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“Roger has tried to explain to her the V-bomb statistics: the difference between distribution,
in angel’s-eye view, over the map of England, and their own chances, as seen from down
here. She’s almost got it: nearly understands his Poisson equation, yet can’t quite put the
two together—put her own enforced calm day-to-day alongside the pure numbers, and keep
them both in sight. Pieces keep slipping in and out. ”

Thomas Pynchon, Gravity’s Rainbow
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TÉLÉCOM PARISTECH

Abstract

Doctor of Philosophy

Minimum Complexity Principle for Knowledge Transfer in Artificial Learning

by Pierre-Alexandre MURENA

Classical learning methods are often based on a simple but restrictive assumption:
The present and future data are generated according to the same distributions. This
hypothesis is particularly convenient when it comes to developing theoretical guar-
antees that the learning is accurate. However, it is not realistic from the point of view
of applicative domains that have emerged in the last years.

In this thesis, we focus on four distinct problems in artificial intelligence, that
have mainly one common point: All of them imply knowledge transfer from one
domain to the other. The first problem is analogical reasoning and concerns state-
ments of the form “A is to B as C is to D". The second one is transfer learning and
involves classification problem in situations where the training data and test data
do not have the same distribution (nor even belong to the same space). The third
one is data stream mining, ie. managing data that arrive one by one in a contin-
uous and high-frequency stream with changes in the distributions. The last one is
collaborative clustering and focuses on exchange of information between clustering
algorithms to improve the quality of their predictions.

The main contribution of this thesis is to present a general framework to deal
with these transfer problems. This framework is based on the notion of Kolmogorov
complexity, which measures the inner information of an object. This tool is par-
ticularly adapted to the problem of transfer, since it does not rely on probability
distributions while being able to model the changes in the distributions.

Apart from this modeling effort, we propose, in this thesis, various discussions
on aspects and applications of the different problems of interest. These discussions
all concern the possibility of transfer in multiple domains and are not based on com-
plexity only.

HTTPS://WWW.TELECOM-PARISTECH.FR/
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Chapter 1

Introduction: Knowledge Transfer
in Artificial Intelligence

1.1 Scope

Recent advances in machine learning and artificial intelligence show an interest-
ing phenomenon. On the one hand, computational intelligence models break unex-
pected records on very complex tasks, such as playing Go (Silver et al., 2016), image
recognition (see for instance the impressive scores obtained in the Large Scale Visual
Recognition Challenge (Russakovsky et al., 2015)) or self-driving vehicles. On the
other hand, the “intelligence” of the systems is limited in unexpected directions. For
instance, the learning systems usually can produce errors that humans would not:
unrecognizable images can be attributed with near-certainty by deep convolutional
neural networks to recognizable categories (Nguyen, Yosinski, and Clune, 2015), or
addition of a simple and barely visible perturbation to images can be enough to lead
to drastic classification errors (Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard, 2017).
Lastly, flexibility is an essential characteristic of human cognition which is barely
present in artificial systems. Examples of flexibility can be found in humor: A global
consensus can be found on the idea that humour is based on the unification of two
a priori distinct concepts into one single representation, which is called “bisociation”
by (Koestler, 1964). In this definition, it is clear that humour relies on a flexibility of
interpretation since it involves the evolution of a first understanding of a word or a
situation into a new interpretation.

What conclusions can be drawn from these observations? It appears that, even
when artificial systems outperform human capabilities, they are bad at reproduc-
ing elementary behaviors, which means, in other words, that we are still far from
successfully passing the Turing test. It follows that current machine learning does
not follow the same objectives as human cognition, but is excellent at the tasks it is
biased toward.

The now well-known no-free-lunch theorem provides a theoretical evidence that
such biases are unavoidable in the context of artificial learning. A complete learning
theory has been developed in the statistical setting, aiming to characterize learning
performance in terms of success rate (called risk in the context of supervised learn-
ing). However, this theory cannot be directly adapted to a larger class of problems,
and in particular into a universal learning theory.

All these remarks together point out to the fact that getting more “human” re-
sults requires a completely different approach to learning. Such an approach should
incorporate more flexibility to learning, and thus emphasize knowledge transfer.

In the context of this work, we define knowledge transfer as a process in which
a previously acquired knowledge is used and slightly modified to fit into a context
different from the original one. Such a modification operation is hidden everywhere
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in human cognition: As human beings, we constantly adapt previous knowledge.
For example, knowing how to play tarot is a valuable help for learning how to play
rummy, even if both games have apparently nothing in common: different cards,
different rules, different underlying principle (tarot being a trick-taking game and
not rummy). The question of knowledge transfer appears under various forms in
the artificial intelligence literature.

For symbolic machine learning, it takes the form of analogical reasoning the
purpose of which is to draw links between apparently unrelated domains. The most
famous example of an analogy is Rutherford’s planetary model of the atom in which
the nucleus plays the role of the sun and electrons the role of planets. Other appli-
cations are to be found in character strings (especially with the works of Douglas
Hofstadter) or grammatical inference. Analogical reasoning is also a fundamental
step of case-based reasoning, where a new problem is solved by analyzing previous
cases and adapting their solutions to the situation of interest.

For knowledge engineering, the question of adapting knowledge can be seen in
data linking and ontology alignment. Data linking is an operation which consists
in finding identical elements inside two distinct data sources. For this operation,
transferring knowledge from one data source to the other is unavoidable. When
such an operation is performed on conceptual networks (ie. networks the nodes of
which are concepts), ontology alignment can be used as a cognitive science tool to
map concepts perceived by an individual into the concepts perceived by another
individual (or by the same individual at another time).

In machine learning, the corresponding task is called transfer learning. Transfer
is used when the distribution changes between learning and training. A change in
the distribution is not commonly admitted in machine learning since data are of-
ten supposed to be independent and identically distributed (i.i.d.) but in practice this
hypothesis does not always hold in most situations: For instance, it is natural that
users’ behavior in an online shopping platform vary depending on the time of the
year. Transfer learning considers a previously learned concept (in particular a label-
ing function) and adapts it to the new data distribution.

Other machine learning tasks involving knowledge can be found, mostly in-
volved in new environments of data management such as internet of things or dis-
tributed networks. In such environments, data can be generated in the form of
streams and have to be managed on the fly and in real time, while storing past data
is not possible due to memory limitations. Data streams require an adaptation to
changes in the data distribution (called concept drifts) which can be either brutal or
incremental.

Finally, new methods emerge in machine learning, inspired in particular by the
constraints of distributed systems, where multiple systems have to collaborate with-
out exchanging data in a direct way. For example, several clients of a same service
may have access to different views on the same data because of confidentiality re-
striction but may have the possibility to exchange non-confidential information to-
gether. In such architectures, only partial information can be transmitted from one
system to the other, and knowledge has to be transferred and adapted before being
re-used.

1.2 Position and Contributions

In this thesis, we propose to examine the general scope of such problems and to
determine what they have in common. In particular, we propose to answer three
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fundamental questions that emerge when considering the question of knowledge
transfer:

1. How to transfer knowledge?

The question of the transfer method is commonly the most addressed ques-
tion in the literature. It provides an algorithmic way to operate transfer in the
problems of interest. Plenty of methods exist for every possible task. A unified
view on such methods remains to be found yet.

2. Is it possible to transfer knowledge?

In some cases, transfer is not direct or even not possible at all. Human beings
know what knowledge can or cannot help them to solve a task. Extending such
a capability to machine is a challenging task which requires a deep modeling
of transfer.

3. Is knowledge transfer necessarily successful?

Just because the machine is able to determine whether a transfer is possible
does not mean that the transfer will reach good performance. On the contrary,
the notion of negative transfer applies to situations where a transfer is possible
but does not help the system.

If these questions are very general and not specific to this thesis, our main orig-
inality relies in the use of Kolmogorov complexity to address them. Intuitively, com-
plexity measures how long the description of an object is. Complexity is a power-
ful tool to measure the amplitude of a transfer and seems to play a fundamental
role in human cognition. Many links already exist between Kolmogorov complexity
and artificial intelligence. Our approach is different in that it does not consider the
restriction of complexity to probabilities, but remains as general as possible. This
position makes it possible to consider broader issues and to go beyond a merely sta-
tistical vision of learning. Moreover, by considering data description and not data
generation, our work offers a new perspective and opens up new issues.

In this direction, our main contributions are the following:

• We proposed a new framework to describe learning problems. This frame-
work, which is based on Kolmogorov complexity, is data-oriented and not
distribution-oriented. We have applied this framework to a large variety of
problems, ranging from analogical reasoning to incremental learning, and we
proposed models and algorithms for a practical use of this framework. We
have also developed cognitive models based on our model, which indicates
that our approach also succeeds in mimicking human intelligence.

• Based on this framework, we proposed a new criterion to measure task related-
ness and transfer feasibility. The developed notion is close to the idea of hy-
pothesis transfer and depends on the considered machine. This notion is at
stake in an interpretation of the no-free-lunch theorem generalized to non-
stationary environments.

• We proposed a formalism to describe the problem of collaborative clustering.
The formalism is inspired by Ben David’s analysis of clustering (Ben-David,
Von Luxburg, and Pál, 2006) but incorporates additional notions, characteristic
of a collaborative framework.
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1.3 Outline

This thesis is organized in four parts, which correspond to use cases we have men-
tioned (analogy, transfer learning, incremental learning and collaborative cluster-
ing). Their order corresponds to a logical order for the understanding of the prob-
lem, but does not describe the chronology of the research itself. Each part is divided
into small chapters in which a specific sub-problem is investigated. Besides, the
main content of the thesis is preceded by a short preamble which introduces some
fundamental concepts on which the thesis relies (chapter 2).

In part I, we first focus on analogical reasoning and consider it as a source prob-
lem to understand knowledge transfer. We first introduce the question of analogical
reasoning and present the main principles and state of the art (chapter 3). We then
present a canonical task in analogical reasoning: Hofstadter’s problem. It consists in
analogies on character strings and shares common characteristics with basically any
other analogical problem. Hence it is a good candidate to understand analogies. In
order to solve this task, we consider a description language and show that the analo-
gies favored by humans have a minimal description code (chapter 4). Using this
idea, we present in chapter 5 an analogical framework based on Kolmogorov com-
plexity and develop some notation and elementary results which will be used in the
subsequent parts. We eventually discuss an existing notion, proportional analogy,
and consider a limit case, when terms of the analogy are elements of a Riemannian
manifold. These results are presented in chapter 6.

The principle developed for analogical reasoning is then extended to the transfer
learning task in part II. After a short presentation of the problem and the state of
the art solutions (chapter 7), we propose an adaptation of the principle developed
for analogical reasoning (chapter 8). This principle relies on the notion of models,
ie. intermediate objects used to enhance data compression. We introduce a very
simple class of models and present corresponding experimental results. Our system
is designed to address one specific task and does not aim to offer generalization. In
chapter 9, we discuss how the framework can be extended to inductive transfer (ie.
to transfer with generalization). As an intermediate tool, we consider the question
of transferability and show that all transfers are not feasible.

Both analogical reasoning and transfer learning are targeting some future task.
In part III, we propose to follow the inverse direction and to look at the past by
considering the question of incremental learning. In incremental learning, the sys-
tem has to consider knowledge about the past to adapt to streaming data. We show
in chapter 10 that our framework can be extended to describe incremental learning
tasks. We will compare our framework to the state of the art algorithms and we will
show that it can offer a tool to assess incremental learning as a whole. In chapter 11,
we present an application to the topic modeling task in streaming environments: the
approach we present, based on Latent Dirichlet Allocation and Adaptive Window-
ing, can be described by our framework and has various applications, in particu-
lar in online document analysis and recommendation. As an application, we also
show that our incremental learning principle, merged with the string description
proposed in chapter 4, can describe the phenomenon of U-shaped learning, well-
known in cognitive sciences. The results, as well as a discussion on a generalization
of this phenomenon, are proposed in chapter 12.

In part IV, we focus on the unsupervised setting and more specifically on the task
of collaborative clustering. After a short introduction to the problem and to the ex-
isting methods and approaches (chapter 13), we show that our complexity-based
approach can also apply and propose a new algorithm for collaborative clustering
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(chapter 14). We finally discuss the limitations of collaboration in clustering by pro-
viding theoretical tools inspired by learning theory (chapter 15).
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Chapter 2

Preamble: The Problem of
Learning

In this chapter, we introduce the main objective of the thesis from a more techni-
cal point of view, by drawing links with traditional approaches of machine learn-
ing. The chapter is organized in three sections. In a first section, we go back to the
well-known problem of Supervised learning and provide evidences for the use of
Empirical Risk Minimization (ERM) with lights of Probably Approximately Correct
(PAC) learning. In a second section, we introduce the Minimum Description Length
(MDL) principle as a valid inductive principle and discuss the provable efficiency of
this principle. In a third section, we move forward to new problems that differ from
supervised learning and will be discussed in a more extensive way in this thesis.

2.1 Reminder on Supervised Learning

In this section, we present classical notions of supervised learning. Even if the first
definitions we will give are general, we will focus more on the classification problem,
and more particularly to binary classification.

2.1.1 Problem and Notations

We consider the following problem of learning. This problem will be called super-
vised learning.

Definition 1. Supervised learning A supervised learning algorithm is given by:

• An input space X ,

• An output space Y ,

• An hypothesis class H, ie. a set of functions h : X → Y . Each function h ∈ H is
called a hypothesis.

and is defined as a function A : (X × Y)∗ → H, where (X × Y)∗ designates a list of
arbitrary length of elements of X × Y . The input D = {(Xi, Yi)}i=1...N (where N > 0) of
the supervised learning algorithm is called training dataset.

When the output space Y is continuous (for instance Y = R), the algorithm is
called regression algorithm. When the output space Y is discrete, the algorithm
is called classification algorithm. A special case of classification is obtained when
|Y| = 2. This case is called binary classification. It will be used later in this chapter,
in particular in the PAC analysis.
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With this definition only, the problem of supervised learning still remainis ill-
posed. Given a fixed dataset, all hypotheses h ∈ H are equivalent, or, equivalently,
there is no hierarchy among the learning algorithms.

A first intuition is that the hypothesis inferred by the learning algorithm must
correctly predict the observed dataset. In practice, if we consider a function L :
Y × Y → R+ which measures the non-negative error between a predicted output
ŷ ∈ Y and the ground truth output y ∈ Y , it seems straightforward to minimize the
average loss over the whole dataset (called the empirical risk). The corresponding
algorithm

AERM
(
{(x1, y1), . . . , (xn, yn)}

)
= arg min

h∈H

1
N

N

∑
i=1

L(yi, h(xi)) (2.1)

is called Empirical Risk Minimization. Intuitively, this algorithm corresponds to
selecting the hypothesis that produces the lowest number of mistakes on the training
dataset. As a consequence, it could be easily considered as the most reasonable
algorithm. The no-free-lunch theorem will prove that it is not the case.

2.1.2 The No-Free-Lunch Theorem

The no-free-lunch theorem (Wolpert, 1996) is a fundamental result in learning the-
ory, which states that all supervised learning algorithms are similarly efficient on
average.

The exact formulation of the no-free-lunch (NFL) theorem requires a formalism,
called Extended Bayesian Framework (EBF) and introduced in particular in (Wolpert,
1997). Since this formalism goes beyond the scope of this thesis, we will only present
a quick overview of it. For more details, we refer the reader to the papers mentioned
above. This formalism differs a bit from the one presented in Section 2.1.1 (which
could be cast in terms of EBF), but it will be used only in this subsection devoted to
the NFL theorem.

As exposed in (Wolpert, 1996), the EBF corresponds to a conventional application
of probability theory to the space of quadruples {h, f , d, C} defined as follows:

• f is called the target input-output relationship. It corresponds to a probability
distribution over X ×Y .

• A training dataset d is generated from the target distribution f .

• h corresponds to a hypothesis, which is also a probability distribution over
X ×Y . (Note that this definition is different from the one given above)

• C corresponds to a cost and measures the cost of a chosen hypothesis h to
assess target f from training dataset d.

We would like to emphasize the fact that the four objects described here are random
variables and not deterministic values. Moreover, it comes directly from these nota-
tions that a learning algorithm is given by P(h|d). Finally, it is important to notice
that, in the EBF, the input and output spaces are supposed to be discrete (but not nec-
essarily finite). This hypothesis is not to be seen as restrictive since the computing
machines are discrete.

Using this framework, the NFL theorem can be given as follows:

Theorem 1 (No-Free-Lunch Theorem (Wolpert, 1996)). Let Ei(.) designate the expected
value evaluated using learning algorithmAi. Then for any two learning algorithms P1(h|d)
and P2(h|d) independent of the sampling distribution:
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• Uniformly averaged over all f : E1(C| f , m) = E2(C| f , m)

• Uniformly averaged over all f for any training set d: E1(C| f , d) = E2(C| f , d)

• Uniformly averaged over all P( f ): E1(C|m) = E2(C|m)

• Uniformly averaged over all P( f ), for any training set d: E1(C|d) = E2(C|d)

As explained in (Wolpert, 2002) for instance, this theorem means that there are
as many situations in which a first algorithm is superior to a second algorithm, as
situations where the converse is true (where “superior” has to be read in terms of
the criteria of Theorem 1). In other words, this means that there is no universal su-
pervised learning algorithm.

The NFL theorem is important in the theory of supervised learning, since it
proves that no learning algorithm can be considered as superior to the others in a
universal way. In particular, the ERM algorithm presented above is not superior to
any other possible algorithm.

We end up this section by exposing the reasons that are given to justify the use
of the ERM.

2.1.3 Justification of Empirical Risk Minimization

We now present the formalism of learning theory that is employed to give formal
justification of the ERM. In order to introduce the hypotheses made by learning the-
ory, we first introduce an example.

Consider a training dataset D = {(xi, yi)}i=1...N of elements in X × Y . We con-
sider the case where X = Rd, ie. the case where the input space is a vector space.
Consider that the hypothesis class H is the set of all functions X → Y . There exists
infinitely-many hypotheses h ∈ H that describe the data correctly. For instance, the
function that outputs yi if the input is equal to xi for i ≤ N and y1 otherwise. By
construction, this hypothesis is an empirical risk minimizer for the dataset D. It can
be used directly for rote learning, in other words when the goal of the learning pro-
cess is to remember the correct labeling of the set of training inputs. It is intuitively
clear that this hypothesis will have extremely low performances on a task that re-
quire generalization, ie. if the learning is asked to classify new points outside of the
training set. The purpose of statistical learning theory is to provide an evidence that
ERM can perform well on a task of generalization in given conditions.

Describing generalization requires that we rigorously define the expected limits
of this generalization. A key assumption in this definition is the fact that the data
points are chosen independent and identically distributed (i.i.d.). We consider the
existence of a generating distribution P on X × Y . Based on this distribution, we
define the risk of an hypothesis h ∈ H as:

R(h) = E(X,Y)∼P [L(Y, h(X))] (2.2)

where (X, Y) ∼ P means that the random variables X and Y are drawn from distri-
bution P. Based on this definition, the main goal of learning would be to minimize
R(h) over h ∈ H, but this minimization is impossible when the distribution P is un-
known. In practice, the learner has only access to the datasetD, which is a sample of
N points drawn i.i.d. from distribution P. The empirical risk defined above is thus
an estimator of R(h) and can be used as a proxy for the risk minimization. A funda-
mental question, however, is to determine how close a solution of ERM principle is
to the solution of risk minimization.
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Several properties can be studied, relative to these notions. For an extensive
description of these problems, we refer the readers to (Vapnik, 1995). The results
presented below can be found in (Shalev-Shwartz and Ben-David, 2014). We will
only introduce one of the notions, called Probably Approximately Correct learnabil-
ity (PAC learnability).

Definition 2. PAC learnability A hypothesis class H is PAC learnable if there exists a
function m : (0, 1)2 → N and a learning algorithm with the following property. For every
ε, δ ∈ (0, 1), for every distribution P over X and for every labeling function f : X →
{0, 1}, if there exists h∗ ∈ H such that R(h∗) = 0, then when running the algorithm
on m ≥ m(ε, δ) i.i.d. samples generated by P and labeled by f , the algorithm returns a
hypothesis h such that, with probability of at least 1− δ, R(h) ≤ ε.1

This notion of PAC learnabitiliy is a very important property to observe in order
to achieve generalization. It means that with high probability, good generalization
will be obtained provided that a learning algorithm with a large enough number of
data. In the case of the ERM, PAC learnability is linked to other fundamental notions
of learnability (uniform convergence, VC-dimension, which will not be described)
via the Fundamental Theorem of Statistical Learning:

Theorem 2 ( Fundamental Theorem of Statistical Learning, (Shalev-Shwartz and
Ben-David, 2014), Theorem 6.7). Let H be a hypothesis class of functions from the in-
put domain X to the output domain Y = {0, 1}, and let the loss function be the 0-1 loss.
Then the following are equivalent:

1. H has the uniform convergence property.

2. H is PAC learnable.

3. Any ERM rule is a successful PAC learner forH.

4. H has finite VC dimension.

This theorem can be seen as a formal justification of the ERM principle. The idea
is that, if the class of hypotheses is well-chosen and for enough data, the hypothesis
learned by the ERM principle will correctly generalize on unobserved data. This
does not mean that the ERM is an exception to the no-free-lunch theorem though, but
that the fundamental theorem of statistical learning defines a restriction on which
good generalization scores can be obtained.

2.1.4 Conclusion on Supervised Learning

In this section, we defined the problem of supervised learning and showed that,
without further hypotheses, there is no valid hierarchy of solutions. We then consid-
ered a classical and intuitive inductive principle, the Empirical Risk Minimization,
and showed two contexts in which this principle is valid:

1. Rote learning: The learner is supposed to be able to predict well when facing
the training points again.

2. Generalization: The learner is supposed to be able to generalize well on data
drawn from the same distribution.

However, the no-free-lunch theorem states that there necessarily exist some contexts
in which the ERM principle does not work well.

1In this definition, the terms R(h∗) and R(h) both correspond to a risk for generating distribution P
and labeling f .
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2.2 Minimum Description Length
and Minimum Message Length Principles

In this section, we present the Minimum Description Length principle as an alter-
native to the ERM principle for supervised learning. Even if this principle is more
general, we will consider it in the context of supervised learning only. The ideas
developed in this section can be found in (Grünwald, 2007).

2.2.1 Learning as Compression

The second inductive principle we introduce is called the Minimum Description
Length principle and relies on a different understanding of learning. The idea is
that an hypothesis that would perform well on a dataset relies on regularity in the
data. The notion of regularity can be associated to a notion of compression.

We propose a first analysis to understand this intuition. This analysis is taken
from (Vapnik, 1995) (Section 4.6).

Consider the dataset D = {(xi, yi)}i=1...N . Intuitively, learning is possible from
these data if the string Y = y1, . . . , yN can be compressed based on x1, . . . , xN . Note
that, in the context of binary classification, we have yi ∈ {0, 1}, which means that
a description of Y can be done in N bits. Besides, when describing yi from X, we
suppose independence of the pairs (xi, yi) and, consequently, that the description of
yi can be done with help of xi only (which also means that the values of xj, for j 6= i,
are not used in the description of yi).

Consider now that the learner has access to a codebook Cb containing a number
|Cb| of functions X → Y (called tables). The codebook corresponds to an algorithmic
version of the hypothesis space. If there exists a table To which perfectly predicts all
labels yi by To(xi), then it is sufficient to give the index of o of To in the codebook.
Given X, having access to To then gives a description of Y. dlog2 |Cb|e are sufficient
to designate the index o. This leads to a compression ratio of:

κ(T0) =
dlog2 |Cb|e

N
(2.3)

In the case where there is no perfect table in the codebook, this compression ratio
can be obtained with a more complex approach (see Eq. 4.24 in (Vapnik, 1995)).

The idea of the learning is that, if the coefficient κ(T) is small, the transformation
X → Y given by the table T models a regularity in the data. This is the ideal case to
be reached in learning. If there is no such table, then it is not possible to learn.

It is noticeable that this compression coefficient is involved in the following the-
orem that justifies the assumption of “learning as compression":

Theorem 3 ((Vapnik, 1995), Theorem 4.3). If on a given structure of codebooks one com-
presses by a factor κ(T) the description of an output vector Y of length N > 6 using a
table T, then with probability at least 1− η one can assert that the probability to commit an
error by the table T is bounded by:

R(T) < 2
(

κ(T) ln 2− ln η

N

)
(2.4)

2.2.2 Introducing Minimum Description Length Principle

The Minimum Description Length (MDL) and Minimum Message Length (MML)
principles are alternative inductive principles that exploit the idea of learning as
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compression in a direct way. The idea of these principles originates in the theory
of Kolmogorov complexity, that will be exposed in more details in Section 5.2. Kol-
mogorov complexity of an object x is defined as the length of the shortest program
on a prefix Universal Turing Machine (UTM) that outputs string x. A major problem
of Kolmogorov complexity is that it is not computable. The inference methods based
on Kolmogorov complexity and ignoring the uncomputability problem are often re-
ferred to as “ideal MDL". They are opposed to “practical MDL" and “MML" that
consider less expressive restrictions of the programs.

A first version of MDL principle, called Crude Two-Part MDL is proposed by
Jorma Rissanen (Rissanen, 1978). This version can be defined as follows: If H is a
set of hypotheses, the best hypothesis h ∈ H to explain the data D is the one which
minimizes the sum L(h) + L(D|h) where L(h) is the description length, in bits, of
hypothesis h and L(D|h) is the description length, in bits, of the data when encoded
with the help of hypothesis h. The description length corresponds to the number
of bits necessary to entirely describe an object, and is thus similar to Kolmogorov
complexity and not computable.

In practice, this version of MDL is rarely used, and a “refined" version is usually
preferred. The problem of the crude version is in the choice of a description length
for the hypothesis which acts as a prior. Depending on this choice, the term L(h)
can be arbitrarily large or low, which makes the decision arbitrary. In the context of
crude MDL, the hypotheses are necessarily encoded in ad-hoc ways.

A solution has been found to this problem that lead to the definition of a “refined
MDL". This version considers the use of the whole class of hypotheses H for the
encoding of the data. It relies on the choice of a family of codes called universal
coding. Unlike crude MDL which is necessarily two-parts (ie. involves two terms:
one for the model description and one for the data description), refined MDL is
generally used in its one-part formulation2 which considers only complexity term,
the complexity of the observation relative to a class of models. This second version
of MDL is the most popular in late literature on MDL

Despite the theoretical impact of this refined version, we will consider, in the
scope of this thesis, the crude version of MDL, and more specifically the Minimum
Message Length (MML) principle.

2.2.3 Introducing Minimum Message Length Principle

Independently from the historical development of MDL, Wallace and Boulton de-
veloped another principle called Minimum Message Length (MML) (Wallace and
Boulton, 1968). This principle relies on the idea that each hypothesis in the hypoth-
esis set can be associated to a two-part message: the first part provides a description
of the hypothesis itself and the second part a description of the data encoded based
on the hypothesis. In this, MML is closely related to the crude MDL.

MDL and MML differ mainly in their objectives (Baxter and Oliver, 1994). The
purpose of MDL is to select a class of hypotheses but not a single hypothesis. As an
example, in the problem of polynomial regression, MDL will focus on choosing the
order of the polynomial used as a regressor, while MML will select both the order of
the polynomial and its coefficients. Apart from this difference in their goals, MDL
and MML are also fundamentally opposed in their conception of priors. Refined
MDL is characterized by a lack of acceptation of subjective priors (see for instance
page 56 in (Rissanen, 1989)).

2Since refined MDL makes use of classes of hypotheses rather than single hypotheses, an explicit
and separated description of the hypothesis is not required.
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For an extensive description of encodings used in MML for various problems of
inference, we refer the reader to (Allison, 2018).

2.2.4 Conclusion on MDL and MML

In this section, we introduced the idea that learning can be related to information
compression. This idea is at the core of two similar, but different, principles: Mini-
mum Description Length principle and Minimum Message Length principle. Both
principles mainly differ in the fact that MDL aims to select a restricted class of hy-
potheses while MML aims to select a specific hypothesis. However, both agree on
a fundamental point that differs from ERM for instance: They focus on a descrip-
tion of data but they do not assume the existence of an underlying distribution from
which data would be drawn. In this thesis, we will mainly rely on this characteristic
to justify the use of these principles in the considered problems.

2.3 Drifting Away from Supervised Learning

In this section, we present several problems that differ from the supervised learning
framework on several aspects and on which the ERM is not valid or cannot even be
defined. A claim of this thesis is that crude MDL or MML are potential candidates
to solve such problems.

2.3.1 Unsupervised Domain Adaptation

As explained in Section 2.1.3, the Empirical Risk Minimization principle comes with
generalization guarantees. These guarantees rely on the assumption that all data
(both training dataset and future test set) are identically distributed.

In some problems, this assumption does not hold. These learning scenarios are
often referred to as transfer learning. Among all the problems of transfer, we focus
on the question of Unsupervised Domain Adaptation. Consider an input set X
and an output set Y . Following (Pan and Yang, 2010), we introduce the following
taxonomy:

Definition 3. A domain D = {X , P} is given by an input space X and a probability
distribution P over X . A task T = {Y , f (.)} on domain D is defined by an output space
Y and a labeling function f : X → Y .

In unsupervised domain adaptation, one considers two domains, the source do-
main and the target domain. We suppose that the source and target input (resp.
output) spaces are the same. The generating distributions might change. In general,
one considers that the source and target hypothesis classes are the same (denoted
by H). For instance, the space X could be the space of size n× n images, with the
source domain distribution corresponding to photos and the target domain distribu-
tion corresponding to black and white drawings. A task on these two domains could
be to discriminate illustrations of cats from illustrations of dogs. The corresponding
labeling function f would differ in both domains.

What is the validity of the ERM principle in this case? Several analyses answer
this question by trying to find a common hypothesis for the source and for the target.
Such methods propose PAC bounds for the unsupervised domain adaptation, which
aim to justify to resort to the ERM. Among these studies, we refer the interested
reader to the seminal article (Ben-David, Blitzer, Crammer, Kulesza, Pereira, and
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Vaughan, 2010), the main result of which will be discussed in Chapter 7 (Theorem 7).
These results often include a penalty relative to the divergence between the two
distributions, called task discrepancy.

A main weakness of the existing PAC approaches to unsupervised domain adap-
tation is the assumption that data distributions have to be similar. This assumption
is in particular a prerequisite on choosing a common hypothesis for the source and
for the target.

2.3.2 Unsupervised Learning

The next problem we propose to discuss in this preamble is clustering, which is an
unsupervised learning task. A clustering algorithm can be defined as follows:

Definition 4 (Clustering algorithm). Given an input space X , a clustering algorithm
is a function A : X ∗ → N∗ such that for any input D ∈ X n, the corresponding output
A(D) also has length n.

With this definition, the task of clustering corresponds to a task of labeling. It
is mostly admitted that the chosen labels must satisfy some properties, which intu-
itively express that “similar points must be attributed the same labels". Clustering
raises new issues compared to supervised learning.

The first problem is related to the unsupervised nature of the task. In classifi-
cation, the presence of labels on the training dataset makes it possible to measure
the prediction skills of the chosen algorithm, which is the basis of the definition of
the ERM principle: on a given dataset, the principle chooses the hypothesis mak-
ing the minimal number of mistakes. Since the notion of error cannot be extended
to an unsupervised setting, such a direct approach cannot be used for clustering.
The absence of a universal quality criterion implies indeed the impossibility the-
orem (Kleinberg, 2003), which states that no clustering algorithms can satisfy the
following three criteria: scale invariance (the clusters remain the sames if the scale
is changed), consistency (the clusters remain the same if the intra-class distances are
reduced and the inter-class distances are increased) and richness (the algorithm can
produce any possible partition).

The second problem is the non-extensive nature of clustering. In classification,
considering generalization makes sense, while it is not as direct in clustering. If
some algorithms like K-means make generalization possible3, some do not: This
is for instance the case with DBScan (Ester, Kriegel, Sander, and Xu, 1996) or OP-
TICS (Ankerst, Breunig, Kriegel, and Sander, 1999). This makes a PAC analysis less
direct and more restrictive: For instance, the study of stability proposed in (Ben-
David, Von Luxburg, and Pál, 2006) relies on an extended definition of clustering
that fits more the PAC framework but does not apply to all classes of clustering al-
gorithms.

2.3.3 Analogies

The last problem we will tackle in this thesis is the question of analogies, which
has been a prominent question in symbolic learning in the last decades (Prade and
Richard, 2014). The problem of analogy originally comes from cognitive sciences
and psychology, but has been studied in computer science on the following form:

3K-means algorithm infers virtual points inX , called prototypes, and attaches points to their closest
prototype. Once the prototypes are build, it is possible to generalize to any point in X\D by attaching
them to their closest prototypes.
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Definition 5. Consider a source domain DS = XS ×YS and a target domain DT = XT ×
YT. An analogy question is a function XS ×YS ×XT → YT.

Even if this definition is given in its more general form, it is rarely used as such:
several particular cases are observed in practice in the researches on analogies:

• The domains DS and DT are often not known and the definition has to be
modified in order to include a definition of objects by predicates (Holyoak and
Thagard, 1989).

• When the domains are known, they are often considered as identical, and most
studies consider that X = Y (see for instance (Miclet, Bayoudh, and Delhay,
2008)).

Considering the equality of the domains (DS = DT), a direct link can be seen
between analogy and supervised learning. Given observations in X × Y , analogy
infers a transformation h : X × Y and applies it to a new input xT ∈ X . It is tempt-
ing then to apply the ERM principle to the problem, which would support analogy
with the theoretical justifications discussed above. This is not the case though, since
the training dataset contains only one observation, making the theorems of statisti-
cal learning inoperative: in statistical learning, induction is ensured by an inference
made on a large number of observations, with support of the theorem of large num-
bers.

Another formal attempt has been proposed with the theory of proportional analo-
gies (Miclet, Bayoudh, and Delhay, 2008). This theory provides a strict logical defi-
nition of valid analogies seen as a Boolean relation, based on a restriction of the set
of all relations. Further discussion will be given on this framework later in the thesis
(in particular in Chapter 3). Recent results have shown that proportional analogies
can be extended for prediction but have a bias toward linear functions (Couceiro,
Hug, Prade, and Richard, 2018).

When trying to answer the question “what makes a good analogy?", several dif-
ficulties arise (fairly similar to some of the problems encountered with clustering).
In particular, it is necessary to define a notion of similarity in the input space X and
in the output space Y . In addition, analogy requires to estimate a mapping between
the transformations on X and the transformations on Y .

2.4 Conclusion

In this preliminary chapter, we proposed a short presentation of the question of in-
duction and of its inherent difficulties. In a first part, we analyzed the problem of
supervised learning and the necessity to choose an inductive principle to solve this
problem. If this inductive principle can be chosen arbitrarily, an expert knowledge
is necessary to choose a correct principle in the context of a specific task. The prin-
ciple of Empirical Risk Minimization is proposed as a valid inductive principle in
the context of supervised learning with theoretical guarantees for generalization in
a context where all data (present and future) are identically distributed. Moreover,
these guarantees also give directions for the choice of the class of hypothesesH. This
first part opens a general question: What is the right approach to select an inductive
principle over others? The choice of the ERM as an inductive principle is motivated
by the choice of an application framework and theoretical justifications on it.
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We introduced a second inductive principle, called Minimum Message Length
principle, and exposed some justifications that have been proposed for it. The pur-
pose of this thesis is to use this principle in the context of knowledge transfer in
various tasks, some of which have been introduced in Section 2.3 above.

The main contribution of this thesis is to test the experimental validity of the
MML principle on these transfer tasks. In the proposed examples, the classes of
models are chosen based on some expert domain knowledge, but independently
on the application domain. Note that the purpose is not to propose a theoretical
justification of a choice of a class over another (such as given by the VC-theory for
the ERM). These justifications are important though and have to be done in future
works. In Chapter 9, we investigate some theoretical tracks that might lead to a
formal validation of the principle in the context of transfer.
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Part I

A Fundamental Problem:
Analogical Reasoning
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Chapter 3

Introduction to Analogical
Reasoning

The term analogical reasoning designates any kind of reasoning which draws parallels
between two distinct and a priori unrelated situations. The fundamental idea behind
this form of reasoning can be summed up in the simple conjecture that, if two situa-
tions are alike in some respects, they should be alike in some other respects. Consid-
ering such an informal definition, it becomes clear that the challenges faced by the
analogical reasoning literature are to define under which conditions this conjecture
is valid and what “alike” means.

The ability to produce and understand analogies is a fundamental ability shared
by human beings in such a way that it is commonly used as a standard to measure
human intelligence: IQ tests make extensive use of analogies. In everyday life, analo-
gies are involved in various activities, such as metaphors, humor, or even scientific
method.

In this chapter, we present a general overview on the question of analogy, its use
in human cognition, the philosophical approaches to assess it and computational
models. The chapter is structured as follows. In Section 3.1, we present cognitive
and psychological evidences of conscious and unconscious modes of analogies for
human beings. In Section 3.2, we describe formal models of analogies. Finally, Sec-
tion 3.3 proposes some applications of computational analogies.

3.1 Analogies in Human Cognition

In this section, we briefly introduce the fundamental role played by analogical rea-
soning and similar transfer phenomena in human cognition. The purpose of this
section is not to provide an extensive description of the state of the art, but to sup-
port the idea that analogies are inherent to the human mind and are a fundamental
gap in the direction of a human-like artificial intelligence.

3.1.1 General Presentation of Analogy and Cognition

The importance of analogy in human cognition has been studied for decades now
and is closely related to the fundamental ability to extract the similarities between
two concepts or situations and to transfer the characteristics of the one to the other.

This skill appears at the lowest degree of cognition, for instance in the funda-
mental task of perception. Children learn to discriminate between thousands of
categories in their environment, but are also able to tell the similarities from the
differences. For instance, they will find many similarities between a dog and a cat,
or even between a dog and another dog, but will also be able to understand them as
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different. They are also able to apply a “transformation" from one object to the other.
For instance, they will get that the transformation from a standard dog to a red dog
can be applied to any other object that have similar characteristics, for instance a cat.
More impressively, perception of an object can depend on the context: an animal in
a picture will not be the same as a real animal, but children are able to map these
two radically different entities while being able to tell which one is real. This ability
is characteristic of analogical reasoning: An interpretation, given by Structure Map-
ping Theory (described below), suggests that the child extracts common descriptive
information and builds a mapping between the real animal and the drawn animal.

The case of drawings is even more interesting, in the sense that sensitivity to the
“style" is a basic ability. A drawn dog will not be the same depending on the cartoon-
ist, which does not affect the perception. The transfer from one style to another is
possible, and is even considered as a required competence in many artistic domains
(for instance being able to paint in the style of a famous painter, to compose in the
style of a composer or to write in the style of a writer). Melanie Mitchell proposes
the example of music in (Mitchell, 2001): Any two pieces by Mozart are superficially very
different, but at some level we perceive a common essence. Likewise, the Beatles rendition of
Hey Jude and the version you might hear in the supermarket have little in common in terms
of instrumentation, tempo, vocals, and other readily apparent musical features, but we can
easily recognize it as the same song.

A domain where analogy is hidden everywhere (but most of the time in an un-
conscious manner) is natural language. In order to communicate ideas or concepts,
we often rely on comparisons and analogies. For instance, it is not rare to hear ex-
pressions like “He is the Mozart of painting." while this expression is a priori very
unclear. Does it mean that this painter is also a musician? Died at the same age as
Mozart did? We intuitively understand what is meant here: Mozart, in the context of
music, is often considered as a prodigy; transferring this characterization to the new
context (painting), we understand that the painter of interest has to be considered
as a prodigy as well. This example displays two of the most fundamental compo-
nents of analogical reasoning: on the one hand, it shows that we are able to transfer
unified descriptions from one domain to the other; on the other hand, we are even
able to determine the domain when it is not defined. No indication was given that
Mozart had to be considered in the scope of music, but it is natural. Mimicking this
ability will be one of the objectives of connectionist models such as ACME or LISA
(Section 3.2.4).

Another example, proposed by (Mitchell, 2001) concerns the sentences like “The
same thing happened to me!". How to define the notion of sameness? To what
extent did the exact same thing happen? Some details in the story can change without
any incidence on the similarity: a different location, different characters, different
weather... However, we are still able to determine that the most important facts
are identical, and we are also able to predict how the differences between the two
situations might lead to a different conclusion. This is typical of analogical transfer.

Finally, we would like to insist on the prominent role played by comparisons
and metaphors in communication. Among the most frequently used examples to
illustrate analogical reasoning, one plays a very special role: “A battery is like a
reservoir" (more discussion on this example will be provided in Section 3.2.3. This
formulation is typical of comparisons as they can be formulated in everyday life.
From a general point of view, the link between metaphor and analogy is very strong,
and in particular metaphor can be seen as a special case of analogy. It has been
studied in language, in particular in articles such as (Steen, 2008) which attempts to
solve an ambiguity of metaphor seen as an analogical process.
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3.1.2 Evidences of Syntactic Priming

As a complement to the general introduction on analogy in human cognition, we
propose now a brief presentation of the problem of syntactic priming, which is some
kind of unconscious analogy observed in language production and interpretation.

Syntactic priming is a well-known phenomenon observed in cognitive sciences
which leads to reusing previously encountered structures in sentence generation or
comprehension. Such phenomenon is observed in several grammatical choices, such
as active vs active (“Cats eat mice” vs “Mice are eaten by cats”), dative formation
(“He bought the girl a book” vs “He bought a book for the girl”) or relative clause
attachment ambiguity (“I like the friend of my sister who plays the violin”: who
plays the violin?). In the first two problems, it is observed that encountering one
of the forms favors the reuse of the same form; In the case of relative clause at-
tachment, the disambiguation is primed by a former non-ambiguous relative clause.
This transfer is typically unconscious.

First studies of the phenomenon emerged in the 1980s with pioneering works on
the repetition of similar syntactic forms across successive utterances (Bock, 1986).
For instance, some studies observe that, in case a speaker used a passive in a recent
sentence, he is more likely to use one in future sentences (Weiner and Labov, 1983).
These observations were not sufficient to conclude on the importance of syntactic
priming, since they relied on corpus data and did not reflect a preference between
two alternatives. Other phenomenons could be at stake here: facility of repetition
in either lexical, thematical or metrical aspects. (Bock, 1986) provides the first real
evidence of syntactic priming in language production. The existence of syntactic
priming was shown in multiple languages (Hartsuiker and Kolk, 1998), and for both
written (Branigan, Pickering, and Cleland, 1999) and oral productions (Potter and
Lombardi, 1998).

A major breakthrough in the domain is the evidence of cross-linguistic priming
effects. (Loebell and Bock, 2003) have shown the existence of a priming effect be-
tween German and English datives (He bought the girl a book vs He bought a book for
the girl, and German equivalent). However, the results show no priming in the case
of passive forms. In the same direction, (Hartsuiker, Pickering, and Veltkamp, 2004)
showed cross-linguistic priming between comprehension and production in English
and Spanish, two languages that are only weakly related. Following (Kantola and
Gompel, 2011), there is actually no difference between inter-language and within-
language syntactic priming. The authors propose experiments to validate or discard
one of the two leading theories of syntactic priming: shared-syntax account, which
assumes that the structures in languages are represented in a same and only men-
tal space (Hartsuiker, Pickering, and Veltkamp, 2004), and language-specific account
supported in particular by (De Bot, 2000) and (Ullman, 2001). Their results tend to
validate the shared-syntax model, showing that there is no distinction between inter-
and intra-language priming, neither on the existence of priming nor on its relative
impact.

More surprisingly, these studies have extended outside the domain of language
and evidences of syntactic priming from various domains such as music (Patel, 2003)
or mathematics (Scheepers, Sturt, Martin, Myachykov, Teevan, and Viskupova, 2011)
to language have appeared. These generalizations to multiple domains has been
studied by (Cavey and Hartsuiker, 2016) which proposes general experiments based
on several source domain in order to support the existence of structural priming in
general domains and discard the classical domain-specific models of syntactic pro-
cessing.
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3.2 Formal Models of Analogical Reasoning

In this section, we present existing models of analogy. We focus mainly on the ques-
tion of representation rather than the algorithmic resolution of analogical problems.

3.2.1 Logic Description

The first model that can be given for analogy is based on logic and exploits the
intuitive idea of reasoning by analogy. Reasoning by analogy is made up of two
steps:

1. A source problem S and a target problem T share identical properties.

2. If source problem S satisfies another property, then T should also satisfy it.

For instance, if two computers and have the same configuration (same processor,
same memory, same operating system, same GPU, same peripherals...), it can be as-
sumed that these two computers also have the same price. This reasoning is induc-
tive, since its conclusion is not guaranteed to be true. For instance, in this example,
it could be inferred by analogy that the two computers have the same brand, which
is not necessarily true.

This principle has been formalized by (Davies and Russell, 1987). If P designates
a property or a set of properties and Q designates a property, then the analogical
reasoning process can be formalized as follows:

P(S) ∧ P(T)
Q(S)

∴ Q(T)
(3.1)

As pointed out by the authors, this reasoning is obviously not deductive, and the
conclusion cannot be inferred from the predicate P(S) ∧ P(T) ∧ Q(S). The authors
focus then on the justification problem, hence in this case the question of transfer-
ability: What would be a criterion that would make 3.1 a deductive inference? An
obvious solution for this problem is the generalization criterion “∀x, P(x)⇒ Q(x)”.
Not only this criterion is very strong (it implies that the analogy holds for any target),
but it is also non-satisfactory from the perspective of logic. Indeed, assuming it to
be true, the initial criterion P(S) ∧Q(S) becomes useless, since the reasoning

P(T)
∀x, P(x)⇒ Q(x)

∴ Q(T)
(3.2)

holds true. Therefore, adding this generalization criterion makes any knowledge on
the source useless.

In order to give an importance to the source knowledge, an alternative criterion
is suggested: the determination rule:

(∀x, P(x)⇒ Q(x)) ∨ (∀x, P(x)⇒ ¬Q(x)) (3.3)

This criterion expresses the fact that the satisfaction of Q is determined by the sat-
isfaction of P, but not if the values are similar or different. The criterion on the
source P(S) ∧Q(S) is thus required to overcome this ambiguity.
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3.2.2 Analogical Proportion

Another model based on logic is the model of analogical proportion. This model is
a formalization of principles already exposed by Aristotle that emerged in the late
1990s in parallel in the works of François Yvon and Yves Lepage (Lepage, 2000).
An analogical proportion is then defined as a 4-ary relation A such that the three
following properties are verified for any a, b, c, d:

• Reflexivity: A(a, b, a, b) always holds

• Symmetry: A(a, b, c, d)⇒ A(c, d, a, b)

• Central permutation: A(a, b, c, d)⇒ A(a, c, b, d)

A proportion A that satisfies these three axioms is shown by (Lepage, 2004) to
satisfy the following equivalence: For any a, b, c, d, A(a, b, c, d) is equivalent to:

• Inversion of ratios: A(b, a, d, c)

• Exchange of the extremes: A(d, b, c, a)

• Symmetry of reading: A(d, c, b, a)

Analogical proportions can be applied to various domains, as exposed for in-
stance by (Miclet, Bayoudh, and Delhay, 2008): analogies on Booleans (Miclet and
Prade, 2009), on sets (Lepage, 2003), on character strings, on vectors... It is important
to notice however that the three axioms of analogical proportions are in general not
enough to define a unique proportion. However, in the context of Boolean analogies,
(Prade and Richard, 2013) demonstrate that there is one unique logical proportion
that satisfies the three axioms. In Chapter 6, we will show that there exists infinitely
many analogical proportions on a vector space.

