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A alphabet, i.e. a finite set of letters
A* set of words
LC A*  language

RegE A*  set of regular expressions over A*
Reg A*  set of regular languages over A*

Aut A*  set of finite automata over A*
Rec A*  set of recognizable languages over A*
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» Problem seen from a theoretical point of view

» Problem seen from an experimental point of view

a b ] b 2 b0\ 1
Co—0=00 (v (i) ()
A=(1,X,T) LA =1-X*-T

Computing the star of a matrix with entries in 3 (A*)

Computing the quasi-inverse of a matrix with entries in 3 (A*)
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. Computation of X*- T as a fixed point:
solution of a system of linear equations

. lterative computation of X* :
McNaughton—Yamada algorithm

. Recursive computation of X* : Conway(?) algorithm
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Theoretical point of view : methods of computations

Direct computation of the entries of X*
Computation of X* - T as a fixed point

Iterative computation of X*

ol A

Recursive computation of X*

Problem 1
Comparison between the expressions obtained with each method

For each method, the actual computation
depends on an order on the set of states

Problem 2
Comparison between the expressions obtained
in each method with distinct orders
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Axiomatisation of regular expressions

Trivial and natural identities
E+0=0+E=E, E-0=0-E=0, E-1=1-E=E
(E+F)+G=E+(F+G), (E-F)-G=E-(F-G)
E-(F+G)=E-F+E-G, (E+F)-G=E-G+F-G
E+F=F+E
Aperiodic identities.
E*=1+E-BE*, E*=14+FE*-E
(E+F)"=E"-(F-E")", (E+F)" =(E"-F)*-E*
(E-F)* =1+E-(F-E)"-F
Cyclic identities.
E*EE<n'(En)*
Idempotency identities.

E+E
(E) = FE*
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A=(Q,A X {pr}.{q})

. State elimination method
. Solution of a system of linear equations
. McNaughton—Yamada algorithm

. Recursive computation of X*

w ordering on @

E(w,p,q)
[S(w. 9)lp
[M(w)lp.q
[C(w)]p.q
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1. State elimination method E(w, p, q)
2. Solution of a system of linear equations [S(w, 9)]p
3. McNaughton—Yamada algorithm M(w)]p,q
4. Recursive computation of X* [C(w)]p.q
Conjecture

For any recursive division 7 of Q
there exists an ordering w' such that
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A=(Q,A X, {p},{q}) w ordering on @
1. State elimination method E(w, p, q)
2. Solution of a system of linear equations [S(w, 9)]p
3. McNaughton—Yamada algorithm [M(w)]p.q
4. Recursive computation of X* [C(w)]p,q
Conclusion

Several algorithms, essentially ONE result

(from a theoretical point of view)
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The size of E computed from A
may be exponential in the number of states of A

The size of E computed from A
may vary dramatically with the order put on the states of A

Eo = (a+ b(ab*a)*b)*

E1 = a* + a*b(ba*b)*ba* + a*b(ba*b)*a(b + a(ba*b)*a)*a(ba*b)*ba*
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The [ algorithms: an experimental point of view

Heuristics for the ordering of states proves to be (very) useful.

K L* Hy Ki L* Hy

» The naive heuristic
» The Delgado—Morais heuristic (CIAA 04)

The proof of the heuristic is in the computing.
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Definition of a standard automaton

Operations on standard automata
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Operations on standard automata

A+ B A-B A*
Example E; = a*b bb*a
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Operations on standard automata

A+ B A-B A*
Example E; = a*b+ bb*a
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Definition of a standard automaton

Operations on standard automata

A+ B A-B A*

Proposition
Size of Sg is ((E)+1

Proposition
The complexity of Ay is cubic
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Definition (Briiggemann-Klein 92)

E is in star-normal form (SNF) if and only if
for any F such that F* is a subexpression of E, c(F) =0

Theorem (B-K 92)

For any E, an E®* can be computed in linear time, s.t.
(i) E® isin star-normal form

(i) Seo = Se

Theorem (B-K 92)
Computation of E® is quadratic



The derived term automaton of an expression

» Standard automaton of E position, Glushkov

» Derived term automaton of E Brzozowski—Antimirov
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The Brzozowski derivation

Definition (Brzozowski 64)
E € RegEA* L E is defined by induction.
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The Brzozowski derivation

Definition (Brzozowski 64)
E € RegEA* L E is defined by induction.

o 0. o, ({1} if b-a
50_51_0’ &b_{ﬁ) otherwise
0 0 0
aa(E—I—F) EE-F%F

] .
Z(E) = [% E} E
Theorem (Brzozowski 64)

For every E , there is a finite number of derivatives
modulo A, C, and |
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The Brzozowski—Antimirov derivation

Definition (Brzozowski 64 — Antimirov 96)
E € RegEA* L E is defined by induction.
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The Brzozowski—Antimirov derivation

Definition (Brzozowski 64 — Antimirov 96)
E € RegEA* L E is defined by induction.
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The Brzozowski—Antimirov derivation

Example E; = (a*b+ bb*a)*

0 0

aElz{a*bEl}, 8b(E1) —{El,b aEl}
0 0
8_ Elz{a*bEl}a %a bEl—{El},

aﬁ( "aE1)" = {E1}., ;b(b*aE) = {b"aks}.
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Theorem (Antimirov 96)

Ag is an NFA which accepts L(E)
and has less than ((E) + 1 states

Theorem (Champarnaud-Ziadi 02)
Ag is a quotient of Sg
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Theorem (Champarnaud-Ziadi 01)
Computation of Ag is quadratic

Observation
Size of Ag much smaller than size of Sg
when E =T(A), for a certain A

Observation
Even for E=T(A),
computation of Sg followed by a quotient
more effective than computation of Ag












