the matrix} \ \ ^{\operatorname{t}}\!H_{\varphi} \ : \qquad \mathcal{B} \stackrel{^{\operatorname{t}}\!H_{\varphi}}{\Longrightarrow} \mathcal{A}$$

$$J^{t}H_{\varphi}=I, \qquad F^{t}H_{\varphi}={}^{t}H_{\varphi} E, \qquad U={}^{t}H_{\varphi} T$$

$$\mathcal{B}$$
 is a co-quotient of \mathcal{A}

Directed notion

Price to pay for the weight

Definition

$$\mathcal{A} = \langle I, E, T \rangle$$
 and $\mathcal{B} = \langle J, F, U \rangle$ \mathbb{K} -automata of dimension Q and R .

A map
$$\varphi \colon Q \to R$$
 defines an In-morphism $\varphi \colon A \to B$

$$\text{if } \mathcal{B} \ \text{ is conjugate to } \mathcal{A} \ \text{ by the matrix} \ \ ^{\operatorname{t}}\!H_{\varphi} \ : \qquad \mathcal{B} \stackrel{^{\operatorname{t}}\!H_{\varphi}}{\Longrightarrow} \mathcal{A}$$

$$J^{t}H_{\varphi}=I, \qquad F^{t}H_{\varphi}={}^{t}H_{\varphi} E, \qquad U={}^{t}H_{\varphi} T$$

 \mathcal{B} is a co-quotient of \mathcal{A}

Proposition

Every \mathbb{K} -automaton has a minimal (co-)quotient that is effectively computable (by the Moore algorithm).

Minimal quotients and co-quotients

Minimal quotients and co-quotients

Minimal quotients and co-quotients

Equisubtractive commutative monoid, semiring

$$p+q=r+s$$
 \Longrightarrow $\exists x, y, z, t$ $p=x+y, q=z+t, r=x+z, s=y+t$

Minimal quotients and co-quotients

Equisubtractive commutative monoid, semiring

$$p+q=r+s$$
 \Longrightarrow $\exists x, y, z, t$ $p=x+y, q=z+t, r=x+z, s=y+t$

Filling diagrams backwards

Minimal quotients and co-quotients

Equisubtractive commutative monoid, semiring

$$p+q=r+s$$
 \Longrightarrow $\exists x, y, z, t$ $p=x+y, q=z+t, r=x+z, s=y+t$

Filling diagrams backwards

The Decomposition theorem

Theorem

 $\mathbb{K} = \mathbb{B}$ or \mathbb{N} , \mathcal{A} and \mathcal{B} two trim \mathbb{K} -automata.

$$\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B} \iff$$

 $\exists \ \mathcal{C} \ \mathcal{A} \ \text{co-quotient of } \mathcal{C} \ \text{and} \ \mathcal{B} \ \text{quotient of } \mathcal{C} \ .$

Theorem

 $\begin{array}{lll} \mathbb{K} &=& \mathbb{B} & \text{or} & \mathbb{N} \;, & \mathcal{A} \;\; \text{and} \;\; \mathcal{B} \;\; \text{two trim} \;\; \mathbb{K}\text{-automata}. \\ \mathcal{A} & \stackrel{X}{\Longrightarrow} \; \mathcal{B} \;\; \Longleftrightarrow & \end{array}$

 $\exists \ \mathcal{C} \quad \mathcal{A} \quad \text{co-quotient of} \ \mathcal{C} \quad \text{and} \quad \mathcal{B} \quad \text{quotient of} \ \mathcal{C} \ .$

Theorem

Theorem

Theorem

circulation matrix = diagonal matrix of units

Theorem

Theorem

 \mathbb{K} has property (SU) = every element of \mathbb{K} is a sum of units

Theorem

 $\mathbb K$ has property (SU) = every element of $\mathbb K$ is a sum of units

 \mathbb{K} (SU) \Longrightarrow \forall X matrix X = CDRC co-amalgamation D circulation R amalgamation

Theorem

 ${\mathbb K}$ has property (SU) = every element of ${\mathbb K}$ is a sum of units

 \mathbb{K} (SU) \Longrightarrow \forall X matrix X = CDRC co-amalgamation D circulation R amalgamation

 \mathbb{K} equisubtractive \Longrightarrow given \mathcal{C} co-amalgamation and \mathcal{R} amalgamation matrices, one can construct \mathcal{C} and \mathcal{D}

Theorem

 $\mathbb{K} = \mathbb{B}$ or \mathbb{N} , \mathcal{A} and \mathcal{B} two trim \mathbb{K} -automata.

$$\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B} \iff$$

 $\exists \ \mathcal{C} \ \mathcal{A} \ \text{co-quotient of } \mathcal{C} \ \text{and} \ \mathcal{B} \ \text{quotient of } \mathcal{C} \ .$

Theorem

The Finite Equivalence Theorem

Theorem

Two irreducible sofic shifts are finitely equivalent if, and only if, they have the same entropy.

Theorem

The Finite Equivalence Theorem

Theorem

Two irreducible sofic shifts are finitely equivalent if, and only if, they have the same entropy.

Theorem

The Finite Equivalence Theorem

Theorem

Two irreducible sofic shifts are finitely equivalent if, and only if, they have the same entropy.

The Conjugacy and Decomposition theorems together

A structural interpretation of equivalence

Part III

Questions

Richness of the model of weighted automata

- ▶

 B 'classic' automata
- ▶ N 'usual' counting
- lacksquare \mathbb{Z} , \mathbb{Q} , \mathbb{R} numerical multiplicity
- $\langle \mathbb{Z} \cup +\infty, \min, + \rangle$ Min-plus automata
- $ightarrow \mathfrak{P}\left(B^{*}
 ight) = \mathbb{B}\langle\!\langle B^{*}
 angle\!
 angle \hspace{1.5cm}$ transducers
- $\mathbb{N}\langle\langle B^* \rangle\rangle$ weighted transducers
- $\mathfrak{P}(F(B))$ pushdown automata

Equivalence of weighted automata

Equivalence of weighted automata with weights in

the Boolean semiring \mathbb{B} decidable a subsemiring of a field decidable $(\mathbb{Z}, \min, +)$ undecidable

 $\operatorname{Rat} B^*$ undecidable $\operatorname{\mathbb{N}Rat} B^*$ decidable

Equivalence of

 $transducers \qquad undecidable \\ transducers \ with \ multiplicity \ in \ \mathbb{N} \qquad decidable$

functional transducers decidable polynomially ambiguous $(\mathbb{Z}, \min, +)$ decidable