3.2.3 Structure Mapping Theory

Structure Mapping Theory (SMT), developed by (Gentner, 1983), is a particularly in-
fluential theory which is applied today in most cognitive approaches of analogical
reasoning. Before we present SMT and its implementation, Structure Mapping En-
gine (Falkenhainer, Forbus, and Gentner, 1989), we first introduce Winston’s theory,
which is a precursor of SMT.

In (Winston, 1977), Winston introduces the idea of “transfer frames". Consider-
ing the learning process in the situation of an exchange of information from a teacher
to a student, he notices the existence of two frames: the source frame, correspond-
ing to the information that has to be transmitted, and the destination frame, that is
the element onto which the information has to be transmitted. For instance, in the
sentence “Robbie is like a fox", the source frame is “fox" and the destination frame
is “Robbie". In order to learn, the student has to build a “transfer frame", which is
an intermediate frame used to filter the useful information from the source frame
applicable to the destination. This transfer frame can be seen as a mapping from
the source to the destination, based mainly on the most pertinent properties of the
source, the information contained in the target, and the context. In (Winston, 1980),
this mapping is applied to the problem of analogical reasoning, which constitutes
a first step toward mapping for analogical reasoning. However, this methodology
differs from later theories (and in particular from SMT) on the way the mapping is
built, since it considers mapping on attributes and in high order relations between
objects.
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On the contrary, the key idea of SMT is to link source and target domains on
high order relations only, ignoring the possible mappings between attributes. This
difference is motivated by the relation-matching principle, which states, informally,
that superficial characteristics of objects are less important in analogies than struc-
tural characteristics. For instance, in the famous comparison “a battery is like a
reservoir", the main characteristics that is transferred is the storage capacity, but not
specific characteristics such as mass or color, nor characteristics of the storage (elec-
tric for the battery, volume for the reservoir). The second principle underlying SMT
is the systematicity principle, which states that mappings of systematic structures has
to be preferred over mappings of individual relations.

The general principle of SMT was first implemented in a LISP program called
Structure Mapping Engine (SME) (Falkenhainer, Forbus, and Gentner, 1989). This
program is the source of many analogical systems and has been widely used to sup-
port cognitive theories. However, it is not perfect and has been criticized in par-
ticular by (Chalmers, French, and Hofstadter, 1992) for its requirement for complex
hand-coded representations. The critic targets the inherent necessity of a human
coding of the representations of involved objects which is necessarily biased to the
task. From this point of view, most of the work on analogy is done by humans rather
than SME itself.

Many variants have been proposed, that are either direct evolutions of SME or
explore new directions. Among other propositions, we can cite I-SME (Forbus, Fer-
guson, and Gentner, 1994), an incremental variant of SME, SEQL (Kuehne, Forbus,
Gentner, and Quinn, 2000), which uses SME in order to infer general schemas, or the
Latent Relation Mapping Engine (Turney, 2008) which attempts to solve the problem
raised by (Chalmers, French, and Hofstadter, 1992) by automatically discovering se-
mantic relations between the words from a corpus of texts.

Other methods based on structural mappings have been developed but will not
be described here. For more details, we refer the reader to the surveys (Holyoak,
2005; Gentner and Forbus, 2011).

3.2.4 Connectionist Models

Structure Mapping is based on a representation of the world involving relational
models of objects, relations and predicates. Some efforts have been done to incorpo-
rate connectist models into analogical reasoning.

The first connectionist model, ACME (Holyoak and Thagard, 1989), supports
the idea that structural consistency required by SMT is not the only constraint that
must be involved in analogical reasoning. The proposed approach relies on the idea
of multiple constraint satisfaction: structural consistency, semantic similarity and
pragmatic centrality (favoring correspondences in the mapping that are pragmati-
cally important to the agent). ACME algorithm uses these three constraints to build
a network the nodes of which are potential element mappings and vertices repre-
sent instantiation of the general constraints. Once the network has been built, the
weights of the vertices are updated according to the constraints.

The LISA model (Hummel and Holyoak, 1997) follows the same multiple con-
straint satisfaction paradigm, but in a rather different way, since it adds, to the three
constraints of ACME, a set of constraints relative to cognitive and neuronal plausi-
bility. In particular, in contrast with SME and ACME, LISA relies on the use of a
working memory and a long term memory which can interact during the mapping.
The LISA model remains one of the most ambitious and influential connecionist
models of analogy and is the support of cognitive and psychological studies.
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3.2.5 Copycat and Metacat

The Copycat project (Hofstadter and Mitchell, 1995; Hofstadter, 1984) is a completely
different approach to analogy which aims to include the very specific characteristics
of human analogical reasoning into artificial analogy-making on a restricted world.
Copycat solves analogical problems of the form “ABC is to ABD as IJK is to ?". A
major advantage of this restricted problem is that these alphabetic analogies capture
the inherent difficulties of analogical reasoning while being limited to a very simple
micro-world. A more precise description of Hofstadter’s analogies will be provided
in next chapter.

The Copycat program is based on the principle of parallel terraced scan (Hof-
stadter, 1995), a parallel multi-agent method inspired by ant colonies in particular,
in which all possible hypotheses are explored in parallel with resources depending
on their potential. In Copycat, these agents are teams of codelets and their allocated
resource is the time available to discover a structure. The role of codelets is to code
a structure perceived in the workspace (ie. the raw representation of the analogical
problem) and they can rely on long-term knowledge stored in a network of concepts
called slipnet. The nodes in the slipnet are associated to a dynamic activation value,
measuring the relevance of the concept in the current analogy. These activation val-
ues can “slip" from one node to its conceptual neighbors.

Copycat is often described as a hybrid system (French, 2002), sharing character-
istics of SME (the idea of converging to a unified encoding of source and target) and
connectionist approaches (the slipnet), but this categorization is denied by the au-
thors who judge that: “Copycat’s architecture is neither symbolic nor connectionist,
nor a hybrid of the two; rather, the program has a novel type of architecture situated
somewhere in between these extremes” (Hofstadter and Mitchell, 1995).

Among other variants of Copycat, the Metacat program (Marshall, 2002) focuses
on giving memory to the estimation process in order to make the search faster and to
improve the diversity of found solutions. Such an architecture is called self-watching.

3.2.6 Analogies and Kolmogorov Complexity

A last influential model of analogical reasoning has been proposed by (Cornuéjols
and Ales-Bianchetti, 1998) with a simple and effective approach based on algorith-
mic information theory (Li and Vitányi, 2008). The key notion at stake in this ap-
proach is Kolmogorov complexity, a measure of the information contained inside an
object. Complexity of an object x is defined as the length of the shortest program
on a universal Turing machine that can generate object x. For instance, the binary
sequence 1111...11 (1 repeated 106 times) is long but very simple since it can be gen-
erated with a very short program (for i=1..1e6: print(1)) and does not require
that every single bit be described individually. On the contrary, some objects can be
shown to require very long descriptions.

One of the uses of Kolmogorov complexity are the Minimum Description Length
(MDL) and Minimum Message Length (MML) principles, two inductive principles
that formalize the classical idea of Ockham’s razor. MML principle suggests that,
when several hypotheses are possible to explain an observation, the “best" hypoth-
esis is the one that minimizes the description length of the hypothesis and of the
observation based on the hypothesis.

In the context of analogical reasoning, (Cornuéjols and Ales-Bianchetti, 1998)
suggests that the transfer and mapping should not been done at the symbolic level
(ie. directly on the involved objects) but at the level of intermediary structures called
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models. For instance, in the case of Hofstadter’s analogies, the model can be a de-
scription of the structure of objects. If K(.) designates the complexity of an object,
the proposed approach is to find the optimal source model MS and target model
model MT that minimizes:

K(MS) + K(XS|MS) + K(YS|MS) + K(MT|MS) + K(XT|MT)

where the purpose is to solve the analogical equation XS : YS :: XT : y with y being
the unknown value.

Another model (Bayoudh, Prade, and Richard, 2012) is based on Kolmogorov
complexity, but exploits its properties in a completely different way. The chosen
approach is based on the theory of proportional analogy. From this point of view,
the analogy A : B :: C : D is equivalent to having equal distances between in-
volved objects: d(A, B) = d(C, D) and d(A, C) = d(B, D). The idea here is to use
the pseudo-distance offered by conditional complexity: d(A, B) = K(B|A). In the
proposed experimental validation, the complexity is evaluated using Shannon-Fano
coding (ie. K(x|p) = − log p(x)) and the probability is estimated from the frequen-
cies. The same approach had already been proposed by (Prade and Richard, 2009) to
solve analogies between general concepts. In that article, the complexity is estimated
using Google information distance (Cilibrasi and Vitanyi, 2006) and the complexity
of a concept is supposed to be related to the mass function of this concept on Google
search engine.

3.3 Applications of Analogical Reasoning

In this section, we propose a couple of applications of analogical reasoning in artifi-
cial intelligence.

3.3.1 Word Embedding and Analogical Proportion

In vector spaces, the axioms of proportional analogy (see Section 3.2.2) are satisfied
by a very simple proportion called the parallelogram rule: If X is a vector space and
(a, b, c, d) ∈ X4, the proportion A : X4 7→ B, such that A(a, b, c, d) = 1 if and only
if d = c + b − a, defines an analogical proportion. This condition corresponds to
having a, b, c, d making a parallelogram.

Parallelogram rule was first used by (Rumelhart and Abrahamson, 1973) in the
restricted problem of analogies between animals (for instance “mouse is to raccoon
as cow is to ?”). The main hypothesis made by the authors follows the conclusion
of (Henley, 1969) that the memory structure can be embedded in a vector space struc-
ture and that the judgment of similarity is inversely related to the distance in this
space. In order to solve an analogical equation, the authors suggest to project the en-
tities into the vector space and to choose the solution that is the closest to c + b− a.
If X1, . . . , Xn designate the vectors representing the n entities in the chosen vector
space, and d(., .) corresponds to a distance on the vector space, then the chosen so-
lution for the analogical equation a : b :: c : x is:

x∗ = arg min
1≤i≤n

d(Xi, c + b− a) (3.4)

In practice, more sophisticated methods such as SME are usually preferred to the
parallelogram rule, but the recent emergence of embedding techniques resurrected
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the method. Word embedding technique, developed in particular with the Word2Vec
method (Mikolov, Chen, Corrado, and Dean, 2013; Mikolov, Yih, and Zweig, 2013).
In this technique, words are projected in a vector space that is learned according to a
vast corpus of texts. The quality of embedding is usually tested on the task of solving
analogies such as “man is to woman as king is to queen" using he parallelogram
rule. Despite some critics on this technique (Drozd, Gladkova, and Matsuoka, 2016),
it has also been used in other domains, such as visual object categorization (Hwang,
Grauman, and Sha, 2013).

3.3.2 Linguistic Analogies

A very popular introducing analogies is Natural Language Processing. The key idea
in this applicative domain is that, in morphology, in phonology or even in trans-
lation, one single example is necessary to provide a full knowledge of the domain.
Consider for instance the problem of conjugation. Knowing the conjugation rule for
one verb can be used by analogy to infer the conjugation of any other similar verb:
If we observe the transformation to make −→ makes, then we can assume that the
solution of to eat −→ ? will be “eats".

The (apparently) simplest problem, which is also the problem presented as an
example above, is the problem of morphological inflection, that is involved in par-
ticular in declension or conjugation. This problem involves analogies on character
strings but is one example of applications that cannot be handled by Copycat, since
almost no structure can be found. In order to solve this problem, two visions have
been developed in parallel, relying on different understandings of proportional anal-
ogy. The first solution, introduced in particular by the seminal research of (Lepage,
1998), relies on proportions in letter counts and positions. The second solution, pro-
posed in particular in (Yvon, 2003; Stroppa and Yvon, 2005), relies on the finding of
specific factorizations. In particular, the alea solver (Langlais, Yvon, and Zweigen-
baum, 2009) finds such a factorization by building an automaton and randomly shuf-
fling the inputs.

A first paradigm for automatic translation was proposed by (Nagao, 1984) and
consists in solving an analogical equation with observed sentences. For instance,
consider the following example of French to English translation: If one wants to
translate into English the French sentence “Il peut le faire", it is possible to consider
the already available translation “Je veux lire ce livre"−→ “I want to read this book"
and adapt it in order to obtain the desired solution: “He can make it". Despite its
apparent elegance, this model is not directly computable and requires a complete
knowledge representation that cannot be a priori obtained automatically. A solution
has been proposed by (Lepage and Denoual, 2005), based on proportional analogy.
The axioms of proportional analogy make the system computable and knowledge-
light.

A last application that has been proposed concerns pronunciation. This problem
can be reformulated as the transcription of a word in a given language (in particular
English) into International Phonetic Alphabet. The use of analogy to solve this task
has been proposed by (Pirrelli and Federici, 1994).

3.3.3 Machine Learning Applications

As a last application of analogical reasoning, we propose to present the links be-
tween analogical reasoning and machine learning.
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A first analogical model for machine learning is simply provided by k nearest
neighbors (NN) algorithm, which is often considered as characteristic of lazy learners.
In general, kNN can be seen as a perfect example of analogical reasoning, where the
principle at stake is that “similar points have similar labels".

More complex applications have been considered yet. In general, two cases are
considered: classification of Boolean vectors and classification of numerical vectors.

Among classifiers on Boolean vectors, (Miclet, Bayoudh, and Delhay, 2008) relies
on a measure of “analogical dissimilarity" between four objects, which measures
how far the quadruple is from being in analogical proportion. In order to clas-
sify an object d, the algorithm evaluates the analogical dissimilarity of the quadru-
ple (a, b, c, d) for all available triples (a, b, c) and selects the solution according to a
ranking by decreasing dissimilarity. Following a similar idea, analogical inference
states that if a : b :: c : d, then f (a) : f (b) :: f (c) : f (d) for a function f . In (Cou-
ceiro, Hug, Prade, and Richard, 2018), the authors show that analogical inference
provides non-zero error under the condition that the function f is affine, but relax
this result by providing error bounds depending on the distance of f to the set of
affine functions, in the case where f is approximately affine. This affine nature is
closely related to the nature of proportional analogy and would be different in other
analogical frameworks.

Less work has been done on analogical classifiers for numerical vectors. A first
proposition was done by (Prade, Richard, and Yao, 2012): By normalizing the at-
tributes between 0 and 1, the proposed method considers attributes as truth degrees,
and then applies a method similar to the one suggested with analogical dissimilarity.
Using the same interpretation of normalization, (Bounhas, Prade, and Richard, 2017)
follows a different way: The algorithm explores all possible triples (a, b, c) (with a
restriction of c being in the nearest neighbors of the considered point), computes
the corresponding credit and sums the credits for each possible classes (obtained by
analogy).

Another recent application of analogical reasoning is recommendation. The task
of recommendation can be summed up as follows: Given a set of observed user-
item interaction (eg. ratings or clicks), a recommender system has to estimate pos-
sible future interactions. A famous example of a recommender system is the movie
recommendation task, where the system has to select movies that users might like.

The first attempt to model recommendation in terms of analogical reasoning is
the contribution of (Sakaguchi et al., 2011) for the context of dish recommendation.
The authors model recommendation as a four-terms analogical problem. A user is
associated to a list of already eaten dishes. If in a given context, a user A is known
to eat dish B, then recommending a dish to a user C in the same context can be
seen as solving the analogical equation A : B :: C : x where x corresponds to the
recommended dish. In practice, given a C, the two terms A and B are extracted from
a case base.

In a different perspective, (Hug, Prade, and Richard, 2015) propose the following
principle: If, for all items i rated by the users a, b, c, d, there is a proportional analogy
between the ratings rai : rbi :: rci : rdi, then there should be a proportional analogy
for all items j not rated by user d as well. In this case the rating rdj must be a solution
of raj : rbj :: rcj : x.
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3.4 Conclusion

In this chapter, we have presented a brief review of existing approaches of analogical
reasoning. This review is far from being exhaustive, but we chose to focus on several
questions and models that will be discussed in the following chapters. Naturally, the
main perspective that will be discussed is the complexity-based approach of analogy,
but we will provide links with structure mapping in general. The model of propor-
tional analogy and the parallelogram rule will be discussed in details in Chapter 6.
Regarding analogies on character strings, we will use Hofstadter’s analogies as a
milestone and will show that our framework can be extended to linguistic analogies
as well. This extension will be proposed in Chapter 4 and then incorporated to the
context of incremental learning in Chapter 12. Finally, the question of analogical
reasoning and machine learning is the core of Parts II and III.

We would like to insist on the fact that analogical reasoning typically stands in
the middle of two domains: machine learning and cognitive sciences. Even if the
main topic of this thesis is undoubtedly machine learning, we think that cognition
plays a prominent role in artificial intelligence and thus we chose to present methods
and ideas from the community of cognitive sciences.
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Chapter 4

Minimum Description Length
Analogies on Character Strings

In the previous chapter, we proposed a general overview of the analogical reasoning
methods and models. In this chapter we propose to introduce our concept of mini-
mum complexity analogy (called minimum description length analogies in the context
of this chapter) with a case-study: analogies on character strings. This choice is moti-
vated by two main arguments. First, character strings are simple and natural objects
which can be used and processed easily by human beings. Their simplicity and the
natural variations that can be drawn around their structure and representation make
them ideal toy examples to assess the general challenges of analogy. Secondly, char-
acter strings have various interesting applications in the domain of natural language
processing.

In the scope of this chapter, we take Hofstadter’s problem as a starting point.
Hofstadter’s micro-world, developed as a case study for analogical reasoning with
the Copycat program (Hofstadter and Mitchell, 1995), involves problems of the form
“ABC is to ABD as IJK is to x” (denoted ABC:ABD::IJK:x) where x has to be found.
It extends directly to other classes of problems, for instance walk:walked::fight:x.
The chosen approach to solve such analogies involves a description of the target
strings by a generative programming language (similar to the language developed
by (Strannegård, Nizamani, Sjöberg, and Engström, 2013) in the context of sequence
continuation). This language defines a strict general framework and offers a genera-
tive and cognitively plausible description of analogies. With a small experiment on
human beings, we validate our claim that relevance in analogical reasoning can be
measured by description length.

The chapter is an extended version of (Murena, Dessalles, and Cornuéjols, 2017)
and is organized as follows. In a first section, we describe Hofstadter’s micro-world
and the variants considered here: we will discuss the reasons why this toy example
is particularly significant for the study of analogies. In Section 4.2 we propose our
representation bias for Hofstadter’s problem and describe the generative procedure
to describe character strings analogies. Based on the presented language, we intro-
duce the notion of relevance in Section 4.3 and discuss automation perspectives in
Section 4.4.

4.1 Introduction: Hofstadter’s Micro-World

In this section, we present the original micro-world developed by Douglas Hofs-
tadter and his team in order to experiment on fluid concepts and analogical reason-
ing. A discussion will be developed on the motivation and goals of this toy example.
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We also propose an extended variant of this micro-world and expose that our vari-
ant can be used to solve linguistic analogies as well. Lastly, we present the general
idea of our approach.

4.1.1 Hofstadter’s Micro-World: Presentation and Discussion

In order to study general properties of proportional analogy, Douglas Hofstadter in-
troduced a micro-world made up of letter-strings (Hofstadter and Mitchell, 1995).
The choice of such a micro-world is justified by its simplicity and the wide variety
of typical analogical problems it covers. The base domain of Hofstadter’s micro-
world is the alphabet, in which letters are considered as Platonic objects, hence as
abstract entities. Elementary universal concepts are defined relatively to strings of
letters, such as first, last, successor and predecessor. These concepts do not describe
elements of the alphabet directly as they are abstract entities, but their concrete ap-
pearances. To this domain is added a base of semantic constructs defined by Hof-
stadter: copy-groups, successor-groups and predecessor-groups (Hofstadter, 1984).
The typical problem considered by Hofstadter in this micro-world is the following:
if ABC changes to ABD, what is the analogous change of IJK? Such a problem cor-
responds to the analogical equation ABC : ABD :: IJK : x where x is the unknown
parameter to be found.

As exposed in Section 3.2.5, this micro-world was initially designed by Douglas
Hofstadter in order to assess the problem of fluid concepts in analogy, by providing
a simple but complete domain where the major difficulties of analogical reasoning
are present, but without involving the complexity of domains such as those assessed
by Structure Mapping Theory or connectionist models.

We consider a slightly modified version of Hofstadter’s problem. Our modi-
fications correspond to an extension of the micro-world and are justified by some
weaknesses of the original model. In particular they define a cross-domain problem,
which is by nature more realistic. Another weakness overcome by our modification
is the interconnection between symbols and semantics: In Hofstadter’s rules, a letter
cannot be interpreted in terms of its position in the alphabet.

The modifications we propose are the following.
First, we consider the possibility to use additional base alphabets, among which

the number alphabet occupies a very special place. New alphabets offer the possi-
bility to consider cross-domain analogies, which raises the issue of transfer between
different domains. In particular, the analogical equation ABC : ABD :: 123 : x seems
very basic for a human mind while it corresponds to a change of representation from
the domain of letters to the domain of numbers. Interestingly enough, the numerical
alphabet adds an infinite number of elements to the problem but does not make it
fundamentally more complicated.

Besides, the use of other base alphabets is also justified by the flexibility of human
cognition toward some prior knowledge. For instance, any system familiar with the
English keyboard layout has the prior knowledge of this new domain in mind and
will be particularly efficient to solve equations such as ABC : ABD :: QWE : x. The
question of efficiency is not an easy problem and will be discussed in details in the
following sections.

Secondly, we consider a mapping from numbers to any base alphabet. This
operation makes it possible to describe a letter by its position in the alphabet and
to design analogies involving a mapping between operation numerical parameters
and letter position, which was discarded by Hofstadter’s rules but seems important
to us. The problem ABC : ABD :: ABBCCC : x relies on a such a mapping: the
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string ABBCCC is naturally described as “n-th letter of the alphabet repeated n times for
n ∈ {1, 2, 3}”.

4.1.2 An Application: Linguistic Analogies

Originally, Hofstadter’s micro-world was only intended to be applicable to artificial
problems involving relational operations over character strings (with the relations
exposed earlier: predecession, succession, copy). However it appears as a direct
application case that the model can be used to solve linguistic analogies of the same
nature as the ones presented in Section 3.3.2.

Traditionally, Hofstadter’s works are not seen as a valuable alternative to man-
age these linguistic problems. In order to discard Copycat as a viable tool for solving
linguistic analogical equations, one argument is often evoked: In linguistic exam-
ples, the order of letters does not bring any information and the system is over-
constrained. In particular, it can be observed that Copycat fails to solve very sim-
ple declension problems such as vita:vitam::rosa:rosam. Compared to Hofstadter’s
approach, the methods designed for solving linguistic analogies have a clear advan-
tage: They do not involve any prior knowledge.

However, we propose to rehabilitate Hofstadter’s micro-world as a viable de-
scription tool for linguistic analogies.

From our point of view, having more descriptive power is not necessarily a dis-
advantage. To our knowledge, linguistic problems do not involve any transforma-
tion based on letter order, thus the descriptive tools relative to letter order can simply
be ignored when describing linguistic analogies. We will show later that the system
we designed is very modular: In particular, it can be used without any background
knowledge at all and works particularly well for linguistic analogies in these condi-
tions.

Based on this remark, it might seem strange that Copycat fails at solving even the
simplest linguistic analogies. The justification of this observation has to be found in
another direction. The description power is not the only limitation of a technique.
Just because in theory an object can be described by a method does not mean that
it will be actually described. The description power corresponds to what is called
representation bias. This bias affects the theoretically reachable set of problems. For in-
stance, the framework we propose can be applied to any analogy on character strings
of any kind, either based on structural manipulations (e.g. ABC:ABD::IJK:IJL), on
linguistically plausible analogies (e.g. rosa:rosam::vita:vitam) or on completely ran-
dom logic (e.g. XJT:YKNVTK::FY:XLL). In practice, a reasoning method is necessar-
ily biased by the way it explores the space of solutions: We will refer to this bias as
research bias. In the case of Copycat, the exploration is based on finding local and
global structural changes. If such changes are not detected, which is the case in par-
ticular when the strings at play correspond to natural language words, the algorithm
fails to apply changes.

The observed weakness of the Copycat project to solve linguistic analogies can-
not be attributed to the fact that Hofstadter’s micro-world can involve background
knowledge, but is a consequence of the fact that the program searches structural
changes only. We will show that our technique avoids this pitfall.

As a conclusion to this discussion, we would like to notice that standard tech-
niques for solving linguistic analogies are also biased by the choice of rules used to
determine the solutions. Methods based on analogical proportion also have their
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own biases, even if they do not rely on a priori knowledge. For example, the algo-
rithm proposed in (Lepage, 1998) is explained by the authors to be inefficient in mul-
tiple cases, including reduplication (e.g. orang : orang-orang :: burung : burung-
burung in Indonesian1) and permutation (e.g. yaqtilu : yuqtilu :: qatal : qutal in
Protosemitic1). This observation is explained by the bias inherent to the axioms of
proportional analogy.

4.1.3 Method Overview

In order to solve analogies in Hofstadter’s extended micro-world, we propose a de-
scription language for alphanumerical analogies. The purpose of this language is to
mimic descriptions that human beings could give of character strings and analogies.
A major difference between our approach and Hofstadter’s original works lies in the
consideration of descriptive groups. While Hofstadter’s approach is merely descrip-
tive, we adopt a generative formalism in which the way strings were formed is taken
into account. The static description of copy-groups, successor-groups or predecessor-
groups is replaced in our framework by methods such as copy, succession or predeces-
sion.

Once the description of an analogy is available in our generative language, the
instructions are turned into a binary code according to strict coding rules. Our claim
in this chapter is that the solution of an analogical equation perceived as the most
relevant one is produced by the code of minimal length. This claim will be justified
based on some experimental results. We will discuss the impact and limitations of
the observed results in the conclusion.

4.2 Representation Bias for Hofstadter’s Problem

In this section, we present the rules of the language developed to describe character
strings analogies. These rules limit the description and can be seen as a representa-
tion bias.

4.2.1 A Generative Language

As mentioned, a major difference between our perspective and Hofstadter’s works
is the generative point of view. Largely inspired by Leyton’s theory of shapes (Ley-
ton, 2001), we consider a description of the process generating analogies rather than
a description of the analogies themselves. According to Leyton, the history of an
object is perceived as the result of a sequence of transformations starting from a
completely symmetric state to an asymmetric state. In his examples, Leyton consid-
ers forms in a two dimensional space, however his theory is general and it can apply
in particular to our domain of interest. In the context of our micro-world, the only
totally symmetric structures are the alphabets themselves. Because they are pure
abstract base elements, they have a fundamental pre-existence for our system. Any
string will result from a transformation of the base alphabet: for instance, ABCDE
is perceived as the sequence of the first five letters in the alphabet and ZYX as the
sequence of the first three letters in the reversed alphabet.

In order to integrate this sequential transformation of an original string, we
consider that the machine has access to a one-dimensional discrete tape. At each

1Example taken from (Lepage, 1998).
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time step, the machine writes on this tape (from the left to the right if no counter-
indication is given) or modifies the previously written string. Thus, the base opera-
tion consists in copying the alphabet onto the tape. In the two preceding examples,
the transformations can be easily expressed in human words. More generally speak-
ing, one of the desired properties of a generative language for analogies is its cogni-
tive interpretability. In our solution, the generative procedure consists in a sequence
of operations read from left to right and separated by commas. The operations are
applied one by one and refer to understandable manipulations. Even if any opera-
tion may be incorporated to the language, we will consider here only a restricted set
of predefined transformations, called operators {O1,O2, . . . }.

The core of the language is the use of a triple memory: a long-term domain mem-
ory, a long-term operator memory and a short-term memory. The long-term domain
memory stores all accessible domain descriptions, including the alphabets that are
accessible to the system. This memory will be denoted byMd = {A1,A2, . . . }where
the Ai designate the alphabets. The long-term operation memory stores the reper-
toire of all applicable operators and is denoted by Mo. Both long-term memories
contain prior knowledge and cannot be modified by the machine. All memory mod-
ifications are done in the short-term memory which stores concepts to be reused in
the description. Here, concepts can be either strings or system-defined operators.
The short-term memory is designated byMs.

Using the ideas exposed above, we design a set of rules defining a sketch of a
grammar for the presented generative language. The rules presented here are gen-
eral and do not describe the available operators. A list of elementary operators will
be presented and discussed later.

1. A program is encoded as a list of predicates separated by commas. Instructions
are read from left to right: this order coincides with the execution order.

2. The program uses a one-dimensional and infinite tape. Intermediate results are
written on the tape. Each instruction modifies the content of the tape, either
by adding new elements or by correcting previous characters.

3. The base element of a string is called a group. A group is recursively defined
as a concatenation of groups. The minimal group is made up of one letter. The
whole string written on the tape corresponds to one group.

4. Instructions generate groups, either by replacing the group on which they ap-
ply or by concatenating their output to it.

5. By default, operators apply to the whole string. To apply the operator to one
precise group only, the instruction is declared inside another special instruc-
tion called group. The group instruction can be seen as a way to change the
scope.

6. Operators apply to the preceding group and are specified with at most one
single parameter. If no parameter is given, a default parameter is used.

7. A string can be put into short-term memory by means of the special instruction
let. The short-term memory can be accessed with the key instruction mem. This
instruction requires a parameter, which is the position in the list. The position
is given by an integer, with the convention that lastly memorized strings can
be retrieved with low index2 (see Section 4.2.3 for more details).

2This convention is motivated by the idea that lastly memorized items are the easiest ones to recall.
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8. Operators can be put into short-term memory and accessed respectively with
the key words let and mem. In the declaration, the parameter is indicated by
the character ? and may be used at several places in the instruction.

9. The instruction next_block is used to move to the next term in the analogy
definition. For the analogy A : B :: C : D, the order of the blocks is A, B, C and
D.

The choice of a mono-dimensional tape can be discussed in the perspective of
solving analogies. By construction, analogies are read in a two-dimensional way
(which is particularly clear in the symmetry and central permutation axioms of
proportional analogies). Our choice is motivated by two ideas. First, we recall
that our initial motivation is to mimic natural language, which is by nature mono-
dimensional. Even if this argument applies mainly to the generative language itself,
it also affects the produced objects. The second motivation concerns the use of the
language: we observe that the apparent linearity is perturbed by the memory which
can store partial descriptions and thus model cross-domain dependencies.

4.2.2 Basic Operators

The list of operators available for the language determines a bias for the machine.
The more operators are given to the system, the more sophisticated the obtained
expressions can be.

The most basic set of programs is empty: it corresponds to a system capable of
giving letters one by one only. Such a system is sufficient in some contexts. Con-
sider for example the real problem of learning declension in a language. In order
to learn a declension, students learn by heart a single example and transfer the ac-
quired knowledge to new words. This corresponds for instance to the analogy rosa
: rosam :: vita : vitam for a simple Latin declension. This analogy is encoded by the
following code:

let(`r',`o',`s',`a'), let(`v',`i',`t',`a'),

let(?, next_block, ?, 'm'),

mem, 0, mem, 2, next_block, mem, 0, mem, 1;

This program has to be interpreted as follows: In the first line, the groups `rosa'
and `vita' are put in short-term memory. The second line defines a new opera-
tor which displays the argument, switches to the next block, displays the argument
again and finally adds the character `m'. The third line retrieves the just-defined
operation and applies it successively to the two words, also retrieved from memory.

In order to build effective descriptions for more complex systems, additional
operators can be defined. We propose a summed-up list of the defined operators
in Table 4.1 and a list of code examples in Table 4.2.

Two basic operations can be considered as a generative equivalent of the copy-
groups and successor-groups in Copycat: copy and sequence. The operator copy re-
peats the group of interest a given number of times. The parameter of the operator
is the number of copies and has 2 as default value. The operator sequence outputs
the sequence of the first n elements of the group, where n is the parameter. The de-
fault value for the parameter is 1. The elements selected by the operator correspond
to subgroups of the total group, not necessarily to actual characters.

The operator sequence alone is not as general as Hofstadter’s successor-groups:
For example, it cannot describe the sequence ijk. In order to cope with this difficulty,
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Name Description Example
copy Repeats the group a given

number of times. Equivalent
to Hofstadter’s copy-group.

`a', copy, 4; outputs aaaa

sequence Outputs the sequence of the
first n elements of the group.
Equivalent to Hofstadter’s
copy-group.

alphabet,sequence,3; out-
puts abc

shift Shifts the subgroups of n po-
sitions.

alphabet,shift,3; outputs
defg...yz

shift_circular Circular version of the shift

operator
alphabet,shift_circular,3;

outputs defg...yzabc
reverse Reverses the order of ele-

ments in a group.
alphabet,sequence,3,

reverse; outputs cba
find Searches all occurrences of a

group given as parameter.
`a', `b', `a', find, `a',

copy, 2; outputs aabaa
last Selects last group `a',`b',`a',last,copy,2;

outputs abaa
map Maps an operation to the chil-

dren of a group
alphabet,map,copy,2 out-
puts aabb..yyzz

TABLE 4.1: Example of operators used by the language.

we introduce the shift operator. Given with parameter n, the operator shifts the
subgroups in the subgroup of n steps. The shift is not circular, but a circular version
of it may be defined if needed.

The operator reverse is used to reverse the order of elements in a group. This
operator does not have parameters.

Lastly, the operator map applies an operator (specified as parameter) to all chil-
dren of the group of interest. The parameter is an operator specified with its param-
eter (if needed).

To these writing operators, we have to add another class of operators, which will
be designated in the following as pointing operators. Unlike previously described
operators, pointing operators are used to extract subgroups on which the following
operator will apply. By default, an operator applies to the whole string in its scope.
However, in some cases, an operation is needed on several subgroups inside the total
group, hence operators are needed to point toward desired subgroups. We propose
two pointing operators: find and last.

The operator find searches all occurrences of a group g inside the group of in-
terest. The group g is given as a parameter. The operator last (specified with no
parameter) selects the last subgroup.

4.2.3 Using Memory

The strength of the proposed language lies in its use of a triple memory to access
elements of different nature: a long-term domain memoryMd storing domain de-
scriptions (e.g. alphabets), a long-term operator descriptionMo storing system pro-
cedures to modify objects, and a short-term memory storing temporary elements.
Managing memory is of major importance when it comes to producing programs of
minimal length.
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Instruction Output
`a', copy, 4; aaaa

group(`a', `b'), copy, 2; abab

alphabet, sequence, 3; abc

group(`a'),group(`b',`c'),group(`d'),sequence,2; abc

alphabet, shift, 3; defg...yz

alphabet, shift_circular, 3; defg...yzabc

alphabet, sequence, 3, map, copy, 2; aabbcc

alphabet, sequence, 3, reverse; cba

`a',`b',`a', find, `a', copy, 2; aabaa

alphabet, sequence, 4, last, copy, 3; abcddd

TABLE 4.2: Example of instructions involving various possible oper-
ators. The outputs correspond to the strings generated by the corre-

sponding code.

The access to elements in long-term memoriesMd andMo is hidden in the lan-
guage for simplicity purpose, but it cannot be ignored. The designation of support
alphabets (alphabet, numbers, utf8, qwerty-keyboard...), hence of the domain, and
the designation of operators (copy, sequence, find...) are treated as proper nouns
to encapsulate an access to an ordered memory. The rank of entities in memory is a
characteristics of the machine and cannot be changed.

The user is in charge of the management of short-term memory. Entities (opera-
tors or strings) are stored in memory with the let meta-operator and accessed with
the mem meta-operator. For example, the instruction let(`a') will store the gener-
ation of a but the string is not written on the band. It will be written only when
invoked from memory. The short-term memory is organized as a stack (hence last-
in first-out): the parameter given to the mem operator is the depth of the element in
the stack. Thus, the last element memorized will be invoked using mem,0 or simply
mem,, since default parameter for mem is 0.

The declaration order for memorized entities may be arbitrary. For instance,
there is no difference between instruction let(`a'),let(`b'),mem,1,mem,0; and
instruction let(`b'),let(`a'),mem,0,mem,1;. Both output ab even if the order in
memory is not the same.

Using short-term memory is not compulsory to describe a string: The language
syntax does not prevent from repeating identical instructions. However, in a context
of finding a minimal description (which is the purpose of our framework), using
memory is an important way to pool identical entities.

4.2.4 Remarks on the Language

We would like to end up this section with several remarks on the proposed language.
First, we proposed a compiler for this language, implemented in Python. The

compiler is able to consider a sequence of instructions and to compute the corre-
sponding character string. As it will be discussed in Section 4.4, we did not provide
any method to obtain the optimal sequence of instructions to describe one analogy
given as a parameter. The compiler exploits the notion of group, which is mostly
implicit in our language. Each operator produces a list of groups, and the output of
a sequence is the concatenation of all strings in the list. However, we imposed a re-
striction on the compiler by introducing an arbitrary maximal number for integers.
This restriction is used to avoid infinite loops (for instance with instructions such
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as numbers, shift, 2) but should be removed in a more proficient implementation
and replaced by a syntax error.

The second point we would like to insist on is the general aspect of the language,
in the sense that it can be used to generate any possible analogy, including those
which might seem random. When no regularity is found, a character string can be
described by encoding each character one by one, which our language is able to do.

Finally, despite this complete description ability, the language is trivially not
Turing-complete: It can be verified by considering that the halting problem can be
solved for it.

4.3 Relevance of a Solution

In this section, we discuss the notion of relevance of a solution. We will propose to
use the developed language to describe the analogies and measure their “simplicity".

4.3.1 Relevance: Problems and Intuitions

The language exposed in Section 4.2 defines the expressive power of our method. At
this point, a couple of remarks can be done.

First, the language does not apply to Hofstadter’s analogies only but can be ex-
tended to any problem involving structural description of character strings. As such,
a natural application is string completion, in the same spirit as performed by (Stran-
negård, Nizamani, Sjöberg, and Engström, 2013). This application will not be dis-
cussed in this thesis.

A second problem raised by our language is the non-unicity of description for
a given string. In general, infinitely-many instructions can produce a same result.
For instance, the observation abc can be generated inter alia by any of the following
instructions:

1. alphabet, sequence, 3

2. `a', `b', `c'

3. alphabet, sequence, 2, `c'

4. alphabet, sequence, 3, copy, 1

The question that arises from this observation concerns the relevance of a description
among others: What makes one description better quality than another descrip-
tion?

The third problem is closely related to the resolution of analogical equation.
When only three of the four terms in the analogy are known, is there any criterion
to discriminate relevant and admissible solution? In other words: What makes one
solution better quality than another solution?

The solutions we explore use a fundamental theoretical tool, Minimum Message
Length (MML). This idea is in line with various models of analogy and of letter string
continuation, including (Cornuéjols and Ales-Bianchetti, 1998) and (Strannegård,
Nizamani, Sjöberg, and Engström, 2013).

The Minimum Message Length principle states that the optimal solution of a
problem is the shortest in terms of description length. This principle, which will be
discussed in more details in the following chapters, can be seen as a formalization
of Ockham’s razor principle. At this stage of the thesis, we use only an intuitive and
informal (but accurate) expression of MML principle in order to test our idea.
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Index 1 2 3 4 5 6 7 8 9 10 11 12
Code 0 1 00 01 10 11 000 001 010 011 100

DL 0 1 1 2 2 2 2 3 3 3 3 3

TABLE 4.3: Positional code in a list and corresponding description
length (DL, in bits)

In what follows, we will apply Minimum Message Length principle to the ques-
tions addressed here: How to measure the relevance of a description and the relevance
of an analogy? Before we can actually measure these two quantities, we have to
quantify the length of a description: For this purpose, we turn the instructions writ-
ten in our language into a binary code, the length of which will be considered as a
measure for the actual description length.

4.3.2 From Language to Code

We consider here the question of coding a description of analogies based on the
proposed language. We denote the alphabet of instructions by A and B̄ = (B∗)∗ the
set of sequences of binary sequences. We propose now to build a pseudo-code C :
A → B̄ which associates each instruction word to a sequence of binary sequences.
We call the extension of the code the function C̃ : A∗ → B̄ defined as follows: For all
x1, . . . , xn ∈ A, C̃(x1, . . . , xn) = (C(x1), . . . , C(xn)).

These definitions differ a bit from the usual definitions used in coding theory, in
which a code is a binary sequence, and not a list of binary sequence. This difference
is motivated by the cognitive inspiration of our method. we consider that a cogni-
tive system does not use a prefix binary code and is able to discriminate between
instructions and words on a cognitive layer.

The basic idea we use to obtain an efficient code consists in using a positional code
in lists. This code associates the empty sequence to element 0, 0 to element 1 and
increments of 1 bit for each element (0, 1, 00, 01, 10...: see Table 4.3). Using this code,
the description length of the n-th element of a list is dlog2 n + 1e.

The global presentation of the language is organized as a list of lists: A word
is designated by the path inside the sequence of lists. For instance, the code for
the character d corresponds to the code of domain memory (1), alphabet (0) and d

(01), hence 1,0,01. This comma-delimited sequence corresponds to a program on a
ternary alphabet {0, 1, B} where the blank character B corresponds to the comma.

The corresponding binary code (obtained when the blanks B are ignored) is not
self-delimited.Without the commas, the code of the programs would not be decod-
able, in particular due to the presence of empty codewords. In this chapter, we
diverge from the mathematical theory of complexity by making two strong assump-
tions: the system is able to split the instructions correctly and these delimiters are
not considered as being part of the code (which affects the measure of complexity).
These two assumptions are motivated by cognitive modeling and will be used in
this chapter only.

To make the code consistent with the formal theory of complexity and have it as a
binary prefix code, a classical doubling code can be used. Given a binary sequence x
(of length l(x)), the doubling code of x is the concatenation of 3 elements: 0 repeated
dlog2 l(x)+ 1e times, followed by a 1, followed by the binary coding of l(x) followed
by x. This doubling code has the property to be a prefix code and thus uniquely
decodable. Even if we will use this convention in the following, we omit it in this
introductory chapter, for its lack of cognitive relevance.
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Since a language word corresponds necessarily to a tree leaf, the code is uniquely
decodable.

Proposition 1. Any instruction sequence encoded with the described positional code is
uniquely decodable.

Proof. Consider two ternary sequences p1, p2 ∈ {0, 1, B}. By construction of the
code, if p1 is a prefix of p2, then p1 does not correspond to a leaf of the tree and thus
is not a code word. This shows that the code is a prefix code, and consequently is
uniquely decodable.

An example of an instruction tree is given in Figure 4.1. The ordering suggested
by this instruction tree is of course entirely arbitrary (except for the blank element
the purpose of which is to avoid specifying unnecessary parameters, and thus has
to count for a low description length). This arbitrary order is another bias of our
system. The order chosen in Figure 4.1 has been determined by favoring more fre-
quently expected operators at lower positions than less frequently expected ones. A
way to build a cognitively plausible language encoding would consist in evaluat-
ing the ordering based on human experiments. Such experiments would have to be
made in future research.

The length of an instruction is determined from the corresponding code. We
propose to consider that the program length corresponds directly to the number of
bits required in the code3:

∀p ∈ {0, 1, B}, L(p) =
l(p)

∑
i=1

I(pi 6= B) (4.1)

For instance, the length of the instruction 2 will be the number of bits in 1,0,0,
hence L(2) = 3. The same reasoning is applied to any instruction, including com-
plex instructions describing complete analogies. Note that we improperly associate
the length of a program in the proposed language to the length of its associated
instruction sequence p ∈ {0, 1, B}.

The comma delimiter is considered as costless when computing description length.
This idea is in use in the Morse code for example. Morse code encodes letters by se-
quences of dashes and dots (ie. with a binary alphabet). A full word is given by
a succession of letters separated by short breaks. These breaks are not part of the
Morse code but are used to indicate the transition from one letter to another. In such
contexts, the delimiters are supposed to be processed by the physical layer of the
system, hence to ensure a uniquely decodable code while having no influence on
actual description length. Considering costly delimiters would increase the descrip-
tion length of an instruction p by a constant in O(L(p)) bits.

4.3.3 Relevance of a Description

Several acceptable instructions can generate a given string. For example, the string
abc can be produced by at least three instructions:

• Instruction 1: alphabet, sequence, 3;

3Note that, using this definition, the length of an operator is independent of the operation it per-
forms but is only related to its position in the operator memory.
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FIGURE 4.1: Instruction tree used for the code. Each element is in-
dicated with its name in the language and the corresponding code

(written in parenthesis).
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• Instruction 2: `a',`b',`c';

• Instruction 3: alphabet, sequence, 2, `c';

These three instructions do not seem equally satisfying from a human point of view.
We submit that the difference in terms of relevance can be quantified by their length.

Using a specific code description, the description lengths for the three previous
instructions are respectively L1 = 8, L2 = 10 and L3 = 12. In this example, it
is observed that the instruction with minimal description length corresponds to a
cognitively relevant description of the string, since it exploits its intrinsic structure.

As a first step of our reasoning, we state that the most relevant generative descrip-
tion of a string is the description of minimal description length. We define the description
length DL(.) of a character string (or an analogy on character strings) as the min-
imal length of an instruction that generates it. For instance, we have shown here
that DL(abc) ≤ 8 bits.

Despite the simplicity of our generative language (in particular compared to the
unrestricted class of Turing machines generating character strings), the exploration
of the space of programs is difficult, and all the estimations that are given in this
chapter are only upper-bounds of the actual description length. In theory, an explo-
ration of all possible instructions is possible, since at least one program is known
and fixes a maximal value for the description length: the program that enumerates
the letters of the analogy one by one. In practice, such an approach would have an
exponential time complexity.

Several solutions can be adopted in order to build the optimal program. First,
greedy approaches would impose a research bias by the mean of a locally optimal
exploration of the space of programs. This solution will be discussed in the per-
spectives of this chapter. Additionally to this guided exploration of the space of
programs, a resource-bounded research can be considered (Buhrman, Fortnow, and
Laplante, 2001). In particular, a research time can be given to the computer, and
only programs built within this specified time period are taken into account for the
evaluation of the description length.

4.3.4 Relevance of a Solution for Analogical Equations

Using the description length obtained by our system as described above, it is pos-
sible to apply a minimum description length strategy for the selection of a relevant
decision rule.

Consider the example of the simple analogy equation ABC : ABD :: IJK : x.
Infinitely many solutions can be proposed to this equation, but we can consider
two of the most frequent answers given by humans: IJL and IJD. We propose the
two following descriptions for these solutions (note that in these instructions, the
number 8 corresponds to the position of letter I in the alphabet):
// ABC : ABD :: IJK : IJL

// Step 1: Source problem description

let(alphabet, shift, ?, sequence, 3),

// Step 2: Intra-domain description

let(mem,, ?, next_block, mem,, ?, last, increment),

// Step 3: Application of the descriptions

mem,,, next_block, mem,, 8;
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// ABC : ABD :: IJK : IJD

// Step 1: Source problem description

let(alphabet, shift, ?, sequence, 3),

// Step 2: Intra-domain description

let(mem,, ?, next_block, mem,, ?, last, `d'),

// Step 3: Application of the descriptions

mem,,, next_block, mem,, 8;

These two programs are inspired of human explanations for the analogies. Con-
sider the first program. The description of the source problem has to be read as
follows: Take alphabet, shift it by a number n (input), and take the sequence of the
first three letters. The intra-domain description consists then in taking the source
problem description in memory, apply it an input parameter, and provide its so-
lution by incrementing the last element. Finally, these instructions are applied in
the source with no parameter (hence parameter 0), and in the target with parameter
equal to 8. The second program is identical, except for the intra-domain description,
in which the solution is obtained by replacing the last letter by a d.

These two programs cannot be proven to be optimal descriptions. We may con-
sider them however as provisionally optimal in a resource-bounded approach and
use them for the evaluation of description length. We can deduce the description
length of the two analogies to be DL(ABC : ABD :: IJK : IJL) = 37 and DL(ABC :
ABD :: IJK : IJD) = 38. In particular, the difference between these two solutions
is 2 bits. The drop of description length from the higher DL solution down to the
lower DL solution measures the relative relevance of the two solutions. The larger this
drop, the more relevant the optimal solution.

4.3.5 Validation

In order to evaluate the way human beings react to analogy problems, we proposed
an online experiment with several Hofstadter’s analogy problems. Participants were
101 (62 female), ages 14-72, from various social and educational backgrounds. Each
participant was given a series of analogies. The series were in the same order for
all participants, and some questions were repeated several times in the experiment,
in order to test a potential priming effect. All analogies had in common the source
transformation ABC : ABD. The main results are presented in Table 4.4. The com-
plete results, as well as the survey for the experiment, is available in Appendix A.

The results confirm that in most cases the most chosen solution corresponds to a
minimal value of the global description length. The description length is calculated
here using our small language and the coding rules exposed earlier. Its limits are
visible with the two examples ABC : ABD :: 135 : x and ABC : ABD :: 147 : x. In
these examples, the language fails at describing the progression of the sequence “two
by two” (1-3-5-7) or “three by three” (1-4-7-10) which would decrease the overall
description length.

However, despite the simplicity of the language used to assess the description, it
is noticeable that the most frequent solution adopted by the users corresponds to a
drop of description length. This property is not verified with only two problems: For
the problem ABC : ABD :: 122333 : x, the large value of the description length in the
most frequent case is due to the limitations of the language which fails at providing
a compact description of the complete analogy because of a too rigid grammar. In
the case of the analogy ABC : ABD :: XYZ : x, adding the circularity constraint has a
cost in the language, while it seems to be a natural operation for human beings.
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Problem Solution Proportion DL (bits)
IJK IJL 94% 37

IJD 2.0% 38
BCA BCB 50% 42

BDA 38% 46
AABABC AABABD 75% 33

AACABD 15% 46
IJKLM IJKLN 61% 40

IJLLM 15% 41
123 124 96% 27

123 3.0% 31
KJI KJJ 40% 43

LJI 33% 46
135 136 70% 35

137 20% 37
BCD BCE 83% 35

BDE 3.0% 44
IJJKKK IJJLLL 39% 52

IJJKKL 26% 53
XYZ XYA 84% 40

XYZ 5.0% 34
122333 122444 35% 56

122334 31% 49
RSSTTT RSSUUU 41% 54

RSSTTU 30% 55
IJJKKK IJJLLL 40% 52

IJJKKL 27% 53
AABABC AABABD 68% 33

AACABD 16% 46
MRRJJJ MRRJJK 26% 64

MRRKKK 23% 65
147 148 71% 36

1410 10% 38

TABLE 4.4: Main results of the survey for Hofstadter’s analogies. For
each problem, only the two main solutions are presented, with their
frequency and the corresponding description length (DL). Some prob-
lems are repeated multiple times in order to test a potential priming
effect. The solution written in italic corresponds to the solution of

minimal description length.
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The experiment also reveals a major weakness of our model: The descriptions
provided by our language are static and do not depend on the environment. On
the contrary, the variations of the average answering time and the changes in the
answers (when a same problem is repeated at several places) indicates clearly that
having faced similar structures in the past helps in solving a new analogy. Finally,
the relative relevance of two solutions is not necessarily sufficient to explain human
preference in this matter, though. For instance, on the first problem, a large majority
of people choose the IJL answer despite the small description length difference. This
possible divergence is related to research biases which are not taken into account
in our approach. This effect is particularly visible with the more difficult analogy
equation ABC : ABD :: AABABC : x. Very few humans notice the structure A-
AB-ABC, hence the corresponding solution x = AABABCD. However, the structure
A-AB-ABC is perceived as more relevant when presented.

We have shown that description length offers a criterion to compare two given
solutions to an analogy equation. This sole property is not sufficient in practice to
obtain an analogy solver. Since the space of solutions is infinite, additional hypothe-
ses must be considered in order to restrict the exploration space.

4.4 Perspectives: Finding an Optimal Representation

In order to develop an efficient automatic analogy solver based on complexity min-
imization, two issues have to be overcome: How to effectively compute the descrip-
tion length of a complete analogy, and how to explore the space of solutions. Regard-
ing the second problem, we propose to draw a parallel between the main phases of
the Copycat program and the construction of an instruction in our generative lan-
guage.

Several phases are described in Hofstadter’s Copycat program (Hofstadter, 1984):
syntactic scanning, semantic phase, rule generation, world mapping, rule slipping,
rule execution and closure checking. All these phases can be transposed directly in a
description length minimization framework. We propose to examine them with the
example ABC : ABD :: IJK : x. We will present code structures for each phase and
show that the phases can be described in terms of memory. The ideas proposed here
are not implemented yet and have to be handled in future works.

4.4.1 Syntactic Scanning and Semantic Phase

Syntactic scanning examines immediate syntactic connections inside all strings. For
instance, successions or repetitions are targeted during this phase. This approach
offers a bottom-up exploration of the description space. Unlike Copycat’s approach
(separating syntactic and semantic description), we propose to merge the two phases
in a first description of the analogy. In our example, we obtain the following descrip-
tion:

alphabet, sequence, 3, next_block, alphabet, sequence, 2, `d',

next_block, group(alphabet, shift, 8, sequence, 3)
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4.4.2 Rule Generation

Rule generation focuses on the first domain of the analogy (hence ABC : ABD) and
aims at factorizing it. The purpose is to make a transformation appear during fac-
torization. Here, the idea is to factorize the common structure ABC or AB and to
propose a transformation for both of them. The factorization is made using memory.

// Factorization of ABC

let(alphabet, sequence, 3), mem,, next_block, mem,, last, increment;

// Factorization of AB

let(alphabet, sequence, 2), mem,, `c', next_block, mem,, `d';

Once the structure is memorized, the transformation is stored into a second
memory instance:

let(...), let(mem,, next_block, mem,, last, increment), mem,;

4.4.3 World Mapping and Rule Slipping

World mapping is a crucial step in analogical reasoning: it consists in unifying both
domains by finding a correlation between them. In our example, the correlation has
to be found in the expression of alphabet, sequence, 3 and alphabet, shift, 8,

sequence, 3. In this case, the correlation can be established using the instruction
shift, 0 that corresponds to the identity operator (mapping a sequence to itself). A
factorization can then be proposed:

let(alphabet, shift, ?, sequence, 3)

This factorization leads to slight changes in previous code definitions. Such mod-
ifications correspond to the rule slipping phase. The modifications are stored in
memory, in order to produce a general description method available both for source
and target.

let(alphabet, shift, ? sequence, 3),

let(mem,, ?, next_block, mem,, ?, last, increment);

4.4.4 Rule Execution

The final instructions are obtained through the following steps:

let(alphabet, shift, ? sequence, 3), // Structure definition

let(mem,, ?, next_block, mem,, ?, last, increment); // Rule

mem,,, next_block, mem,, 8;

Executing this instructions, we obtain analogy ABC : ABD :: IJK : IJL. The way
the system generates each step is an open research problem and will have to be
solved in order to obtain an actual analogy solver. Because this solver will rely on
storing factorized structures in memory, the found solution will coincide with a local
minimum of complexity. No guarantee can be offered in any way that this local
minimum corresponds to a global minimum.
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4.4.5 Cognitive Interpretation

The procedure proposed by Hofstadter for CopyCat is supposed to mimic human
cognition. We would like to conclude this chapter with a brief interrogation on its
cognitive plausibility.

The steps described above reveal an order in the interpretation of the analogy.
The resolution can be split in two parts. First, the system finds an internal represen-
tation in the source domain (rule generation). In this first stage, no consideration
on the mapping between the source and the target domains is involved. This link is
established in a second step (world mapping and rule slipping). Using the generic
notations a : b :: c : d, this procedure suggests then to consider first the relation a : b
and then the relation a : c in order to infer d. Such procedures are called project-
first. Such procedures are opposed to the models of structure mapping theory which
analyze the mapping a : c first.

Several cognitive studies have addressed the question of the resolution proce-
dure for analogies. A recent analysis (Vendetti, Starr, Johnson, Modavi, and Bunge,
2017) provided a study based on eye-tracking, which points out varying behaviors
with respect to the age of the subject. The results of this study show that the project-
first approach is the most frequently used by adults, but also the most efficient in
terms of correct answers.

These observations tend to indicate that the baseline proposed by Hofstadter is
indeed cognitively coherent and should lead to a good accuracy in the resolution
process.

4.5 Conclusion

In this chapter, we have presented a particular class of analogies called Hofstadter’s
analogies. These analogies involve structured character strings but can be extended
to less structured strings, such as grammatical inflections (for instance conjugation
or declension). We developed a generative programming language to describe ob-
jects in this micro-world and a way to convert these instructions into a uniquely
decodable binary pseudo-code. Based on this pseudo-code, the description length of
an object was defined as the lowest number of bits involved in a program generat-
ing the object. An experiment performed on human beings confirmed the intuition
that human beings tend to prefer analogies of lower description length, which is a
confirmation of previous studies on minimum description length analogies.

These very positive results have to be considered with care, though. It is obvi-
ous that the language we designed is one way among others to describe character
strings. We chose this specific description because of the cognitive nature of the task:
In order to mimic the way human beings react to Hofstadter’s analogies, we propose
a language expressive enough to encode the possible given descriptions. This imi-
tation characteristic is essential here but is an ad hoc property. A central question in
general will be to propose the one description language which corresponds to the
nature of problem.

In the next chapter, we take a larger perspective and consider more general
classes of analogies. We will show that the preliminary work proposed in the context
of alphanumerical analogies can be extended easily and has a simple interpretation
in terms of algorithmic information theory.
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Chapter 5

Minimum Complexity Analogies

In the previous chapter, we proposed a description language for alphanumerical
strings and applied it for the description of analogies of the form “ABC is to ABD as
IJK is to IJL”. We have shown that human beings favor a minimum description length
strategy to choose the solution of such problems.

The purpose of this chapter is to give a general interpretation of this strategy. To
do so, we will introduce the notion of Kolmogorov complexity which will play a central
role in this thesis. Complexity is the theoretical counterpart of the description length
used in previous chapter and measures the shortest description length (in bits) of
a Turing machine generating a given object. We will show that a restriction of the
space of Turing machines is needed but biases the system toward some results. In
order to enhance the readibility of the models, we will propose the notion of Descrip-
tive Graphical Model (DGM), largely inspired by probabilistic graphical models, but
entirely based on Kolmogorov complexity. These graphical models will be used to
define a general class of analogical relations.

The chapter will be organised as follows: In Section 5.1, we present an extension
of the language developed for Hofstadter’s analogies which applies to any analogy
on any domain. We will show that the minimum description length naturally in-
volves Kolmogorov complexity and we will present the base notions of algorithmic
information theory. The introduced notions will be used in Section 5.2 to define
the Descriptive Graphical Models and present some of their properties. Lastly, Sec-
tion 5.3 proposes a graphical model for analogical reasoning. This model is similar
to the approach of (Cornuéjols and Ales-Bianchetti, 1998). It will be inferred from
the description language and will be presented with various examples.

5.1 A General Description Language for Analogies?

A restriction of analogies to Hofstadter’s micro-world is obviously not desirable,
despite the interesting modeling properties of this domain. From now on, we pro-
pose to consider more general analogies, hence analogies in broader domains. The
purpose of this section is to relax the descriptive setting exposed above.

5.1.1 Analogies in Structured Domains

A characteristic of Hostadter’s micro-world is the fact that it does not have a strict
semantic structure. Even if the descriptions based on the developed language can
be interpreted in terms of predicates, this structure is built by the system in order to
solve the analogies but is not given as an input.

Working in structured domains (e.g. knowledge bases) is a necessity to consider
more realistic cases. The same issues apply to such domains as those described for
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character strings, but the proposed methodology has to be slightly modified to adapt
to such domains.

We consider a domain represented by a propositional networks of nodes and
predicates (such as suggested by (Gentner, 1983)). A node represents a concept and
is engaged in predicates. The arity of a predicate can be arbitrary high. Predicates
of arity 1 are called attributes (for instance red(door)) and predicates of arity 2 are
called relations (for instance attracts(sun, planet)). The theory of structure map-
ping (introduced in Chapter 3) is based on this representation and suggests that the
domain of analogy is the set of relations, rather than the object description: “The
target objects do not have to resemble their corresponding base objects. Objects are
placed in correspondence by virtue of corresponding roles in the common relational
structure.” (Falkenhainer, Forbus, and Gentner, 1989)

In order to describe such a domain, a description language can be found, similar
to the one developed for character strings. Several modifications have to be consid-
ered though:

• Character strings are structured linear objects, which is not necessarily the case
with standard objects.

• Predicates used in Chapter 4 are forced to have arity 2 (since methods have two
arguments: the string they apply on and the parameter). Here, we consider
more general cases.

• All available properties are not necessarily pertinent in the description of the
analogy. It was also the case in the alphanumeric domain, but to a lesser extent.
Here, in general, very few properties are engaged in the analogical process.

• A complete description of the four elements engaged in the analogy is not
necessarily possible (consider for instance the example “sheep:lamb::cow:x" in
the domain of animals).

These differences are well-known and are the core of methods such as SMT or
connectionist models. Our purpose is not to give a new or better solutions then
those already proposed, but to find a common point in them and exploit it with the
same idea as for Hofstadter’s analogies.

From the description language, we keep the idea of a memory division and of
a factorization of representation based on memory assignments. The hierarchical
description of instructions in the form of a tree is kept, as well as the delimited and
blank-separated code.

5.1.2 Description Length and Memory Factorization

The structured domains can be described in a Prolog-like way. This approach is
consistent with the differences outlined earlier, in particular the non-linearity. In
this descriptive framework, an object is then defined by a list of predicates in which
it is involved.

Structure Mapping Theory suggests that the analogical mapping has to be done
from the general structure of these predicates rather than the semantic of the predi-
cates or the instance of objects. This choice corresponds to a specific use of memory,
which imposes the use of more than one parameter (which can be denoted by ?1,
?2...). The order of parameters after the declaration is then important.
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We observe that in both worlds (Hofstadter’s world and structured domains),
the memory is used to encode low level inter- and intra-domain structures. In Hof-
stadter’s micro-worlds, these structures were for instance the global generation of
the source. In structured domains, they correspond to the set of non-instantiated
predicates.

Memory plays a fundamental role of factorization: It avoids the description of
redundant features by reusing the same structures. The instantiation of objects from
the structures is done in a final step and requires providing extra-information to
transform an abstract structure into an object.

These introductory observations provide two indications in the direction of a
general model of analogy:

1. Analogical reasoning involves a factorization of common structures shared
by the problems and the solutions, but also by the source and the target.

2. The description of objects is not directly stored in memory, but reconstructed
from the structures stored in memory. Their description relies then on param-
eters only.

The first idea requires to formalize the notion of “factorization". This formaliza-
tion will be done in Section 5.2 with the introduction of the notion of Kolmogorov
complexity. The second idea will be developed in Section 5.3 with the introduction of
the descriptive model initially proposed by (Cornuéjols and Ales-Bianchetti, 1998).

5.2 Descriptive Graphical Models

In this section, we formalize the notion of description length used previously. We
will introduce the notion of Kolmogorov complexity and will discuss its relevance
in artificial learning. Based on this notion, we will present a class of Turing ma-
chines, called Descriptive Graphical Models, which can be seen as a generalization of
Probabilistic Graphical Models to non-probabilistic settings.

5.2.1 Description Length and Kolmogorov Complexity

The notion of description length described previously has its formal counterpart:
Kolmogorov complexity. Complexity provides a measure of how complex the genera-
tion of an object is. For instance, the sequence 1111111111 is intuitively considered
simpler than 1010011101 since it can be generated by a “short” program (repeat 10
times character 1). We propose to give here an introductory overview of Kolmogorov
complexity and some of its properties of interest. For a more precise and complete
overview of complexity, we refer the reader to (Li and Vitányi, 2008), from which the
main notions, definitions and results given in this subsection are taken.

In the following, we will use the standard asymptotic notation g(n) = O( f (n))
if there are two constants c and n0 such that | f (n)| ≤ c|g(n)| for all n ≥ n0.

Consider a countably infinite set of objects S . Object x ∈ S can be identified
with its index n(x) or by any reordering function φ : N → N. Such a function φ
can generate the object x if there exists p such that φ(p) = n(x). The complexity is
defined as the length of the shortest p satisfying this property.

A particular case is observed when the specifying method φ is partial recursive. A
function φ : N → N is called partial recursive if its output φ(p) corresponds to the
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output of a given Turing machine after its execution with input p. In this case, the
specifying function corresponds to a Turing machine and p can be interpreted as a
program.

We introduce a bijective recursive function 〈., .〉 : N×N → N, called pairing
function. The existence of such a mapping can be shown, for instance using the
coding x̄ of a string x defined by

x̄ = 11 . . . 1︸ ︷︷ ︸
l(x) times

0x

which corresponds to the concatenation of a ’1’ repeated l(x) times, a ’0’ and finally
the string x. The mapping is then defined by 〈x, y〉 = x̄y. This pairing will be called
standard pairing. It is one among all possible pairing functions, and in particular it
is not optimal (in terms of the length of produced outputs).

Based on these notions, we introduce the plain complexity:

Definition 6. Let x, y, p be natural numbers. For any partial recursive function φ, we define
the complexity Cφ of x conditional to y as:

Cφ(x|y) = min{l(p) : φ(〈y, p〉) = x} (5.1)

and Cφ(x|y) = ∞ if there is no such p. When y = ε (empty input), we simply note
unconditional complexity by Cφ(x).

This definition of complexity is the most intuitive but has several limitations
that encourages to consider slight modifications. One of the major drawbacks of
plain complexity is its non-subadditivity: Given x and y and the standard bijec-
tion 〈., .〉, the joint complexity C(x, y) = C(〈x, y〉) does not satisfy the intuitive prop-
erty C(x, y) ≤ C(x) + C(y) +O(1). The problem is that the joint complexity desig-
nates the length of the shortest machine that computes x and y, as well as a way to
tell them apart. It can be shown that:

C(x, y) ≤ C(x) + C(y) + 2 log(min(C(x), C(y))) (5.2)

An alternative to this problem (and others that are not discussed here) is the use
of prefix complexity, denoted K(.). Prefix complexity is defined as a restriction of plain
complexity to partial recursive prefix functions:

Definition 7. A partial recursive prefix function φ : {0, 1}∗ → N is a partial recursive
function such that if φ(p) < ∞ and φ(q) < ∞, then p is not a proper prefix of q.

If φ is a partial recursive prefix function, the quantity Cφ is denoted by Kφ and is
called prefix complexity. An alternative definition is often used in practice. Consider
a Turing machine made up of three separate tapes such that:

1. The first tape (called input tape) is one-way infinite and one-directional (writing
is possible only from the left to the right).

2. The second tape (called work tape) is two-ways infinite and two-directional .

3. The third tape (called output tape) is one-way infinite and one-directional.

Initially, both work and output tapes are empty, and the input tape contains the in-
put sequence. The output corresponds to the content of the output tape when the
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Plain complexity C Prefix complexity K
C(x|y) ≤ K(x|y) ≤ C(x|y) + 2 log C(x|y)

C(x) ≤ |x|+O(1) K(x) ≤ |x|+O(K(|x|))
C(x, y) ≤ C(x) + C(y) + 2 log(min(C(x), C(y))) K(x, y) ≤ K(x) + K(y) +O(1)

C(x|y) ≤ C(x) +O(1) K(x|y) ≤ K(x) +O(1)
C(x|y, z) ≤ C(x|y) +O(1) K(x|y, z) ≤ K(x|y) +O(1)

C(x|x, z) = O(1) K(x|x, z) = O(1)

TABLE 5.1: Comparison of plain and prefix complexities.

machine halts. When the input tape contains only 0’s and 1’s (no blank), the ma-
chine is called self-delimiting. It can be shown every partial recursive prefix function
is computed by a self-delimiting machine, and that every self-delimiting machine
computes a partial-recursive function.

The self-delimited nature of programs used by prefix complexity simplifies the
concatenation, since the delimitation between the two descriptions at play is self-
contained in the code and does not require to be marked explicitly. Thus, sub-
additivity is a direct property of prefix complexity:

K(x, y) = K(〈x, y〉) = K(x) + K(y) +O(1) (5.3)

A comparison of some useful properties of plain and prefix complexities is given
in Table 5.1.

A major drawback of complexity is its non-computability (which holds for both
plain and prefix complexities). The non-computability of complexity is a direct con-
sequence of the non-decidability of the halting problem: in order to compute com-
plexity, it is needed that all programs are tested on the reference UTM. However, it
is known that some of them do not halt and that it cannot be known if a program
will halt or not. Non-computability of complexity is obviously a major drawback. In
practical applications, such as the MML principle exposed in Chapter 2, a restricted
set of machines is considered. This restriction, in the context of induction, corre-
sponds intuitively to the choice of an inductive bias, but it makes the invariance
theorem unsatisfied1.

5.2.2 A Key Property: The Chain Rule

The chain rule is a basic property of prefix complexity which states, in short, that
K(x) ≤ K(y)+K(x|y). The intuition behind this property is that, in order to generate
string x, a string y can be generated (term K(y)) and used to describe x (term K(x|y)).

In the case of prefix complexity, the chain rule expresses as follows:

K(x) ≤ K(x, y) +O(1) ≤ K(y) + K(x|y) +O(1) (5.4)

In this equation, the constants O(1) does not depend on variable x but only on the
choice of the machine. Moreover, we notice that the status of the variables x and y
is not the same. Variable x is defined as the output that has to be described: It is
observed and its complexity has to be estimated. On the contrary, string y is used
as an intermediate object that is not considered prior to the description of x. In

1The invariance theorem (Theorem 2.1.1 in (Li and Vitányi, 2008)) states that there exists a reference
UTM for which the complexity is equal to the complexity of any other UTM up to a constant that
depends on the machine only.
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the following, such variables will be referred to as latent variables, as in probabilistic
models.

Chain rule can be seen as a major simplification for data compression. The use
of an intermediate machine to describe chain x (ie. the machine that computes y
first) is the key step in the process: In some cases, generating y has a lower cost than
describing x by itself. In the description of x, latent variable y plays the role of a
parameter that can be estimated. Inequality 5.4 holds for all y, thus, in particular, it
holds for the value of y which minimizes the right-hand size.

In the following, we will use a graphical representation for chain rule: We use a
directed graph, the nodes of which correspond to the variables x and y and the edge
directed from node y to x displays the orientation of the description (x is described
with the help of y, and not the converse). This graph is represented in Figure 5.1. In
this representation, the gray node means that the variable is an observation and the
white node stands for latent variables.

y x

FIGURE 5.1: Graphical representation of chain rule

The graphical representation of Figure 5.1 corresponds to the description of a
set of Turing machines (or equivalently a class of partial recursive functions): All
machines in this set are the composition of a first machine that computes y and of
a second machine that takes y as input and computes x. This set is parametric and
is associated to a global description length K(y) + K(x|y). Descriptive Graphical Models
are a generalization of this class with more complex generative processes.

5.2.3 Defining Graphical Models

A directed graph G is defined as a pair (V, E) where V is a set of elements (called
vertices, or nodes) and E ⊆ V2 is a set of ordered pairs of vertices (called edges).
A directed graph is called acyclic if there is no path of length l ≥ 1 in the set of
edges that link a vertex to itself. Directed acyclic graphs (DAG) are used to define
Descriptive Graphical Models.

Definition 8. Consider (x1, . . . , xn) an ordered set of n variables. Let G = (V, E) be a
directed acyclic graph such that there exists a one-to-one mapping between V and the set of
variables. We build a set TG of Turing machines by composition of sub-machines as follows:
Each node is built by a submachine that takes the parent nodes as input. We call TG the
descriptive graphical model associated to G.

In this definition, a machine in TG is made up of intermediate sub-machines that
compute intermediate values that are taken as input by the others. A descriptive
graphical model TG is associated to a quantity called program length and denoted
by l(TG) (or l(G)) defined by:

l(TG) =
n

∑
i=1

K(xi|xπi) (5.5)

where πi designates the list of parents of node xi (if πi is empty, we define K(xi|xπi)
as being equal to K(xi)). From this definition, and using the chain rule, it follows
that the program length is an upper-bound of the complexity of observed values for
the variables.
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Proposition 2. Consider a DAG G = (V, E). If V ′ ⊆ V is a subset of vertices and xV′

designates the self-delimited list of xi with i ∈ V ′, then K(xV′) ≤ l(TG) +O(1).

In the following, we will use the notations introduced for the chain rule: In the
graphical representation, observed variables are displayed with gray nodes and la-
tent variables are displayed with white nodes. Besides, we use the plate notation for
the factorization of representations (see Figure 5.2).

x

N

⇔ x1 ... xN

FIGURE 5.2: Plate representation.

5.2.4 Machine Restriction

As mentioned in the presentation of complexity, the function K(.) is not computable
and descriptive graphical models offer a valid upper-bound for complexity. A DGM
corresponds to a valid description of the observations and its description length is
necessarily greater than the length of the shortest description program.

Instead of considering an upper-bound for complexity, we propose to define a
restricted universal Turing machine that can emulate only a subset of the complete
set of Turing machines. In particular, in the context of this chapter, we denote φG the
partial recursive prefix function that emulates all Turing machines in TG .

In case the complexities K(xi|xπi) are defined in a simple way (eg. parametric),
a procedure can exist to find the machine with the lowest description length and
the function KφG (.) can be computable. We insist on the fact that the machine φG is
not universal and that the complexity obtained by this mean is only a computable
approximation. In the following, we will refer to this reference machine when con-
sidering complexity.

Note however that the choice of a restricted (non universal) Turing machine for
the reference of complexity weakens the theory of Kolmogorov complexity, in par-
ticular by making the invariance theorem wrong. This theorem states the existence
of an additively optimal universal Turing machine, hence a UTM φ0 such that for
all x and all UTM φ, the complexity Kφ0(x) ≤ Kφ + cφ where cφ is a constant that
depends only on machine φ. Even if having the invariance theorem not valid makes
complexity a weaker theoretical tool, the choice of a restriction is required to get
a computable variant. Notice that we will not need the invariance theorem in the
remainder of this thesis.

5.2.5 Discussion: DGM and PGM

The definition of DGM is very close to the definition of another class of machine
Turing models, the Probabilistic Graphical Models (PGM) (Sucar, 2015). Probabilistic
graphical models offer a compact representation of probability distributions by tak-
ing advantage of probability theory and graph theory.

In PGM, a directed edge is interpreted as an application of Bayes rule and rep-
resents conditional probability. While in DGM a graph is associated to a description
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length score, the graph used in PGM defines a likelihood function:

log p(x1, . . . , xn) =
n

∑
i=1

log p(xi|xπi) (5.6)

which is highly similar to the function defined in Equation 5.5.
The analogy between DGM and PGM is not a simple coincidence. Intuitively, a

descriptive graphical model can be seen as the description of a process generating
strings. A priori, this process is thought to be deterministic, but a random procedure
can also be considered, in which case the relative complexities correspond to the
description of “randomness” (more formally, a description of the probability distri-
bution).

More formally, an explicit link exists between complexity and probabilities. If µ is
an upper semi-computable2 probability distribution, then K(x) ≤ K(µ)− log µ(x).
This observation implies that probabilistic graphical models are a particular case
of descriptive graphical models, where the data generating machine is based on a
probability distribution.

The proximity between these two representations are an invitation to reuse the
properties of PGM and interpret them in terms of DGM.

5.2.6 Algorithmic independence

A major interest of Probabilistic Graphical Models is the use of graph theory to get
probabilistic properties of random variables, especially regarding independence. In
probability theory, two variables are independent if their joint distribution can be
factorized as the product of their probability: log p(A, B) = log p(A) + log p(B). An
equivalent definition is proposed for algorithmic independence, ie. independence of
variables in terms of their complexity.

Definition 9. Variables x1, . . . , xN are said to be algorithmically independent if

K(x1, . . . , xN) =
N

∑
i=1

K(xi) +O(1) (5.7)

In the same way, variables x1, . . . , xN are said to be algorithmically independent condition-
ally to variable y if

K(x1, . . . , xN |y) =
N

∑
i=1

K(xi|y) +O(1) (5.8)

This definition means that the value of one of the variables xi cannot be used
(neither entirely nor partially) for the generation of another variable.

Results on independence of random variables in PGMs are now well-known.
Despite an apparent relatedness, these results cannot be directly adapted. As an
illustration, we consider the following graph as a case study (Figure 5.3):

x y z

FIGURE 5.3: Elementary graphical model G1 for independence.

2A partial function f : N → R is upper semi-computable if there exists a computable function
g : N×N→N such that limk→∞ g(x, k) = f (x) and for all x, kN2, φ(x, k + 1) ≤ φ(x, k).
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In this graphical model, we have conditional independence of Z from X given Y
in the probabilistic setting. Do we also have algorithmic independence in the cor-
responding DGM? The justification for the probabilistic independence is based on
Bayes rule which implies that p(X, Z|Y) = p(X, Y, Z)/p(Y) = p(X|Y)p(Z|Y). The
same equality does not hold in terms of complexity for a general universal partial
recursive prefix function φ (which is not the restriction to the graphical model) since
the chain rule states that:

K(X, Z|Y) ≥ K(X, Y, Z)− K(Y)−O(1) (5.9)

In this case, we cannot use the property K(X, Y, Z) ≤ K(X) + K(Y|X) + K(Z|Y) +
O(1) since we are considering a lower-bound.

With the universal partial recursive prefix function φG relative to descriptive
model TG , the inequality can be simplified since K(X, Y, Z) = K(X) + K(Y|X) +
K(Z|Y) and K(X, Y) = K(X) + K(Y|X). It comes that K(X, Z|Y) ≥ K(X|Y) +
K(Z|Y) − O(1). On the other hand, it can be shown that K(X, Z|Y) ≤ K(X|Y) +
K(Z|Y) +O(1). Thus, |K(X|Y) + K(Z|Y) − K(X, Z|Y)| ≤ O(1), which proves the
conditional independence.

x

y

z

Graph G2

x

y

z

Graph G3

FIGURE 5.4: Two elementary graphical models for independence.

Two other canonical graphs are exposed in Figure 5.4. Such as in the theory
of probabilistic graphical models, it can be shown that, in graph G2, X and Y are
independent conditionally to Y, and in graph G3, X and Z are independent.

Based on these three paradigmatic graphs, relations of algorithmic independence
in any graph can be found. Using the results found for the three canonical graphs,
it is possible to show that, given a graph, Bayes-ball algorithm (Shachter, 1998) can
exhibit the whole list of conditional independence. Other results similar to the ones
of PGM can also be stated: d-separation and Hammersley Clifford theorem (Besag,
1974). This theorem states the equivalence between the class TG and the class of
descriptive models satisfying the same conditional independence properties.

5.2.7 Inference

Until now, we have considered that the graph G was given and the described prop-
erties were relative to the fixed graph. It has been shown that a graph is associated
to a class of Turing machines TG . The question we investigate in this section regards
the choice of a specific machineM ∈ TG .

Suppose first that all variables in the graph are observed (no latent variable).
The purpose is then to evaluate which partial recursive prefix functions correspond
to each of the edges in order to provide the best description.

In probabilistic terms, the notion of good description is directly given by the like-
lihood function which measures the probability of observing the variables given the
model. In our case, we state that a good quality description corresponds to a min-
imum complexity description. This assumption is called minimum description length
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principle (Rissanen, 1978) and corresponds to a formalization of Ockham’s razor prin-
ciple. As exposed in Chapter 2, this principle is used, in its strictest form, to choose
a class of models but not to select one model in particular inside this class. A weaker
form, called crude MDL and refined in the idea of the minimum message length (MML)
principle (Wallace and Boulton, 1968) offers a way to assess the model directly. In the
context of this thesis, we will use either the terms (crude) MDL or MML to refer to
this principle.

In a parametric case, we consider that the machine producing variable xi is pa-
rametered by θi and is denoted φθi . In this case, the inference algorithm is given
by:

θ∗1 , . . . , θ∗n = arg min
θ1,...,θn

n

∑
i=1

Kφθi
(xi|xπi) (5.10)

Practical algorithms to effectively solve minimization problem 5.10 depend on the
nature of parameters θi. The techniques are the same as the likelihood maximization
algorithms for completely observed directed probabilistic graphical models.

When latent variables are present in the graph, Equation 5.10 has to be slightly
adapted in order to include the minimization over the latent variables. In a way,
latent variables can be interpreted as parameters here. For instance, consider the
simple graph of Figure 5.1. This graph can be seen as follows: There exists a partial
recursive function φ such that φθ1() = y and a partial recursive function ψ such
that ψθ2(y) = x. It is clear that there also exists a partial recursive prefix function Ψ
such that Ψθ2,y() = x. Hence, unlike in PGMs, adding latent variables does not
modify the way the optimization is performed.

5.3 Minimum Complexity Analogies

In this section, we propose a description of analogies in terms of DGMs. We propose
in particular an application to the question of syntactic priming.

5.3.1 A Graphical Model for Analogical Reasoning

Among all methods proposed to solve analogies, one is very similar to the idea pro-
posed in Chapter 4: Using Minimum Description Length (MDL) principle to solve
analogical equations. This idea, proposed by (Cornuéjols and Ales-Bianchetti, 1998),
is inspired by a comparison of inductive reasoning (in particular with the Empir-
ical Risk Minimization principle, which will be discussed later) and aims to take
the specificity of analogy into account. Compared to inductive reasoning, analogies
involve one element only from both source and target domains and do not try to
perform generalization. Besides the analogical process focuses on the transfer from
the source domain to the target domain, and how to apply this transfer to one ob-
servation in particular. Based on these observations, the authors propose the use of
DGM presented in Figure 5.5.

The model is associated to its description length expressed as follows:

K(MS) + K(XS|MS) + K(YS|XS, MS) + K(MT|MS) + K(XT|MT) + K(YT|XT, MT)
(5.11)

The strength of the model is its use of a model as an intermediate object to operate
the transfer, rather than transferring the objects’ properties directly. It is assumed
that these models encode the definition of the domains and are used to describe the
objects in a more concise way. Such as suggested in Section 5.1.2, a model is used
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xS

MS

yS

MT

xT

yT

FIGURE 5.5: Model-based DGM for analogical reasoning as sug-
gested by (Cornuéjols and Ales-Bianchetti, 1998).

as a memory factorization tool. Following this observation, we will show that a link
exists between our description language and the DGM presented in Figure 5.5.

We consider the analogical equation ABC:ABD::IJK:x on Hofstadter’s domain.
This equation is a very particular case, since source and target domains are equal.
We have proposed the following description as an optimal representation of this
analogy:

let(alphabet, shift, ? sequence, 3), // Structure definition

let(mem,, ?, next_block, mem,, ?, last, increment), // Rule

mem,,, next_block, mem,, 8;

that we decomposed into three steps: Structure definition, rule definition and gener-
ation of the analogy. The description length for the global procedure is equal to the
sum of the description lengths for each of the three steps.

Step 1 and step 2 provide a definition for the objects in the domain. This defini-
tion is incomplete (a parameter has to be given) and stored in memory. Structure def-
inition describes the first term in the analogy (term A in the formulation A:B::C:D).
This structure is stored in memory. It is used to alleviate the description of the asso-
ciation A:B: Once instantiated in memory, this source description can be used at any
place of the code with lower complexity. Rule definition (step 2) corresponds to the
association rule inside a domain (A:B and C:D). The procedure stored in memory
in these two steps can be identified to the model M. Their description length is then
given by DL1 + DL2 = K(M) +O(1).

In terms of models, two solutions can be identified:

1. The structure described by steps 1 and 2 is considered as a single model. As
such, the source and target models are identical and K(MT|MS) = 0. In this
case, terms mem,, and mem,,8 in step 3 are considered to correspond to the con-
struction of observations from the model and DL3 = K(X|M) + K(Y|M, X),
where the variables X, Y and M designate either their source or target equiva-
lents.

2. The structure described by steps 1 and 2 is considered to be a meta-model. In
this case, terms mem,, and mem,,8 correspond to instantiations of the meta-
model and thus DL3 = K(MS) + K(MT) and data description is direct from
the model: K(X|M) + K(Y|M, X) = 0.

Based on any of these two solutions, it appears that the proposed code is equiv-
alent to the description of the proposed DGM.
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5.3.2 Application: Priming Effect

Syntactic priming is a well-known linguistic behaviour happening when a speaker’s
syntactic understanding is altered by the prior exposition to a similar structure. As
exposed in Section 3.1.2, it has been shown by linguists that this alteration can be
observed when the speaker is exposed to the same structure in the same language,
in different languages, but also in other domains (for instance music or maths).

This priming effect can be naturally interpreted as a minimum complexity anal-
ogy, and especially using the suggested DGM.

Consider the example of syntactic priming from the mathematical domain to the
language domain (Scheepers, Sturt, Martin, Myachykov, Teevan, and Viskupova,
2011). An example of such a problem is given in Figure 5.6. The problem is the
following. The target problem is a sentence the meaning of which is ambiguous: “I
visited a friend of a colleague who lived in Spain". Two structures can be found for
this sentence: The relative clause “who lived in Spain" can be attached either to “a
friend" (high attachment) or to “a colleague" (low attachment). The source problem is a
mathematical operation, with elementary algebraic operations (additions, substrac-
tion and multiplications). Due to the distributive properties of these operations, a
simple calculus can be interpreted in the form of a tree. Each node is associated to
an operation to be applied on the children nodes. Two operations are detailed in the
figure.

A proximity can be found between the source and target problems, which cor-
responds to the tree representation of the instances. Research in syntactic priming
has noticed that a priming is observed in favor of the target having the same tree
structure as the source. This observation can be interpreted in terms of analogical
reasoning.

Consider the suggested DGM for analogy. We take as a model the tree structure.
In the source domain, the construction of the data XS (hence the mathematical op-
eration) is obtained by completing the tree, and the output YS, which is the result of
the operation, is given by simply applying the operations in the order given by the
tree. It comes that the complexity K(XS|MS) is related to the number of leaves in the
tree MS and the complexity of the numbers involved in the formula.

From the point of view of MDL principle, the model MT must be easily described
by source model MS but also fit well to the target data XT, hence the sentence. As
seen in Figure 5.6, two trees (hence two models) can explain the sentence equally
well, one of them being identical to the source tree. This model is then naturally
chosen in a MDL setting, since it leads to the best compression of the description for
both source and target data.

This short analysis of a complex problem has to be seen as an illustrative exam-
ple of the proposed DGM for analogical reasoning. However, it cannot be seen as
a cognitively sound analysis of the phenomenon of syntactic priming. Our model
is overly simplified since syntactic priming is quite different from analogy. Syntac-
tic priming cannot be considered as the resolution of a problem, unlike analogy as
presented here.

5.4 Conclusion

In this chapter, we formalized the idea of minimum description length analogies
that was introduced for Hofstadter’s micro-world. We explained that analogy is re-
lated to a notion of compression and that compression is measured by a theoretical
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(A) Non-ambiguous mathematical structures. The
properties of algebraic operators impose a hierar-

chical structure to the computation.

(B) Ambiguous sentence structure. Two hierarchical structures can be
chosen: high-attachment interpretation (on the left) or low-attachment

interpretation (on the right).

FIGURE 5.6: Ambiguous and non-ambiguous structures in a math-
ematical source domain and a language target domain. This fig-
ure is taken from (Scheepers, Sturt, Martin, Myachykov, Teevan, and

Viskupova, 2011).

tool called Kolmogorov complexity. Complexity measures the length of the short-
est program on a Turing machine that can generate an object. Based on this notion
and inspired by probabilistic graphical models, we introduced Descriptive Graph-
ical Models (DGM), which can define a general class of Turing machines. We ana-
lyzed, in terms of DGM, the model for analogy firstly presented by (Cornuéjols and
Ales-Bianchetti, 1998).

In the next chapter, we will consider analogies in geometrical domains. We will
explain that minimum complexity analogies require using simple transformations in
these domains. When the ambient space is a vector space, the simplest operations are
given by additions and substractions, which are naturally defined in the structure of
the space. However, we will show that the results obtained in Riemannian manifolds
are not that simple and, in particular, are in conflict with the axioms of proportional
analogy.
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Chapter 6

Geometrical analogies

In previous chapters, we proposed a general model for analogies with the mini-
mum description length principle. The chosen model, inspired by previous works
and consistent with the language introduced in Chapter 4, consists in separating the
domain description phase and the inter-domain transfer. The transfer is operated
through objects called models, the role of which is to store the domain knowledge.

In this chapter, we propose to explore the domain of analogies defined on geo-
metric structures such as vector spaces or manifolds. This problem has already been
investigated in vector spaces, in particular regarding the theory of analogical propor-
tion. The well-known parallelogram rule states that an analogy can be represented
as a parallelogram in the concept space and has been used since the first researches
in the domain of analogical reasoning (Rumelhart and Abrahamson, 1973). This rule
is particularly simple and satisfies the axioms of analogical proportion. We will give
a general expression for it and will think of it in geometrical terms. In particular, we
will address the question of what happens when the concept space is curved.

The chapter will be organised as follows: In Section 6.1, we will propose an indi-
rect approach to describe geometrical analogies, inspired by MML principle and we
will present parallelogram rule as an application of our approach. In Section 6.2, we
will investigate the natural method induced for non-Euclidean spaces and will dis-
cuss some interesting properties of such analogies. Lastly, in Section 6.3, we present
an application to analogies in Fisher manifolds and discuss a potential application
to curved shape spaces.

6.1 Building Analogies in Concept Spaces

In this section, we propose an interpretation of the DGM introduced in Section 5.3.1
for analogies when the four terms are elements of a same space S .

6.1.1 Interpretation of the Parallelogram Rule

Consider an analogy A : B :: C : D where all elements A, B, C, D ∈ S are elements
of a vector space S . Among all possible relations R on S4, one of the simplest one is
the parallelogram rule, which has been exposed in Section 3.3.1 and represented in
Figure 6.1.

How can parallelogram rule be expressed algorithmically? It is clear that a par-
allelogram can be built given three vectors: the initial position A, the first edge u
and the second edge v (it follows that B = A + u, C = A + v and D = A + u + v).
This representation is the most economic representation in terms of number of pa-
rameters (no description can be given with 2 parameters or less). In terms of the
analogical DGM presented in Section 5.3.1, this description can be expressed as fol-
lows:



64 Chapter 6. Geometrical analogies

A

B

D

C

FIGURE 6.1: Illustration of the parallelogram rule on S = R2.

• Source model: MS = (u, A), hence K(MS) ≤ K(u) + K(A) +O(1)

• Source question: XS = A, hence K(XS|MS) = O(1)

• Source solution: YS = A + u, hence K(YS|MS, XS) ≤ K(+) +O(1)

• Model transfer: MT = (u, A + v), hence K(MT|MS) ≤ K(v) + K(+) +O(1)

• Target question: XT = A + u, hence K(XT|MT) = O(1)

• Target solution: YT = A + u + v, hence K(YT|MT, XT) ≤ K(+) +O(1)

In this description, the complexity of the addition operator K(+) is a constant (de-
pending on the machine but not on data), but we isolated this term on purpose. We
point out the idea that addition is an operation arbitrarily chosen in this context, but
could be replaced by any other operation. Moreover, it appears that we consider two
additions of different nature in the process of drawing the parallelogram: The first
addition is intra-domain and is involved in the construction of the solution Y based
on the question X and the model M, while the second addition is cross-domain and
is used to describe target domain from source domain. In a general context, we will
call these operations transport functions.

Among all possible transport functions, the choice of the addition operation in
vector spaces is motivated by the simplicity of this choice. Addition is the only self-
defined operation in a vector space, which makes a perfectly valid candidate to be
the minimum complexity transport operator.

6.1.2 General Construction of a Parallelogram

Consider now a general space S . We propose a generalization of the parallelogram
method exposed above for vector spaces.

To do so, we consider first the complexity term K(MT|MS). We recall that, in
DGMs, this term measures the description length of a machine taking MS as input
and returning MT as output. This machine is associated to a partial recursive prefix
function φ. With this function φ we have:

K(MT|MS) = Kφ(MT|MS) = min {l(p)|φ (〈MS, p〉) = MT} (6.1)

with the same notations as introduced in Chapter 5. The question now is how to
evaluate this complexity, and in particular, how to choose a restricted universal par-
tial recursive function which makes this term computable and intuitive.
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In the discussed case of a vector space, we defined the description model as the
delimited concatenation of the initial position and the direction: M = 〈P, u〉 (where
P ∈ S is a point in the vector space). Based on this choice, we proposed to consider
that transfer function φ is defined by:

φ (〈〈u, P〉, v〉) = 〈u, P + v〉 (6.2)

where the programs p are indexed by the description of vector v. When the input
of φ does not fit the proposed format, the machine does not halt. With this definition,
we get the complexity term K(MT|MS) = K(v) + K(+) defined previously.

In practice, one might wish to consider other operators than the addition, in
which case the new position can be defined by a function ω(P, u, π) where 〈P, u〉 =
M and π is a parameter. The transfer function is then defined by:

φ (〈〈u, P〉, 〈ω, π〉〉) = 〈u, ω(P, u, π)〉 (6.3)

which induces a complexity of the form K(MT|MS) = K(ω) + K(π). This definition
of φ is particularly inspired by the parallelogram rule and has a major drawback:
It implies that the “direction” (parameter v) is not modified in the transfer process,
which is not realistic from a more general point of view. Thus, we propose a more
general definition which will be considered in the remainder of this chapter:

φ (〈〈u, P〉, 〈〈ω1, π1〉, 〈ω2, π2〉〉〉) = 〈ω1(P, u, π1), ω2(P, u, π2)〉 (6.4)

with corresponding complexity K(MT|MS) = K(ω1) + K(π1) + K(ω2) + K(π2). We
recall that ω1 is a transformation operator parameterized by π1 which depicts the
transformation of the problem into a solution. Similarly, ω2 is a transformation op-
erator parameterized by π2 which depicts the transformation of one problem into
another problem.

The choice of the operators ω1 and ω2 depends on the nature of the problem
and, in particular on the space of interest. As pointed out, addition is the only nat-
ural basic operation of a vector space, which explains that parallelogram rule is the
first model appearing in the case of analogies in a vector space. The purpose of
this chapter is to investigate a natural transformation in spaces of different nature:
Riemannian manifolds.

Before pursuing to these considerations, we would like to make two fundamental
remarks on the presented methodology.

The first remark regards the choice of the operators. We claimed that the op-
erators have to be chosen with respect to the nature of the space S and that the
most simple operator defined on S is the optimal operator. This assumption is not
completely accurate: In fact, there is not one single possible operator per space, but
a large set of possible operators. Changing from one space to another requires to
adapt the definition of Ω, the enumeration of possible operators. For simplicity
purposes, we only consider the most straightforward solution here, since other op-
erators might require very large description complexity while elementary operators
are naturally given by the structure of the considered space.

Secondly, we would like to point out that, given the partial recursive function φ
as defined in Equation 6.4, knowing space S becomes optional. We do not use the
space directly, but a way to generate elements in it on the fly through operators ω1
and ω2. This property is interesting since it allows one to consider analogies in
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spaces that can be built in a procedural way and do not need any extensional defini-
tion (hence a definition of all of its elements).

6.2 Non-Euclidean Analogies

In this section, we propose to study natural transfer operators ω1 and ω2 when the
space of interest is a Riemannian manifold. We first present an intuition with the
trivial example of analogies on the sphere, then we present a short reminder of dif-
ferential geometry that are necessary before presenting the method itself. Finally,
we discuss the possibility to define proportional analogies on a differential mani-
fold. Since the space S is a manifold in this section, we will use the notationM to
designate it.

6.2.1 Intuition: Analogies on the Sphere

In order to understand the ideas at play, we propose to consider the example of
analogies on a sphere. We denote by S2 the sphere defined as the subset of R3 defined
as S2 = {x|x2

1 + x2
2 + x2

3 = 1}. The sphere can be shown to be a differential manifold,
and is obviously not Euclidean.

We consider three points A, B and C on the sphere and we try to solve the ana-
logical equation A : B :: C : x. In the context of this example, we will consider three
specific points, but the conclusions we will draw would be the same for any 3 points
which are “not aligned” (in the sense that the third point is not on the shortest path
between the two others).

In order to solve this analogy, an intuitive idea would be to apply the same proce-
dure as described by the parallelogram rule. Imagine first that the three points A, B
and C are very close. On Earth, it is possible to use the parallelogram rule directly
on a small scale: Since Earth is locally flat, we can consider the floor as a vector
space and apply a parallelogram rule by walking from A to C by keeping in mind
the direction to go to B from A.

The same procedure can be used when the three points are very distant. In math-
ematical terms, we can formulate this procedure as a three steps method:

1. Direction finding: Estimation of the direction d to reach B from A following a
geodesic (ie. a path of minimal length).

2. Parallel transport: The direction vector is transported along the geodesic from
A to C.

3. Geodesic shooting: Point D is reached by following the transported direction
d′ from point C.

We consider for instance the case where B correspond to the North pole and A
and C are located on the equator. For simplicity purposes, we also suppose that the
angle between the locations of A and C in the equator plane is π/2. The solution to
this analogy using the proposed method is shown in Figure 6.2.

The steps can be intuitively explained as follows. The first step consists in find-
ing the shortest path from A to B: this path is characterized by the initial direction,
which is mathematically encoded by a vector in the tangent space. The second step
is of a different nature: The idea is to go along the shortest path from A to C while
maintaining the initial direction vector “in the same direction” (the exact mathemat-
ical terminology will be precised in the next section). As an illustration of this, the
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(A) Step 1: Direction finding.

(B) Step 2: Parallel transport.

(C) Step 3: Geodesic shooting.

FIGURE 6.2: Step by step resolution of the analogical equation A : B ::
C : x on the sphere S2. The solution found is x = B.
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second step can be seen as walking from A to C while maintaining one’s nose “par-
allel" from one position to the other. The shortest path from A to C in our example
is the equator and the initial direction is the vector pointing toward the North pole:
Hence, step 2 is similar to walking from A to C along the equator with the nose
pointing toward the North pole at any time. The third step consists in following the
transported initial direction the same way as done to join B from A in step 1.

Using this procedure, the solution of the analogical equation A : B :: C : x is
x = B. With the same procedure applied to the analogical equation A : C :: B : x,
we obtain the solution x = C, which is in contradiction with the exchange of the
means property of analogical proportion. However, we can easily verify that the
other properties are verified:

• Symmetry of the ‘as’ relation: C : B :: A : B and B : C :: A : C

• Determinism: the solution of A : A :: B : x is x = B

In the following, we will call a Non-Euclidean Analogy an analogy which sat-
isfies the symmetry of the ‘as’ relation and the determinism property, but not nec-
essarily the exchange of the means. An analogical proportion is a more constrained
case of a non-Euclidean analogy.

6.2.2 Non-Euclidean Analogies

Following the ideas developed in Section 6.2.1, we propose the following definition
for a non-Euclidean analogical proportion:

Definition 10. A non-Euclidean analogy on a set X is a relation on X4 such that, for every
4-uple (A, B, C, D) ∈ X4, the following properties are observed:

• Symmetry of the ‘as’ relation: R(A, B, C, D)⇔ R(C, D, A, B)

• Determinism: R(A, B, A, x)⇒ x = B

The second axiom (determinism) is slightly different from the original analogical
proportion. For analogical proportions, two possible implications could be used to
characterize determinism, the second characterization being the implication

R(A, A, B, x)⇒ x = B

One being true, the other is a consequence of the first one. In non-Euclidean analogy,
these two implications are not equivalent anymore.

Removing the exchange of the means from the definition of an analogy actually
makes sense. The symmetry of the means operates in the cross-domain dimension of
the analogy: Keeping this observation in mind, the symmetry of the means seems to
be a natural property. In practice, it can be observed that the property is perceived as
less natural in many examples. Consider for instance the well-known analogy “The
sun is to the planets as the nucleus is to the electrons”. The symmetrized version of
this analogy is “The sun is to the nucleus as the planets are to the electrons”, which
is less understandable than the original analogy.

Moreover, many examples of common analogies can be found that do not satisfy
this property. For instance, the analogy “Cuba is to the USA as North Korea is to
China”, which is based on a comparison of politics and geographic proximity, while
the symmetrized analogy “Cuba is to North Korea as the USA are to China” does
not make sense. In this example, the status of the terms is different: In one direction,
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FIGURE 6.3: Illustration of parallel transport on a differential mani-
fold. Vector ξ is transported along a curve γ. At any position t, we

have Pγ
0,tξ ∈ Tγ(t)M.

the analogy is based on a political comparison, while in the other direction it is based
on a large-scale geographical comparison. The nature of these two domains is not
the same and does not have the same weight in the analogy. This intuition of a
directional weighting is coherent with the model of non-Euclidean manifolds.

6.2.3 Reminder: Riemannian Geometry

In order to understand our method, we have to introduce some standard definitions
of Riemannian geometry. The proposed definitions are not entirely detailed: we
refer interested readers to standard references (Boothby, 1986) for more details.

A topological manifold of dimension d is a connected paracompact Hausdorff space
for which every point has an open neighborhod U that is homeomorphic to an open
subset of Rd (such a homeomorphism is called a chart). A manifold is called differ-
entiable when the chart transitions are differentiable, which means that the mapping
from one chart representation to another is smooth.

A tangent vector ξx to a manifoldM at point x can be defined as the equivalence
class of differentiable curves γ such that γ(0) = x modulo a first-order contact con-
dition between curves. It can be interpreted as a “direction” from the point x (which
only makes sense whenM is a subset of a vector space). The set of all tangent vec-
tors to M at x is denoted TxM and called tangent space to M at x. The tangent
space can be shown to have a vector space structure. When the tangent spaces TxM
are equipped with an inner-product gx which varies smoothly from point to point,
M is called a Riemannian manifold.

We define a connection ∇ as a mapping C∞(TM)× C∞(TM) → C∞(TM) sat-
isfying three properties that are not detailed here: A connection can be seen as a
directional derivative of vector fields over the tangent space. A special connection,
called the Levi-Civita connection, is defined as an intrinsic property of the Riemannian
manifold which depends on its metric g only.

These tools are used to define two notions that are fundamental in our interpre-
tation of non-Euclidean analogies: parallel transport and geodesics. Let (M, g) be a
Riemannian manifold and let γ : [0, 1] → M be a smooth curve onM. The curve
γ is called a geodesic if ∇γ̇γ̇ = 0. This definition of a geodesic means that the ini-
tial direction remains auto-parallel when being transported all along the curve. This
notion can be shown to correspond to a minimum length curve between two points.
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FIGURE 6.4: Parallelogramoid procedure on a Riemannian manifold.

A vector field X along γ is said to be parallel if ∇γ̇X = 0. One can define the
parallel transport as the application Pγ

t0,t : Tγ(t0)M→ Tγ(t)M which maps any vector
of the tangent space ξ at point γ(t0) to the corresponding value at γ(t) for the parallel
vector field X such that X(γ(t0)) = ξ (figure 6.3).

It seems clear that the notions of geodesic and parallel transport are good candi-
dates for operators ω on a Riemannian manifold. This intuition is confirmed by the
toy example of the sphere S2 presented in section 6.2.1.

6.2.4 Non-Euclidean Analogies on Differential Manifolds

Using the notions introduced by differential geometry, we propose now to define
a geometric model transfer according to equation 6.4 by defining the models and
transfer operators:

• A model is given by a tuple M = 〈u, P〉 where P ∈ M is a point on the mani-
fold and u ∈ TPM is a tangent vector to the manifold at point P.

• We define ω1 as the parallel transport of vector u ∈ TPM along a geodesic
curve of length 1. A geodesic curve is entirely defined by an initial position and
an initial celerity vector: Consequently, operator ω1 is associated to a unique
parameter v ∈ TPM.

• We define ω2 as the exponential map at point P with tangent vector v, ie. the
parallel transport of a vector from point P along the geodesic drawn with ini-
tial direction v. Operator ω2 is associated to the same parameter v ∈ TPM as
operator ω1.

The transformation induced by these definitions of operators ω1 and ω2 will be
called the parallelogramoid algorithm. In the following, we present its formal defi-
nition and its properties.

Definition 11. The parallelogramoid algorithm Ap : M3 7→ M is defined as follows.
Consider (A, B, C) ∈ M3. Let γ1 : [0, 1] → M be a geodesic curve such that γ1(0) = A
and γ1(1) = B. Let ξ ∈ TAM such that ξ = γ̇1(0). Consider a geodesic curve γ2 : [0, 1]→
M such that γ2(0) = A and γ2(1) = C. Let γ3 be the geodesic defined by γ3(0) = C and
γ̇3(0) = Pγ2

0,1ξ. Then Ap(A, B, C) = γ3(1).



6.2. Non-Euclidean Analogies 71

Algorithm Ap corresponds to the procedure used in the case of a sphere. In
general, the described procedure is not unique: The unicity of tangent vector ξ is
not guaranteed. For instance, in the case of the sphere, if A and B correspond to the
North and South poles, there exists an infinite number of such vectors ξ.

Theorem 4. The relation R(A, B, C, D) ≡ (Ap(A, B, C) = D) defines a non-Euclidean
analogy onM.

Proof. We would like to show that C : D :: A : B (symmetry axiom) is correct with
our construction. We use the tilde notation to describe the curves for this analogy.
For instance, γ̃1 is the geodesic from C to D, hence γ̃1 = γ3. Similarly, γ̃2 = −γ2,
where −γ designates the “opposite curve” (ie. γ̃2(s) = γ(1 − s)). Since parallel
transport is invertible, ξ = Pγ̃2

0,1Pγ2
0,1ξ. Thus, γ̃3 is the geodesic curve such that γ̃3(0) =

A and ˙̃γ3(0) = ξ and consequently γ̃3(1) = B.

In general, the relation does not define a proportional analogy since symmetry
of the means does not hold: Ap(A, B, C) 6= Ap(A, C, B). We will show that we have
equality only for a specific metric, called Ricci-flat metric.

When M = Rn endowed with the canonical inner-product, the proposed con-
struction can be shown to be equivalent to the usual parallelogram rule, since a
geodesic is defined as a straight line and parallel transport over a straight line is a
simple translation of the original tangent vector. It can be shown that the converse
is almost true: The manifolds for which Ap designs an analogical proportion have
their Ricci curvature vanishing at any point.

Theorem 5. The only Riemannian metrics g such that the relation

R(A, B, C, D) ≡ (Ap(A, B, C) = D)

is an analogical proportion for any A, B and C are Ricci-flat.

Proof. In this demonstration, we will consider the equivalent problem where we are
given A ∈ M and ξ1, ξ2 ∈ TAM. With these notations, B = γ1(1) and C = γ2(1)
where γ1 is the geodesic drawn from A with initial vector ξ1 and γ2 is the geodesic
drawn from A with initial vector ξ2. Considering an infinitesimal parallelogramoid
as defined in Definition 1.1 of (Ollivier, 2011), where δ is the distance between A
and B, and ε the distance between A and C. Then the distance between C and D =
Ap(A, B, C) is equal to

d = δ

(
1− ε2

2
K(v, w) +O(ε3 + ε2δ)

)
where K(v, w) is the sectional curvature in directions (v, w). In the case of analogical
proportion, it can be verified that distance d must be equal to δ. Thus, we have
necessarily K(v, w) = 0 and, by construction of Ricci curvature Ric(v) as the average
value of K(v, w) when w runs over the unit sphere, we have the result.

Obviously, Euclidean spaces endowed with the canonical vector space are Ricci-
flat, but there exists other Ricci-flat spaces. A direct consequence of Theorem 5 is
that analogical proportions can be defined on some differential manifolds.
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6.2.5 Proportional Analogies on Manifolds

In previous sections, we have shown that the intuition of what an analogy can be
in a differential manifold leads to a less constrained definition of analogies than
the definition of proportional analogy. However, at this point of the chapter, the
existence of proportional analogies on a manifoldM remains an open question. The
purpose of this section is to discuss the construction of analogical proportions on a
manifold.

LetM be a differential manifold. Our purpose is to design an algorithm to build
analogical proportions. We define an algorithm as a function A :M3 7→ M.

Definition 12. An algorithm A : M3 7→ M is said to design an analogical proportion
onM if, for all (A, B, C) ∈ M3, the relation R(A, B, C, D) = (D = A(A, B, C)) satisfies
the axioms of analogical proportion.

Definition 12 can be seen as a reverse way to define solutions of analogical equa-
tions. If a relation R is an analogical proportion overM designed by algorithm A,
then x = A(a, b, c) is the unique solution of equation R(a, b, c, x) where x is the vari-
able.

The following proposition offers an alternative characterization of proportion-
designing algorithms based on global characteristics.

Proposition 3. Algorithm A designs an analogical proportion if and only if the following
three conditions hold true for any (A, B, C) ∈ M3:

1. A(A, B, A) = B or A(A, A, B) = B

2. A(A, B, C) = A(A, C, B)

3. B = A(C,A(A, B, C), A)

The set of such algorithms onM is denoted by AM.

Proof. The proof is a direct consequence of the axioms of analogical proportion.

In the case whereM is a vector space, it can be easily verified that the parallelo-
gram rule algorithm A(A, B, C) = C + B− A designs an analogical proportion.

However, it is not the only algorithm to satisfy this property. In Proposition 4,
we exhibit a parameterized class of analogical proportion designing algorithms.

Proposition 4. If M is a vector space and f : M 7→ M is a bijective mapping, then
algorithm A f defined by A f (A, B, C) = f−1( f (C) + f (B) − f (A)) designs analogical
proportion.

It can be noticed that, when f is linear, algorithmA f corresponds to the parallel-
ogram rule. For other values of f , algorithm A f can define proportions of another
nature. An interesting perspective would be to study if these non-trivial proportions
on a vector space can be related to analogical proportions on a manifold.

The result of Proposition 4 can be generalized in the case where two spaces are
available.

Proposition 5. Consider E and F two isomorphic sets with f : E → F a correspond-
ing isomorphism. If AF : F3 → F designs an analogical proportion on F then algo-
rithm AE : E3 → E defined by AE(a, b, c) = f−1 (AF( f (a), f (b), f (c))) designs an
analogical proportion on E.
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Using this result, it can be shown that locally defined analogical proportions on
a manifold can be related to analogical proportions on vector spaces.

Corollary 1. Consider a chart U ⊂ M isomorph to an open subset E ⊂ Rn. We call ψ the
isomorphism U → E. If a : E3 → E designs analogical proportion on E, then algorithm A :
U3 → U defined by A = ψ−1(a(ψ(A), ψ(B), ψ(C)) designs an analogical proportion
on U.

Without lack of generality, we can take E = Rn, in which case we know that AE
is non-empty. Indeed, if E is an open subset of Rn at point x, one can consider an
open disk D ⊂ E which is homeomorphic to a neighborhood of x. We notice that an
open disk on Rn is homeomorphic to Rn.

As a consequence, analogical proportions can be defined on manifolds that are
globally homeomorphic to Rn.

Consider for instance the sphere S2 minus a point N, arbitrarily chosen to be the
North pole of the sphere. This manifold can be shown to be homeomorphic to R2,
using for instance the stereographic projection. However, it comes from topological
properties that there exists no continuous bijective mapping between S2 and R2.

This property does not imply that no bijection can be drawn between S2 and R2:
Such bijections exist but cannot be continuous. Consequently, it is possible to de-
fine analogical proportions on a sphere. However, there is no direct way to define
continuous (and a fortiori smooth) bijections, hence to define analogical proportions
which fits the geometry of the manifold.

In general, the reasoning that was presented for the sphere can be extended to
any manifold, which proves the existence of valid analogical proportions on any
manifold.

Theorem 6. For any manifoldM, the set AM is non-empty.

Proof. Consider a finite atlas A = {(Uα, ψα)|α ∈ {1, . . . , m}}. Such an atlas exists for
m large enough. In this definition, Uα corresponds to a domain onM and ψα : Uα →
Bn(0, 1) is an homeomorphism from Uα onto the unitary ball Bn(0, 1) on Rn (where n
is the dimension ofM). If we denote Ek = {x ∈ Rn|2(k− 1) < x1 < 2(k + 1)}, one
can equivalently extend the mapping ψk to be homeomorphisms between Uk and Ek
(figure 6.5).

FIGURE 6.5: Construction of a bijective mapping between a mani-
fold M of dimension n and an open subset of Rn. For simplicity
purpose, the subsets Uk are presented as disjoint, which they are not.

We build a function ψ : M → ⋂m
k=1 Ek as follows: If x ∈ Uk\

⋂
i>k Ui, then

ψ(x) = ψk(x) + ek where ek is the vector with first component equal to 2k and
all other components equal to 0. This function defines a bijective mapping. Since
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⋂m
k=1 Ek is an open subset of Rn, there exists a bijection

⋂m
k=1 Ek → Rn. The theorem

follows from Proposition 5 and the fact that ARn 6= ∅.

Theorem 6 is fundamental since it states the existence of analogical proportions
on manifolds, which seems to invalidate the intuitions exposed with the parallelo-
grammoid method. However, the intuitive “validity” of the existing analogies (and
in particular of the analogies produced by the proof) is not clear since they appear
to be highly irregular since they are not continuous.

These observations point out a deficiency in the definition of analogical propor-
tion, which comes from its main applicative domains. The definitions of analogical
proportion were first designed for applications in character-string domains (Lepage,
2003) and were discussed for applications in other non-continuous domains (Mi-
clet, Bayoudh, and Delhay, 2008) such as analogies between finite sets. Among real
continuous applications (hence applications which do not involve a discretization
of the continuous space), most are based on parallelogram rule on a vector space.
When defining analogical proportions on continuous spaces, a continuity property
is also desirable, which is not induced by the definition of analogical proportion.
Intuitively, this property makes sense: If two analogical problems are close, it is ex-
pected that their solutions will be close as well.

The question of the existence of analogical proportion defining algorithms that
are also continuous (in the sense of a functionM3 →M) remains open at this step.
It is impossible to adapt the proof of Theorem 6 in order to make the mapping con-
tinuous. More generally, the result cannot be directly adapted from Proposition 5.
The main problem to overcome is the transition from one chart to another in the atlas
decomposition of the manifold (see Figure 6.6). The difficulty is to define the result
of R(A, B, C) when the three variables do not belong to the same chart.

FIGURE 6.6: Chart transition on a manifold.

6.3 Applications

In this section, we discuss applications of the parallelogrammoid procedure in the
case of pre-existing manifolds with well-known Riemannian structures.
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6.3.1 Non-Euclidean Analogies in Fisher Manifold

6.3.1.1 Fisher Manifold

By definition, a parametric family of probability distributions (pθ)θ has a natural
structure of a differential manifold and, in this context, is called statistical manifold.
Unless in general a manifold is not associated to a notion of distance or metric, in-
formation geometry states that there exists only one natural metric for statistical man-
ifolds (Cencov, 2000). This metric, called Fisher metric, is defined as follows (Fisher,
1925):

gab(θ) =
∫

p(x|θ)∂ log p(x|θ)
∂θa

∂ log p(x|θ)
∂θb dx (6.5)

It can be related to the variance of the relative difference between one distribution
p(x|θ) and a neighbour p(x|θ + dθ). For a more complete introduction to Fisher
manifolds and more precise explanations on the nature of Fisher metric, we refer the
reader to (Amari, 2012).

Among all possible statistical manifolds, we focus on the set of normal distribu-
tions, denoted by N (n). A complete description of the geometric nature of N (n) is
given in (Skovgaard, 1984). As mentioned previously, a geodesic curve (µ(t), Σ(t))
on N (n) is described by the following geodesic equation:{

Σ̈ + µ̇µ̇T − Σ̇Σ−1Σ̇ = 0
µ̈− Σ̇Σ−1µ̇ = 0

(6.6)

In order to find non-Euclidean analogies on N (n) by the application of the par-
allelogrammoid algorithm, a fundamental issue has to be overcome. As explained
in the reminder on Riemannian geometry, there exists two equivalent definitions of
geodesic curves:

1. A geodesic can be interpreted as a curve of shortest length between two points.
It is described by two points A and B.

2. A geodesic can be interpreted as an auto-parallel curve, hence a curve gener-
ated by the parallel transport of its celerity. It is described by the initial state:
the initial position A ∈ M and the initial celerity ξ ∈ TAM.

These two definitions are equivalent but switching from the one to the other is a com-
plex task in general. The second definition offers a simple computational model for
geodesic shooting, since it corresponds to integrating a differential equation (equa-
tion 6.6 in our case), but using it to find a geodesic between two points requires to
find initial celerity ξ.

In the scope of this chapter, we consider the algorithm for minimal geodesic
on N (n) proposed by (Han and Park, 2014). The proposed algorithm is based on
the simple idea to shoot a geodesic using initial celerity ξ using equation 6.6 and to
update ξ based on the Euclidean difference between the endpoint of the integrated
curve and the actual expected endpoint. The algorithm is empirically shown to con-
verge for lower dimensions (n = 2 or n = 3).

6.3.1.2 Experimental Results

We present the results of the parallelogrammoid procedures D1 = Ap(A, B, C) and
D2 = Ap(A, C, B) obtained for various bidimensional multinormal distributions.
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We use the classical representation of the multivariate normal distributions by the
isocontour of its covariance matrix, centered at the mean of the distribution. The
results we display are presented as follows:

• In black: Intermediate points in the trajectories γ1, γ2 and γ3.

• In blue: Normal distribution A.

• In green: Normal distribution B.

• In cyan: Normal distribution C.

• In red: Normal distribution D1 = Ap(A, B, C).

• In magenta: Normal distribution D2 = Ap(A, C, B).

Case 1: Fixed covariance matrix
For the first case, we fix µA = (0, 0), µB = (1, 1), µC = (0, 1) and ΣA = ΣB =

ΣC =

(
1 0
0 .1

)
.

The space of normal distributions with fixed covariance matrix is Euclidean,
which implies that algorithm Ap is equivalent to the parallelogram rule under these
conditions and that the defined relation is an analogical proportion. We observe on
Figure 6.7 that the trajectories of means in the space correspond to a parallelogram
and that the two solutions are identical. This observation can be verified from the
differential system 6.6.

FIGURE 6.7: Results for case 1 (fixed covariance matrix setting).

Case 2: Fixed mean in source domain, fixed covariance from source to target
For the second case, we fix µA = µB = (0, 0), µC = (0, 2) and, for covariance

matrices, ΣA = ΣC =

(
1 0
0 .1

)
and ΣB =

(
.1 0
0 1

)
.

With these parameters, we observe that the two results are different (Figure 6.8).
The result of Ap(A, B, C) corresponds to the intuition that D will have the same
mean as C and the same covariance change as B compared to A. However, for the
caseAp(A, C, B), the results are non-intuitive: the mean of distribution D is different
from the mean of C. It can be explained by the fact that the trajectory varies both in µ
and Σ. The geometric properties of information require that these two dimensions
are related together and that the change in µ depends on the change in Σ.
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FIGURE 6.8: Results for case 2 (fixed mean in source, fixed covariance
from source to target).

Case 3: Symmetric distributions
For the third case, we fix µA = (0, 0), µB = (1, 0) and µC = (0, 1), and, for covari-

ance matrices, ΣB = ΣC =

(
1 −.5
−.5 .5

)
and ΣA =

(
1 .5
.5 .5

)
. We notice on Figure 6.9

that the trajectory leads to a distributions with “flat” covariance matrix (with one
large and one very small eigenvalue). No real intuitive interpretation can be given
of the observed trajectory (which shows that information geometry cannot explain
shape deformations, here ellipse deformations, as expected by human beings).

FIGURE 6.9: Results for case 3 (symmetric).

Case 4: Slight perturbation
For the third case, we fix µA = (0, 0), µB = (1, 0) and µC = (0, 1), and, for covari-

ance matrices, ΣA =

(
1 .5
.5 .5

)
, ΣB =

(
1 −.5
−.5 .5

)
and ΣC =

(
1 .6
.6 .6

)
. Covariance

matrix ΣC is slightly different from Σ1. If they were equal, the parallelogramoid
would be closed. However, the slight modification introduces a perturbation large
enough to make Ap(A, B, C) 6= Ap(A, C, B) (Figure 6.10). Such artifacts could in-
troduce larger errors in case the distributions are not know with good precision (for
instance if they were estimated from data).
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FIGURE 6.10: Results for case 4 (slight perturbation)

6.3.2 Non-Euclidean Analogies in Curved Concept Spaces

The theory of concept spaces (Gärdenfors, 2004) generally involves concept spaces
with a Euclidean structure. The vector nature of concepts is the most elementary
representation of information where all description features are grouped together in
a concatenation. However, there is no formal justification for this simple property.
In particular, in the scope of this chapter, it is interesting to wonder if concept spaces
could be endowed with a Riemannian structure instead.

A concept space is defined as a geometric structure characterized by a list of
qualities. When these qualities are independent (ie. it is impossible to express one of
them as a function of the others), they form the dimensions of a vector space. Each
element in the concept space is then defined by a vector in this vector space. It is not
the case when the qualities are independent. For instance, considering a physical
space of disks, defined with two qualities (radius and surface), the dependency of
the two qualities is straightforward. The concept space is not a vector space in this
case.

How to define the metric g of such a space given the dependencies between qual-
ities? This problem is related to the question of induced metrics and has explicit solu-
tions in differential geometries, that will not be detailed here.

An interesting perspective for an application would be to consider such a concep-
tual space and study the influence of the dependency of qualities onto the analogies
made in this space.

6.4 Conclusion

In this chapter, we applied the minimum description length principle for analogies
in geometric spaces and suggested an operation based on two operations ω1 and ω2,
which correspond respectively to an intro-domain transformation and to an inter-
domain transformation. In vector spaces, the most elementary transformations that
can play this role are translations, but in more complex spaces, this is not possible.

We have defined such transformations in the context of Riemannian manifolds
and explained that these transformations are an intuitive counterpart to the well-
known parallelogram procedure in vector spaces. However, this modified algorithm
does not verify the central symmetry axiom of analogical proportion. We presented
a simple construction of analogical proportions on manifolds but did not manage to
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find a construction for continuous analogical proportions. Lastly, we proposed ap-
plication cases for our parallelogramoid procedure in order to show that this prob-
lem is not merely theoretical but impacts the resolution of analogical equations in
very natural spaces.

This chapter concludes the first part of this thesis dedicated to analogical rea-
soning. Until now, we presented a justification for considering minimum complex-
ity analogies as a good approach to analogical reasoning, as well as some issues that
might emerge in geometrical settings. Next part will be dedicated to a closely related
problem: Transfer learning. As we will show, transfer can be seen as an analogy on
the space of data. At this point of our investigation, it seems pertinent to apply
the principles we promote to our own research, thus to make an analogy between
analogical reasoning and transfer learning.
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Part II

From Analogy to Transfer Learning
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Chapter 7

Transfer Learning: An Introduction

The problem of analogical reasoning is a good example of one-shot learning: Based on
one single example, the agent is able to transfer the knowledge to another problem.
This idea is particularly interesting to model human cognition, but becomes irrele-
vant when example generation is noisy (which is the case in most real world data
mining problems). In such cases, one single example is not enough and the agent
may take advantage of extracting knowledge from group behaviour.

In the context of statistical learning, these group behaviours are described by sta-
tistical properties, where groups correspond basically to probability distributions. A
single point can be an outlier, but the average information over all points is repre-
sentative about the actual distribution. This intuition is at play in learning theory,
in order to show that the performance on the training dataset is related to the per-
formance on a test dataset of same distribution. However, in real life problems, it
is not always possible to assume that data used for training and data on which the
learner works have the same distribution. When distributions change after learning,
the problem is called transfer learning.

The purpose of this chapter is to introduce the general problems of transfer learn-
ing as well as an overview of state of the art techniques to deal with changes in distri-
butions. The remainder of this chapter is organized as follows. In Section 7.1, we in-
troduce the general problems related to transfer, in particular multitask learning and
the so-called learning to learning question. In Section 7.2, we propose an overview of
methods used for transfer learning. Finally, in Section 7.3, we address the question
of when to transfer: This question is of major importance since it concerns the very
possibility of knowledge transfer.

7.1 What is Transfer?

In this section, we propose general notions and notations relative to transfer learn-
ing. The section is organized as follows. We first provide some application examples
in order to motivate the study of transfer. We then propose a formalization of the no-
tations and expose the two historical directions followed by the research on transfer.
Finally, we will present a taxonomy of the various problems associated to transfer
learning.

7.1.1 Examples of Transfer Learning Problems

Transfer learning involves any domain involving changing data distributions on a
same space, or transfer from one space to another space. Various applications have
been found that satisfy these two constraints.
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7.1.1.1 Transfer Learning for Computer Vision

The task of computer vision naturally involves transfer learning for several reasons as
exposed by (Shao, Zhu, and Li, 2015) or (Fei-Fei, 2006). First, from a more conceptual
point of view, this ability to transfer prior knowledge of other unrelated domains
onto the current task is inspired by human cognitive abilities. (Biederman, 1987)
estimated that about 10 to 30 thousand classes of objects can be distinguished in real
world, which means that children can acquire a knowledge of about five new classes
of objects in a day. This suggests that children are able to learn new categories from
very few (even one) instances. Transfer learning offers a good paradigm to mimic
this behavior.

The second reason is inherent to the nature of the computer vision task in natural
environments and concerns cross-domain and cross-view transfer. From one view
to another, various physical parameters might change: image quality, context of the
picture, style, orientation of the object etc.

The problem address by (Cao, Liu, and Huang, 2010) is typical of these issues:
Their approach consists in transferring knowledge acquired on one dataset, the KTH
dataset (Schuldt, Laptev, and Caputo, 2004), and to apply it to another dataset,
the Microsoft research action dataset II and TRECVID surveillance data (Smeaton,
Kraaij, and Over, 2004). This approach was pioneering in the domain of action
recognition. Cross-dataset image categorization has also been used as a solution to
the lack of training data for person reidentification (Peng et al., 2016). The problem
of person reidentification consists in identifying a same person on the video record-
ings of different cameras. Traditionally, a fully supervised procedure is used, where
labeled data are available for couples of cameras. These methods are obviously ex-
tremely demanding in terms of data, and the demand on data cannot be satisfied
in real-life situations where hundreds of cameras have to be considered at the same
time.

The question of viewpoint changes in images is the core of cross-view transfer.
For instance, (Weinland, Ronfard, and Boyer, 2006) proposes the IXMAS dataset for
human action recognition recorded from various viewpoints.

7.1.1.2 The Problem of “Small Data"

Apart from the computer vision application, transfer learning is particularly popu-
lar in domains where very few training data can be collected. When large amounts
of data are available, the training of traditional machine learning algorithms is suf-
ficient to converge to high performance rates. However, getting data is a costly pro-
cess and, in many situations, it is simply not possible to get a large enough dataset.

In these situations, a solution to overcome the lack of data is to use already
known models and adapt them to the considered domain, which is exactly the task
of transfer learning. A classifier is learned from a source domain where many la-
beled data are available, and then transferred to the target domain with very few
data.

As an example among many, consider the question of the self-driving car. Ac-
quiring data for this domain is extremely costly, since it requires actual driving of the
car in real and various environments, including the rarest. A solution to this problem
has been proposed by several methods, including the recent CYCADA (Hoffman et
al., 2018), to exploit images from video games and to transfer the information to real
life images.
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7.1.2 Background and Notations

In this thesis, we will use the now classical notations of (Pan and Yang, 2010).
A domain D = {X , P} is given by a feature space X on which data are defined

and by a probability distribution P over X . The domain designates the space where
data are defined as well as the way data are distributed in this space. A task T =
{Y , f (.)} defines a label set Y and a labeling function f : X → Y .

The traditional i.i.d. case corresponds to a fixed domain D and task T , which
remain the same at training and testing time. On the contrary, transfer learning is
involved when either the domain or the task vary between training and testing.

As a consequence, the notions of training and testing are very different from tra-
ditional machine learning, and these terms are usually not used in transfer learning.
The training task and domain will be called the source and the test will be called
the target. The idea of transfer learning is to “transfer" the knowledge acquired on
the source task in order to solve the target task. In the following, we will use the
notation S to designate the source and T to designate the target. In particular, we
will consider two datasets: The source dataset, denoted by DS = {(XS

i , yS
i )}i=1...nS ,

and the target dataset DT = {(XT
i , yT

i )}i=1...nT . A source hypothesis hS : XS → YS is
learned from data DS and adapted to a target hypothesis hT : XT → YT which de-
scribes target data correctly. This function hT can be obtained using inputs XT

i only
or inputs and labels (XS

i , YS
i ).

7.1.3 Historical References and Related Problems

This general description of the problem is rather general and can be used for several
related problems. These problems, apart from being conceptually close to transfer
learning, are also part of the historical development of tranfer learning.

The first researches in transfer learning were held under the name “learning to
learn" and were motivated by performance issues. Two main ideas guided this re-
search. First, coordinate computing efforts is supposed to gain time by reducing the
number of redundant computations (Pratt, Mostow, Kamm, and Kamm, 1991). Sec-
ondly, this coordination had to be integrated into a more ambitious conception of
learning: Instead of learning to solve a given task, systems had to acquire the abil-
ity to learn any other task, hence the denomination “learning to learn". Encouraged
by several seminal works (Thrun and Pratt, 1998), a first workshop was organized
at NIPS conference in 1995 to encourage the research on connected domains. This
workshop regrouped various works that focus on the idea that previous knowledge
must be stored in order to be reused in future situations.

At the same time, another similar paradigm emerged: multitask learning (Caru-
ana, 1997). The principle of multitask diverges slightly from transfer since it is fully
symmetrical in terms of the task solving. In this framework, the system faces sev-
eral different tasks at the same time and proceeds to common computations in order
to solve them. One of the main inspirations for such techniques is neural network
architecture, in which a first layer could contain commmon information about the
various tasks.

The symmetric role of tasks in multitask learning was dismissed in 2005 by the
new definition of Transfer Learning established by the Broad Agency Announce-
ment (BAA) 05-29 of Defense Advanced Research Projects Agency (DARPA)’s In-
formation Processing Technology Office (IPTO): Transfer learning is defined as “the
ability of a system to recognize and apply knowledge and skills learned in previous
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tasks to novel tasks (in new domains)"1. This new definition considered the separa-
tion of the tasks into source tasks and a target task which is the most important in
the learning process. After some knowledge is extracted from the source tasks, this
knowledge is chosen and modified by the transfer algorithm in order to apply to the
target task. This approach is now the canonical definition of transfer learning.

Among related problems that have been studied but will not be considered in
the scope of this thesis, Self-Taught Learning (Raina, Battle, Lee, Packer, and Ng,
2007). In self-taught learning, no labeled data are available in the source domain.
The source unlabeled data are used for a classification task in the target domain. It
is noticeable that data distributions in source and target domains do not have to be
identical. The key point of self-taught learning is that the source data provide knowl-
edge on data representation, which can be shared with target data. For instance, in
the domain of image classification, the representation and structure of images does
not depend on the object represented in the pictures, and thus a dictionary trained
on images from different domains can bring representative information that is used
successfully in the target classification task (Wang, Nie, and Huang, 2013).

7.1.4 A Taxonomy of Transfer Learning Settings

In the context we proposed to investigate, several settings can be observed, depend-
ing on the existence of labels in source or target datasets. We will omit, on pur-
pose, the case of partially observed labels in the target, which corresponds to semi-
supervised domain adaptation. The different tasks are summed up in Figure 7.1.

FIGURE 7.1: A Taxonomy of Transfer Learning Settings (Figure
from (Pan and Yang, 2010)).

1Definition given in the program brief, not available online anymore but archived at http://web.
archive.org/web/20110114122026/http://www.darpa.mil:80/i2o/programs/tl/tl.asp

http://web.archive.org/web/20110114122026/http://www.darpa.mil:80/i2o/programs/tl/tl.asp
http://web.archive.org/web/20110114122026/http://www.darpa.mil:80/i2o/programs/tl/tl.asp
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Inductive Transfer problems are characterized by the presence of labels in the
target domain, independently of the presence or absence of labels in source data.
The term “inductive" refers to the idea that such methods aim to generalize the in-
ferred concept to any other data point outside the observed dataset. As such, the
necessity of transfer might not be clear, since the presence of labels in the target
makes it possible to apply classical learning methods. The necessity of transfer is of-
ten justified by a very limited number of observations in the target, which makes the
estimation from the target only very inaccurate. As explained earlier for Self-Taught
Learning (Raina, Battle, Lee, Packer, and Ng, 2007) and Multi-Task Learning (Caru-
ana, 1997), the representation knowledge acquired by the first task can be beneficial
in the target. Apart from these two learning problems, Hypothesis Transfer Learn-
ing (Kuzborskij and Orabona, 2013) is another example of inductive transfer: A hy-
pothesis is estimated in the source domain and has to be transferred to fit the target
data.

Transductive Transfer is characterized by the absence of labels in the target do-
main and the presence of labels in the source domain. Unlike for inductive transfer
problems, it is natural in this context that transfer is needed, since it compensates the
absence of classification information. In the scope of this thesis, we will mainly focus
on Transductive Transfer, even if the proposed model is also relevant for Inductive
Transfer.

Unsupervised Transfer, which will not be considered in this thesis, corresponds
to the case where no labels are available, neither in the source nor in the target do-
mains. This application remains rare in the state of the art.

7.2 Trends in Transfer Learning

In this section, we propose a brief presentation of the main trends observed in trans-
fer learning. This overview is laconic and only gives general directions. For more
details, we refer the readers to surveys (Pan and Yang, 2010; Weiss, Khoshgoftaar,
and Wang, 2016).

7.2.1 Importance Sampling and Reweighting

A very simple method that is proposed for transfer is based on the idea of instance
reweighting for empirical risk minimization. In this framework, the source data are
reweighted according to a weight ω(x) = PT(x)/PS(x). In practice, this weight can-
not be computed and is then estimated using various methods that will be described
shortly.

Instance reweighting takes its root in the idea of risk minimization, and espe-
cially the estimation of empirical risk minimization. Given a loss function l : YT ×
YT → R, the purpose of risk minimization is to find a hypothesis h : X T → YT that
minimizes the risk

R(h) = E(X,Y)∼PT
[l(Y, h(X))]

Since the probability distribution PT is unknown, this value cannot be assessed and
an estimated value is used, called empirical risk: Rn(h) = ∑n

i=1 PT(Xi, Yi)l(Yi, h(Xi))
where the (Xi, Yi) are drawn from distribution PT. The idea of instance weighting is
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based on the following computation:

R(h) = E(X,Y)∼PT
[l(Y, h(X))]

=
∫
(x,y)∈X×Y

PT(x, y)l(y, h(x))

=
∫
(x,y)∈X×Y

PT(x, y)
PS(x, y)

PS(x, y)l(y, h(x))

= E(X,Y)∼PS

[
PT(x, y)
PS(x, y)

l(y, h(x))
]

' 1
nS

∑
(x,y)∈DS

PT(x, y)
PS(x, y)

l(y, h(x))

Under the hypothesis that PS(Y|X) = PT(Y|X), called covariate shift (Shimodaira,
2000), the weight becomes simply ω(x) = PT(x)/PS(x).

Several methods are known to estimate the weight ω(x) based on source dataset
DS and target dataset DT. A very simple approach consists in estimating the distri-
butions PS and PT from a class of distributions. In order to avoid estimating these
distributions, (Sugiyama, Nakajima, Kashima, Buenau, and Kawanabe, 2008) pro-
poses to estimate the quantity ω(x) directly by a linear approximation over basis
functions. The choice of the linear coefficient is done based on the minimization of
Kullback-Leibler divergence between the corresponding inferred distribution and
real distribution. Similarly, (Bickel, Brückner, and Scheffer, 2007) avoids estimating
the distribution by relying on a discriminative criterion, where a variable σ mea-
sures if the data point is drawn from PS or PT. A simple expression of ω is derived
from this assumption. A third solution, proposed by (Huang, Gretton, Borgwardt,
Schölkopf, and Smola, 2007) and called Kernel Mean Matching, aims to find an opti-
mal weight such that the means of the projections of source and target data onto a
same Reproducible Kernel Hilbert Space (RKHS) are close. It is shown, in the case
where the RKHS satisfies desired properties, the weight provides a good estimation
of the actual weight.

The main limitation of these methods is the strong hypothesis of covariate shift.
The techniques that will be described below are more general. However, the frame-
work of covariate shift is simple and adapted to many real life problems. For a more
general overview of these topics, we refer the reader to (Sugiyama, Lawrence, and
Schwaighofer, 2017).

7.2.2 Optimal Transport

Optimal Transport is based on the simple assumption that the target domain XT is
the image of the source domain XS with respect to a function T : XS → XT called
transport map. In order to apply Optimal Transport to transfer learning, another
assumption is imposed on the function T: It is supposed to preserve the conditional
distributions: PS(Y|XS) = PT(Y|T(XS)).

In terms of probability distributions, the operation defined by T can be applied to
a density µS over the source space XS, which is written T#µS, and corresponds to the
distribution of x ∈ XT which are the image of elements of XS after transformation
by T.

Since researching the transport map T in the space of all transformations is in-
tractable, a restricted search is proposed, that is based on a cost function c : XS ×
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XT → R+. Monge’s formulation of optimal transport is then the following:

minimizeT

∫
XS

c(x, T(x))dµ(x)

s.t. T#µS = µT

In practice, this formulation is rarely used, replaced by its convex relaxation, given
by (Kantorovitch, 1958). In this formulation, the purpose is to infer a probability
distribution γ over XS ×XT, the marginals of which correspond to distributions µS
and µT. Kantorovitch formulation is the following:

minimizeγ

∫
XS×XT

c(x, y)dγ(x, y)

s.t.
∫
XT

γ(x, y)dy = µS(x)∫
XS

γ(x, y)dx = µT(y)

Optimal transport applies in a natural way to transfer learning (Courty, Flamary,
Tuia, and Rakotomamonjy, 2017): It can be shown that the Kantorovitch problem has
a very simple formulation when the distributions are discrete (which is the case in
the problem of transfer, since the distributions are estimated simply by a sum of
Dirac functions on the data points). A problem with this technique is that it can
lead to overfitting. As a soluion, (Cuturi, 2013) suggests to use a penalization based
on entropy, which speeds up the computations and improves the accuracy of the
transport for some problems. Another family of regularizations, called class-based
regularizations, aims to preserve the label information during the transport. We will
not discuss these regularizations nor their applications here. Another different tech-
nique proposed by (Courty, Flamary, Habrard, and Rakotomamonjy, 2017) suggests
to apply optimal transport on joint distributions over X × Y rather than on the do-
main space X only.

The real strength of transfer methods based on optimal transport is the explicit
mapping that is a natural output, as well as the empirical validation that show ex-
cellent results on transfer learning problems.

7.2.3 Mapping and Learning Representations

An intuition that is the core of several transfer learning techniques is to assume that
the direct representation given by the source and target domains XS and XT is not
the most appropriate representation. Based on this idea, the problem of transfer is
seen seen as the learning of an optimal representation. The main characteristics of a
good representation space is that it has to represent shared characteristics between
two domains.

A typical example is given by (III, Hal Daume, 2007) in the domain of Natural
Language Processing. The authors consider the case where XS = XT and propose
to define a new input space X̃ of higher dimensionality than the original space.
This new input space is obtained by concatenation of 3 vectors of the original space
(hence, dim(X̃ ) = 3× dim(X )). The transformation from the original input space
to the extended input space is given by a transformation Φ : X 7→ X̃ defined as
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follows: Φ(x) = 〈x, x, 0〉 for x in source, and Φ(x) = 〈x, 0, x〉 for x in target. This
extremely simple transformation is shown to be sufficient to address the problem of
domain adaptation.

Another well-known example in the domain of NLP is Structural Correspon-
dence Learning (Blitzer, McDonald, and Pereira, 2006), a technique which uses un-
labeled instances of source and target domain to build a common feature represen-
tation. This representation is based on pivot features, features that are frequent and
diverse enough in both source and target domains. Such features can be associated
to projections onto R (through a linear classifier determining if a point x has the
pivot feature present or absent), the original features can be then represented as a
common low-dimensional feature space.

The deep learning methodology being particularly well-adapted to the question
of feature representation, it has been widely used for representation mapping in
transfer learning. (Glorot, Bordes, and Bengio, 2011) propose to use stacked denois-
ing auto-encoders to extract characteristic features from unlabeled source and target
data. A classifier is then learned on this common representation space, from the pro-
jected labeled data only. This property of transferability of representation, which has
been studied from a general point of view by (Yosinski, Clune, Bengio, and Lipson,
2014), has been used for the purpose of transfer learning by various authors, fol-
lowing the paradigm of feature representation and mapping (Long, Cao, Wang, and
Jordan, 2015; Luo, Zou, Hoffman, and Fei-Fei, 2017). Among these methods, the al-
gorithm proposed by (Ganin and Lempitsky, 2015) is a bit different, in the sense that
it uses back-propagation directly to incorporate the multi-domain transfer inside a
feed-forward architecture. The proposed network aims to determine, for an element
x ∈ X , both its label y ∈ Y and its origin (source or target distribution).

Recent improvements in the domain of computer vision rely on the use of Gen-
erative Adversarial Networks (GANs). These techniques aim to project the target
images into source style images, hence images that share similar distribution with
source images. Among such methods, CYCADA (Hoffman et al., 2018) proposes
to use a GAN to transpose the target image into the style of the source, respect-
ing a principle of cycle consistency. This idea was developed in parallel by (Murez,
Kolouri, Kriegman, Ramamoorthi, and Kim, 2018).

7.3 A Central Question: When to Transfer?

In the previous section, we presented existing techniques used to solve transfer
learning problems. These problems occur in practice in contexts where few or no
labels are available in target domain. However, there is a priori no guarantee that
the transfer that will be done will actually lead to correct results. In this section, we
expose some ideas about performance of transfer. First, we will introduce the notion
of negative transfer, that is inherent to transfer learning. We will then present the
major theoretical framework used to evaluate the quality of transfer. Finally, we will
present an evaluation of the notion of task relatedness.

7.3.1 Introducing Negative Transfer

Negative transfer is a phenomenon that is inherent to transfer learning but goes
against the intuition that more learning material (for instance more data) necessarily
means better performance. The mathematical justification of this intuition is pro-
vided by the law of large number: When the number of observed points tends to
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infinity, the empirical distribution converges to the actual distribution. Obviously,
this result does not hold when the data distribution varies.

In transfer learning, the performance depends, in a large extent, on the related-
ness between source and target tasks. When no correlation can be found between
these two tasks, it is expected that transfer fails and gives poorer results than learn-
ing from scratch.

This result has been observed empirically by (Rosenstein, Marx, Kaelbling, and
Dietterich, 2005) in the context of a simple transfer task between two populations,
the relatedness of which can be controlled. The transfer algorithm used by the au-
thors is based on Naive Bayes, and does not take task relatedness into account. It
is then shown that the performance of the algorithm highly depends on the related-
ness of source and target. Two major effects can be observed. If the source and
target tasks are correlated, an improvement is observed for transfer over learning
from target data only. This improvement can be explained by the fact that informa-
tion is brought by the (similar) source data. On the contrary, when the two tasks
are not correlated, the performance is penalized by the use of source information:
In this case, better performances are achieved by training the learner on the target
data only. A restriction can be noticed: The paper focuses on a small number of ob-
servations in target. When the number of target data increases, the amplitude of the
difference between negative transfer and no transfer decreases, whereas “positive"
transfer still gives significantly better results.

These observations show the necessity to consider the problem of negative trans-
fer. In the following, we will present two ideas that are relative to this notion. The
first idea is an adaptation of learning theory to the case of transfer learning. The
second idea, which follows directly, consists in measuring the relatedness between
two tasks.

7.3.2 Guarantees with Small Drifts

A first theoretical analysis of domain adaptation was provided by the seminal works
of (Ben-David, Blitzer, Crammer, Kulesza, Pereira, and Vaughan, 2010) in the context
of small differences between source and target tasks. The main purpose of the paper
is to bound the target error of a hypothesis h:

εT(h, f ) = Ex∼DT [|h(x)− f (x)|]

where DT designates the target distribution and f is the target labeling function.
This error measures the expected difference between the prediction of hypothesis h
and actual labeling function f .

The article opens with an observation: L1 divergence between distributions

d1(D,D′) = 2 sup
B∈B
|PrD [B]− PrD′ [B]|

where B is the set of measurable subsets under D and D′, can be used to estimate
a first upper-bound of the target error, but this bound has two major drawbacks: It
cannot be accurately estimated and it provides a too large bound (since it considers
a supremum over all possible sets). As a solution, the authors suggest using another
measure, calledH-divergence, defined as follows:

dH(D,D′) = 2 sup
h∈H
|PrD [I(h)]− PrD′ [I(h)]|
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where I(h) = {x ∈ X |h(x) = 1}. This quantity can be estimated from finite samples
and the corresponding estimator will be denoted by d̂H(D,D′). The notion of H-
divergence can be applied in particular to the symmetric difference hypothesis space
H∆H, defined as the set of hypotheses g such that there exists h, h′ ∈ H such that
g(x) = h(x)⊕ h′(x), where ⊕ is the XOR operator. It is involved in a fundamental
theorem:

Theorem 7. (Ben-David, Blitzer, Crammer, Kulesza, Pereira, and Vaughan, 2010) Let H
be a hypothesis space of VC dimension d. If Us,UT are unlabeled samples of size m′ each,
drawn from DS and DT respectively, then for any δ ∈ (0, 1), with probability at least 1− δ
over the choice of the samples, for every h ∈ H:

εT(h) ≤ εS(h) +
1
2

d̂H∆H(Us,UT ) + 4

√
2d log(2m′) + log

( 2
δ

)
m′

+ λ (7.1)

where λ = minh∈H εS(h) + εT(h)

The key hypothesis in this framework is the idea that the source and target tasks
are close. This hypothesis is reflected at several levels in Equation 7.1:

• The same hypothesis h is involved in the source and target errors. If the two
tasks are uncorrelated, it is expected that h is not proficient in both domains.
In particular, an optimal h for the target can lead to large error in the source,
which makes the theorem non-informative.

• The term λ can be high if there is no classifier in H that performs well for the
combined error εS(h) + εT(h), which can be the case when the tasks are too
different.

• The divergence term d̂H∆H(Us,UT ) is expected to be high if the two domains
do not match with regards to the hypothesis classH.

These ideas reflect in particular an interesting aspect of this theory: The hypothesis
space H is involved here in a trade-off between the accuracy of some hypothesis
h ∈ H for classification in the source, the VC dimension of H and its incapacity to
discriminate the source from the target data.

In practice, this strong assumption is not necessarily a limit. For instance, the
mapping-based methods, as well as optimal transport, are motivated by the idea of
“projecting" points from the target domain onto the source model in such a way that
the distributions are close. The error bound proposed by (Ben-David, Blitzer, Cram-
mer, Kulesza, Pereira, and Vaughan, 2010) applies perfectly well to such methods.

7.3.3 Characterizing Task Relatedness

As seen with the theory of (Ben-David, Blitzer, Crammer, Kulesza, Pereira, and
Vaughan, 2010), a major notion in the theory of transfer learning is the notion of
task relatedness (called domain divergence in the context of domain adaptation).

We have seen that (Ben-David, Blitzer, Crammer, Kulesza, Pereira, and Vaughan,
2010) proposes two measures for domain divergence: L1 divergence, discarded for
its lack of precision when used in error bounds, andH-divergence, which measures
the relatedness of two tasks with respects to a given hypothesis classH.

Other divergence measures have been proposed in the literature. (Mansour,
Mohri, and Rostamizadeh, 2009) proposes an extension of the H-divergence to a
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more general class of loss functions L. This divergence is given by:

discL(DS,DT) = sup
(h,h′)∈H2

|EXT∼DT [L(h(XT), h′(XT))]−EXS∼DS [L(h(XS), h′(XS))|

This quantity is involved in a theorem close to Theorem 7, but which can be more
precise in some cases.

Another measure is proposed by (Germain, Habrard, Laviolette, and Morvant,
2013) in a PAC-Bayesian approach. Consider a hypothesis class H and a posterior
distribution ρ onH. The authors define the domain disagreement disρ(DS,DT) as:

disρ(DS,DT) =
∣∣∣E(h,h′)∼ρ2

[
εDT (h, h′)− εDS(h, h′)

]∣∣∣
where εD(h, h′) = EX∼DI(h(X) 6= h′(X)).

In a different direction, (Zhang, Zhang, and Ye, 2012) considers that the domain
divergence should not be the only source of divergence considered to measure task
relatedness. The authors propose to combine a measure of the divergence in the
distributions and a measure of the divergence in the labeling functions, given by the
entropy number of the class of labeling functions.

Finally, we would like to mention the work of (Mahmud, 2009) which is par-
ticularly interesting in the context of this thesis, since it characterizes task related-
ness with help of Kolmogorov complexity. The author defines the transfer learning
distance of two tasks (associated to the semi-measures DS and DT) as E1(DS,DT),
where E1(x, y) = max{K(x|y), K(y|x)}. (Mahmud and Ray, 2008) exploits this idea
in a bayesian setting, following the theory of universal distribution (Solomonoff,
1964; Hutter, 2003) (see end of Section 9.3.2 for more details).

7.4 Conclusion

In this chapter, we presented the general problem of transfer learning, from its appli-
cations to the main trends that are observed in its algorithmic treatment. Our review
of the existing techniques is far from being complete, but oriented toward the ideas
that will be developed in this thesis. We also discussed the major question of the
necessity of transfer, not from the practical point of view but from a more theoretical
point of view. This question is related to the problem of negative transfer, ie. situ-
ations where transfer brings negative information to the target and deteriorates the
performance. Several theoretical models have been developed in order to measure
task relatedness and prevent bad transfer performances.

In the following chapter, we will follow a simple intuition, knowing that analogy
and transductive transfer are very similar tasks. We will present a general frame-
work based on Kolmogorov complexity and discuss simple applications in the con-
text of a prototype-based model.
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Chapter 8

Transfer Learning with Minimum
Description Length Principle

We have seen in previous chapter that transfer learning is a machine learning task
which consists in transposing the concept learned on a source domain onto a tar-
get domain. Among all the problems presented in our short review, we will fo-
cus on transductive transfer, hence a transfer learning problem where the learner
is given labeled data in the source domain and unlabeled data in the target do-
main. Formally speaking, knowing source data DS = {(XS

i , YS
i )}i=1...NS and target

data DT = {XT
i }i=1...NT , the purpose is to estimate a decision function hS : XS 7→ YS

and to transpose it into a decision function hT : XT → YT on the target domain.
Formally speaking, we notice a large similarity between this description of trans-

ductive transfer learning and analogical reasoning as presented in the previous part
of this thesis. The purpose of this chapter is to investigate this relationship and to
discuss the potential consequences onto the description of transductive transfer.

The remainder of the chapter is organized as follows: In Section 8.1, we propose
a discussion of the similarities and dissimilarities between analogical reasoning and
inductive transfer. Based on the conclusions of this discussion, we suggest to use
the same graphical model as introduced for analogical reasoning. In Section 8.2, we
propose two families of models for complexity that can be used in machine learning.
These models are elementary and will be used in all the following chapters. Lastly, in
Section 8.3, we propose some experimental validation of the proposed methodology.

This chapter develops and extends the ideas and results presented in (Murena
and Cornuéjols, 2016).

8.1 Transductive Transfer Learning with Minimum Descrip-
tion Length Principle

In this section, we explore the similarities between transductive transfer and ana-
logical reasoning. Based on the observation of these similarities, we propose to use
the principle suggested for analogical reasoning in Equation 5.11 in order to solve
transductive transfer problems.

8.1.1 Transductive Transfer and Analogy: Two Related Tasks?

The problem of analogical reasoning, as exposed in Part I, considers problems of the
form “A is to B as C is to x" where x is to be found. With this formulation, the task
of transductive transfer can be expressed as “XS is to solution vector YS as XT is to
solution vector YT", where YT is the solution to be found.
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The links between analogy and transfer has been already discussed in (Wang and
Yang, 2011). The authors suggest to use the principle of Structure Mapping Theory
(see Section 3.2.3) and to apply it on transfer learning. The suggested method relies
on a projection of both source and target domains onto a common Reproducing Ker-
nel Hilbert Space. The key idea that is exploited by this article is that the similarities
between the source and target domains cannot be apparent, but must be observed
in the inherent structure of the domains.

Despite some apparent similarities, some points have to be discussed regarding
the relation between transductive transfer and analogical reasoning:

• Cardinality of elements: Analogy is characterized by a relation involving four
elements, while transfer learning might involve many elements in both source
and target domains. When the i.i.d. hypothesis holds inside a domain, the
elements have the same “structure" (ie. are produced by the same distribution)
but are not related together in a structural way.

• Role of the source: In analogical reasoning, the source plays a prominent role,
since it is involved both in the characterization of the intra-domain transfor-
mation and of the inter-domain transfer. This role is not necessarily as strong
in transfer learning: for instance, the setting of hypothesis transfer makes the
source completely unused by assuming that the source hypothesis is already
known.

8.1.2 What Analogy Suggests

As shown above, an analogy can be drawn between analogical reasoning and trans-
ductive transfer. Since the two problems are similar, it makes sense to consider that
their solutions have to be similar too. Following this intuition, we propose to use the
DGM introduced for analogical reasoning and to interpret its consequences in terms
of transductive transfer.

The problem of transductive transfer can be described as the following analog-
ical equation: XS : YS :: XT : y where y is the unknown variable. This equation
(and its solution) can be described using the DGM presented in Figure 5.5 and its
solution can be obtained by minimizing the following objective (already presented
in Equation 5.11) over the models MS and MT:

K(MS) + K(XS|MS) + K(YS|MS, XS) + K(MT|MS) + K(XT|MT) (8.1)

We postpone the term-by-term analysis of this equation for this specific case of ap-
plication to Section 8.1.3.

In practice, transfer learning based on this principle involves the following steps:

• Definition of the models: A restricted class of models has to be chosen for
the source and the target. This choice plays the same role as the choice of a
hypotheses class.

• Estimation of the complexities: Given a model, an upper-bound for the com-
plexity terms K(M), K(X|M) and K(Y|X, M) is required. Approximations of
such terms on simple models will be proposed in Section 8.2.

• Computing YT: Once the models MS and MT have been evaluated, the solu-
tion YT is inferred. For this purpose, it is needed that the model defines an
intrinsic transformation hM : X → Y .
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8.1.3 Interpretation: A General Principle?

As exposed in Section 5.2, Kolmogorov complexity is not computable. In order to
obtain computable values, the admitted solution in the scope of this thesis is to con-
sider an upper-bound of complexity obtained for a fixed class of machines. The
choice of the Turing machines defines an inductive bias for the method. It seems
important at this point to comment on the chosen bias and the underlying approxi-
mations. These hypotheses that are made (which are related to the presented DGM,
hence are shared by both analogical reasoning tasks and transductive transfer tasks)
will be interpreted in terms of classical approximations in statistical learning and in
comparison with state of the art methods in transfer learning.

The first hypothesis at play in our model is the division of the model: We sup-
pose that two models are used, one for the source domain, one for the target domain.
These two models are not necessarily equal or close. They do not even belong nec-
essarily to the same space. As a complement, we assume a complete separation of
source and target, which means that source points and labels are described with
help of source model only and target points and labels are described with help of
target model only.

These two hypotheses together are the major specificity of our framework. They
ensure that the transfer is managed at the level of models and not of data.

A closer look at the different terms shows that they can be interpreted in terms
of usual machine learning notions.

The complexity K(X|M) measures the descriptive quality of model M for data D.
Intuitively, this value corresponds to the notion of likelihood that is used in bayesian
methods. As we will see later, when the model M is a probability distribution, the
term K(X|M) corresponds exactly to the definition of likelihood.

The term K(Y|X, M) measures the complexity to build the labels from the inputs
and the model. When the model is perfect, it gives the exact expected solution Y
when applied to data X, which corresponds to a zero complexity. In case where
one mistake is produced, it has to be corrected, and thus increases the complexity.
We will show later that this term is upper-bounded by the empirical risk (up to a
multiplicative coefficient).

The terms K(MS) and K(MT|MS) constraint the exploration of the model space
by favoring source models of low complexity and target models similar to the source
model. These terms are similar to penalization terms that are commonly used in
machine learning.

As a conclusion, Equation 8.1 can be seen as an extended version of the common
inductive principles used in machine learning. As such, it seems to be very general,
while encompassing the characteristics of well-known approaches.

8.2 Defining Models

The proposed framework relies on the use of models, which have been interpreted as
information factorization in the context of analogical reasoning. In this section, we
propose two general classes of models for transfer learning.
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8.2.1 Probabilistic models

In machine learning, it is often assumed that data are observations of random vari-
ables. Our point is that probability distributions (generating these random variables)
can be considered as information factorization.

In order to get an intuition, we can consider first the simple case of a normal
distribution on R. Such a distribution is entirely defined given its mean value µ and
its variance σ. With such a distribution, the observation X = µ is the most typical
element of the distribution. On the contrary, an observation very far from mean
value might be considered as less typical, hence more complex element. Moreover,
it is reasonable to imagine that the description of the observation can be estimated
in terms of number of standard deviations to the mean value: (X− µ)/σ.

This intuition can be generalized based on complexity theory. A link between
complexity and probability theory has been established. Let p be a semi-computable
distribution over a setX , then the complexity of an element x ∈ X is upper-bounded
by K(x) ≤ K(p)− log p(x) +O(1), and in particular:

K(x|p) ≤ − log p(x) +O(1) (8.2)

In particular, the intuited formula presented for the normal distribution corresponds
to the actual upper-bound value given in Equation 8.2:

K(x|p) ≤ 1
2

log(σ2) +
1
2
‖x− µ‖2

σ2 +O(1) (8.3)

The strength of this representation is its link with classical machine learning
methods, where models are evaluated by their (log)likelihood regarding observed
data, which is exactly the quantity described in Equation 8.2.

The complexity of the models depend on the chosen probability distribution.
For parametric distributions, the complexity of the distribution corresponds to the
complexity of the parameters, up to an additive function which encodes in particular
the choice of the distribution family. For a fixed machine, this family of distribution
can even be supposed to be fixed.

8.2.2 A prototype-based model

Another basic way to model data on a space relies on the use of prototype-based
models, such as done in Self-Organizing Maps (Kohonen, 1990), Learning Vector
Quantization (Kohonen, 1997) or even K-means in unsupervised setting. The prin-
ciple of such methods is to describe data points in X as attached to artificial points
P ∈ X (a priori not in the observed dataset) called prototypes. The way the coordi-
nates of the prototypes is estimated depends on the training method.

The prototype-based models can be interpreted as compression models: Instead
of describing each data point by its absolute position, prototype models describe
them by their position relatively to the closest prototype (Figure 8.1). Doing so, the
model factorizes the common information shared by multiple data points, and thus
is supposed to compress the representation of points. In terms of the language de-
scribed in Chapter 4, the prototypes could be understood as position vectors stored
in memory. The prototypes would be declared inside a let instruction and would
be called by the mem operator to be modified on the fly.
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FIGURE 8.1: Representation of a prototype-based model. The circled
cross corresponds to a prototype and the standard crosses are data

points. Data points are attached to their closest prototype.

We denote by P the matrix of all prototypes, where the i-th line Pi corresponds
to the transpose of vector representation for i-th prototype. We will denote by Pj

i the
j− th coordinate of Pi (and in general X j the j-th component of any vector X).

8.2.2.1 Model Complexity

Concerning complexity, we assume that it is possible to consider each data point
individually (as in the DGM described in Figure 5.2). This hypothesis, which can be
seen as an equivalent of the independence property used in probabilistic settings,
will be employed at several other occasions in the following. We formalize it as
follows:

Hypothesis 1. The chosen class of Turing machines considers that the data are algorithmi-
cally independent, ie. it requires that the description of points is done independently from
each other. As a consequence, if X is the design matrix of a dataset, then the complexity
of X ∈ Rn×d relative to the chosen class of Turing machines is equal to:

K(X) =
n

∑
i=1

K(Xi) +O(1) (8.4)

The actual description of the prototype model requires two extra pieces of infor-
mation:

1. The prototypes have to be designated in order to be used in data description.
Each of the prototypes is associated with a unique id, which is an integer be-
tween 0 and the total number of prototypes. We designate by idi the id of i-th
prototype.

2. In supervised setting, each prototype is associated to a class yi.

Applying Hypothesis 1, and using these two extra information, it comes that the
prototype model complexity can be given by:

K(P) =
p

∑
i=1

K(idi) + K(yi) + K(Pi) (8.5)
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8.2.2.2 Data Complexity

Without using the prototype model, data have to be described by setting the absolute
positions of the n points in the set and by the labels of each point individually, which
corresponds to a complexity equal to K(X, Y) = ∑n

i=1 K(Xi) + K(Yi). A compression
can be obtained by factorizing common representations into the prototypes.

A point is associated to a prototype, which means that the index of the chosen
prototype is explicitly given in the description of the point. Once the prototype is
given, the description can be obtained by indicating the relative position of the point
to the prototype. This leads to the following complexity for the data:

K(X|P) =
n

∑
i=1

(
K(idi) + min

c≤p
(K(idc) + K(Xi − Pc))

)
(8.6)

Here, the choice of the machine to encode the indexes (idi and idc) is crucial. These
values being integers, it is tempting to use the basic coding of integers1 and thus
K(id) = log id + log log id + O(1), but this coding favors prototypes with smaller
index. This solution requires then a specific ordering of prototypes, which is not
necessarily desired. Another solution, that we will use in the following, consists in
taking a non-optimal coding that encodes each index with a fixed number of bits.
The minimal complexity of such a coding is then K(id) = log n, where n is the total
number of elements in the considered set of ids.

In the considered supervised setting, the class Y of the points has to be specified
too. In a binary case, this value can be described by one bit (by log |Y| bits for a
finite set Y). However, given a prototype, the class of the point can be also available
for free, given the assumption that the class of points associated to a prototype is the
same as the class of the prototype. Of course, this assumption is not always satisfied,
so in practice this prediction needs to be corrected. The conditional complexity of
the actual Y relative to the prototype class Y(p) is the defined by:

K(Y|Y(p)) = log |Y| × I(Y 6= Y(p)) (8.7)

where I designates the indicator function (equal to 1 when the argument is true and
to 0 otherwise).

8.3 Validation of the Framework: A Prototype-based Algo-
rithm

In this section, we propose to test our framework using a prototype-based model.
We propose the subsequent approximations of complexity as well as a description
of the used algorithm and the obtained results.

8.3.1 Measuring Complexity

The presented algorithm is based on a prototype-based model and aims to solve
problem 8.1. Since this objective function only implies complexity terms, the ma-
chine of interest for our use case remains to be defined. This definition is the purpose
of the following sections.

1With this basic coding, the complexity of n ∈N is upper-bounded by log n + log log n
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8.3.1.1 Complexity of real numbers

A straightforward encoding of the real numbers is based on a subdivision of the
real line in ordered portions of fixed length ∆x. A real number X ∈ R is described
(with a precision ∆x) by the index of the portion it belongs to, which corresponds to
a discretization of the space. This encoding leads to the following definition of the
complexity:

K(X) = log
⌊

1 +
|X|
δ

⌋
+O(1) (8.8)

In this definition, the constant includes in particular a bit that gives the sign of the
real number.

The parameter δ controls the precision of the encoding: two numbers can be dis-
tinguished only if their distance is greater than δ. The limit case where δ −→ 0
corresponds to maximal precision, hence continuous case. This parameter is neces-
sary in our method since Kolmogorov complexity is defined only for discrete objects.
Its choice will necessarily affect the results.

In order to make computation easier, we will often use the continuous approxi-
mation of this term obtained by ignoring the flooring step:

K(X) ' log
(

1 +
|X|
δ

)
As we will show later, this approximation offers a very simple tool to design simple
minimization algorithms. Besides, we observed empirically that this approximation
does not affect the results much.

We can notice that this complexity value is upper-bounded by the L1 norm on R.
This observation can be generalized to any vector, if Hypothesis 1 is assumed to be
true. The Kolmogorov complexity of a vector X is then upper-bounded by the L1-
norm, up to the precision parameter δ. This upper-bound could be used especially
in the algorithms we present. We will discuss their impact in Section 8.3.2. Another
remark is that this value of complexity corresponds to the case where the complexity
is not prefix. A possibility to make it prefix would be to use a doubling code for
instance, which would increase the complexity of x of a constant log C(x) where
C(.) designates the plain complexity.

8.3.1.2 Complexity of vectors

We consider two categories of vectors in our model: absolute position vectors and
relative position vectors.

Absolute position vectors encode a position on the whole vector space X . We
consider that these vectors are encoded on a fixed number of bits, which means
that their complexity is constant. This assumption is motivated by two arguments.
Firstly, from a description point of view, this hypothesis is a way to make the de-
scription length translation invariant. This invariance property is desirable since it
prevents from the results to be influenced by the choice of the origin. Secondly, this
assumption can be interpreted in terms of Bayesian prior. Using the probabilistic
equivalent of complexity p(x) = 2−K(x), it comes that a non-constant complexity of
absolute position vectors would correspond to a non-uniform prior over the input
space, which has to be avoided for the arguments evoked above.

Relative position vectors encode a position relative to another point of reference.
These vectors encode a difference between two positions, hence are not subject to
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the same limitations as absolute position vectors. Thus, using the complexity of real
numbers as defined in Equation 8.8 and Hypothesis 1, we consider a machine such
that the complexity of a d-th dimensional vector v is defined by:

K(v) =
d

∑
i=1

K(vi) +O(1) (8.9)

As noted in the case of real numbers, this complexity term is upper-bounded by the
L1 norm of vector v.

8.3.1.3 Complexity of prototype model transfer

In order to transfer the prototype model from the source domain to the target do-
main, we aim to characterize the transformation of the source model returning the
target model. We propose a multi-level approach to describe these changes, based
on global transformations, class transformations and local transformation:

• Global transformation: A first transformation affects all prototypes in the
model, independently of their class.

• Class transformation: For each class, a transformation is then applied, that
affects all prototypes belonging to the class.

• Local transformation: The final transformation depends on each prototype
individually.

The use of such a multi-level approach enables one to take global effects into ac-
count, such as a global translation of the data, or effects shared by points of the
same class. Global and class transformations are used as a factorization of common
transformations that affect all or groups of prototypes. The solution to describe a
transformation for each of the prototypes in the model is tempting at first sight but
would actually increase the complexity by repeating shared information.

The choice of three levels here is arbitrary: It could be possible to work with
an arbitrary number of levels. Our choice is mainly motivated by the simple inter-
pretation which can be done of the results with this point of view (“global” and “
by class” having a strong semantic meaning). In the general case, determining the
number of levels could be done by applying the MDL principle. A large number of
levels will make the movement descriptions more compact but will require a larger
description, and thus are not necessarily optimal. On the contrary, when the proto-
type model consists of a low number of prototypes, the shortest description can be
provided by only one or two levels. We do not propose any investigation on this
question here.

We propose to restrict our study to the simple case where XS = XT but the global
methodology can apply to the case XS 6= XT as well. Having a common representa-
tion space makes it possible to choose translations as simple transformations for this
study. Other families of transformations could be studied (for instance affine trans-
formation2, and in particular, in the two-dimensional case, rotations). The three-
step transformation process with translations is depicted on a simple example in
Figure 8.2.

2An interesting property of affine transformations is that they can be used also for cases where
source and target spaces have different dimensions.
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FIGURE 8.2: Transfer of a prototype model from source domain (cir-
cles) to target domain (triangles) for a two class problem (class 0 in
green and class 1 in blue). Prototypes are represented by large empty
symbols. The transformation is in three step. First, all prototypes are
translated with a common vector ∆µ. Then prototypes inside a same
class c are translated with a vector ∆µc. Then prototype i is translated

with a vector ∆Mi. Intermediate prototypes are dashed.

The global transformation affects the whole prototype structure and corresponds
to a general translation of all prototypes. This transformation is meant to model the
global change of means that can be observed between source and target distribu-
tions. In the case where the data are centered during pre-processing, this translation
vector is supposed to be equal to zero. In general, the global translation of the pro-
totypes is described by the coordinates of the translation vector ∆µ.

In practice, the vector ∆µ can be initialized as the difference of means between
target data points and source data points. However, this assumption might be wrong
in some cases. Consider for example the case in which only one class is translated
from the source to the target. It costs more in terms of Kolmogorov complexity to
translate all points by a vector µ(T) − µ(S) and then to translate each class individu-
ally to its position, than to only translate the right class to its new position.

Once the global transformation has been applied to the model, we may wish to
characterize the common changes shared by a whole class of points. Such a class
transformation is defined relatively to the global transformation. If l is a class label,
we designate by ∆µl the class translation vector. The complete class transforma-
tion is given by the set of vectors {∆µ1, . . . , ∆µ|Y|} where |Y| is the total number of
classes.

The local transformation is the residual transformation to completely describe
the position of a target prototype given the source prototype model MS. This trans-
formation is applied to each prototype after the first two transformations.

In practice, unlike global and class transformations, a local transformation can
consist of three actions:

• Move a prototype: This action, which is by nature a translation, is encoded by
the relative position vector.
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• Create a prototype: This action is encoded by the class index and the relative
position vector in the class.

• Remove a prototype: This action is encoded by the index of the prototype to
remove.

In terms of complexity, the creation of a prototype costs more than its suppres-
sion: This observation is consistent with the intuition that it is easier to simplify the
model than to make it more complex.

The relative position vectors are put together in the local transformation matrix
∆M. For each prototype i of class l, the local transformation ∆Mi of prototype i is
defined as:

∆Mi = M(T)
i −M(S)

i − ∆µl − ∆µ (8.10)

In the proposed experiments, we will not consider the question of prototype cre-
ation or removal which is postponed to future researches. Algorithmic solutions to
this problem already exist in other frameworks, such as proposed by (Grbovic and
Vucetic, 2009) for Learning Vector Quantization.

Given the source model MS, the transfer to MT with the previously described
transformations is described by a vector ∆µ, a set of vectors {∆µ1, . . . , ∆µ|Y|} and
a matrix ∆M corresponding to the individual local transformations. The index of
prototypes to delete and the coordinates of prototypes to create would be required
if these operations were considered.

In practice, the global construction of the target models can be summed up by
the following procedure (including prototype creation and removal):

1. Delete the specified prototypes.

2. Apply a translation of vector ∆µ to all prototypes.

3. For each class l, apply a translation of vector ∆µl to all prototypes in the class.

4. Apply a translation of vector ∆Mi to all prototypes i.

5. Concatenating the new prototypes.

The corresponding Kolmogorov complexity (not considering creation and re-
moval) is given by:

K(MT|MS) = K(∆µ) +
|Y|

∑
l=1

K(∆µl) + K(∆M) (8.11)

8.3.2 Algorithm

Based on the complexity values described in Section 8.3.1, we propose an algorithm
to minimize objective function 8.1.

8.3.2.1 A Class of Functions

As a tool for the algorithm, we propose to study a simple class of functions defined
as follows: Let n > 0 and A = (a1, . . . , an) ∈ Rn be n real numbers. We define
function ΛA as follows:

ΛA(x) =
n

∑
i=1

log (1 + |x− ai|) (8.12)
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FIGURE 8.3: Plot of function Λ(−3,1,2,5)

In Figure 8.3, we display the plot of function ΛA for n = 4 and A = (−3, 1, 2, 5).
We can observe on the plot that the local minima of ΛA seem to be reached at points
x ∈ {a1, . . . , an}. This conjecture is demonstrated in the following proposition.

Proposition 6. Let ΛA defined as in Equation 8.12. The set of local minima of ΛA is a
subset of A.

Proof. We first consider that the ai are distinct two by two. We assume, without loss
of generality, that a1 < a2 < . . . < an.

On the portion (−∞, a1], we have ΛA(x) = ∑n
i=1 log (1 + ai − x). The function is

derivable and its derivative is equal to

Λ′A(x) = −
n

∑
i=1

1
1 + ai − x

< 0

hence ΛA is decreasing on this portion. In the same way, it can be shown that it is
increasing on [an, ∞).

On the segment Ik = [ak, ak+1], we observe that ΛA(x) = ∑k
i=1 log (1 + x− ai) +

∑n
i=k+1 log (1 + ai − x). The function is twice derivable on the segment and its sec-

ond derivative Λ′′A is equal to

Λ′′A(x) = −
k

∑
i=1

1
(1 + x− ai)2 −

n

∑
i=k+1

1
(1 + ai − x)2 < 0

which means that ΛA is concave on Ik. Based on this property, we have that the local
minima of ΛA on Ik are included in {ak, ak+1}.

These two observations prove the proposition in the case where the ai are distinct
two by two. When the ai are not distinct, the corresponding terms in the sum are
multiplied by a positive constant (the arity of the corresponding ai), which does not
modify the result.

Corollary 2. If δ > 0, A ∈ Rn and function Λδ
A : R → R is defined by Λδ

A(x) =

∑n
i=1 log (δ + |x− ai|), then the set of local minima of Λδ

A is a subset of A.

This property will be used to improve the performance of the subsequent algo-
rithms for the minimization of complexity.
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8.3.2.2 Unlabeled Data Description without Transfer

As a first step in the direction of minimum complexity transfer, we propose to study
the optimal description of an unlabeled dataset before any transfer. This problem
can be reduced to the following optimization problem:

minimize K(P) +
n

∑
i=1

K(Xi|P) (8.13)

where the complexities are defined as presented above. Assuming that the number
of prototypes is fixed, we can rewrite the objective function of Equation 8.13 as:

K(P) +
n

∑
i=1

K(Xi|P) =
n

∑
i=1

min
p∈P

d

∑
j=1

log
(

1 + |X j
i − pj|

)
+O(1) (8.14)

This objective function is similar to the objective function of K-means and can
be minimized in a same way. We propose a minimization algorithm in two steps:
In a first step, we associate each datapoint to the prototype that minimizes the de-
scription complexity of the point. In a second step, we optimize the position of the
prototypes with fixed point-prototype association. These steps are alternating until
convergence.

Step 1 consists in a simple comparison of the possible complexity values for each
prototype. The time complexity of this step is O(n× |P|), proportional to the num-
ber of points and the number of prototypes. We denote by I(p) the set of indexes of
points attached to prototype p.

In step 2, it is assumed that prototypes are associated to a set of points. We denote
by X(p) the subset of data points associated to prototype p. The objective function
for step 2 is the following:

∑
p∈P

d

∑
j=1

|X(p)|

∑
i=1

log
(

δ + |p− X(p)j
i |
)
= ∑

p∈P

d

∑
j=1

Λδ
X(p)j (8.15)

where Λ designates the function defined in Equation 8.12 and X(p)j is the vector
made up of the j-th coordinates of points in X(p). The form of this equation sug-
gests that the minimization can be done prototype by prototype and coordinate by
coordinate, by simply evaluating the Λδ

X(p)j function on points in X(p)j (an evalua-
tion of this function has a linear complexity). Consequently, the complexity of this
step is O(n2 × d).

Algorithm 1 sums up the procedure detailed above. It consists in alternating the
two steps until convergence. The time complexity is linear in the number of data. In
practice, the computation time can be reduced by using parallel computations over
the data points in step 1 and over the prototypes and dimensions in step 2. Besides,
the proximity to K-Means algorithm allows one to prove that the algorithm con-
verges in a finite number of steps, as well as to apply all the improvement tricks de-
veloped for K-Means, including better initialization (Pena, Lozano, and Larranaga,
1999) or massive parallel versions (Zhao, Ma, and He, 2009). These variants have
not been used in the context of this work.
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Algorithm 1: Unlabeled prototype-based data description with MDL
Data: Data points X, Number of prototypes
Result: Prototypes P
Initialize prototypes P;
do

Initialize prototype-data association: I(0) = . . . = I(p) = ∅ ;
for i = 1 . . . n do

p̂← arg minp ∑d
j=1 log

(
δ + |X j

i − pj|
)

;

Add i to I( p̂);

for p ∈ P do
for i = 1 . . . d do

pj ← arg mink∈I(p) ∑n
i=1 log

(
δ + |X j

k − X j
i |
)

;

while convergence not reached;

8.3.2.3 Labeled Data Description without Transfer

The second algorithm we propose, based on a prototype-based model for data de-
scription, provides a description of labeled data. It is very similar to the algorithm
proposed for unlabeled data.

Unlike in previous algorithm, the prototypes are now associated to a label y ∈
Y . Data points are expected to be attached to a prototype with the same label. As
suggested in Equation 8.7, when a point is attached to a prototype with a different
label, this results in a penalty of log |Y| bits.

The algorithm we propose for this problem is similar to algorithm 1 but has an
additional step in order to update the label of the prototype. When the set I(p) of
points attached to a prototype p is determined, the label of the prototype is deter-
mined by minimizing the number of corrections needed in YI(p) (or in other words
the number of errors). The resulting algorithm is presented in Algorithm 2.

Algorithm 2: Labeled prototype-based data description with MDL
Data: Data points (X, Y), Number of prototypes
Result: Prototypes P
Initialize prototypes P;
do

Initialize prototype-data association: I(0) = . . . = I(p) = ∅ ;
for i = 1 . . . n do

p̂← arg minp ∑d
j=1 log

(
δ + |X j

i − pj|
)

;

Add i to I( p̂);

for p ∈ P do
Y(p) ←majoritary label in YI(p) ;
for i = 1 . . . d do

pj ← arg mink∈I(p) ∑n
i=1 log

(
δ + |X j

k − X j
i |
)

;

while convergence not reached;
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8.3.2.4 Prototype-based Transductive Transfer with Simple Transformation

We now consider the case of transductive transfer with the model described in sec-
tion 8.3.1.3. For simplicity purposes, we consider here only the first step of the trans-
formation, ie. a global translation of vector ∆µ. The global objective function, to
minimize under P, Y(P) and ∆µ is then:

nS

∑
i=1

min
p∈P

(
d

∑
j=1

log
(

δ + |X j
i − pj|

)
+ I(Yi 6= Y(p))

)
+

d

∑
j=1

log
(

δ + |∆µj|
)

+
nT

∑
i=1

min
p∈P

d

∑
j=1

log
(

δ + |X j
i − pj − ∆µj|

)
(8.16)

where nS is the number of source data and nT the number of target data. This ob-
jective is made up of three parts: the first sum corresponds to the description length
of source data, the second sum to the description length of the translation vector ∆µ
and the last sum to the description length of target data. The first term is the same
as the objective minimized in Section 8.3.2.3.

We propose an algorithm of the same nature to minimize objective function 8.16.
In a first step, we fix the point-prototype association in both source and target do-
mains, using the current value of P and ∆µ. The second step consists in finding the
corresponding optimal values for the variables. The chosen strategy we propose is
an alternating minimization: minimization over P with fixed ∆µ and minimization
over ∆µ with fixed P.

For the minimization over P, we simply observe that the objective is a Λ func-
tion defined with a concatenation of two vectors: The position of the source data
points XS(p) and the position of the target data points after a translation of vec-
tor ∆µ (which will be written XT(p) − ∆µ for simplicity purposes). If we denote
the concatenation operator with symbol ⊕, the j-th component of prototype p is the
minimum of function Λδ

XS(p)j⊕(XT(p)j−∆µj)
. We notice that the set XT(p)− ∆µ can be

interpreted as a projection of target data onto source domain since the transfer is
supposed to be a translation. The minimization over ∆µ is simpler and simply con-
sists of a minimization of function Λδ

(0)⊕(XT(p)j−pj)
. The whole algorithm is summed

up in Algorithm 3.



8.3. Validation of the Framework: A Prototype-based Algorithm 109

Algorithm 3: Prototype-based unsupervised domain adaptation with MDL

Data: Source data points (XS, YS), Number of prototypes
Result: Source prototypes P, Translation vector ∆µ
Initialize prototypes P;
Initialize translation vector ∆µ;
do

Initialize source prototype-data association: IS(0) = . . . = IS(p) = ∅ ;
for i = 1 . . . nS do

p̂← arg minp ∑d
j=1 log

(
δ + |(XS)

j
i − pj|

)
;

Add i to IS( p̂);

Initialize target prototype-data association: IT(0) = . . . = IT(p) = ∅ ;
for i = 1 . . . nT do

p̂← arg minp ∑d
j=1 log

(
δ + |(XT)

j
i − ∆µj − pj|

)
;

Add i to IT( p̂);

for p ∈ P do
Y(p) ←majoritary label in YI(p) ;

do
for p ∈ P do

for j = 1 . . . d do
pj ← arg minx∈XS(p)j∪(XT(p)j−∆µj) Λδ

XS(p)j⊕(XT(p)j−∆µj)
(x) ;

for j = 1 . . . d do
∆µj ← arg minx∈{0}∪(XT(p)j−pj) Λδ

(0)⊕(XT(p)j−pj)
(x) ;

while convergence not reached;
while convergence not reached;

The general case with the transformation proposed in Section 8.3.1.3 is a direct
adaptation of Algorithm 3 with one more step corresponding to the class translation.
We do not present the complete algorithm for simplicity purposes and due to its high
similarity to the case of global translation only.

8.3.3 Measuring the quality of transfer

Unsupervised domain adaptation is not a well-posed problem; consequently, even if
it is possible to define a classification error rate over a labeled target set, this quantity
does not measure exactly the efficiency of a transfer method.

A transfer learning problem has multiple solutions, our approach consisting in
selecting the most simple solution in terms of algorithmic complexity. In some prob-
lems, even human experts cannot make the distinction between two solutions and,
in this sense, penalizing an inversion of two classes in the result of a method would
seem to be arbitrary.

The misclassification rate (or error rate) expresses how far the classification re-
sults are from the actual labels. This rate can be calculated for source and target data
(as the source model and the drift are learned simultaneously). Given a set of points
{X1, . . . , Xn} and their respective labels {Y1, . . . , Yn}, the misclassification rate of a
classifier h is defined as:

Rn(h) =
1
n

n

∑
i=1

I(Yi 6= h(Xi)) (8.17)
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Because of the previous observation, this quantity has to be considered carefully as
a high misclassification rate does not necessarily imply a bad transfer.

As seen above, non-normalized empirical risk can be seen as an upper-bound
of complexity K(Y|X, M), since each classification error has to be corrected. As a
consequence, we propose another quality index for transductive transfer, that we call
quality of transfer, and which measures the quality of the transferred target model,
after the target labels YT are available:

Qn(MT) = 1− K(YT|MT, XT)

K(YT)
(8.18)

In the case where Hypothesis 1 holds, the complexities are equal to the sum over the
dataset: K(YT) = ∑nT

i=1 K(YT,i) and K(YT|MT, XT) = ∑nT
i=1 K(YT,i|MT, XT,i).

Unlike empirical risk, the quality of transfer does not measure directly the quality
of the solution in terms of number of errors, but rather the complexity to produce
the actual solution based on the inferred solution. This difference is particularly
interesting in cases where PS[X] = PT[X] but PS[Y|X] 6= PT[Y|X]. An example of
this situation is the problem of class inversion, when the source labeling function fS :
X → Y is transformed into a target labeling function fT : X → Y such that fT(x) =
1 − fS(x). This simple transformation cannot be seen without labels in the target
domain.

8.3.4 Toy examples

We test our method on two-dimensional toy examples built artificially. We consider
two parameterized problems:

• Class translations: The input points are generated by two normal distribu-
tions. The drift consists of a translation of the means of each of the distribu-
tions. The transformation is parameterized by the translation vector.

• Class deformation (Figure 8.4): one of the class is continuously deformed from
a vertical line to a circle surrounding the second class. The deformation is
parameterized by a real number θ ∈ [0, 1].

The class translation problem seems particularly adapted to our method since it
relies on a global translation of the distribution, which is the natural bias of our algo-
rithm. However, class deformation and half-moons are more complex but provide
a good way to parameterize the difficulty of the transfer. Depending on the value
of the parameter (θ for class deformation and α for the inter-twinning moons), the
transfer requires more complex adaptation of the model.

8.3.5 Results and discussion

The class translation problem has been tested on automatically generated sets of 200
points in R2. In the source, the first class is generated by a normal distribution cen-
tered on (0, 0) and the second class by a normal distribution centered on (2, 0). Both
distributions have identity covariance matrix. In the target, the same distribution is
used for the first class, but the second class is derived from a normal distribution
centered on (t, 0).

The results obtained for the transfer from source to target highly depend on the
parameter t ∈ R (Figure 8.5).
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FIGURE 8.4: Toy problem for transfer learning with various difficulty
levels. The distribution of class 0 (plotted as black +) doesn’t change.
The distribution of class 1 (plotted as colored crosses) is parameter-
ized by a real number θ. When θ = 0, the points are aligned on a
vertical line; when θ = 1, the points are distributed on a circle sur-

rounding class 0.

FIGURE 8.5: Evolution of the classification error over the source (RS)
and target (RT) with the translation parameter t (x-axis).

The source error remains approximately constant for all values of the parameter:
the value of the error is due to the noise. When t < 0, the situation consists basically
in an inversion of the order of the centers along the x-axis. Such an inversion can-
not be deduced by any method without further instruction; our method relying on
a simplicity principle, it avoids the class inversion (which would be far too compli-
cated), and thus leads to a high target error. However, using our quality index Qn,
we would observe a large value of Qn, due to the fact that the model could correctly
describe the structure of the target but permuted the labels.

When t is close to 0, the two classes are not separable and the high target error
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TABLE 8.1: Misclassification rate for transfer (left: in source; right:
in target) with source data generated with a parameter θS and target

data generated with a parameter θT .

θT = 0 θT = 0.2 θT = 0.4 θT = 0.6 θT = 0.8 θT = 1

θS = 0 0%, 0% 0%, 0% 0%, 8.99% 0%, 20.2% 0%, 43.8% 0%, 50.6%

θS = 0.2 0%, 0% 0%, 0% 0%, 2.25% 0%, 21.3% 0%, 5.62% 0%, 52.8%

θS = 0.4 6.74%, 6.74% 5.62%, 0% 0%, 0% 0%, 0% 0%, 5.62% 1.12%, 34.8%

θS = 0.6 0%, 0% 4.49%, 1.12% 8.99%, 7.87% 0%, 0% 0%, 1.12% 7.87%, 11.2%

θS = 0.8 8.89%, 77.5% 11.2%, 15.7% 8.99%, 10.1% 1.12%, 1.12% 7.87%, 6.74% 8.99%, 44.9%

θS = 1 6.74%, 77.5% 13.5%, 58.4% 7.87%, 19.1% 10.1%, 0% 10.1%, 11.2% 14.6%, 14.6%

rate is due primarily to this non-separability. For values of t larger than 2, the trans-
fer is done as expected and the target error rate is quite low. We can note that this
value keeps decreasing: the target problem becomes more and more separable.

For class deformation, the misclassification error has been calculated for various
transfer situations: the source data are generated by our predefined process with
parameter θS and the target data are generated with parameter θT. After the learning
step, we calculate the misclassification rate on the source and on the target. The
obtained results are summed up in Table 8.1.

As in the class translation problem, the misclassification rates are lower in the
source: this is because misclassification is penalized directly in the learning for
source data. The results show that the method has difficulties adapting to topo-
logically different situations: when θS is low and θT is high, many errors occur due
to the method which essentially preserves the position of the prototypes from source
to target. The cost of the structure adaptation for the model in difficult transfers is
too high.

8.4 Conclusion

In this chapter, we have shown the similarity between analogical reasoning and
transductive transfer learning. These similarities led us to considering that the same
DGM developed for analogy can also be used to describe transductive transfer prob-
lems. We have presented a couple of experimental results that tend to justify our
principle from an empirical point of view. For these examples, we considered a very
simple application framework with a naive data description.

We have also shown that the proposed objective function is consistent with other
objective functions which are typical of machine learning: In particular, we have
seen that maximum likelihood principles or empirical risk minimization scheme can
be interpreted in terms of complexity minimization. However, the purpose of trans-
ductive transfer is not to provide a generalization of the observations, unlike for
induction. The link with inductive reasoning, and in particular the question of gen-
eralization, will be explored in next chapter.
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Chapter 9

Beyond Transfer: Learning with
Concern for Future Questions

In the previous chapter, as well as in the part related to analogical reasoning, we
have focused on a very specific task, which consists in transferring the learned con-
cept onto a given target problem, in particular onto a given dataset. This problem
is called transduction. However, two questions arise from these preliminary results.
The first question regards the feasibility of such a transductive transfer: Is it pos-
sible to determine that two datasets are related? The second question concerns an
extension of the framework: How are transductive transfer and inductive transfer
related?

The solutions we propose to these problems are closely related to the framework
of complexity-based transfer. The key notion developed in this chapter is the notion
of problem transferability. Intuitively, a model is transferable to a target problem if
it helps compressing this problem. Two alternative definitions will be given, and we
will show that all models cannot be transferred to a target problem. Based on this
observation, we expose that complete generalization is not possible and propose a
simple inductive framework based on this idea of impossible transfer.

The remainder of this chapter is organized as follows: In a first section, we dis-
cuss quickly how the previously introduced model for transductive transfer can
adapt to many other transfer learning settings. Then, we discuss the possibility
of a universal transfer based on our complexity-based framework. Finally, in Sec-
tion 9.3, we propose an inductive framework that is based on strong assumptions on
the future.

9.1 Supervised and Semi-Supervised Problems with Trans-
fer and without Transfer

In this section, we extend the methods developed in Chapter 8 to cases where some
or all labels are available in target domain. We also provide evidence that this
method can be used in the absence of transfer.

9.1.1 Supervised and Semi-Supervised Domain Adaptation

The methods presented in Chapter 8 are designed to deal with transductive transfer,
also referred to as unsupervised domain adaptation. In this framework, no labels
are available in the target domain. Another problem of interest in transfer learning
is the case where labels are available in target domain. In this case, called supervised
domain adaptation, the learner is given a source datasetDS = {(XS

i , YS
i )}i=1,...,nS and a
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target dataset DT = {(XT
i , YT

i )}i=1,...,nT and aims to infer the classifiers hS : XS → YS
and hT : XT → YT.

The supervised domain adaptation problem can be assessed by the same graphi-
cal model as transductive transfer. The objective function to minimize, in the general
case, is the following:

K(MS) + K(XS|MS) + K(YS|MS, XS) + K(MT|MS) + K(XT|MT) + K(YT|MT, XT)
(9.1)

Compared to the objective of transductive transfer, this objective includes the com-
plexity term K(YT|MT, XT) which models the number of errors done by the classifi-
cation on the target dataset.

In fact, this representation of transfer does not imply that the labels are available.
It can be considered that the labels Y are empty, which counts for a zero complexity.
It comes that the label vector YT can be sparse. This situation corresponds to semi-
supervised transfer. In this case, the presence of labels in target helps the transfer
compared to the pure transductive situation.

When applied to the previously described prototype-based model, the objective
function of Equation 9.1 can be evaluated as presented in Section 8.3.1.

9.1.2 Absence of Transfer

In all the contexts presented until now, no assumption is made on the nature of data,
and in particular on their distribution. The absence of assumption is central in the
context of transfer, since transfer learning differs from classical supervised learning
by ignoring the assumption of identically distributed data (from source to target).
However, the i.i.d. case is a particular case of transfer, where no transfer is needed
and, intuitively, MS = MT.

We propose here to study the particular case where the distribution is the same
in source and target tasks.

Theoretically speaking, supposing that (XS, YS) and (XT, YT) are i.i.d. imposes a
symmetry in the objective function of Equation 9.1: For a given model M, the terms
K(XS|M) and K(XT|M) are i.i.d. too. The same observation holds for the terms
K(XS|M, XS) and K(XS|M, XS). From there, it comes that the distributions of mod-
els MS and MT should be close, under a condition of continuity on the complexity
(if two objects are close, their complexity is close). This idea gives a good intuition
that, in this case, MS = MT.

When MS = MT (denoted simply by M), Equation 9.1 can be simplified: The
complexity term K(MT|MS) is clearly equal to zero. If we denote by ⊕ the concate-
nation of two vectors or matrices, the objective function can simplify into:

K(M) + K(XS ⊕ XT|M) + K(YS ⊕YT|M, XS ⊕ XT) (9.2)

which corresponds to a simple objective for MDL principle in a supervised setting.
However, traditional machine learning differs from what is done in this exam-

ple. In supervised learning, only one dataset is available at training time, and the
model learned from it is supposed to apply to future data that are generated by the
same distribution. In the case of transductive transfer, the target dataset is known
and the purpose is to find a target model that works well on this dataset. The nature
of the two learning problems is then very different: In the first case (transductive
transfer), the learned model is supposed to apply to a given set of data, while in the
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second case (supervised learning) the model is supposed to work well for a poten-
tially infinitely-many datasets that are not observed yet.

Applying the transductive transfer model to solve supervised learning problem
is not intended to work well for generalization, but we observe empirically that it
is the case. The good performances that can be observed show that generalization
is possible using a merely descriptive approach. Intuitively, this idea makes sense:
The observed data are supposed to be representative of the distribution.

These observations raise two new questions. The first question concerns the
problem of generalization, which is central in machine learning. The main pur-
pose of most learning methods is to infer a decision function from a given dataset
that is well-adapted to any new data. It is well-known, since the no-free-lunch theo-
rem (Wolpert, 1996), that no learning algorithm can generalize well on all datasets.
We propose to revisit this result in next section. The second question is a direct con-
sequence of this observation. Since it is not possible to learn a universal function, is
it possible to know if a learned model is transferable to a new problem?

9.2 Impossibility of Transfer?

In supervised learning, it has been shown, in a probabilistic setting, that a learning
algorithm cannot perform well on any kind of problem. The purpose of this section
is to define some notions that could be of interest in the perspective of finding a
similar result for transfer learning.

In this section, we consider that the system attempts to describe pairs of problems
X ∈ X and solutions Y ∈ Y based on intermediate objects M ∈ M, called models.
The space X is called input space (or problem space); the space Y is called the output
space; and the set M is called the class of models. In the following, we might omit to
mention these sets when it is obvious.

9.2.1 Two Notions of Transferability

The transfer learning principle based on MDL principle and presented in Equa-
tion 8.1 suggests that the transfer does not need to operate at the level of instances
but at the level of underlying models. A model is an object factorizing information
about observed entities.

In order to define transferability, we propose two similar but not equivalent no-
tions of learnability based on this theoretical tool. These notions will be then ex-
tended to define transferability.

9.2.1.1 Learnability from Source Model

The first definition of learnability considers that a problem X ∈ X is learnable by a
model MS ∈ M if giving MS as a parameter in the estimation of optimal model for
the description of X has a gain in compression:

Definition 13. Given a model MS ∈M and an integer η > 0, a problem X is called weakly
(MS, η)-learnable if the following property holds:

min
M
{K(M) + K(X|M)} ≥ min

M
{K(M|MS) + K(X|M) + η} (9.3)
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This notion of learnability means that providing the model MS to the learner will
help finding a new description of the problem shorter to the optimal description by η
bits. In particular, we have necessarily that a problem will be weakly learnable with
respect to its optimal model (ie. the model that minimizes K(M) + K(X|M)). A
weakness in this definition is the fact that the models M defined in the left-hand
side and in the right-hand side of inequality 9.3 are different. This problem is solved
by defining an alternative notion of learnability.

The second definition of learnability suggests that the optimal model that can be
used for the description of problem X can be compressed when the source model MS
is given. Unlike previous definition, MS is not directly involved in the description
of X.

Definition 14. Given a model MS ∈ M, a problem X ∈ X is called strongly (MS, η)-
learnable if the following property holds:

M = arg min
M
{K(M) + K(X|M)} =⇒ K(M) ≥ K(M|MS) + η (9.4)

These two notions of learnability based on a source model have a couple of in-
teresting properties. In particular, it can be shown that they are correlated.

Proposition 7. For any model MSM, any problem XX and any parameter η, if X is
strongly (MS, η)-learnable, then X is weakly (MS, η)-learnable.

Proof. Consider a problem X that is strongly (MS, η)-learnable and call M∗ the opti-
mal model: M∗ = arg minM{K(M) + K(X|M)}. We have then:

min
M
{K(M) + K(X|M)} = K(M∗) + K(X|M∗)

≥ K(M∗|MS) + η + K(X|M∗)
≥ min

M
{K(M|MS) + K(X|M) + η}

which proves the proposition.

A priori, the converse is not true: weak learnability does not imply strong learn-
ability. This is the consequence of the fact that the models implied in Equation 9.3
are not the same on the right hand side and on the left-hand side. However, we have
no counter-example and we have not formally proved that weak learnability does
not imply strong learnability.

9.2.1.2 Properties of Learnability

In the following proposition, we group a couple of direct properties of learnability
(either weak or strong). Their proofs are trivial and are not given.

Proposition 8. Let MS ∈M be a source model and XX a problem. The following properties
are true:

1. If X is (MS, η)-learnable, then X is (MS, η′)-learnable for all η′ ≤ η.

2. If M minimizes K(M) + K(X|M), then X is (M, η)-learnable for all η.

3. If MS is empty (MS = 〈〉), then no problem X is (MS, η)-learnable for η > 0.
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As a last property of learnability, we show in the following proposition that the
notion of learnability is related to a notion of information factorization, in the sense
that no bit of information can be added or removed.

Proposition 9. For any model MS ∈ M, if there exists a parameter η > 0 and a problem
X ∈ X such that X is strongly (MS, η)-learnable, then K(MS) ≥ η − cM, where cM is
the machine constant in the chain rule (ie. for machine M and for any objects x and y,
K(x) = K(y) + K(x|y) + cM).

Proof. If X is such a problem and M minimizes the objective K(M) + K(X|M), then
by definition K(M|MS) ≤ K(M)− η. Using chain rule on K(M), we obtain that

K(M|MS) ≤ K(M|MS) + K(MS) + cM − η

We notice that Proposition 9 is not informative if the price of the chain rule (hence
the constant cM is too high). This constant is necessary yet and cannot be ignored
as done in other applications: Unlike our previous considerations which focused
on comparing several programs, we consider here one program only, which implies
that the constants have to be held. In practice, this restriction is important but does
not affect the intuition behind the notions at play. For a first interpretation, it is
possible to ignore the constant (cM = 0). If a problem is (MS, η)-learnable under this
hypothesis, then there exists η′ ≥ η such that the problem is (MS, η′)-learnable when
considering a positive chain rule constant.

9.2.1.3 Transferable Problems

The notion of learnability we proposed in definitions 13 and 14 are not directly appli-
cable to measure transferability. The property of transferability measures the ability
to transfer knowledge from a solved (labeled) problem (XS, YS) to apply it on the
unsolved target problem XT. It can be seen as an extension of learnability where the
source model is determined from the source solved problem.

Definition 15. Let (XS, YS) ∈ X×Y be a solved source problem. The problem (XS, YS)
is said to be strongly (resp. weakly) η-transferable to the problem XT ∈ X if the set of
feasible models {MS ∈M|K(MS) + K(XS|MS) + K(YS|MS, XS) < K(XS) + K(YS|XS)}
contains an element M∗S such that XT is strongly (resp. weakly) (M∗S, η)-learnable.

This notion of transferability is interesting to consider in the perspective of task
relatedness as defined in Section 7.3.3. The introduced notions are in contrast with
the presented measures of task relatedness in the idea that it does not provide a
measure of divergence between two distributions in a domain, but between a model
(that can be a distribution) and a dataset. Our notion is more general in the sense
that it does not rely on any probabilistic setting, and focuses on the description of
input data, and not on labels. In this sense, it differs from (Zhang, Zhang, and Ye,
2012). The choice of not describing the item will be justified below, in a discussion
on negative transfer.

Finally, the difference between our definitions and the divergence introduced
by (Mahmud, 2009) is complicated. The first main difference is the purpose. Our ap-
proach does not focus on defining a measure of task-relatedness, but to what extent
a learned model can be applied to a future problem. Another major difference is the
symmetry of the considered divergence, that is not observed in our framework. For
us, the order of the task (source or target) plays a role in the notion of relatedness.
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9.2.2 Non-Transferability and Negative Transfer

The notion of negative transfer is inherent to transfer learning. As exposed in Sec-
tion 7.3.1, negative transfer designates a situation where the source problem brings
negative information to the resolution of the target problem. A simple example of
negative transfer in everyday life is the case of false friends in language learning:
The minimum complexity transfer principle at play implies that, if one word in
source language is similar to a word in target language, they must have the same
meaning. In practice, it is often not the case, which corresponds to negative transfer.

A first conjecture to define the notion of negative transfer would consist in as-
sociating non-transferability to negative transfer. This association would imply, in
particular, that negative transfer comes from a forced transfer when no transfer is
actually feasible. This situation is the context of the analysis of (Rosenstein, Marx,
Kaelbling, and Dietterich, 2005).

Another more accurate conjecture to define negative transfer makes use of the
problems’ solutions that are completely ignored by the notion of transferability. In
this conjecture, a negative transfer corresponds to a problem onto which the source
model is transferable but does not give good results. The example of false friends is
a perfect illustration of this phenomenon: the transfer is feasible but is not correct.

Another example in the prototype-based model can be found in the class trans-
lation problem given in Section 8.3.4. When a permutation of the two classes is ob-
served, the problem is clearly transferable using a source prototype-model describ-
ing the source distribution. The transfer is described by a simple translation and
offers a very good compression of data. As observed, the empirical risk is very high
for such situations, whereas the quality of the model, as defined in Equation 8.18, is
very low.

9.3 Learning with Concern for Future Questions

In this section, we explore a generalization of transfer in a context of multiple targets.
We will show how such problems can be solved and are related to the fundamental
question of induction. The solution we propose is called learning with concern for
future questions and offers larger possibilities than statistical models of learning.

9.3.1 Transfer to Multiple Targets

In Chapter 7, we described two distinct learning problems: multitask learning and
transfer learning. On the one hand, in multitask learning, the system addresses sev-
eral tasks in parallel and exploits their relatedness in order to speed up the compu-
tation. On the other hand, transfer learning introduces an asymmetry, by isolating a
source task which is supposed to contain the meaningful knowledge, and transferring
it to a target task.

Multitask learning can be summed up by the DGM given in Figure 9.1: In this
DGM, the compression of each ordered pair (Xi, Yi) (where Xi does not represent
only one instance but a batch of data) is done by a model Mi. Common information
about all tasks, hence all models Mi is factorized into a meta-model M. A similar DGM
will be presented with more details in Chapter 14 for the problem of multi-source
clustering.

In this DGM, the meta-model M plays a prominent role: It influences all other
local models. It is specifically designed to this purpose (in the training phase, the
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M Mi
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yi

T

FIGURE 9.1: Model-based DGM for multitask learning.

meta-model is trained to minimize the global description length). In multi-target
transfer, this model is chosen in order to describe a source task (see DGM in Fig-
ure 9.2). This corresponds to a situation where a source problem is available, as well
as multiple target problems. The corresponding objective function is:

K(MS) + K(XS|MS) + K(YS|MS, XS) +
T

∑
i=1

K(Mi|M) + K(Xi|Mi) + K(Yi|Xi, Mi)

(9.5)
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yS

Mi

xi

yi

T

FIGURE 9.2: Model-based DGM for multitask learning.

The main weakness of this representation is the lack of impact of the source over
numerous targets. In particular, there is no sequential aspect in which the source
model is learned first, then it is used for the transfer to target problems. Here, the
representation of the source problem is dictated by the representation of the target
problems.

9.3.2 Transfer, Transduction and Induction: Which Links?

In the presented approach of transfer, the purpose was to solve a specific task. This
task is known in advance, at learning time. A learning problem of this kind is called
transductive, after the concept of transduction introduced by (Vapnik, 2006). The
idea of transduction, initially developed for SVMs (Gammerman, Vovk, and Vapnik,
1998), is to solve a simple task directly, instead of solving a larger and more difficult
task as an intermediate step. In transductive transfer, the problem is to learn a correct
representation for the target data. Knowing if this representation can be generalized
is absolutely not the main concern.

In many real-life problems, the tasks are not that well-posed, and especially the
target problem may not be available at learning stage. This is the case in particu-
lar in the traditional supervised learning framework where the learning algorithm
is completely blind to the test data which are used only for the evaluation of the



120 Chapter 9. Beyond Transfer: Learning with Concern for Future Questions

learned classifier. This means that the learning criterion expressed in Equation 8.1
cannot be used directly in these contexts. Whereas the aim of Transfer Learning is to
find an answer to a specified problem (the target task), the major issue of induction
is generalization: The system has to find a representation (or, more specifically, a de-
cision function) which will work well not on a a given problem but on any problem
similar to the source problem. The purpose of this section is to define properly what
is meant by “any” and “similar”.

Even if these two notions seem to be contradictory, there exist clear links between
the two of them.

• From induction to transduction: The link is direct, induction being the ac-
quisition of general knowledge, while transduction is the acquisition of task-
specific knowledge. Transduction could be seen as a direct application of in-
duction. However, this is not a correct way to reason: Generalization should
not be an intermediate step to solve simple specific problems (Vapnik, 1995).

• From transduction to induction: Generalization from one situation is equiv-
alent to applying a task-specific knowledge to any problem. From this point
of view, induction might be interpreted as transduction applied to multiple
targets.

The concept of Kolmogorov complexity is fundamental in the understanding of
induction. It has been introduced in the seminal works of Ray Solomonoff on induc-
tion (Solomonoff, 1964). These works are based on the theory of Bayesian learning
and focus on infinite sequences. Given an observed infinite sequence x, the ques-
tion of induction consists in predicting the next elements in the sequence. Knowing
that the observed phenomenon is given by a distribution µ, Bayes rule is expressed
by µ(y|x) = µ(xy)/µ(x). Using this formalism, the question of induction consists
in finding a good approximation of µ which is not computable. The strength of
Solomonoff’s theory of the universal induction is to show that there exists a univer-
sal distribution M that is a good estimator of all computable distribution µ. This
distribution is related to Kolmogorov complexity: M(x) ' 2−K(x) (see Chapter 4
in (Li and Vitányi, 2008) for more details on the construction of M).

The convergence theorem, proved in various contexts by (Solomonoff, 1978) or
(Hutter, 2003), compares the quality of the estimation based on universal distribu-
tion to the actual distribution and proves that the estimation converges to the actual
quality when the size of the input x increases.

This theory of induction gave birth to another theory, inspired by both the the-
ory of the universal induction and reinforcement learning. AIXI (Hutter, 2001) is
a sequential approach which considers that the events faced by the system are dis-
tributed with an unknown distribution µ. This distribution is estimated with the
universal distribution M. Despite its promise to be the first universal intelligent
agent, AIXI has some limitations, such as its dependency on rewards (hence on a
teacher) and its convergence to suboptimal states (Orseau, 2010). In order to over-
come these difficulties, the Knowledge-Seeking Agent (Orseau, 2014) is defined in
an active setting (its actions affect the environment) but does not adapt its behaviour
with regards to rewards.

Our point of view is very different from these methods, but illustrates in an al-
ternative way that complexity is a good candidate to model intelligence. The main
difference between our approach and the described models (Solomonoff’s theory,
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AIXI and Knowledge-Seeking Agent) is the probabilistic point of view. These meth-
ods rely on an approximation of distributions (posterior distributions in Bayes rule
or true distributions in a reinforcement learning environment), while we consider
general and a priori non probabilistic environments. Besides, our approach is more
cognitively inspired, since it does not aim to assess the actual state of the word but
relies on an a priori knowledge of the future. We will discuss later the possibility to
consider a universal distribution for the future states.

9.3.3 Learning with No Future in Mind

The first solution that is usually chosen in machine learning to solve the problem
of induction with the MDL principle consists in considering a non-existing target,
hence XT = 〈〉. This assumption is consistent with the idea that target data are not
available at learning stage.

When choosing XT = 〈〉, the complexity term K(XT|MT) is equal to 0, which
leads to a general objective function:

K(MS) + K(XS|MS) + K(YS|MS, XS) + K(MT|MS) (9.6)

In this objective function (to be minimized over models MS and MT), the target
model is only present in the transfer term K(MT|MS) which is minimal for MS =
MT. From this observation, it comes that not considering a target at learning stage
is similar to considering a stationary process in which the target can be modeled
with the same representation as the source. When models are probability distribu-
tions, this corresponds to the assumption that source and target data are identically
distributed.

9.3.4 Including Priors over the Future

Supposing that the i.i.d. hypothesis holds, as suggested by the empty-target hypoth-
esis, is a very strong assumption. It implies that the system expects the target data
to be chosen inside a very limited class of data. Other classes of problems can be
chosen, which would correspond to other assumptions over the future. In order to
allow these classes, we propose a methodology inspired by the remarks exposed in
Section 9.3.2.

We denote by Cr(MS, MT; XS, YS, XT) the quantity defined in Equation 8.1. Func-
tion Cr corresponds to the learning criterion to be minimized over source and target
models MS and MT when observations (XS, YS, XT) are fixed. In this notation, we
split the arguments of the criterion function Cr in two: the models (which are vari-
ables in the optimization process) and the data. In cases where the source data are
obvious, we may abusively omit them in the notation of the criterion and thus write
Cr(MS, MT; XT) for simplicity reasons.

Consider that the numberé N of possible target questions is finite and positive.
This hypothesis makes sense in the context of a discrete machine, hence in any
computer-based approach. We denote by X(i)

T the i-th possible target problem. Each
of them is described by a model M(i)

T .
Unlike in multi-target transfer as described earlier, the system does not have ac-

cess to the future target problem, but has to choose among various possible targets.
For this reason, induction is different from multi-target transfer. The solution we
propose considers all the transfer problems (transferring from source data (XS, YS)
to target data XT) as possible problems to solve, instead of considering all possible
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target data XT as future states. Based on this idea, learning a generalization consists
in finding the models MS and M(i)

T which are optimal for all potential target questions.
In mathematical terms, this coincides with the following multi-objective optimiza-
tion problem:

minimize
MS,M(1)

T ,...,M(N)
T

[
Cr(MS, M(1)

T ; X(1)
T ), . . . , Cr(MS, M(N)

T ; X(N)
T )

]
(9.7)

Because single-objective optimization and multi-criterion optimization are fun-
damentally different (Ehrgott, 2000), the notion of optimality of a solution is differ-
ent in both domains. The notion of Pareto optimality corresponds to a state where
it is impossible to improve on one objective without losing on the others. More for-
mally, if f1, . . . , fn are n objective functions defined on a set X and S ⊂ X , a feasible
solution x∗ ∈ S of the problem:

minimize
x∈S

[ f1(x), . . . , fn(x)]

is called:

• Pareto optimal if there exists no x ∈ X such that fk(x) ≤ fk(x∗) for all k and
fi(x) < fi(x∗) for some i.

• weakly Pareto optimal if for all x ∈ S, fk(x) < fk(x∗) for all k.

It can be shown (see for example Proposition 3.9 in (Ehrgott, 2000)) that the solu-
tion x∗ of the scalarized single objective optimization problem

minimize
x∈S

n

∑
i=1

λi fi(x)

is weakly Pareto optimal if λk ≥ 0 for all k, and Pareto optimal if λk > 0 for all k.
Applied to the problem of Equation 9.7, this proposition implies that, if we de-

fined some positive weights λi for i = 1, . . . , N, then the models minimizing

N

∑
i=1

λiCr(MS, M(i)
T ; X(i)

T ) (9.8)

form a Pareto optimum. In the following, we will consider that such solutions are
actual solutions of the generalization problem.

The choice of the vector parameter λ is arbitrary in the sense that any positive
vector will lead to a Pareto optimal solution, however in practice the value of λ
works as a weighting of the objective functions. Intuitively, it is reasonable to give
a higher weight to target problems which are more likely to be encountered. This
choice of parameter λ corresponds to a prior over the future. Considering a normal-
ization of λ (hence ∑N

i=1 λi = 1), and the two-parts expression of Cr, the first part
being shared by all the Cr(MS, M(i)

T ; X(i)
T ), we finally obtain the following objective

function:

K(MS) + K(XS|MS) + K(YS|MS, XS) +
N

∑
i=1

λi

[
K(M(i)

T |MS) + K(X(i)
T |M

(i)
T )
]

(9.9)

We consider the minimization of this objective function as an inductive principle
that we call Learning with Concern for Future Questions (LCFQ). This framework is
guided by the idea that the learning system may have some prior over the future.
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Two remarks can be done on Equation 9.9. Firstly, the function does not corre-
spond to a complexity value and does not make any sense in terms of algorithmic
information theory. The initial elements are complexities but the weighted sum (cor-
responding to the Pareto) is not. Secondly, the weighted sum over target terms can
be seen as an expected value, where the terms λi correspond to the probability over
target dataset X(i)

T . Finally, the role played by the source in Equation 9.9 is com-
pletely different from its role in Equation 9.5. In multi-target transfer, the descrip-
tion of source data is influenced equally by all targets. Here, the source complexity
remains the prominent term of the objective, and all target elements do not have the
same weight in the description, which makes this objective both more general and
more adapted to induction.

9.3.5 Some Priors for Future Questions

The learning objective defined in Equation 9.9 relies on the definition of a distribu-
tion defined by the parameters λi. As explained, this distribution can be interpreted
as a prior of the learner about the future problem he might face. This prior is defined
at the learning time and biases the interpretation of data. A first possibility consists
in having these coefficients explicitly given. For instance, the future state can be
given in advance to the learner with some uncertainty. Transfer is a particular case
of this situation, since it corresponds to the case where λi = 1 for the target dataset
and λi = 0 for all other datasets.

More interestingly, we can consider that the target points are independent and
identically distributed with a probability distribution q. We also consider that the
future dataset will contain exactly n points. The expected value of Kolmogorov com-
plexity for the future can be then computed, using Hypothesis 1:

EX1,...,Xn∼q [K(X|M)] =
∫

X1

. . .
∫

Xn

p(X1, . . . , Xn)K(X1, . . . , Xn|M)dXn . . . dX1

=
∫

X1

. . .
∫

Xn

(
n

∏
j=1

p(Xj)

)(
n

∑
i=1

K(Xi|M)

)
dXn . . . dX1

=
n

∑
i=1

∫
Xi

p(Xi)K(Xi|M)

(∫
X−i

p(X−i)dX−i

)
dXi

=
n

∑
i=1

∫
Xi

p(Xi)K(Xi|M)dXi

= nEX∼q [K(X|M)]

In particular, when M is a probabilistic model (associated to distribution p), we have
K(X|M) = − log p(X) + O(1) and EX∼q [K(X|M)] = DKL(q||p) + H(q) + O(1).
Based on this expression, and using the definition that K(YS|XS, MS) = nSRnS(hp),
the inference problem becomes:

minimize
p

−
nS

∑
i=1

log p(Xi) + nSRnS(hp) + nTDKL(q||p) (9.10)

We observe that the estimated distribution is naturally biased by the prior toward
the future distribution. When the number of source samples is very low compared
to the number of target points, the solution of the minimization problem is p = q,
which means that the source data are too few to have an actual impact onto the
learning.
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In practice, however, we can imagine that such a distribution is unknown. In
the traditional i.i.d. setting, the solution consists in inferring the distribution, by
considering that future data will have the same distribution as observed data. This
assumption is very strong, but is of the same nature as any prior over the future: It
consists in weighting the possible futures according to the probability that they are
generated using the current distribution. Since the distribution is unknown, it is not
possible to translate this idea directly into our framework. Future works on this idea
must include a solution on this problem. In this direction, the idea of Solomonoff’s
theory seems particularly promising: Is it possible to use a universal distribution
as an estimation of the prior over the future? However, in this case, the solution
becomes incomputable, which is not admissible from a cognitive point of view nor
in practice. Approximations of the universal distribution could be used.

9.3.6 Discussion: A general learning paradigm?

LCFQ appears to be very similar to other learning paradigms. In particular, we
exposed that it corresponds to a more general version of machine learning with i.i.d.
hypothesis over data. Moreover, we can see that the various terms in the source
description correspond to objective functions that are commonly used in machine
learning, such as log-likelihood or empirical risk. We want to conclude the chapter
dedicated to LCFQ on a couple of remarks relative to learning in general.

In situation of designing a learning system, three major questions necessarily
emerge, an answer to which is expected to get the system acting as desired. These
questions are very general and apply for both human learning and machine learning.

Question 1: On which data and knowledge does the learner rely in order to
learn? The question of the nature of data is rarely addressed, even if it is of major
importance. Depending on the problem of interest, the data can be vectors, character
strings, categorical values, binary values... Besides, data can be labeled, unlabeled,
partially labeled. Apart from the choice of data, the knowledge of the learner also
includes prior knowledge of the model and of the domain. Such knowledge are
of major importance in human cognition (Chi, Glaser, and Farr, 2014), but are also
present in machine learning with the notion of prior which is inherent in Bayesian
learning. Finally, some additional information can be accessible to the learner, as
depicted in the paradigme of Learning Using Privileged Information (Vapnik and
Izmailov, 2015).

Question 2: What does the learner aim to learn? The question of the objective of
learning has a main influence on how the system will effectively perform its learn-
ing task. In human cognition, it appears to be straightforward that the objective
directs the learning process. Several objectives may be identified, such as rote learn-
ing (learning by heart: the learner has access to a set of solved problems and knows
that he will be asked about problems among this learned set), transductive learn-
ing (solving on precise problem known in advance) or inductive learning (learning
general concepts).

Question 3: On which machine does the learner try to learn? Even if the word
“machine” is part of the expression “machine learning”, the question of the machine
used in the learning process is rarely addressed. However it is of great importance
to know the strengths and limitations of the machine which is used to learn. Two
understandings of the word machine can be considered here. On the one hand, the
computer itself may have some importance in the learning process. For example, a
machine with bounded-memory can be chosen for the learning. On the other hand,
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the machine can be understood more formally as the Turing machine, ie. the program
itself. The assumption of choosing a specific set of programs for learning is well-
accepted in the machine learning field.

Thinking of a global learning theory would necessarily lead to addressing the
question of building a learning framework which would be as general as possible
and would be consistent with the questions considered above:

How to define a theory which would offer a machine-dependent approach of
learning valid for any kind of knowledge and any learning goal?

To our knowledge, no existing framework offers such a full description of learn-
ing. Despite its simplicity, LCFQ seems to be a good candidate:

• The use of Kolmogorov complexity makes the principle agnostic to the repre-
sentation of data. The only limitation is that data must be representable on a
Turing machine, which is a very reasonable restriction in the domain of ma-
chine learning.

• The goal of the learner is directly present in the prior over the future. A goal
corresponds to an expected future.

• The choice of the machine is present in the definition of complexity. We remind
that complexity is defined for a fixed universal Turing machine. Physical and
logical limitations can be added in the form of penalties inside the definition
of function K(.)

Further research is needed in order to provide better guarantees for the good per-
formance of this principle. In particular, it seems important to determine rigorously
how to define the priors depending on the desired learning goals.

9.4 Conclusion

In this chapter, we have presented extensions of the minimum complexity transfer
inspired by analogical reasoning. We exhibited a couple of interesting properties,
including a possible extension of our method to targets where labels are available.
From a more general point of view, we also introduced preliminary results on learn-
ability and transferability. These results were used in particular to define negative
transfer. Finally, we presented a general learning framework, extending transfer
learning but including multiple potential targets. This framework, called Learning
with concern for future questions, has been shown to be extremely general.

This chapter concludes the work we propose on transfer learning. Our purpose
was to extend the procedure of minimum complexity analogies to machine learn-
ing problems where independence is not observed between training time and test
time. In the following part, we will extend this approach and consider not only two
time steps (training and test) but an arbitrary number of time steps. Such problems
are typical of the domain of data stream mining, incremental learning and online
learning.
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Part III

Incremental Learning
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Chapter 10

From Transfer Learning to
Incremental Learning

Time is not necessarily a fundamental notion in transfer learning. Obviously transfer
can be needed when the targeted concept evolved over time and is changed at test
step. However, in most use cases of transfer learning, the target task is simply chosen
from a completely different domain.

The domain of data stream mining is a perfect example of a context reuniting
time dynamic and knowledge transfer. The increasing number of automatically gen-
erated data (for instance data generated by sensors, Internet of things or social me-
dia) leads to the emergence of new issues that offline learning cannot cope with. In
non-stationary environments, the process generating these data may change over
time, hence the learned concept becomes invalid. Adaptation to this non-stationary
nature, called concept drift, is an intensively studied topic and requires mechanisms
close to transfer.

The purpose of this chapter is to adapt the DGM proposed for analogical reason-
ing and transfer learning and to show its efficiency in data stream mining. We will
show that this approach is consistent with state of the art techniques and has a valid
probabilistic counterpart.

The remainder of this chapter is organized as follows. We first present the prob-
lem of online learning with concept drift: We provide the useful theoretical notions
as well as the main trends to cope with concept drift. In Section 10.2, we propose
a DGM for incremental learning and interpret the state of the art methods with re-
gards to our framework. Lastly, we propose an application of our framework with
two naive algorithms.

This chapter presents and extends the ideas introduced in (Murena, Cornuéjols,
and Dessalles, 2017).

10.1 Introduction: Learning in Streaming Environments

In this section, we propose an overview of the problem of data stream mining (which
will also be referred to as incremental learning or online learning). This introduction
will not present the algorithms into more details, which will be done in next session.

10.1.1 A Recent Problem: Stream Mining

We presented transfer learning and domain adaptation as a first break of the tradi-
tional model of learning with two identically distributed datasets, one for the train-
ing and one for the testing. Data stream mining is another sub-domain of data min-
ing that goes against this conception of learning.
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The rise of data stream mining accompanies the emergence of new data gener-
ation processes. With the quick development of the Internet of Things (IoT), social
media and mobile devices, the data generation rate keeps increasing. In 2012, (Gantz
and Reinsel, 2012) estimates that over 2.8ZB of data were generated and processed
(hence 2.8× 1021 bytes) and that this number should be multiplied by 15 over 2020.
This enormous and ever-growing amount of automatically generated data raises
new challenges in the domain of data mining (Council, 2013). One of the challenges
is the emergence of data streams: Instead of being generated in batches, data are pro-
duced one by one at very high and uneven rates, in a continuous and potentially
unbounded fashion. As exposed by (Babcock, Babu, Datar, Motwani, and Widom,
2002), data stream mining differs in multiple ways from traditional data mining:

• Online nature: Data arrive one by one and are not accessible in batches. This
forces the system to adapt and learn online. The very high rate requires the
learning system to be able to handle new data on the fly and in real time.

• Absence of control: In batch learning, most methods perform multiple passes
on the batch of data. Besides, the recent field of curriculum learning (Bengio,
Louradour, Collobert, and Weston, 2009) encourages to reorganize the data for
the system to learn more efficiently. Neither of these two ideas can be used
with data streams since there is absolutely no control over the order of data.

• Memory limitation: Data streams can be unbounded or, in general, produce
volumes of data that cannot be stored in memory. Elements of the streams are
generally discarded after they are processed. Even if the system stores some
data in memory, the size of the memory is necessarily small compared to the
whole stream.

Another problem that is inherent to data stream mining is the temporal evolution
of the data distribution. The stationarity hypothesis does not apply in most real-life
situations, because of changes in users’ behaviors, seasonality effects or physical
changes (including aging effects). Seasonality can affect either physical measures
(for instance by affecting sensors) or users’ behaviors (which is taken into account
in some recommendation appliations for instance (Hidasi and Tikk, 2012)). Existing
applications of data stream mining with concept drift can be categorized into these
two remaining categories of causes:

• Changes in users’ behaviors: In several real-world scenarios, data are gener-
ated by human users in interaction with a service (a social media, a website, a
connected object...), which implies that the data are affected by the changes that
might happen in the users’ behaviors. For instance, (Widyantoro, Ioerger, and
Yen, 2003) studied online tracking of users’ preferences. Such an adaptation
process has direct applications in the field of recommender systems, as pro-
posed in (Kuo, Chen, and Liang, 2009) for location-based mobile commerce, or
in (Cao, Chen, Yang, and Xiong, 2009). The change in users’ behaviors can also
be taken into account in the analysis of web usage data, as presented by (Da
Silva, Lechevallier, Rossi, and Carvalho, 2007).

• Physical changes: Sensors can be affected either by alterations of their ca-
pacities or by global changes in the environment. For instance, (Bessa, Mi-
randa, and Gama, 2009) describes the importance of considering concept drift
in wind speed in wind power forecasting (ie. predicting the output of wind
parks). The same kind of evolution can also be observed in most applica-
tions to monitoring and control, including mass flow detection (Pechenizkiy,
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Bakker, Žliobaitė, Ivannikov, and Kärkkäinen, 2010) and chemical activity pre-
diction in a multitube reactor (Kadlec and Gabrys, 2011). A last applicative
field is the biomedical domain. For instance, regarding the evolution of an-
tibiotic resistance (Tsymbal, Pechenizkiy, Cunningham, and Puuronen, 2006;
Tsymbal, Pechenizkiy, Cunningham, and Puuronen, 2008), it is observed that
new pathogens can develop, against which previously effective antibiotics are
ineffective. Clinical studies are also affected by such phenomenons, and by
changes in human demographics (Kukar, 2003).

For a more complete overview of applicative fields, we refer the reader to the
survey by (Žliobaitė, Pechenizkiy, and Gama, 2016).

10.1.2 Introducing Concept Drift

As introduced previously, concept drift corresponds to a change in the data dis-
tribution that happens during the streaming. We presented several possible fac-
tors that can cause a concept drift in different domains. We will now introduce the
main ideas necessary to describe concept drift. These notions are now classical, and
can be found in reference papers such as (Gama, Žliobaitė, Bifet, Pechenizkiy, and
Bouchachia, 2014; Ditzler, Roveri, Alippi, and Polikar, 2015; Tsymbal, 2004; Webb,
Hyde, Cao, Nguyen, and Petitjean, 2016).

In order to characterize concept drift, we adopt the perspective of statistical
learning. A concept drift corresponds to a change in the joint distribution pt(X, Y)
over time:

pt(X, Y) 6= pu(X, Y)

for two time steps t 6= u. Following the decomposition pt(X, Y) = pt(X)pt(Y|X),
a concept drift can be the consequence of changes in either the posterior distribu-
tion pt(Y|X) or the distribution of non-class attributes pt(X). This leads to the fol-
lowing taxonomy (illustrated in Figure 10.1):

• Real concept drift characterizes a change in the posterior distribution pt(Y|X).
This change can be accompanied by a change of the non-class attribute distri-
bution pt(X). Less formally, real concept drift can be interpreted as a change
in the class boundary.

• Virtual concept drift characterizes a change in the non-class attribute distribu-
tion pt(X). If this change is not accompanied by a change in posterior, the drift
is called pure covariate shift by (Webb, Hyde, Cao, Nguyen, and Petitjean, 2016).

At first sight, virtual drift might seem to have less impact than real drift since
it does not affect the class boundary directly. In practice, this idea is obviously in-
correct and the distinction between real and virtual drifts is only formal. As pointed
out by (Hoens, Polikar, and Chawla, 2012), the change in pt(X) may change the error
of the learned model and thus require a retraining of the model. Equivalently, (De-
lany, Cunningham, Tsymbal, and Coyle, 2005) states that the learned boundary will
change depending on the non-label data point distribution, which will obviously
lead to a change in the error. Consequently, the distinction between real and virtual
drifts is never taken into account in practical situations.

A special but noticeable kind of real drift is the case of novel class appearance.
This problem appears in situations where new labels are observed, that have not
appeared yet in the stream (Masud, Gao, Khan, Han, and Thuraisingham, 2011; Mu,
Ting, and Zhou, 2017). This problem is particularly challenging when the feedback
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(A) Source distribution pt(X, Y) (before
concept drift)

(B) Distribution pu(X, Y) after real drift:
pt(Y) 6= pu(Y)

(C) Distribution pu(X, Y) after real drift:
pt(Y|X) 6= pu(Y|X)

(D) Distribution pu(X, Y) after virtual
drift: pt(X) 6= pu(X)

FIGURE 10.1: Real and virtual drifts.

on the labels are not systematically given to the learner. From a theoretical point of
view, it can be related to real concept drift, where the probability of emerging class c
before the drift is pt(Y = c|X) = 0.

Regarding the temporality of the process, the transition from one concept to the
other can take several forms, as illustrated in Figure 10.2.

Abrupt drifts correspond to a very short transition from one concept to another.
As suggested by (Webb, Hyde, Cao, Nguyen, and Petitjean, 2016), a threshold can
be used on the duration of the transition in order to define if a drift is abrupt or ex-
tended. Such a threshold depends naturally on the application. A particular case of
abrupt drift is the blip drift, ie. abrupt drifts accompanying a very short-lasting con-
cept. Blips are most often considered as outliers and are thus ignored: The difficulty
of handling concept drift is to distinguish between what is a new concept and what
is only an outlier (Gama, Žliobaitė, Bifet, Pechenizkiy, and Bouchachia, 2014). How-
ever, (Webb, Hyde, Cao, Nguyen, and Petitjean, 2016) makes a distinction between
outliers and blips: Outliers are isolate points, while blips are short-lasting sequences
of equally distributed points.

Extended drifts (ie. non-abrupt drits) are mainly separated in two categories:
incremental and gradual drifts. The distinction between these two categories is sub-
tle and might differ from one author to the other. A strict distinction is given by
the formalism of (Webb, Hyde, Cao, Nguyen, and Petitjean, 2016). An incremental
drift designates a transition during which each new encountered concept is closer
to the target concept and further from the initial concept. A gradual drift involves
intermediate steps such that the distance between one concept and a later successor
remains low. Following (Hoens, Polikar, and Chawla, 2012), this difference can be
related to smoothness: the authors do not make a distinction between gradual and
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incremental drifts, but we propose to interpret the distinction between them as a
consequence of smoothness, incremental drifts being smoother than gradual drifts.

(A) Abrupt (B) Incremental (C) Gradual (D) Recurrent

FIGURE 10.2: Characterization of concept drift transition.

A last category of drifts are relative to the repetition of concepts. When a past
concept is reused in the stream, the drift is said to be reocurring (or recurrent). These
drifts are typical of seasonality effects. We will discuss them in Section 11.3.1. Reoc-
currence is not necessarily periodic. A periodic recurrent drift is also called cyclical
drift.

10.1.3 Passive and Active Methods

In practice, the main general setting for data stream mining, called test-then-train
scenario, divides the process in three step:

1. Prediction: A new example Xt is received from the stream and classified into ŷt
using the up-to-date model.

2. Diagnosis: The true label yt is received (in general at the same time as next
example Xt+1) and the loss l(yt, ŷt) can be evaluated.

3. Update: The current model is updated according to the computed loss.

In this general schema, two questions arise: How to predict the label, and how to
update the model? The first question depends on the chosen model. In general, the
models are the same as classical supervised methods, hence the prediction simply
consists in applying a pre-trained classifier on the observation.

The question of the update is more interesting and leads to the distinction be-
tween so-called passive and active methods.

For passive algorithms, the model is updated for each observation, without ac-
tively seeking for a change in data distribution. The main advantages of passive
algorithms is that they are supposed to maintain an up-to-date model all along the
stream.

Among the passive methods, methods based on decision trees are popular. In
particular, Very Fast Decision Trees (Domingos and Hulten, 2000), an adaptation of
Hoeffding trees to stationary data streams, have been modified to be used in non-
stationary streams (Hulten, Spencer, and Domingos, 2001). This methods, called
CVFDT, relies on instance selection with an adaptive sliding window strategy. Other
similar methods rely on other tree constructions, such as the McDiarmid tree algo-
rithm (Rutkowski, Pietruczuk, Duda, and Jaworski, 2013).

Among other popular approaches, passive methods are often based on ensemble
models (Gomes, Barddal, Enembreck, and Bifet, 2017). In such approaches, a pool
of classifier is maintained in memory and adapted according to the observations.
In offline learning, ensemble methods are used mainly to improve the precision of
classifiers. In online settings, ensemble methods has several advantages since they
are particularly flexible regarding the addition or deletion of concepts. When a new
concept is detected, they can adapt to it directly by adding a new model in the pool;
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at the same time, they can easily discard and remove outdated models that are not
used anymore. Moreover, they can continuously adapt the weights for the majority
voting and hence be consistent with the current data distribution. These advan-
tages have been observed theoretically (Ditzler, Rosen, and Polikar, 2014) with per-
formance bounds inspired by the results of (Ben-David, Blitzer, Crammer, Kulesza,
Pereira, and Vaughan, 2010), and in practice with algorithms such as Streaming En-
semble Algorithm (Street and Kim, 2001), Online Nonstationary Boosting (Pocock,
Yiapanis, Singer, Luján, and Brown, 2010), Dynamic Weighted Majority (Kolter and
Maloof, 2007), Learn++.NSE (Elwell and Polikar, 2011), or Dynamically Expanded
Ensemble Algorithm (Pietruczuk, Rutkowski, Jaworski, and Duda, 2017).

Unlike passive methods, active algorithms update the model only when neces-
sary. Consequently, active approaches face two main challenges: detecting the con-
cept drift and adapting the model. Following (Gama, Žliobaitė, Bifet, Pechenizkiy,
and Bouchachia, 2014), drift detection techniques can be classified in several cate-
gories.

Sequential analysis relies on sequential statistical tests in order to detect a change
in the distribution. The statistical tests used for sequential analysis follow similar di-
rections as the Sequential Probability Ratio Test (Wald, 1973). This test evaluates the
ratio of probabilities for data to be generated by a target distribution p1 rather than
a source distribution p0. The cumulative sum (CUSUM) test is employed to track
the deviation of the mean of a sequence from the value 0: this sequential test is fre-
quently employed in data stream mining (Alippi and Roveri, 2006; Muthukrishnan,
Berg, and Wu, 2007).

Control charts (or Statistical Process Control) groups together several statistical
methods usually employed for quality control (Wheeler and Chambers, 1992). In
their original case of use, these methods are supposed to track variations, and in
particular deterioration, in processes. The idea of using SPC appears in particu-
lar in (Lanquillon, 2001) which suggests the use of Shewhart and CUSUM Control
Charts, or (Bouchachia, 2011).

Approaches based on sliding windows store past information in fixed-sized or
sliding windows and use them either to compare the past and present distribu-
tions or to detect changes directly in the current window (Bifet and Gavalda, 2007).
Among these approaches, some use two windows, one for the past distribution and
one for the present distribution. The data in both windows are then compared in or-
der to determine if they are generated by the same distribution, with Chernoff bound
in (Kifer, Ben-David, and Gehrke, 2004), entropy (Vorburger and Bernstein, 2006)
or Kullback-Leibler divergence (Sebastião and Gama, 2007). Unlike these methods,
ADaptive sliding WINdow (ADWIN) (Bifet and Gavalda, 2007) is based on one sin-
gle window of increasing size: A drift is detected inside the window when it can be
split into two sub-windows of very distinct mean values.

Since passive approaches are designed to adapt slightly at every time step, they
are best suited for adaptation to gradual or incremental drifts. On the contrary, active
approaches work well for streams with abrupt drifts that are easier to be detected.
Active methods tend to detect drifts with a delay, which is higher in the case of
incremental drifts for instance.
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10.2 Minimum Complexity Transfer for Incremental Learn-
ing

In this section, we propose an extension of the DGM previously proposed for trans-
fer learning. This extension is very inspired by Hidden Markov Models and can be
used in various situations.

10.2.1 Notations for Online Learning

LetP be a problem space and S a solution space. At a time step t, the system receives
a problem Xt ∈ P and aims at predicting the solution Ŷt ∈ S . After giving its
prediction, the system may receive the actual solution Yt to the given problem.

This formalism is consistent with several usual situations. In particular it covers
the two cases described by (Read, Bifet, Pfahringer, and Holmes, 2012): instance-
incremental and batch-incremental learning .

In instance-incremental learning, the system receives data one by one. At a step t,
the learner receives a point x ∈ X where X is an input space (typically, X = Rd) and
has to predict an output y ∈ Y (where the output space Y can be either continuous
in regression, or finite in classification).

In batch-incremental learning, the learner receives a batch of data x1, . . . , xp and
has to attribute a label y1, . . . , yp to each of the input points.

Using our notation is direct in both cases. In instance-incremental learning, the
problem space and the input space are the same. In batch-incremental learning, a
problem consists of a batch of instances of the input space X .

In both cases, the problem at time t is denoted by Xt. In instance-incremental
learning, Xt ∈ X is directly an element of the input space. If X is a vector space,
we denote by Xi

t the i-th coordinate of the vector Xt. More generally, we will use
the upper-script index to designate the coordinate of a vector. In batch-incremental
learning, Xt is given in form of a list and we will designate by Xt,n the n-th element
of Xt. In particular, Xt,n is an element of the input space X .

10.2.2 A Graphical Model for Incremental Learning

We now propose a DGM for incremental learning. The proposed solution is based
on the idea that online learning might be seen as successive steps of transfer learn-
ing. We will discuss why this assumption is not exact and what consequences these
differences impose onto the model.

In order to deal with incremental learning, and inspired by the model introduced
in Figure 5.5, we will consider that each time step t will be associated to a model Mt.
This model is used to describe both the problem Xt and the solution Yt. The prob-
lem Xt is described directly with the model Mt. The solution Yt can be described
either by itself or with the help of a decision function βt (the classifier in a classifica-
tion problem or regressor in a regression problem), induced by the model.

When the observations are entirely independent, the underlying models are in-
dependent, which means that the general process could be described by the DGM of
Figure 10.3. The corresponding objective function is then:

T

∑
t=1

K(Mt) + K(Xt|Mt) + K(Yt|Mt, Xt) (10.1)
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This hypothesis is very restrictive yet, and ignores completely the chronological as-
pect of online learning. In particular, models are estimated at each time step, which is
not efficient in terms of computation time, of precision (complete models are learned
from very few data, which might be a problem in some cases), and which loses all
the information due to continuity (in the absence of drift or in the presence of incre-
mental drift).

Mi

xi

yi

T

FIGURE 10.3: Model-based DGM for data stream with complete data
independence.

In the opposite case, the models are entirely interdependent and the term asso-
ciated to the model in the description length, K(M1, . . . , MT), cannot be simplified.
This hypothesis is not satisfying either: Not only does it not exploit the temporal as-
pect of online learning, but, more importantly this expression is not allowed by the
restrictions of online learning. Indeed, the computations would require too many
resources as well as an access to the complete stream.

The approach we propose is intermediate. We adopt a Markovian point of view
on the model description. At time step T, we consider that all the models Mt with
t ≤ T are described using previously defined models. For any t ≤ T, we define an
association function

∆t : {1, . . . , t− 1} 7→ {0, 1} (10.2)

such that ∆i(j) = 1 if model j is supposed to be involved in the description of model
i, and ∆i(j) = 0 otherwise.

Using these association functions, we can express the complexity of the models
up to time T as:

K(M1, . . . , MT) =
T

∑
t=1

K(Mt|M∆−1
t ({1})) (10.3)

In this equation, the notation ∆−1
t ({1}) designates the set of indices i such that

∆t(i) = 1.
In practice, the association functions ∆t can be either fixed by the system or

learned online.
The choice of the functions ∆t is of major importance in theory and in practice,

because it offers to the system the possibility to store previously acquired knowledge
and thus to memorize states of interest. A constant effort for obtaining this property
has been deployed in recent techniques Hosseini, Ahmadi, and Beigy, 2013. Several
choice scenarios can be considered in our case, which all correspond to state of the
art methods (figure 10.4):

• When ∆i(j) = 0 for all i, j: all models are a priori independent in terms of
description. The model is learned completely at each time step. This case
corresponds to the model of Figure 10.3.
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• When ∆i(j) = 1 for all i, j: the whole past models are taken into account to
describe the present model.

• When ∆i(j) = 1 only for j ≥ i − h with a fixed h: the present model can be
described with the last h models, which correspond to a sliding window of
fixed size. The fixed sliding window is used in several algorithms such as
FLORA.

• When ∆i(j) = 1 only for j ≥ i − h with a size h estimated by the system: the
size of the sliding window is not fixed anymore but heuristically adapted to
the current problem.

FIGURE 10.4: Possible choices for ∆ function. The color of the square
at line i and column j indicates the value of ∆i(j). If the square is dark,

∆i(j) = 0; If the square is white, ∆i(j) = 1

Besides the choice of the association functions ∆t have consequences over the
minimization objective at each time step. Indeed, 1 values of these functions impose
to add terms relative to previous observations in the complete Kolmogorov com-
plexity. In practice, this is not always possible, in particular because older data are
not stored in memory anymore. Hence, considering old states in the complexity is
possible only with simplifying assumptions.

Based on this model description, we obtain an objective function of the form:

T

∑
t=1

K(Mt|M∆−1
t ({1})) + K(Xt|Mt) + K(Yt|Mt, Xt) (10.4)

which corresponds to the graphical model displayed in Figure 10.5.

... Mt−1

xt−1

yt−1

Mt

xt

yt

Mt+1

xt+1

yt+1

...

FIGURE 10.5: Model-based DGM for incremental learning
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10.2.3 Remark: Estimating the Models Online

In offline learning, learning can be done in one single global step, considering all
data together. In data stream mining, this is not possible, and the learning follows
the pipeline presented in Section 10.1.3. We remind that this pipeline is made up of
three steps: prediction, diagnosis, update.

When all possible data is available, it is possible to minimize the objective func-
tion 10.9 as a whole over M:T = (M1, . . . , MT).

In practice, this minimization is complex for various reasons. One of them is the
inter-dependency of the Mt which appear in several terms of the sum (because of the
∆t functions). In particular, all models have to be learned again at each time step.
In the perspective of data stream mining, this global update is obviously impossible
and algorithmic hypotheses have to be chosen in order to overcome this difficulty.

We choose to adopt a greedy approach in order to solve the problem online. At
time T, we consider that only the models for time steps in ∆−1

T ({1}) ∪ ∆−1
T−1({1})

can be modified. Older models are supposed to be fixed once and for all. This
assumption is coherent with the incremental paradigm in which data are not stored
and computations must be fast: There is no need to minimize the whole complexity,
but only the terms corresponding to the most recent observations. Re-optimizing
the whole modeling process would require to store all data X:T and would be highly
time-consuming.

Hence, the optimization problem to solve at each time step is the following:

minimize
MT−1,MT

K(MT−1|M∆−1
T−1({1})

) + K(XT−1|MT−1) + K(YT−1|MT−1, XT−1)

+ K(MT|M∆−1
T ({1})) + K(XT|MT) (10.5)

This assumption is not the only possible hypothesis one could rely on in order
to solve the problem of online minimization of objective 10.9. However, it seems
to us that it is the simplest and the most coherent in the perspective of data stream
mining. It respects the temporal aspect of the stream by discarding older models
from having a role in the most recent terms, and is more simple to assess than the
whole minimization process that is not possible as far as the data stream becomes
too long.

10.2.4 Classes of Models

In the part dedicated to transfer learning, we presented several classes of models
that could apply for the transfer. We propose here the same kind of presentation, but
we will present the classes of models following the passive and active classification
of data stream mining algorithms. The purpose is to present how the proposed
framework offers a common description to a large variety of existing methods.

10.2.4.1 Active Methods

Active approaches of incremental learning aim to detect change time steps t explic-
itly. Previous knowledge is used while no change has been detected.

In order to understand the way active methods work, we consider that, at time t,
the model Mt is made up of the decision function βt at time t and of a window of
previous observations of size δt:

Mt = 〈βt, Xt, Yt, . . . , Xt−δt , Yt−δt〉
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Using this model and considering a first-order logic for the model transfer, we can
assess the complexity of each of the terms in Equation 10.9. In particular, the model
transfer term K(Mt|Mt−1) can have several expressions:

• Change of δt: Points that were not present in the previous window have to be
encoded explicitly. Only the positions X are strictly required, since the labels Y
can be reconstructed from X and β. In case β(X) 6= Y, one additional bit is
required.

• Change of β: Not only the new decision function β needs to be given, but the
terms Y in the sliding window must be re-estimated.

If a drift is detected at time step n, the last T − n terms in the sum are changed in
order to take into account the introduction of a new decision function β′ and of the
new data description using β1. As the complexity term K(Yt|Xt, β) corresponds to
a correction term, a link can be established with empirical risk. Denoting Rn+1:T(β)
the empirical risk of binary classifier β on the last T− n data, the detection of a break
point obeys the criterion:

Rn+1:T(β)− Rn+1:T(β1) >
K(β′)

T − N
(10.6)

This criterion is rather general and does not depend on the algorithm. In particu-
lar, we would like to discuss the case of ADWIN (Bifet and Gavalda, 2007). ADWIN
stores all data one by one in a sliding window. At a time t, the algorithm decides
whether it splits the window into two sub-windows, the first one being associated
to the previous decision function, the second one being associated to a new decision
function. This choice typically corresponds to the choice of the parameter n in pre-
vious equation. The major difference between ADWIN and the proposed solution
is that the new decision function β′ is not known by ADWIN. However, noticing
that Rn+1:T(β) − Rn+1:T(β′) = Rn+1:T(β) − R1:n(β) + R1:n(β) − Rn+1:T(β′), we can
re-write the condition:

Rn+1:T(β)− R1:n(β) >
K(β′)

T − N
+ Rn+1:T(β′)− R1:n(β)

≥ K(β′)

T − N
+ Rn+1:T(β′)− 1

≥ inf
β′

{
K(β′)

T − N
+ Rn+1:T(β′)

}
− 1

which corresponds to the form of the condition in ADWIN.

10.2.4.2 Passive Methods

Passive approaches of incremental learning do not consider abrupt changes but con-
tinuously adapt the learned decision functions to new incoming data.

Most passive methods rely on ensemble learning, and in particular on bagging.
The key point of bagging is that at any time t the system relies on a pool of base
learners {hi

t}1≤i≤N . In addition to the pool, a parameter wt is needed to describe
how these base learners are combined together. The model Mt can then be modeled
as:

Mt = 〈h1
t , . . . , hNt

t , wt〉
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where Nt is the number of base learners at time t. This number can be fixed or evolve
along the learning procedure. In order to express the value of Yt using Mt and βt, a
method based on a majority vote of all expert learners is usually employed, thus the
correction term K(Yt|Mt, Xt) can depend on all experts.

In order to deal efficiently with concept drift, ensemble methods have to remove
outdated experts from the pool and replace them by more recent base learners. Sev-
eral strategies are used to select learners to eliminate, including systematic removal
of experts with performance lower than a threshold, or elimination of the worst base
learner. These strategies are related to minimum description length, since a base
learner is removed when the complexity of Yt, depending on the learner to remove,
is higher than the complexity of elimination.

The elimination of a base learner corresponds to a change in the model, which
has a cost in terms of complexity. The higher value of K(Mt|M∆−1

t ({1})) has to be
compensated by a lower value of K(Yt|Mt, Xt), hence a better performance. The
same reasoning applies to the addition of a base learner, which can be done when
the complexity of adding a new expert to the pool does not increase the overall
complexity.

10.3 Algorithms

In this section, we will develop methods to solve optimization problem 10.5 in a
context of incremental learning (i.e. with low memory and high speed).

10.3.1 Dealing with Previous Models

We propose to classify algorithms depending on the way they deal with previously
acquired models. As mentioned earlier, the dependency on the past is given by the
complexity term K(Mt|M:t−1) which encodes the description length of model Mt at
step t and the previous models M:t−1 up to step t. Using the previously defined asso-
ciation functions ∆, the expression has already been simplified into K(Mt|M∆−1

t ({1})).
In order to describe model Mt with the help of the set M∆−1

t ({1}), two strategies
may be chosen: either use many models in the set or select one single model.

The first strategy is employed in all ensemble learning methods (for instance
in (Street and Kim, 2001), (Elwell and Polikar, 2009) or (Brzezinski and Stefanowski,
2014)). Such as in classical machine learning, ensemble learning methods construct
the solution to a new problem by considering a weighted sum of the predictions of
previous models.

In the second strategy, the key idea is to select the optimal model inside the set
of predecessors M∆−1

t ({1}). The selected predecessor is the best model in the sense of
MDL principle.

In the perspective of selecting one single predecessor for each model, the total
objective of Equation 10.5 can be divided in two parts. The first part corresponds to
the description of completed data at time step t once the solution has been given to
the system:

φ1(Mt−1, M) = K(Mt−1|M) + K(Xt−1|Mt−1) + K(Yt−1|Mt−1, Xt−1) (10.7)

The second part corresponds to the description of incomplete data at time step t:

φ2(Mt, M) = K(Mt|M) + K(Xt|Mt) (10.8)
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Equation 10.5 can be reformulated as:

minimize
Mt,Mt−1,M̃1,M̃1

φ1(Mt−1, M̃1) + φ2(Mt, M̃2) (10.9)

In the following, we propose a basic algorithm to solve problem 10.9 with a gen-
eral class of models. This algorithm calculates model transformations at each step.

10.3.2 An Algorithm for Continuous Adaptation

In Continuous Adaptation Incremental Learning, the system infers a new model at
each time step t for both model Mt−1 and Mt. The system has access to all previously
learned models M:t and chooses a predecessor among the models M∆−1

t−1({1})
and

M∆−1
t ({1}).
In practice, we separate the choice of the predecessor for Mt−1 and for Mt. Such

a separation is motivated by the fact that the description of data at time t depend
on model Mt−1 only by the transfer term in the case where the predecessor of Mt is
Mt−1.

Consequently, and using the notations introduced previously, we can describe
the learning algorithm in three steps:

1. Minimize the objective φ2(Mt, M) over predecessor M ∈ M∆−1
t
({1})\{Mt−1}

and Mt

2. Minimize the objective φ1(Mt−1, M) over predecessor M ∈ M∆−1
t−1({1})

and
Mt−1

3. Minimize the objective φ1(Mt−1, M) + φ2(Mt, Mt−1) over predecessor M ∈
M∆−1

t−1({1})
, models Mt−1 and Mt

In practice, this algorithm can have interesting properties in terms of compre-
hension of the underlying process. We propose to represent the dependency be-
tween two models by a vertex in a graph of models. Such a graphical representation
makes the dependencies obvious and would enable a user interpret the decision, for
example by detecting easily periodic behaviors.

10.3.3 Experimental Results

In order to illustrate the pertinence of our framework in practice, we have tested
its performances on classical data sets with the naive prototype-based model. We
considered three datasets: SEA Street and Kim, 2001 (50000 instances, 3 attributes,
artificial), Weather Elwell and Polikar, 2011 (18159 instances, 8 attributes, real) and
Electricity Market Harries, tr, and Wales, 1999 (45312 instances, 3 attributes, real).

For all datasets, we tested the instance-incremental version of our algorithm (by
streaming directly over the data) and the batch-incremental version (by grouping
successive data into a same batch). The experiments were all done with a fix sliding
window size: |∆−1

t ({1})| = 3. We tested the two proposed algorithms.
Table 10.1 presents the performances for different size S of batches. When S = 1,

the situation corresponds to a problem of instance-incremental learning. Otherwise,
the situation corresponds to batch-incremental learning.

As the purpose of this chapter is not to establish a competitive performance for
the suggested algorithms with the prototype-based model, we do not propose any
comparison to state of the art algorithms. The key idea is that the obtained results
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are not necessarily better but similar to existing methods. Developing more accurate
algorithms will be an improvement perspective to the proposed framework.

In practice, the calculation time with the passive approach makes impossible to
use this algorithm directly for a real-time process: the optimization algorithms take
too much time even in the case of instance-incremental and makes the system unable
to deal with a real data stream.

TABLE 10.1: Error rate for several batch sizes

S = 1 S = 5 S = 10 S = 20
SEA 0.32 0.37 0.37 0.34
Weather 0.32 0.28 0.36 0.36
Electricity 0.29 0.31 0.31 0.28

The obtained results are not competitive with state of the art algorithms, which
was expected: Our method is not specifically designed to perform well and the class
of models is very basic. We tested a very direct application of the equations pre-
sented above regardless of time complexity nor performance of the method. An
effort has to be made in this direction in future works. The results are good enough
to validate our framework yet: They are not bad for a highly general method and a
simple class of models. However, we would like to point out that the poor results
are also due to a property of our passive algorithm: at each time step, it tries to fit to
one data point exactly. The only intuitive guarantee against overfitting is the model
changing penalty K(Mt|M∆−1

t ({1})). A solution to overcome this weakness would be
to consider that Xt is not only one instance but a sliding window of past instances.
This idea was not tested in the scope of this thesis.

10.4 Conclusion

In this chapter, we have proposed a generic way to describe the problem of online
learning, for data stream mining. The solution, which is inspired by our approach of
transfer learning as well as Hidden Markov Models, is generic and describes various
state of the art methods. One of the interests of our description is that it is very
generic and offers a clean approach to data stream mining from a theoretical point of
view. In particular, it could be used to propose a theoretical approach of the domain,
which is, at this point, almost non-existent.

The following chapters present two applications of our methodology. The first
application is based on ADWIN algorithm and concerns online topic modeling and
online hybrid recommendation. The second application is a cognitive modeling of
the phenomenon of U-shaped learning: It is a perfect example of the generic aspect
of our framework.
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Chapter 11

Incremental Topic Modeling and
Hybrid Recommendation

In the previous chapter, we presented a generic model for incremental learning
based on MDL principle. We have suggested that our framework is generic and
can model a large variety of state of the art algorithms. Among these algorithms,
we have shown that ADWIN (Bifet and Gavalda, 2007) actually corresponds to data
compression and can be interpreted in the terms of our framework.

In this chapter, we propose an application of ADWIN in two different domains:
online topic modeling and hybrid recommender systems. Topic modeling is an un-
supervised learning task which consists in extracting prominent themes in text data.
It is widely used in natural language processing, for instance for text classification.
Recommendation is another example of an unsupervised task, which consists in as-
sociating some items to user based on their inferred tastes. Topic modeling and
recommendation are two classical machine learning problems that have been little
considered in online settings.

The remainder of this chapter is organized as follows. In a first section, we in-
vestigate the problem of online topic modeling. The algorithm we propose will be
tested on artificial and real datasets. In Section 11.2, we propose an application of
this algorithm for hybrid recommender systems based on textual data.

This chapter presents and develops the ideas contained in three papers (Murena,
Al Ghossein, Abdessalem, and Cornuéjols, 2018; “Online Learning with Reoccur-
ring Drifts: The Perspective of Case-Based Reasoning”; Al-Ghossein, Murena, Ab-
dessalem, Barré, and Cornuéjols, 2018). They are the result of a collaboration with
Marie Al-Ghossein and Talel Abdessalem (LTCI, Télécom ParisTech). Our main
contribution is the general methodology, while the implementations and the use of
stochastic matrix factorization have been proposed by co-authors.

11.1 Online Topic Modeling

In this section, we present an adaptation of ADWIN algorithm for online topic mod-
eling in the presence of concept drift.

11.1.1 Topic Modeling

The abundance of text sources provided by online platforms and social networks of-
fers new opportunities and introduces new challenges in the domain of text model-
ing. Two classes of methods have emerged, based either on n-gram language mod-
els (Chen and Goodman, 1996) or probabilistic topic modeling (Hofmann, 1999).
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While the first class focuses on semantic modeling of languages based on the or-
der of words, probabilistic topic modeling describes documents as an unordered
bag of words drawn from mixtures of word distributions called topics. Even if
the human interpretation of topics remains hard to achieve (Chang, Gerrish, Wang,
Boyd-Graber, and Blei, 2009), these frameworks are used for a large variety of tasks
ranging from text analysis (Phan, Nguyen, and Horiguchi, 2008; Rosen-Zvi, Grif-
fiths, Steyvers, and Smyth, 2004), recommendation (Wang and Blei, 2011; Hu and
Ester, 2013), sentiment analysis (Rao, Li, Mao, and Wenyin, 2014) to image anno-
tation (Feng and Lapata, 2010). Among topic models, Latent Dirichlet Allocation
(LDA) (Blei, Ng, and Jordan, 2003) has gained more and more attention for its sim-
plicity and its modularity. Several variants of the original model have been devel-
oped to achieve new tasks that cannot be performed with the original model (see for
instance (Rosen-Zvi, Griffiths, Steyvers, and Smyth, 2004; Hu and Ester, 2013)).

Latent Dirichlet Allocation (Blei, Ng, and Jordan, 2003) is a probabilistic graph-
ical model designed to provide a definition of documents based on latent features
called topics. A topic corresponds to a word distribution and a document is modeled
as a weighted mixture of topics. The generative process can be described as follows:

1. Choose θ ∼ Dirichlet(α)

2. For each word Wn in document:

(a) Choose a topic zn ∼ Mult(θ).

(b) Choose a word wn for the multinomial p(wn|zn, β).

The corresponding generative model is given in figure 11.1.

FIGURE 11.1: Generative model of Latent Dirichlet Allocation.

In this model, several parameters have a direct interpretation in terms of docu-
ment analysis. First, the α parameter (hence the parameter of the Dirichlet distribu-
tion) influences the parameter of the multinomial topic distribution and corresponds
to the mean value of a topic distribution θ inside a document. For instance, when
α = (1, . . . , 1), the topics are uniformly represented in documents. This parameter
is important in document stream analysis since it depicts the topic trends. The pa-
rameter β is a word-topic distribution: the t-th column of matrix β is the vector of
probabilities for a word to be drawn inside t-th topic.

LDA is trained either offline (Blei, Ng, and Jordan, 2003) or online (Hoffman,
Bach, and Blei, 2010), following Maximum Likelihood Principle. The algorithms
used for the optimization are usually based on variational inference or Gibbs sam-
pling.

The base model of LDA infers topic distributions from a given batch of docu-
ments. This setting is not adapted to evolving environments, including text mining
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on documents generated continuously at high rates or streams of documents. Never-
theless, solutions have been proposed to adapt LDA to temporal frameworks where
the data distribution varies over time.

Dynamic Topic Models (DTM) (Blei and Lafferty, 2006) are an attempt to include
a dynamic behavior into LDA. DTM models the word-topic distribution, i.e., the dis-
tribution of words inside a topic, as an evolving parameter. The distribution of this
parameter at time t is defined with respect to its distribution at time t− 1. A closely
related idea is developed by SeqLDA (Du, Buntine, Jin, and Chen, 2012), but it is
applied at the level of a book where the time parameter is associated to the index of
the paragraph.

An alternative is offered by continuous-time models (Wang and McCallum, 2006)
which assume that the distribution over topics is influenced by word co-occurrences
(such as in standard LDA) and by the document date. The major disadvantage of this
method is its offline nature: the model can only be learned once we have the whole
corpus. It is thus inefficient in the context of stream mining. A frequent strategy
for stream mining with LDA consists in grouping documents by time slices (see for
instance (Blei and Lafferty, 2006; Griffiths and Steyvers, 2004)). On the other hand,
online incremental LDA offers an interesting alternative since it does not require
storing previous data and relies only on the new received documents (AlSumait,
Barbará, and Domeniconi, 2008). The major problem of this method is the difficulty
of defining time slices. In particular, modifications in topics might occur on a time
period significantly smaller than the chosen time slice. This scale-dependency is
taken into account by some continuous-time methods (Wang and McCallum, 2006;
Iwata, Yamada, Sakurai, and Ueda, 2010).

Our approach takes a completely different direction. We propose to use change
detection methods to estimate change of topics in document streams.

11.1.2 Adaptive windowing for Topic Drift Detection

11.1.2.1 Principle

The proposed method for topic change detection is based on the use of ADWIN
combined with a training of LDA. We propose a framework in which documents
arrive one by one in the form of a data stream. A document received at time step t is
denoted by wt. Given (α, β), the vector parameters of the two Dirichlet distributions,
the likelihood of the model, as shown by (Blei, Ng, and Jordan, 2003), is given by:

L(w) =
Γ (∑i αi)

∏i Γ(αi)

∫ ( k

∏
i=1

θαi−1
i

)(
N

∏
n=1

k

∑
i=1

V

∏
j=1

(θiβij)
wj

n

)
dθ (11.1)

where Γ is the gamma function and wj
n measures the quantity of word j in doc-

ument n. In this expression, k represents the number of topics, N the number of
words in the document and V the size of the vocabulary.

A change in the stream of likelihood corresponds to a change in the data distri-
bution and can be detected by ADWIN algorithm. The selected indexes by ADWIN
correspond to the documents received after the drift.

The principle of our method relies on a couple of intuitive guarantees:

• The likelihood measures the generative quality of the model with regards to
observed data. When a model is not adapted, the likelihood decreases.
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• ADWIN is sensitive to changes in the mean value of a time series. Thus, it will
detect a change in the likelihood caused by a change of the model.

• ADWIN will select large sub-windows to train a new LDA model. The drift
will be predicted with a better accuracy for large window sizes, which is also
optimal to train a LDA model.

Following this idea, our method can be described as follows. At time step t, the
system has access to a LDA model Mt which describes the data. When the system
gets a new document, we compute the likelihood of observing the document, adds
it to the current window, and inspects it with ADWIN to check if a drift occurred.
When a drift is detected, the current LDA model is trained on the documents se-
lected by the kept sub-window.

11.1.2.2 Algorithm

The algorithm we present is a direct implementation of these ideas. It is based on
the idea of separating the tasks of document modeling and topic drift detection by
associating a different model for each task. The LDA model used for document
modeling is denoted by LDAm and the LDA model used for drift detection is denoted
by LDAd .

The LDA model used for document modeling, LDAm , is updated with each re-
ceived document and retrained when a drift is detected.

For each received document, our approach, called Adaptive Window based Incre-
mental LDA (AWILDA), computes the associated likelihood of the model LDAd and
adds it to ADWIN. If a drift is detected, the model LDAm is retrained on the sub-
window selected by ADWIN. Besides, LDAm is updated with each received docu-
ment based on Online LDA algorithm. We note that to initialize the model, we train
it on a relatively small chunk of documents before starting the detection.

Whereas the LDA model used for document modeling, LDAm, is updated with
each received document and retrained when a drift is detected, the LDA model used
for topic drift detection, LDAd, is retrained on the sub-window selected by ADWIN
for each detected drift. It is not updated as more documents are received.

11.1.2.3 Theoretical guarantees

Since it is based on theoretically trusted algorithms, AWILDA presents interesting
theoretical properties which guarantee the quality of its results regarding drift de-
tection.

We introduce the same notations as presented in (Bifet and Gavalda, 2007). We
consider a window W of length n which is divided into two sub-windows W0 and W1
of respective sizes n0 and n1. Let m be the harmonic mean of n0 and n1 (hence 1

m =
1
n0

+ 1
n1

). We suppose that, in ADWIN, the drift is detected for |µ̂W1 − µ̂W0 | ≥ εcut
(where µ̂W0 designates the mean value over sub-window W0). Let δ be such that:

εcut =

√
1

2m
ln

4n
δ

(11.2)

With these parameters, Theorem 3.1 in (Bifet and Gavalda, 2007) ensures both
false positive rate bound and false negative rate bound. These results can be adapted
to our setting.
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Theorem 8. At every time step, if documents are generated by a single LDA model in time
period covered by W, the probability that AWILDA detects a drift at this step is at most δ.

Proof. On the covered window, ADWIN gets a time series Xt = L(Dt) where Dt
are equally distributed (for a single LDA model) and L represents the likelihood of
LDAd which is constant on W for AWILDA. Thus the mean of the variables remains
constant on W. The conclusion follows from the properties of ADWIN.

Following the same direction, the following theorem can be proven for false neg-
ative rate bound.

Theorem 9. Suppose that, at a time step t, window W can be split in two parts W0 and W1
and documents are independent and identically distributed by a LDA distribution LDA0
(resp. LDA1) on sub-window W0 (resp. W1). If |ED∼LDAd [pLDA1(D)− pLDA0(D)]| ≥
2εcut, then with probability 1− δ AWILDA detects a drift inside sub-window W1.

Proof. The idea of the proof is the same. The mean value of Xt = L(Dt) on sub-
window W0 is:

µt = ED∼LDA0 [pLDAd(D)] = ED∼LDAd [pLDA0(Dt)]

An equivalent result can be found for W1, and the theorem comes directly.

Unlike for Theorem 8, a simple interpretation of Theorem 9 is not direct. For in-
stance, two LDA models can be distinct and not share the targeted property. Finding
conditions on the parameters of the three distributions is an interesting task that we
will not address here. However, it has to be noticed here that the guarantee on the
false negative rate depends on the choice of LDAd .

11.1.2.4 Nature of the drift

In practice, concept drift can happen in different ways. A drift is called abrupt when
it happens at a given time step at any amplitude. On the other hand, a drift is called
gradual when small distribution variations are happening at each time step on a cer-
tain period of time.

The case of abrupt drift has been explicitly studied with the setting of Theo-
rem 9. It corresponds to the case where the document distribution changes from one
given state to another between sub-windows W0 and W1. Results given in (Bifet and
Gavalda, 2007) show that the detection delay can be estimated by O(µ ln(1/δ)/ε2)
where µ is the mean of the distribution before drift. In our case, this delay is of
critical importance since it defines the size of the chunk for retraining the model.
AWILDA faces a trade-off between predicting a drift as early as possible (in order
to maximize the likelihood) and collecting as many data as possible to get a good
estimator of the underlying LDA model.

The case of gradual drift is less adapted to the developed framework. Properties
of ADWIN have been shown in the case of a linear gradual drift, but these results
are difficult to translate directly into our setting where the time series tracked by
ADWIN has a complex mathematical definition. Understanding the behavior of
AWILDA in the case of gradual drift is a task that would come together with a proper
study of Theorem 9.

In our experiments, we will consider abrupt drifts only. A related discussion will
be proposed in the conclusion.
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11.1.3 Experimental Results

In this Section, we present the experiments we conducted in order to prove the effec-
tiveness of our approach. We show in particular how it performs when addressing
the problems of topic drift detection and document modeling, using a set of syn-
thetic and real datasets.

11.1.3.1 Datasets

Synthetic data. To demonstrate the ability of detecting drifts, we generate synthetic
datasets where we artificially insert drifts at random moments throughout the se-
quence of documents. Synthetic datasets are denoted by Sdr, where r is the number
of simulated drifts. Documents observed between two consecutive drifts are gen-
erated by one LDA model following its generative process. At each occurring drift,
we draw uniformly the hyperparameters α and β. For the generation of one dataset,
the number of topics is fixed for all the models.

We present experiments performed on the following two synthetic datasets: Sd4
and Sd9, containing 4 and 9 drifts respectively. Handling document streams is a
very common task in environments where short texts are generated and shared, e.g.,
newswires, tweets. Thus, we choose to generate documents containing 100 words,
and we fix the vocabulary size to 10,000 words and the number of topics, k, to 15.
Following the setting in (Blei, Ng, and Jordan, 2003), α and β are first set to 50/k and
0.1 respectively, and are then changed at each drift. In Sd4, we generate exactly 2,000
documents from each distribution, separating two consecutive drifts by the same
number of documents. In Sd9, we vary the number of documents generated by each
model between 500 and 1,000 documents.

Real data. We also conduct experiments on real-world data. We use three real data
sources: Reuters-21758, consisting of newswire articles classified by categories and
ordered by their date of issue, ml-100k, consisting of abstract of movies, and plista,
consisting of a collection of news articles published in German on several news por-
tal. In the procedure of data preprocessing, we removed stop words, words occur-
ring once, down-cased and stemmed all remaining words.

The ApteMod version of dataset Reuters-21758 1 contains 12,902 documents clas-
sified in multiple categories (for a total of 90 categories). Since our approach is de-
signed to detect topic drifts in document streams and to adapt the model accord-
ingly, we reorder the newswire articles based on their categories. We artificially
ensure an emergence of topics at specific points of the document stream and we
try to provoke a drift in the topic distributions. We derive from the initial ordered
dataset two sets of articles that we use in our experiments. In the first set, denoted
by Reuters1, we select the articles belonging to the category “acq" followed by the ar-
ticles belonging to the category “earn". We expect the algorithm to detect the sudden
change in topics mentioned in the documents. In the second set, denoted by Reuters4,
we select articles classified in a specific category and add them consecutively to the
dataset. This is done for the five following categories: “interest", “trade", “crude",
“grain", and “money-fx".

The ml-100k dataset corresponds to the MovieLens 100k dataset 2 and gathers
100,000 ratings from 1,000 users on 1,700 movies, spanning over 18 months. Movies

1http://archive.ics.uci.edu/ml/
2http://www.movielens.org
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become available according to their reported release date, and we use DBpedia 3 to
collect abstracts written in English and describing each one of them. In this section,
we do not use the user ratings, but only the abstracts. The ratings will be used in
Section 11.2.

The plista dataset is described in (Kille, Hopfgartner, Brodt, and Heintz, 2013)
and captures interactions collected during the month of February 2016 on several
German news portals. We remove from the dataset interactions corresponding to
unknown users, users with less than three interactions, and items with no avail-
able textual description. Finally, the dataset gathers 32,706,307 interactions from
1,362,097 users on 8,318 news articles. The date of an article corresponds to its pub-
lication date. Such as for ml-100k, we ignore the user interactions for the moment.

11.1.3.2 Setting of AWILDA

As defined in equation 11.1, the likelihood of a LDA model is not computable. Thus,
we relied on an upper-bound L′ proposed in variational inference (see equation 1
in (Hoffman, Bach, and Blei, 2010)). In practice, the results observed with this upper-
bound are not satisfying due to a lack of precision: the probabilities to observe data
are very low and the method fails at discriminating them with enough accuracy.
In order to overcome this difficulty, we considered the logarithm of L′ (hence an
upper-bound of log-likelihood). This quantity is theoretically unbounded, which is
a problem for ADWIN, but in practice it is observed that the values vary only in a
small interval (the width of which depends on the dataset). In our experiments, we
prevented the quantity to decrease too much by fixing a minimal bound so that the
quantity of interest becomes bounded. A reasonably low value for this threshold
was never reached in the scope of the presented experiments. We do not have any
way to evaluate an optimal value for this bound in a general case though.

11.1.3.3 Evaluation

Our evaluation concerns the tasks of topic drift detection and document modeling.
Topic drift detection. We evaluate the ability of detecting drifts by checking the
latency between the moment when the real drift happens and the moment it is de-
tected.
Document modeling. Given a LDA model trained on a set of documents, the goal
in document modeling is to maximize the likelihood on unseen documents. For
the evaluation, we use the measure of perplexity (Jelinek, Mercer, Bahl, and Baker,
1977), which is defined by:

perplexity(Dtest) = 2
−∑M

d=1 log2 p(wd)

∑M
d=1 Nd (11.3)

Perplexity is the tool used by default in language modeling to measure the gen-
eralization capacity of a model on new data. Since we are considering document
streams, the perplexity is computed for each received document using the current
model.

The performance of AWILDA is compared to the online version of LDA (Hoff-
man, Bach, and Blei, 2010).

3http://www.dbpedia.org
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We also compare AWILDA to three other variants. In these variants, the model
LDAm is updated in a similar way as for AWILDA, but the methods differ in the
way the detection model LDAd is updated:

• AWILDA-2. LDAd is trained on a first small chunk of documents that is used
to initialize all the models. It is not updated as more documents are received.

• AWILDA-3. LDAd is updated for each received document and is equivalent to
a classic online LDA model.

• AWILDA-4. LDAd is updated for each received document using online LDA
algorithm. When a drift is detected, the model is retrained on the sub-window
selected by ADWIN.

Regarding the theoretical study, it can be easily verified that Theorem 8 and The-
orem 9 hold true for AWILDA-2, but not for AWILDA-3 and AWILDA-4. In particu-
lar, it is noticeable that we do not have guarantees for the performances of AWILDA-
3 and AWILDA-4 since the model LDAd is updated at each step. A priori, there is no
chance that the means remain constant when the likelihood function L varies.

FIGURE 11.2: Topic drift detection on the Sd4 dataset using AWILDA
(first figure), AWILDA-2 (second figure), AWILDA-3 (third figure),

and AWILDA-4 (fourth figure).

11.1.3.4 Comparison of AWILDA and its variants on Sd4

In the first set of experiments, we compare the performance of AWILDA and its
variants when performing the task of topic drift detection on the synthetic dataset
Sd4. The results are presented in Figure 11.2. The LDA model used to compute per-
plexity is learned and updated differently depending on the method considered. We
represent the perplexity as a moving average with a sliding window of 100 observa-
tions. The exact occurrence of drifts is marked by a green dashed vertical line and
the detection of drifts is marked by a blue dotted vertical line.
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FIGURE 11.3: Topic drift detection using AWILDA and applied on the
Sd4 dataset (first figure), Sd9 dataset (second figure), Reuters1 dataset

(third figure), and Reuters4 dataset (fourth figure).

AWILDA and AWILDA-2 detect only true positive drifts, while AWILDA-3 and
AWILDA-4 detect false and true positive drifts. AWILDA is also more reactive than
AWILDA-2 and spots drifts faster. Updating the LDAd model with each received
document in AWILDA-3 and AWILDA-4 modifies the underlying distribution of
topics, leading ADWIN to detect false positive drifts.

AWILDA performs best for all the studied datasets, and we present in the fol-
lowing the results for the other datasets.

11.1.3.5 Performance of AWILDA on controlled datasets

As shown in Figure 11.3, AWILDA is able to detect all the drifts occurring in the
datasets Sd4, Sd9, and Reuters1 after receiving only a few observations from the new
distribution. Concerning the Reuters4 dataset, our approach spots two drifts and
misses the two others. We note that in this particular dataset, we switch from a topic
to another relatively fast, i.e., around 500 documents per category. Topics in articles
can also be interconnected which makes the task even more complicated.

11.1.3.6 Comparing AWILDA with online LDA

In the last set of experiments, we compare our approach with online LDA (Hoffman,
Bach, and Blei, 2010). For this analysis, we only use real datasets: Reuters1, ml-100k
and plista.

For Reuters1, we show in Figure 11.4 the evolution of perplexity throughout the
set of documents before and after the drift occurs. The perplexity is computed using
LDAm of AWILDA.

Figure 11.5 shows the perplexity measured on the document streams of ml-100k
and plista for AWILDA and online LDA (the results displayed here are obtained
with a number of topics fixed to 10, knowing that similar patterns appear for other
values of this parameter). The perplexity is represented as a moving average with a
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FIGURE 11.4: Comparison of online LDA and AWILDA for the task
of document modeling with Reuters1.

FIGURE 11.5: Comparison of online LDA and AWILDA for the task
of document modeling on ml-100k (first subfigure) and plista, (second

subfigure) using the measure of perplexity.
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sliding window of 200 observations. The red dotted vertical line marks the detection
of a drift by AWILDA. AWILDA detects two drifts for the held-out documents of
ml-100k and five drifts for plista. This difference in behavior is expected knowing
the volume and nature of both datasets (movies vs. news). A further analysis of
the datasets with experts from both domains will help to establish the link between
the detected drifts and real-life events occurring in the same time period, for better
understanding and explainability.

Before detecting any drift, online LDA and AWILDA are trained in the same way
and on the same data, which explains the close values of perplexity. After detecting
the first drift, AWILDA outperforms online LDA for the task of document modeling.
As documents continue to arrive, AWILDA is more adapted to the new data. Its
drift detection component allows it to adjust to changes after each drift, resulting in
a better performance. For the Reuters1 dataset, where perplexity is not averaged, we
observe a temporary increase in perplexity for AWILDA just after a drift occurs. This
is due to the fact that AWILDA retrains its model on the relatively small sub-window
selected by ADWIN and is not optimal then.

11.1.4 Discussion

We notice that the observed properties of the four variants of the algorithm are close
to the predictions which were given by Theorems 8 and 9. In particular, it has been
shown that AWILDA and AWILDA-2 would perform better than AWILDA-3 and
AWILDA-4 with regards to false positives.

The superiority of AWILDA over the other variants raises interesting questions.
It is noticeable that the best algorithm in terms of drift detection is also the only
one which detection model is actively updated at each drift and not passively, at
each step or for each observation. This property is particularly interesting: it means
that the best algorithm in terms of drift detection is also the most efficient one in
terms of computation time. However, in some examples, it might not be the optimal
algorithm for the accuracy of the predicted model: there is no theoretical guarantee
that the documents selected by ADWIN are a good representative set for the new
distribution.

Moreover, the non-updating property of AWILDA is of particular interest: it il-
lustrates the idea that good drift prediction does not require to have good modeling
properties, which may be counter-intuitive in a way. The extreme case, AWILDA-2,
shows rather good performance as well whereas the detection model is never up-
dated, which means that it does not encode any information relative to the under-
lying distribution. A random LDA model could also work for this task. Having a
completely unrelated detection model might produce false-negative errors though:
if the detection model is too different from the actual model, there is a chance that
the likelihood change, when the underlying model varies, is not important enough
to be detected.

11.2 Incremental Hybrid Recommendation

In this section, we present how AWILDA can be used in incremental recommender
systems. The addressed task consists in recommending items to users in a setting
where items, users and ratings can appear in a stream fashion, and where the global
item generation varies over time.
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11.2.1 Online Hybrid Recommendation

Due to the abundance of available choices in online platforms and services, recom-
mender systems (RSs) have been playing an essential role to help users and em-
power companies. Approaches to recommendation can mainly be categorized into
three classes. First, content-based (CB) approaches rely on information extracted from
user profiles and item descriptions. Second, collaborative filtering (CF) approaches
make use of user activities and past interactions (e.g. ratings and clicks) to learn
preferences and generate recommendations. Lastly, hybrid approaches aim to combine
both techniques in order to overcome their weaknesses: While CB methods tend to
be overspecialized and lack a sense of novelty, the performance of CF methods drops
with an increase of rating sparsity and in the cold-start setting.

To get the best of both worlds, hybrid approaches allow CF approaches to ex-
ploit auxiliary information like text (as in (Wang and Blei, 2011; Wang, Wang, and
Yeung, 2015)) and images (He and McAuley, 2016). Collaborative Topic Regression
(CTR) (Wang and Blei, 2011) is a popular hybrid approach combining probabilistic
topic modeling for content analysis and latent factor models for CF (Pan et al., 2008).

Hybrid RSs are particularly useful to cope with the problem of cold-starts (Schein,
Popescul, Ungar, and Pennock, 2002) which occurs when new users or new items are
introduced into the system. While recommending new and fresh items is essential,
CF methods have difficulties in doing so, as no or few feedback related to these items
is observed. Hybrid RS are able to recommend new items by leveraging auxiliary in-
formation. They also help to alleviate the sparseness of rating or feedback data, thus
improving the quality of recommendation. To this end, previous work has utilized
text data such as abstracts (Wang and Blei, 2011), synopses (Wang, Wang, and Ye-
ung, 2015), or reviews (Bao, Fang, and Zhang, 2014). Several techniques have been
used to model documents like LDA (Wang and Blei, 2011), stacked denoising au-
toencoders (Wang, Wang, and Yeung, 2015) or convolutional neural networks (Kim,
Park, Oh, Lee, and Yu, 2016). Images have also been leveraged in this context and
visual appearances of items can be added to the preference model (He and McAuley,
2016).

Most hybrid RS proposed in the literature are meant to work in batch, where an
initial model is first built from a static dataset and then rebuilt periodically as new
chunks of data arrive. In real-world applications, the recommendation problem can
be formulated as a data stream problem where RS are designed to learn from con-
tinuous data streams and adapt to changes in real-time. Recently, (Frigó, Pálovics,
Kelen, Kocsis, and Benczúr, 2017) has shown that simple online algorithms can gen-
erate better recommendations than more complex ones that are only updated period-
ically. Online RS are mainly based on incremental learning to continuously update
models when receiving new observations. Incremental CF approaches have been
proposed in this direction, like incremental neighborhood-based methods (Miranda
and Jorge, 2009) and incremental matrix factorization (using stochastic gradient de-
scent (Vinagre, Jorge, and Gama, 2014b) or alternating least squares (He, Zhang,
Kan, and Chua, 2016)).

Learning from data streams should also account for concept drifts which occur
when the definition of modeled concepts changes over time. User preferences and
item descriptions are expected to change in different ways, at different moments
and at different rates (Ding and Li, 2005; Koren, 2010). Incremental learning is a
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way of passively adapting to current changes in the data distribution, by contin-
uously learning from new data. Actively accounting for changes of user prefer-
ences has been based on the intuition that users’ recent observations are more rele-
vant than older ones. Sliding window techniques have been explored in this direc-
tion (Nasraoui, Cerwinske, Rojas, and Gonzalez, 2007; Siddiqui, Tiakas, Symeonidis,
Spiliopoulou, and Manolopoulos, 2014; Matuszyk, Vinagre, Spiliopoulou, Jorge, and
Gama, 2015). We note that these techniques make assumptions concerning the rele-
vance of old observations and the rate at which all preferences drift, which are not
always accurate.

11.2.2 From Incremental Matrix Factorization to Adaptive Collaborative
Topic Modeling

Matrix factorization (MF) is a popular collaborative filtering technique that is used to
model users’ interactions by representing users and items in a space of latent factors
learned from the data. If R designates the matrix of interactions (where Rui = 1 if
the user u interacted with the item i, and 0 otherwise), then MF aims to approximate
R as a product of two matrices P and Q by minimizing over P and Q:

∑
(u,i)∈D

(
Rui − PuQT

i

)2
+ λu‖Pu‖2 + λi‖Qi‖2 (11.4)

where D is the set of observed interactions, and λu and λi are regularization parame-
ters. The score of an item i for a user u, denoted by R̂ui, is computed using the scalar
product between Pu and QT

i . Items are ordered by descending proximity of R̂ui to
value 1, and top-N items are recommended for u.

Classic algorithms for MF are not suitable for a data stream setting. A variant
of MF adapted to the incremental nature of data streams (Vinagre, Jorge, and Gama,
2014b) suggests the following procedure. Observations 〈u, i〉 are received one after
the other and handled by the algorithm. For each received observation, P and Q are
updated using the gradient of the objective for this observation only (which corre-
sponds to an estimator of the gradient on the whole data set). When either a user or
an item are observed for the first time, they are added to the matrices with a random
initialization, and the values of P and Q are then updated using the observation.

In our setting, observations are supposed to arrive in real-time and are mainly
of two types. First, interactions, denoted by 〈u, i〉, designate positive actions (clicks,
ratings) performed by users and concerning a certain item. Second, additions of items,
denoted by 〈i, doci〉, usually occur when a new item becomes available at a certain
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time step, and we consider cases where a textual description of the new item is pro-
vided.

Algorithm 4: Overview of CoAWILDA
Data: Set of observations O, Number of latent factors K, Learning rate η,

Regularization parameters λu and λi
Result: P, Q
for o in O do

if o = 〈i, doci〉 (new item added) then
θi ← AWILDA(doci) ;
εi ∼ N (0, λ−1

i IK) ;
Qi ← θi + εi ;

if o = 〈u, i〉 (interaction received) then
if u 6∈ Rows(P) (new user observed) then

Pu ∼ N (0, λ−1
u IK) ;

eui ← 1− Pu.QT
i ;

Pu ← Pu + η(euiQi − λuPu) ;
εi ← εi + η(euiPu − λiεi) ;
Qi ← θi + εi ;

CoAWILDA is presented in Algorithm 4. When a new item is received, we use
AWILDA to model the descriptive document and extract topic proportions θi. The
item latent vector Qi representing an item i results of the addition of the topic pro-
portions θi and an item latent offset εi. When a new interaction 〈u, i〉 is observed, we
update the user latent factor Pu and the item latent offset εi, following the procedure
of incremental MF. Recommendation is performed as described previously, where
R̂ui = Pu.QT

i = Pu.(θi + εi)
T.

11.2.3 Experimental Results

In this Section, we discuss how our approach performs when addressing the prob-
lem of online recommendation, using real-world datasets.

11.2.3.1 Datasets

For the experimental evaluation of CoAWILDA, we used two of the datasets pre-
sented in Section 11.1.3.1: ml-100k and plista.

We remind that ml-100k gathers 100,000 ratings from 1,000 users on 1,700 movies,
spanning over 18 months. Since we are addressing the problem of recommendation
with implicit feedback (positive-only data), our goal is to recommend the movies the
user is going to rate. We note that the dates reported in ml-100k correspond to the
rating date of the movies and not to the actual watching date. Knowing that we are
not concerned with the problem of evolution of user preferences in this work, we
use ml-100k to evaluate our approach. As a textual description of movies, we use the
abstract automatically extracted from DBpedia.

The plista dataset contains a collection of news articles published in German on
several news portals, as weel as interactions collected during the month of February
2016. The reduced dataset, after pre-processing, gathers 32,706,307 interactions from
1,362,097 users on 8,318 news articles.
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11.2.3.2 Evaluation protocol

RSs are traditionally evaluated using holdout methods. These methods are not
adapted to the online setting (Vinagre, Jorge, and Gama, 2014a) mainly because
when we randomly sample data for training and testing, we loose the temporal di-
mension and do not respect the original order of observations.

Since the topic model requires an initial phase of training, we adopt the evalua-
tion process introduced in (Matuszyk and Spiliopoulou, 2014). We sort the dataset
chronologically and then split it in the following three subsets:

• Batch Train subset. The first 20% of the dataset are used for the initial training
of the models.

• Batch Test - Stream Train. The next 30% of the dataset are used for the vali-
dation of the initialized models, and for incremental online learning to ensure
the transition between the first and the last phase.

• Stream Test and Train. The last 50% of the dataset are used for prequen-
tial evaluation, which is a test-then-learn procedure performed while iterating
over the observations (Gama, Sebastião, and Rodrigues, 2009). Each observa-
tion 〈u, i〉 is used to evaluate the model by generating recommendations for
user u, and then to update the model using 〈u, i〉.

We use recall@N and DCG@N to measure the quality of recommendation. These
metrics are described in (Frigó, Pálovics, Kelen, Kocsis, and Benczúr, 2017) for the
online setting. We report the results for the Stream Test and Train subset.

11.2.3.3 Compared Methods

Since previous work has demonstrated the advantages of using online recommen-
dation compared to batch recommendation (Vinagre, Jorge, and Gama, 2014b; Frigó,
Pálovics, Kelen, Kocsis, and Benczúr, 2017), we focus on incremental methods. We
also only consider one approach for incremental MF, knowing that our method
CoAWILDA can integrate any other algorithm for incremental MF or any model-
based method. We compare the performances of several incremental methods adapt-
ed to the online setting, including variants of the one we propose.

• CoAWILDA is the method we propose, combining ADaptive Window based
Incremental LDA (AWILDA) for topic modeling and incremental MF for CF.
For ml-100k, we set the number of topics K = 20, η = 0.04, λu = 0.01, and
λi = 0.1. For plista, we set K = 10, η = 0.042, λu = 0.01, and λi = 0.1.

• CoLDA relies on classical online LDA (Hoffman, Bach, and Blei, 2010) for topic
modeling and incremental MF for CF. It replaces AWILDA from CoAWILDA
with classical online LDA. For ml-100k, we set K = 20, η = 0.05, λu = 0.01, and
λi = 0.1. For plista, we set K = 10, η = 0.045, λu = 0.01, and λi = 0.1.

• AWILDA denotes the method we propose for adaptive topic modeling. We try
to use it for recommendation without the collaborative component, by repre-
senting users in the space of topics and updating their profiles as we get more
observations. For ml-100k, we set K = 20, η = 0.04, and λu = 0.01. For plista,
we set K = 10, η = 0.042, and λu = 0.01.
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FIGURE 11.6: DCG@Ni of our approach CoAWILDA and other vari-
ants and incremental methods for ml-100k (first subfigure) and plista
(second subfigure), where Ni is the number of available items. The
evolution of DCG@Ni with the number of evaluated observations is

reported.

• MF is the incremental MF (Vinagre, Jorge, and Gama, 2014b). Compared to
CoAWILDA and CoLDA, MF does not leverage content information about
items. For ml-100k, we set K = 50, η = 0.01, λu = 0.02, and λi = 0.02. For
plista, we set K = 50, η = 0.008, λu = 0.01, and λi = 0.01.

• Knni is the incremental item-based approach proposed in (Miranda and Jorge,
2009). We set the number of neighbors to 300.

• Rand randomly selects items for recommendation.

For each of the methods, we performed a grid search over the parameter space of
the methods in order to find the parameters that give the best performance (param-
eters reported above). We report the performance corresponding to the parameters
leading to the best results.

11.2.3.4 Results and Discussion

Figure 11.6 shows the DCG@Ni of the methods we compare for ml-100k and plista,
where Ni is the total number of items included in each dataset. The idea is to eval-
uate how each approach performs when ranking the items for each user. We report
the metric value with respect to the number of observations processed, in order to
analyze its evolution over the time spanned by the Stream Test and Train set.

CoAWILDA outperforms all the other methods evaluated for both datasets. The
comparison between CoAWILDA and CoLDA demonstrates the effectiveness of the
AWILDA algorithm for modeling document streams describing new items, and for
improving the quality of item modeling and thus recommendation. CoLDA is not
able to adjust to drifts occurring in topic modeling which deteriorates the recom-
mendation quality over time.

The performance of CoLDA for plista can be divided in two phases. In the first
one, the topic model is still able to carry out good document modeling and is benefi-
cial for the recommendation: CoLDA performs better in terms of item ranking than
MF which does not account for content analysis. In the second phase, and with the
incapacity of online LDA to adjust to drifts, MF outperforms CoLDA. This means
that not only the topic model is not adapted to newly received data, but it is also
badly affecting the recommendation quality and there is no interest in using it any-
more. We also note the importance of evaluating the evolution of the models over
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FIGURE 11.7: Recall@5, recall@10, recall@50, and recall@100 of our
approach CoAWILDA and its variants on ml-100k.

FIGURE 11.8: Recall@5, recall@10, recall@50, and recall@100 of our
approach CoAWILDA and its variants on plista.
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time to show how they are affected by eventual changes occurring in the data. This
phenomenon appears for plista where more frequent drifts occur over time, mainly
due to the nature of news data. Concerning ml-100k, CoLDA performs better than
MF but still worse than CoAWILDA.

AWILDA is a content-based method and only relies on topics extracted from
items to model user preferences. It performs poorly compared to the other methods,
and proves the importance of having a CF component. Knni performs better than
AWILDA, but is not as robust as MF and the hybrid approaches evaluated.

The number of available items grows significantly over time in plista. This results
in the dropping of performance (in terms of ranking) of all methods over time. This
is not the case in ml-100k, since only few movies are added in the corresponding
time period. More data is received and more learning is done over time, which can
explain the improvements in the performance of CoAWILDA and CoLDA.

Figures 11.7 and 11.8 show the recall@5, recall@10, recall@50, and recall@100 of
our approach CoAWILDA and its variants on ml-100k and plista respectively.

The experiments for ml-100k confirm the ideas we mentioned before. CoAW-
ILDA outperforms the other variants and performs better than CoLDA which relies
on online LDA and does not adapt to changes in the data. CoLDA performs better
than MF demonstrating the benefits of using content information. AWILDA relies
only on content information which is a weak approach to model user preferences
when used alone.

The experiments for plista highlight an interesting behavior. For recall@5 and
recall@10, MF performs better than CoLDA for all considered observations. For re-
call@50 and recall@100, we observe two different behaviors where, first, CoLDA
performs better than MF, and then MF outperforms CoLDA. We recall that the re-
ported results are measured on the second half of the dataset (Stream Test and Train
subset). Drifts may have occurred during the training phase, which is typically the
case for plista. When measuring the recall@N, CoLDA is already weakened by the
drifts that have happened and that were not taken into account. This leads to a point
where the information learned by the topic model hurts the quality of recommenda-
tion, and MF starts performing better than CoLDA. This change of behavior occurs
at different moments, depending on the recall we are measuring. For a higher N
(e.g., recall@50, recall@100), the performance of CoLDA remains above the perfor-
mance of MF for a longer time than for a lower N (e.g., recall@5, recall@10). Top list
recommendation is thus more affected by the deterioration of the topic model.

All experiments demonstrate the effectiveness of using CoAWILDA, the strength
of which relies in adapting to changes occurring in the data. Methods that do not
detect and adapt to these changes, i.e., CoLDA, perform worse than CoAWILDA.

11.3 Perspective: Coping with Reoccurring Drifts

In this section, we discuss the possibility to handle reoccurring drifts in AWILDA,
ie. concept drifts that come back to previously encountered models. We propose
an interpretation of reoccurring drifts in the terminology of Case-Based Reasoning
(CBR).

11.3.1 Reoccurring Drifts

Reoccurring drifts are particularly frequent and model the reoccurrence of previ-
ously encountered states (either cyclic or episodic). The question of reoccurring
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drifts is essential in applications where seasonal effects can be observed or where the
environment can oscillate between several states. In streams of documents, which
is the focus of this chapter, many factors can generate reoccurring drifts. In news,
the articles can be affected by the recurrence of some global contexts (for instance
electoral context) that might affect the whole dataset. In reviews, seasonality effect
is particularly important too.

Dealing with reoccurring drifts requires a bit more adaptation and especially the
use of a memory to evaluate the relatedness of the current observation with the past.
Various algorithms have been designed to tackle this issue.

The first method that was explicitly designed for reoccurring drifts (working
with categorical attributes) is FLORA3 (Widmer and Kubat, 1996), an evolution of the
original window-based FLORA method. When a drift is detected, FLORA3 inspects
a pool of saved models instead of relearning a brand new model from scratch. The
reuse procedure can be decomposed into three steps: Finding the optimal model (i.e.,
the model which makes the best predictions on the current data), update the chosen
model (in order to make it consistent with current state), and comparing the updated
version of the model to its memorized version. As an alternative to FLORA3, SPLICE-
2 (Harries, Sammut, and Horn, 1998) offers another adaptation to recurring concept
drifts on categorical features. The algorithm considers batches of data on which the
concept is supposed to be stable. These batches are then clustered together, based on
a notion of context similarity. In (Yang, Wu, and Zhu, 2006), the past history is mod-
eled by a Markov chain and the future state is predicted according to the computed
transition matrix.

Ensemble approaches are ideal for recurring drifts. For instance, Ensemble Build-
ing (EB) (Ramamurthy and Bhatnagar, 2007) aims to combine multiple classifiers
with weights depending on their scores. If none of the known classifiers have good
prediction rate on the currently observed chunk, a new classifier is trained and
added to the pool. In a slightly different way, (Gama and Kosina, 2009) chooses
current models from a pool of previously learned model. The models are stored in
memory, as well as their associated referee. In (Jaber, Cornuéjols, and Tarroux, 2013),
the traces of past relevant concepts are stored in the pool of base-learners. These
base-learners are learned each time that no existing classifier is a good predictor on
the current window of examples. A diversity criterion on the pool of base-learners
guarantees that the pool is both diverse and not cluttered.

The approach of (Katakis, Tsouma-kas, and Vlahavas, 2010) is very similar but
exploits an idea that is close to CBR: Batch examples are selected by the algorithm
and transformed to conceptual vectors. These vectors are then clustered together
and a new classifier is learned for each cluster. Finally, the more generic algorithm
Learn++.NSE (Elwell and Polikar, 2011) is also perfectly tuned for recurring drifts:
The algorithm is based on a passive incremental approach and proposes a weighted
majority vote on a pool of classifiers.

The use of memory, which is at play with reoccurring drifts, is highly similar to
the problems encountered in the domain of Case-based Reasoning (CBR). In partic-
ular, the four steps of CBR are observed in memory management for stream min-
ing. Retrieval is implied in the process of detecting similar states in the past (did
the drift lead to a previously encountered distribution?); Reuse brings a solution to the
current case based on the retrieved cases; Revision exploits information of the new
case to adapt current cases; Retention evaluates if the new case has to be kept in
memory (De Mantaras et al., 2005).
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Interestingly enough, the similarities between the main questions of CBR and
online learning have not been exploited much. Apart from the ensemble techniques
mentioned above (in particular (Katakis, Tsouma-kas, and Vlahavas, 2010)) which
are implicitly related to CBR, some methods use CBR in an explicit way. In (Sal-
ganicoff, 1997), all new observations are directly stored in memory but, depend-
ing on their relevance to the context, they can be deactivated or reactivated. It is
shown that this strategy improves the robustness of lazy learning algorithms to con-
cept drift. CBR is used in the context of spam classification with concept drift (De-
lany, Cunningham, Tsymbal, and Coyle, 2005): The case base is filled with a vector
representation of emails and managed using a Case Base Editing strategy (Delany
and Cunningham, 2004) which removes both noisy and redundant cases. This case
base editing strategy is also used by (Lu, Lu, Zhang, and De Mantaras, 2016). The
problem of instance-based learning has also been expressed in the context of data
streams (Beringer and Hüllermeier, 2007): The proposed method updates the case
base at each detection of a drift, implying the removal of a large number of cases.

11.3.2 Drift Adaptation seen as a CBR Problem

In this section, we present an interpretation of online learning in terms of case-based
reasoning. The presented notions are given at an abstract level. An application to
AWILDA will be proposed next.

11.3.2.1 General Process

In a context of stream mining, it is not possible to have a full CBR process at each
step. The methodology we propose allies the performance qualities of active meth-
ods for stream mining and the use of memory, which is typical of CBR.

The data stream is analyzed by a drift detection algorithm (for instance AD-
WIN (Bifet and Gavalda, 2007)) on the base of a score. The purpose of this algorithm
is to detect when the data distribution changed and when an adaptation is needed.
Since a drift is necessarily detected with some delay, a drift detection comes with
a batch of instances D generated by the new distribution. The score is computed
based on a representation model of the data. It can correspond to the error rate
of the model or to its likelihood for instance. In the following, we will denote by
score(D,M) the score of data D relative to the modelM.

Instead of relearning the model from the batch selected by ADWIN, we propose
to select the model from a case base and to adapt it in order to fit the new data. This
use of case base is ideal for dealing with recurring concept drifts, as suggested by
the state of the art.

11.3.2.2 Case Representation

One of the central questions of CBR concerns the management of the case base and
the representation of cases. In the context of online learning, we propose the follow-
ing storage process. A case corresponds to a data point, after or before any trans-
formation process. As suggested by (Katakis, Tsouma-kas, and Vlahavas, 2010), the
points are then grouped into clusters corresponding to concepts. Each of the clusters
is associated to a unique decision model which can be either discriminative (e.g., a
classifier in supervised setting) or generative (e.g., a probability distribution in un-
supervised setting).
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In a perspective of reusing previously solved cases to address new questions,
this representation consists of a factorized representation of problems: the solution
(here the decision model) is shared by several cases.

11.3.2.3 Case Retrieval

When a drift is detected, the first question is how to associate the batch of points to
a corresponding group of cases. Using the representation we proposed, the related-
ness of a batch to any case inside a cluster can be measured by its relatedness to its
associated model. As a good candidate for this measure, we propose to use the score
function.

The optimal cluster of cases is chosen to be the cluster such that the associated
model maximizes score(D,M). Note that, especially for the first drifts, none of the
learned models might describe well the observed data. In order to discard incorrect
models, a threshold can be given for the score, under which no cases are selected.
Such a threshold might be given by a complexity measure. In the scope of this thesis,
we will ignore this problem.

11.3.2.4 Case Reuse

The retrieved cases do not necessarily correspond exactly to the current distribution
of data. In order to cope with this problem, the decision model in use is retrained
on a specific batch of data. This batch contains the points in the case cluster and the
points in batch D. This reused model thus incorporates both knowledge from the
past and from current data. The model is taken as the reference model for the next
observations, until a new drift is detected.

11.3.2.5 Case Revision

In the time interval between two drifts, we propose a case revision based on two
aspects. On the one hand, the description model is updated online for each new
observation, using a stochastic optimization scheme (Bottou, 2010). On the other
hand, the most relevant data instances are kept in a short-term memory, in order to
feed the case in the retainment phase. The relevance of an instance is evaluated with
the score function, for the current model. These two actions are complementary: the
model update is important in order to keep the decision model up-to-date, while the
data selection contributes to an optimal case design.

11.3.2.6 Case Retainment

When a drift is detected, the model has to be saved in the case base. Two possibil-
ities appear: either to re-write the selected case or to create a new case. This deci-
sion is motivated by the impact of creating a new model onto the global case base.
If (Mold,Dold) designates the previous model and the cases associated to it, and
(Mnew,Dnew) designates the current model and the data stored in short-term mem-
ory, one possibility to discriminate the two options is to compare score(Dold,Mnew)
and score(Dold,Mold). If the first score is higher, the new model is better at describ-
ing data from previous case model and thus the model has to be overridden. Oth-
erwise, the previous model was satisfactory and the new model is relevant only for
the new cases. Thus a new model has to be created and is associated to the instances
in short-term memory.
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In the case where the previous model is overridden, the cases stored in short-
term memory are added to the case cluster of the model. In simple applications,
where the number of cases per cluster is limited, only the cases with higher score are
kept.

11.3.3 Application to AWILDA

Textual content written by individuals and shared online on several platforms (e.g.,
tweets, news, reviews) is usually affected by their specific context that is in turn
influenced by real-life events. It is essential to account for changes happening in the
distribution of topics and words in order to improve document modeling. While
AWILDA retrains a model at each detected drift, it cannot leverage previous learned
information about a concept when it reappears due to its possible recurrence. We
propose to store learned models that are no longer adapted to the current context
and reuse them later when they are valid again.

In terms of the methodology described above, this problem can be described as
follows. Each point corresponds to a document (described as a bag-of-words) and
documents arrive sequentially as a stream. The task we address here is a modeling
task: The purpose is to identify a good model that fits the data in real time. As a
consequence, the model used to select the cases to cluster corresponds to the LDA
model itself. The score function that we use is the log-likelihood, which measures
the probability of observed documents to be generated by the model.

In order to demonstrate our approach, we present the experiments we conducted
on two datasets from different domains. The first dataset gathers hotel reviews
posted on TripAdvisor (Ganesan and Zhai, 2012) and is denoted by trip. The dataset
comprises approximatively 200k reviews published from October 2001 to Novem-
ber 2009 and related to hotels located in ten different cities. We expect to observe a
recurrence of concepts in this type of dataset due to the seasonality effect that influ-
ences the behavior of tourists and the hotel aspects they attach importance to. The
second dataset is the plista dataset (also denoted by news).

We compare our approach, denoted by CB-AWILDA, to AWILDA. AWILDA is
better suited to handle abrupt drifts: The model is retrained for each detected drift
using the documents corresponding to the new distribution. AWILDA and CB-
AWILDA are considered to be receiving a stream of document in real-time and to
process documents sequentially. We use the first 20% of the document stream to
initialize the models and we measure perplexity for all the documents received af-
terwards. We report the results obtained by fixing the number of topics to 5, and the
minimum number of cases to 2.

Figure 11.9 shows the perplexity measured on the document streams of trip and
news for AWILDA and CB-AWILDA. The performance of both methods at the begin-
ning of the process is relatively similar. This is expected since the learning process is
the same before any drift is detected. As more documents are received, CB-AWILDA
outperforms AWILDA for the task of document modeling. For each detected drift,
AWILDA is retrained using the documents related to the new distribution. This is
thus pushing the model to forget previously learned information that may be valid
in the future. On the other hand, CB-AWILDA leverages previously seen documents
that correspond to the current distribution and uses them in the learning process.
CB-AWILDA is therefore more adapted to the documents that are currently being
received, which results in a better performance in terms of perplexity.
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FIGURE 11.9: Evaluation of AWILDA and CB-AWILDA for the task
of document stream modeling on the trip (first figure) and the news

(second figure) datasets.

11.4 Conclusion

In this chapter, we proposed an analysis of the problem of online topic modeling.
The proposed approach is very simple, since it only combines the modeling strength
of a generative model (LDA) to an efficient drift detection method (ADWIN), but it
proves its efficiency on both artificial and real datasets. We also put our algorithm
in the perspective of a different domain of application: recommender systems. We
have illustrated the performances of an online hybrid recommender system that up-
dates its item representations based on drift detection and we have shown that drift
detection helps keeping an up-to-date model of the observations. Lastly, we dis-
cussed a simple way to reuse previous knowledge, inspired by the framework of
case-based reasoning.
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Chapter 12

U-shaped phenomenon in
Incremental Learning

In Chapter 10, we introduced a framework for incremental learning based on min-
imum description length principle, and we claimed that this framework is generic.
However, we only illustrated it with examples taken from machine learning, with
vector representation of data. The purpose of this short chapter is to present an ap-
plication taken from a completely different domain and to show the validity of our
framework.

The domain we consider here is the phenomenon of U-shaped learning in lan-
guage acquisition. This phenomenon is well-known in the domain of cognitive
sciences and corresponds to a non-uniform learning curve, divided in three steps:
learning, un-learning and re-learning. This phenomenon is observed, in particular,
in the acquisition of language by children (“he went” → “he goed”→ “he went”).
We will show that this phenomenon is well-illustrated by a complexity-based frame-
work.

The remainder of this chapter is organized as follows: After a brief introduction
on language acquisition and existing models of U-shaped phenomena, we propose
a detailed description of our framework in Section 12.2. This section will convey
notions that were described in the very beginning of this thesis, in Chapters 4 and 5
Finally, in Section 12.3, we present the results of simulations based on our model.

12.1 Context: Language Acquisition

The phenomenon of U-shaped learning describes a three-step procedure of learning,
unlearning and relearning. A well-known occurrence of a U-shaped curve is the ac-
quisition of aspects of language, in particular the past-tense learning in English: at
first, children learn correct syntactic forms (eg. “play / played”, “sing/sang”), then
proceed to an overgeneralization (eg “play/played” but “sing/singed”) and even-
tually acquire the correct grammatical rule and the exceptions. This phenomenon
is counter-intuitive as it stands in opposition to the idea of a monotonic cumula-
tive learning (ie. the idea of a continuous model of cognitive development). However,
cognitive sciences and developmental psychology have shown empirical evidence
for this phenomenon in various domains, among which language learning (Bow-
erman, 1982; Marcus et al., 1992), understanding of physical notions (Stavy, 2012;
Bowerman, 1982) or face recognition (Carey, 1982). In this chapter, we will focus on
language acquisition, but we will discuss how our model could be applied to other
domains and be extended to explain the phenomenon as a whole.
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Besides this phenomenon, an intriguing problem concerns the acquisition pro-
cess itself. Many authors estimate that feedback is not necessary to acquire a lan-
guage correctly (Bowerman, 1988; Marcus, 1993); others consider that only noisy or
indirect signal is sent to children, such as clarification questions, physical manifesta-
tions of incomprehension (Demetras, Post, and Snow, 1986). This ability is directly
related to U-shaped learning, negative feedback being the most direct way to over-
come over-generalization.

Attempts have been proposed to model and explain the U-shape phenomenon.
In particular, a common line of research follows Gold’s model of language learn-
ing (Gold, 1967; Jain, Osherson, Royer, and Sharma, 1999) and studies the logical
necessity of U-shape performance when learning is based on positive evidence (ie.
when learners get information about the language in a naturalistic environment, for
instance by hearing sequences as they occur). A particularly interesting results states
that a U-shape behavior is not necessary in case of explanatory learning (ie. when the
learner converges to a single hypothesis) with full memory (Case and Kötzing, 2010;
Baliga, Case, Merkle, Stephan, and Wiehagen, 2008). Several studies have investi-
gated the impact of memory limitation onto U-shaped learning (Carlucci, Case, Jain,
and Stephan, 2007). In particular, the framework of iterative learning assumes that
the system has only access to the last conjecture and the current data only (Lange
and Zeugmann, 1996). A complete review of the main results regarding U-shape
with positive evidence can be found in (Carlucci and Case, 2013).

A different point of view is based on simplicity arguments and state that the
learner actually infers a probabilistic grammar that provides the simplest encoding
of the inputs (Hsu, Chater, and Vitányi, 2013). This idea of using complexity to
describe the U-shaped phenomenon is close to our idea. However, the approach
proposed by these authors is based on pure complexity which is non-computable.
For this reason, their approach is not sufficient to provide a cognitively plausible and
easy-to-use model of language acquisition. The model is based on Solomonoff’s gen-
eral theory of induction (Solomonoff, 1964). It relies on Bayesian theory where the
prior is approximated by a universal probability distribution: Despite the real inter-
est of asymptotic results and of probabilistic modeling, such results do not encom-
pass the (at least partial) potential acquisition of a language from very few examples
(one-shot learning) (Tenenbaum, Kemp, Griffiths, and Goodman, 2011). These mod-
els are based on the assumption that the grammar is probabilistic: In particular, the
complexity of a grammar is supposed to be related to the probability of its use. We
think that this idea is restrictive and that a more direct computation of complexity,
not related to probabilities, can be proposed. Because of its apparent similarity with
our propose model, we will discuss this framework in more details in the following.

Our point of view lies at the intersection of three approaches: Gold’s computa-
tional learning theory (Gold, 1967), simplicity theory (Dessalles, 2013; Hsu, Chater,
and Vitányi, 2013) and grammar learning by analogy (Lepage, 1998). We consider
that agents learn morphological transformations by memorizing a compressed ta-
ble of association which is continuously updated when new words occur. From this
point of view, the inferred grammatical rules correspond to the compressor itself.

12.2 A modeling Framework

In this section, we present the general framework used to interpret the phenomenon
of U-shaped learning.
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12.2.1 Assumptions

We follow a Gold-like approach to language acquisition. We consider that the learner
faces a stream of language cases. No indication is given to the learner regarding the
correctness of the case nor its origin (cases produced by the learner himself or by
external agents). This hypothesis is meant to avoid any bias brought by negative
evidence. In particular, it attempts to model the uncorrected mistakes made by the
learner which might be taken for granted.

For simplicity purpose, we restrict our study to a problem of conjugation or de-
clension in which the learner has access to the base form of a word and to its modi-
fied form (ie. declined or conjugated form). We impose a couple of straightforward
restrictions. First, the learner is supposed to learn rules for one and only one task:
For instance, the learner acquires knowledge on past formation in English, or ac-
cusative case in Latin... This assumption is equivalent to having a learner able to
make a distinction between all the possible learning tasks it could face. Secondly,
the learner is supposed to have a prior access to the whole vocabulary. This means
that the learner cannot encounter a new word during learning. Finally we suppose
that, when facing an inflected word, the learner has access to its base form: For in-
stance, when facing the word “was”, the learner knows that it is a transformation of
“be”.

We will discuss the validity of these a priori hypotheses in the concluding re-
marks. We will also consider their impact on a more realistic modeling of actual
language acquisition.

The described process is the following: at a time-step t, the learner infers a
grammar Gt based on its previous grammatical knowledge Gt−1 and on memorized
forms. It has access to two distinct memories: the perceptive memory, memoriz-
ing received data only, and the generative memory in charge of storing the current
state of grammar. In practice and in the context of an easy-to-use model, we will not
consider general grammatical systems, but only simple cases.

No restriction is imposed on the origin of the observed data. In particular, the
data can be either generated by a rigorous speaker (hence be exact) or be generated
by the learner itself. Allowing the learner to interfere with noiseless data produced
by the environment is intended to present a more realistic modeling: indeed, it has
been shown that children often lack negative feedback when they make mistakes,
hence have confirmation of incorrect inferred grammars (Bohannon and Stanowicz,
1988).

The idea of this modeling is to offer a continuous description of language ac-
quisition. A newly inferred grammar has to be inspired both by the previous state
(which enforces continuity) and by a description of data (which enforces correct-
ness). The general grammatical inference task can be seen as a trade-off between
these two general tendencies: fitting data and continuity in time.

12.2.2 A Complexity-Based Framework

In this framework we proposed, we can see a pattern similar to the general principle
of online learning as described in Chapter 10. We propose to describe here in more
details how the two frameworks can be related.

At each time step t, the learner faces a word (in non-inflected form) Xt and aims
to produce its inflected word in the given context Yt. For instance, it is possible to
have Xt =“play" and Yt =“played".
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The model Mt corresponds to a restriction of the general grammar to the task of
interest. This grammar is supposed to explain the transformation Xt → Yt.

Based on these notations, it is still possible to use the objective function given
in Equation 10.4. For simplicity purpose, we choose the association function ∆t to
be ∆t(t − 1) = 1 and ∆t(u) = 0 for all u < t − 1. Such an association function
corresponds to a first-order process where the model at time t is determined by its
predecessor only, hence the model at time t− 1. With this convention, we obtain an
objective function equal to:

∑
t

K(Mt|Mt−1) + K(Xt|Mt) + K(Yt|Mt, Xt) (12.1)

Such as for data stream mining, this objective cannot be optimized once and for
all when all data have been observed. In this application, the stream is potentially
unlimited and decisions have to be taken on the fly, for the learner to have an up-
dated grammar at any time. The greedy approach that is inherent to stream mining
is a necessity here: The learner improves its grammatical knowledge in order to have
locally the best of its knowledge.

12.2.3 Computing Complexities

In order to choose the corresponding models, we rely on the description language
proposed in Chapter 4.

Using this language, the minimal program to generate a declension (or conjuga-
tion) implements the following steps: 1) Store the general transformation rule into
memory; 2) Apply transformation to the first radical; 3) Apply transformation to the
second radical. The following program applies this process to the “rosa : rosam ::
vita : vitam” example:

let(?, next, ?, 'm'), // Step 1

mem, 0 , 'rosa', // Step 2

mem, 0, mem, 'vita'; // Step 3

This program can be transformed into a binary code and thus used for com-
plexity evaluation of the whole transformation. Even if this coding was explicitly
designed for analogies, it is interesting to notice that it can be used in a more general
setting without significant change. In particular, step 1 can be interpreted as the rule
which can be applied to more than two examples.

12.2.3.1 Encoding the Grammar

We choose to represent the grammar (or, equivalently, the model) as an unordered
list of rules and exceptions. A list is an instruction of the form “if [condition on
radical], then [transformation]”. For instance, the regular plural form in English can
be described by the rule “If true, then add s at the end of the radical”.

We choose to encode the rules as an instruction in our program which generates
the ordered pair radical : inflected. Generating this ordered pair requires exter-
nal information, which will be considered later, in the description of observations.
An encoded rule describing the formation of plural form in French, as presented
above, could be ?, next, ?, `s'.

To these rules are added some exceptions, ie. cases that do not respect the rules.
For example, the rule cited above for the plural in French does not apply to word
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“cheval”, the plural of which is “chevaux” and not “chevals”. Exceptions are en-
coded as the full ordered pair: `cheval', next, `chevaux'.

In the language, we choose the empty set of operators, which means that only
operations of concatenation are permitted. This restriction is well-adapted to the
domain of natural language, in which the formation of words does not rely on prior
knowledge on the structure of the alphabet. Only the operator repeat could be of
any interest, since some languages use the repetition in their grammar1, but this op-
erator can be easily replaced by its description. For example, the Indonesian plural
rule can be expressed easily as ?, next, ?, ?.

12.2.3.2 Grammar Transfer

For the evaluation of the transfer term K(Mt|M), we propose to evaluate the way a
grammar is transformed. Several transformations are possible:

• A rule (resp. exception) is added: The rule (resp. exception) must be given
explicitly. The complexity is the complexity of the added rule (resp. exception).

• A rule (resp. exception) is removed: The id of the rule (resp. exception) must
be given. The complexity is the complexity of the number of rules (resp. ex-
ceptions).

• A rule is modified: The condition of the rule remains unchanged, but the in-
flection is changed. This case is rare but can happen when an exception is
incorrectly classified as a rule.

As a consequence, adding a rule is more costly in terms of complexity than re-
moving one, unless the number of rules is already high. This observation is con-
sistent with the intuition that a “small" grammar can be easily improved by adding
new rules, while a very large grammar will benefit from being simplified.

Given a grammar Mt−1, a grammar Mt is given as a list of such procedures and
the complexity K(Mt|Mt−1) is defined as the sum of the complexities of these proce-
dures.

12.2.3.3 Encoding the Observations

The grammar model Mt is used to describe the observations (Xt, Yt). Three cases are
observed:

• The observation is well described by the grammar: Either the observation
is well described by a rule or is already an exception. In this case, nothing is
done.

• The observation is not described by the grammar: The observation is not an
exception and no rule condition applies on it. In this case, the system has to
determine a new rule out of one example (which is in general less complex
than storing the observation as an exception).

• The observation is incorrectly described by the grammar: A rule applies on
it, but the result does not correspond to the correct result. In this case, the
system has to define if the observation is encoded as an exception or if a rule
can be modified.

1We can cite Latin, in which makes use of syllable doubling in some forms of preterit (do→ dedi),
or Indonesian, in which reduplication is used for plural (orang→ orang-orang).
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Regarding the creation of rules, the minimum complexity strategy favors rules
that propose the maximal factorization of Xt and Yt. Consider for instance the ob-
servation (work, worked). Several rules can generate this observation, including work

→ worked, k→ ked or simply ∅ → ed. Obviously, the better compression is given
by the last rule, which also corresponds to the maximal generalization.

12.3 Experimental Results

12.3.1 Causes of U-shaped Phenomenon

For the reasons exposed earlier, the model we propose allows us to test a couple of
properties that might impact U-shaped learning in a very direct way:

1. Finiteness of memory: The limitation of memory has already been studied
from a theoretical point of view (Carlucci, Case, Jain, and Stephan, 2007). The
proposed framework offers a straightforward way to explore the influence of
the size of the memory onto the learning process.

2. Feedback on mistakes: As discussed previously, children may lack negative
feedback during language acquisition. We propose to explore the learning pro-
cess when the learner faces correct samples only and in the presence of mis-
takes.

The purpose of this experimental part is twofold. First, we want to show that
the proposed framework satisfies the desired properties in terms of language acqui-
sition: the method is able to estimate rules describing observations and the global
learning evolution follows a U-shaped evolution. Secondly, we propose to investi-
gate the impact of both memory finiteness and feedback on mistakes onto U-shaped
learning.

Another aspect that might play a role in the emergence of U-shaped curves is the
impact of word frequency. Obviously, words do not have the same use frequency
and irregular words are more frequently used (Plunkett and Marchman, 1991). It
would be interesting to experimentally test this hypothesis, but this work has not
been done here.

Following these simulation steps, a first conclusion is the convergence of the
learning procedure toward a set of meaningful rules. These rules can be divided
into two categories. The first category is made up of “regular” cases: they define
what is intuitively admitted to be the standard past formation. The second category
describes sub-classes of “irregular” cases. For instance, the algorithm detects that
verbs ending in ‘-and’ have their past in ‘-ood’. The automatic finding of such rules
is a demonstration of how the compression favors general rules when possible.

Since the language generator is chosen to be pseudo-random, we notice that the
induced grammar can change from one simulation to the other. Two different gram-
mars can describe with equal quality the same set of words, but might differ in their
rules and exceptions. This phenomenon is inherent to the incremental nature of ac-
quisition: the order of apparition has a strong impact on the inference.

From these first conclusions, two conclusions emerge. First, our model is good
enough to describe a rule acquisition process, even if we have not yet shown that
this process follows a U-shaped behavior yet. The second conclusion is relative to
inference itself: It can be shown that two systems facing the same situations but in
a different order will infer different rules. This aspect illustrates the intrinsically
subjective nature of cognitive language representation in the absence of feedback.
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FIGURE 12.1: Generalization rate evolution during training for mem-
ory size of 5.

12.3.2 Finiteness of Memory

As an illustration of the impact of memory limitations on U-shaped learning, we
consider language acquisition simulation with a limited history window and we
show the influence of this parameter on the learning process.

When memory is very limited in size, we generally observe multiple short-term
U-shaped phenomenons during acquisition (Figure 12.1). Even if the generalization
rate curve has a global increasing tendency, large-amplitude drops are observed at
times, corresponding to incorrect inferences by some rule.

When the size of the memory increases, the curve tends to become smoother and
local drops disappear. Global U-shape becomes observable in most simulations, as
depicted in Figures 12.2 and 12.3 for a window width of 20 and 100.

FIGURE 12.2: Generalization rate evolution during training for mem-
ory size of 20.

When the memory is not limited, U-shape phenomenon tends to vanish in gen-
eral but might persist locally (Figure 12.4). It is interesting however to notice that,
depending on the word order, learning may or may not converge to a perfect infer-
ence. In some situations, even with finite memory, the incremental nature of learning
stops the system at a non-perfect inference stage.
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FIGURE 12.3: Generalization rate evolution during training for mem-
ory size of 100.

FIGURE 12.4: Generalization rate evolution during training for un-
limited memory.

We can verify that memory size has a crucial impact on U-shaped learning. The
proposed framework leads to results with similar properties to those observed in
human language acquisition: despite a globally increasing behavior, drops in the
learning rate can be observed when an overly general rule is inferred. In some situa-
tions, the system can be blocked in this poor representation which is locally optimal
for it. This observation points to the necessity of an external learning process to
correct potential mistakes of an acquisition from positive evidence.

12.3.3 Uncorrected Mistakes

We consider now that the learner faces uncorrected mistakes during learning. Such
mistakes can be produced by the learner himself in the absence of correction. For
instance, a child may overgeneralize past tense formation and say “’goed’ instead of
“went” without being corrected by his parents.

We incorporate a mistake probability in the generation of data and measure its
impact on learning performance with a memory window of length 30.
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As a first conclusion, we notice that adding mistakes does not change the U-
shaped phenomenon, at least when the probability is low (Figure 12.5). When the
probability tends to 1, the phenomenon is attenuated but remains visible in most
cases.

FIGURE 12.5: Generalization rate evolution during training with win-
dow size of 30 and mistake probability of 0.1.

Uncorrected mistakes influence the U-shaped phenomenon mainly on the over-
all performance. We notice that the best performance obtained with uncorrected
mistakes is globally higher than the performance obtained without them. Besides
the number of generated rules is much lower and no more “generalization over ex-
ceptions” is produced (rules such as “-and” transformed to “-ood”).

Even if this result might seem counter-intuitive at first sight, it can be explained
easily in the context of our study. Produced mistakes are often in the direction of
over-generalization of regular rules . Thus, adding such mistakes to the learning
procedure encourages the system to find regularity more than exceptions. In real
language, irregular verbs are known to be more frequently produced, and they are
still perceived as exceptions when they occur in a correct form.

12.3.4 Discussion

The results presented here are to be taken with care, since our model is based on
strong hypotheses. The focus on the acquisition of one single aspect of language
was necessary to validate our model, but at the expense of realism. In real situations,
children have to acquire several aspects of language at once (semantic, various mor-
phological features of conjugation, syntax...) and they do not focus on one single
task. Our simplification consists in considering all these tasks as independent. It
might be acceptable on a first level of analysis. The influence of other aspects does
not necessarily impact the learning procedure directly in our case.

It may indirectly justify a second hypothesis we made: we assumed that the
learner has access to the base form of words. In practice, this form is not always
directly reachable, but it might be easier to recover from the whole context (in par-
ticular the semantic context).

Finally, the child does not have a complete knowledge of the target vocabulary
and may hear inflected words, without having ever encountered the corresponding
base form. A variant of our model could make the system able to infer the base form
from the acquired rules. Our hypothesis still holds: in languages such as English,
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irregular verbs are often the most frequent ones (Plunkett and Marchman, 1991) and
rare words tend to show strong regularities. Based on this remark, we can refor-
mulate our hypothesis as follows: learners are able to estimate the base form of
irregular words because it is highly likely they have encountered them in the past,
and the base form of regular words by taking advantage of their regularity.

12.4 Conclusion

In this chapter, we presented an application of our incremental framework in the
domain of cognitive modeling. We presented it in the context of language acquisi-
tion. Based on very simple restrictions, we explained that the model Mt could be the
encoding of a grammar and that the solution Yt could be the estimated inflection of a
base form Xt. Despite the limitations of our approach, it turned out to be successful
to reproduce the phenomenon of U-shaped learning, which means a succession of
three phases: learning, unlearning and relearning.

This result is interesting on several perspectives. From the perspective of our
model, it tends to justify that the complexity-based framework we proposed models
actual phenomena that can be observed in human cognition. From the cognitive
point of view, it can be another argument in favor of the complexity-awareness of
human beings, already pointed out by (Chater, 1999). Finally, from the perspective
of learning theory, it raises a fundamental question: Is U-shaped learning restricted
to grammar acquisition? In particular, can it be observed in non-symbolic domains,
for instance in data stream mining? An extensive study of this question should be
done in future works.
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Part IV

Information Transfer in
Unsupervised Learning
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Chapter 13

Introduction to Multi-Source
Clustering

In previous parts, we have explored several transfer problems in supervised setting,
ie. where the solution is explicitly given, at least in one domain. In this final part,
we explore a completely different task, the task of multi-source clustering. In this
task, several clustering algorithms process the same data in order to produce a clus-
tering. However, the algorithms do not have access to the same information (views)
in datasets and process with their own biases. The purpose of multi-source cluster-
ing is to exchange information among the clustering agents in order to refine their
decision or to find a consensus.

The work presented in this part has been done in collaboration with Jérémie
Sublime (ISEP) and Basarab Matei (Université Paris 13).

In this first chapter, we propose a brief overview of the domain, reminding a
couple of notions inherent to clustering and discussing algorithms and applications
for multi-source clustering. We will introduce the two main tasks of the domain:
multiview clustering and collaborative clustering.

The remainder of this chapter is organized as follows: In a first section, we
present a general introduction to clustering. In Section 13.2, we propose a general
introduction to multi-source clustering and its potential applications. We present
a couple of state-of-the-art methods in cooperative clustering (when the multiple
sources aim to find a consensus) in Section 13.3, and in collaborative clustering (no
consensus required) in Section 13.4.

13.1 Reminder on Clustering

In this section, we present the general problem of clustering, in a single source set-
ting.

13.1.1 Definition and Issues

The clustering task, unlike classification or regression, belongs to the family of unsu-
pervised learning problems. Such problems are characterized by the absence of any
label at the training step. Given a dataset X = {X1, . . . , Xn}, a clustering method
aims to find a solution vector (y1, . . . , yn) ∈ Nn. The sets of the form {Xi : yi = k}
for k ∈ N are called clusters. As exposed in Chapter 2, the clustering task corre-
sponds to a labeling of the dataset, but this definition is not enough. A notion of
“good labeling” is required and, informally speaking, relies on the idea that similar
points have to be grouped together. However, this definition is extremely imprecise
and the difficulties of clustering originate in the absence of a clear definition.
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A first problem, that is inherent to the notion of similarity is transitivity. If a and
b are similar and b and c are similar, then a and c are not necessarily similar. How-
ever, the concept of “belonging to a same cluster" is transitive (sameCluster(a, b) ∧
sameCluster(b, c)⇒ sameCluster(a, c)). This simple observation points out a funda-
mental problem in the task of clustering. Consequently, it might happen, depending
on the clustering algorithm, that two points are grouped in a same cluster but are
less similar than two points that are not in the cluster. As a consequence, (at least)
two interpretations of the pseudo-definition of clustering can be given. On the one
hand, a clustering algorithm may avoid separating similar points; on the other hand,
it may avoid grouping together points that are too dissimilar.

Another problem is the potentially large number of partitions that can be pro-
duced by clustering algorithms and that should be explored in order to find the
optimal one. Consider a set of n objects that have to be partitioned in K groups.
(Cornuejols, Wemmert, Gançarski, and Bennani, 2018) shows that the total number
of partitions is equivalent to Kn/K! as n → ∞ and that, for n = 25, exploring the
entire space of partitions would require 147,000 years (given one million partitions
per second).

Considering these two observations, we understand that the search for a good
clustering algorithm necessarily implies strong biases, both on the choice of a simi-
larity criterion and on the exploration of the space of partitions.

Three families of clustering methods can be found:

• Hard clustering: Each object is associated to one and only one cluster.

• Soft clustering: Each object is associated to at least one cluster. An object can
be present in several clusters, with the same degree.

• Fuzzy clustering: Each object is associated to all clusters with various degrees.

In this thesis, we will consider hard clusterings only.

13.1.2 Families of Algorithms

Clustering is a rather old problem, and a large diversity of methods have been de-
veloped. We propose a brief overview of the existing families of methods and of the
most important algorithms. The purpose of this overview is not to be exhaustive
but to provide general ideas on the algorithms. These ideas will be useful in the next
chapter, when discussing how to adapt a large variety of methods into the frame-
work we propose. For a more complete overview, we refer the interested readers to
the dedicated surveys (Xu and Wunsch, 2005; Berkhin, 2006).

Prototype-based algorithms rely on the representation of data by a set of repre-
sentative points, called prototypes. This idea, which is based on the notion of vector
quantization, has already been introduced and discussed in this thesis (in particular
in Section 8.2.2).

The most famous prototype-based algorithm is undoubtedly the k-means algo-
rithm. This simple algorithm aims to minimize the following objective function over
P:

f (X, P) = min
p1,...,pk

k

∑
i=1

∑
x∈Ci

d(x− pi)
2 (13.1)

where Ci designates the i-th cluster, ie. the set of points in the dataset X that are
attached to the i-th prototype. This objective function is minimized by alternating
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two phases until convergence (MacQueen, 1967) First, the points in the dataset are
associated to their closest prototype, then the position of each prototype is modi-
fied to correspond to the average position of its associated points. This procedure
guarantees that the objective function decreases at each step and, thus, that the al-
gorithm converges in a finite number of steps. This algorithm is very popular for its
simplicity, however it has major drawbacks. It can be observed that the algorithm
is extremely sensitive to the initialization of the prototypes. In fact, determining the
optimal partition in k-means is NP-hard. Moreover, the formed clusters are, by con-
struction, hyper-spherical and often fail to detect structures of different scales. Two
variants of k-means, used when the distance between points are known, but not their
positions in the space, are k-medoids and k-medians. Both select the prototypes inside
the dataset, but k-medoid aims to optimize the same objective function as k-means,
while k-median focuses on the distance to the prototype, rather than the square of
the distance.

Another popular algorithm based on prototype-based representation is the Affin-
ity Propagation algorithm (Frey and Dueck, 2007). This algorithm relies on the tech-
nique of message-passing in order to update two matrices: a responsibility matrix,
which measures to what extent a point can be a good representative for another
point, and an availability matrix, which measures to what extent it would be appro-
priate to select a point when taking the other points’ choices. This two matrices are
updated sequentially until convergence. The main advantage of Affinity Propaga-
tion is that it automatically chooses the optimal number of clusters. However, it is
computationally more expensive than k-means.

Generative clustering methods rely on a probabilistic representation of data and
their purpose is to infer the data distribution. This distribution is chosen to be a mix-
ture of local distributions, for instance of multinormal distributions for the famous
Gaussian Mixture Model (GMM). A mixture model combines multiple distributions
by picking them randomly based on a multinomial distribution, the parameter of
which corresponds to the probability of a point to be drawn by the corresponding
local distribution. In the applicative case of clustering, each local distribution cor-
responds to a cluster, and the parameter of the multinomial distribution measures
the probability of a point to belong to the corresponding cluster. If we denote by
π = (π1, . . . , πk) the parameter of the multinomial distribution and consider that
the local distributions belong to a parametric class of distribution {pθ}θ∈Θ, the cor-
responding likelihood is given by:

L(X; π, θ1, . . . , θk) = ∏
x∈X

(
k

∑
i=1

πi pθi(x)

)
(13.2)

This objective function is maximized using the Expectation-Maximization (EM) al-
gorithm (Dempster, Laird, and Rubin, 1977), a procedure that alternates an update
of the posterior probabilities of the clusters for points in the dataset and an update
of the parameters of the distribution for fixed posterior probabilities.

Density-based methods aim to find regions of high-density of data and that are
well-separated from other regions. The density is measured by the number of neigh-
bors to a point, belonging to a neighborhood centered on the point of interest. The
more data points are present in this area, the more the point belongs to a dense re-
gion and will be connected to its neighbors.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester,
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Kriegel, Sander, and Xu, 1996) implements this idea in the most direct way. The al-
gorithm inspects all the points sequentially and groups them in a same cluster if the
number of points in a sphere of radius ε contains more than a fixed minimal number
of points. A variant of DBSCAN, called Ordering Points To Identify the Clustering
Structure (OPTICS) (Ankerst, Breunig, Kriegel, and Sander, 1999), considers that the
parameter ε is optional. For each point, the algorithm determines a core distance,
which corresponds to the maximal distance in a neighborhood of m points, where m
is the threshold for dense regions. This distance is used in the definition of a reach-
ability distance that measures to what extent two points can be linked together.

Finally, spectral clustering focuses on the idea that two points belonging to dif-
ferent clusters must be non similar (Shi and Malik, 2000). As a way to do this, spec-
tral clustering algorithms define a weighted graph G, the nodes of which are the
data points. The vertex between Xi and Xj is associated to a weight Wij (defined
according to several criteria which will not be described here). Spectral clustering
then uses the K orthogonal eigenvectors of the Laplacian matrix of G associated to
the smallest eigenvalues.

13.1.3 Performance Measures

The unsupervised nature of clustering, as opposed, for instance, to classification,
makes the evaluation and validation task more difficult. In classification, the quality
of a classifier is measured simply by the number of produced errors. In clustering,
the lack of ground truth does not allow to define such a direct measure. Moreover,
the discussion on the difficulty of clustering made it clear that there is no abso-
lute quality criterion. This observation is validated by the impossibility theorem
of (Kleinberg, 2003), which states that clustering cannot satisfy more than two of the
following properties: scale-invariance, richness and consistency.

Several validation criteria have been developed (Halkidi, Batistakis, and Vazir-
giannis, 2002), each one measuring a different characteristic of the clustering. They
are frequently divided in two classes: unsupervised indexes, which do not exploit
any external information, and supervised indexes, which measure a similarity with
a known partition of data.

In our experiments, we will focus on three indexes: Davies-Bouldin index, Sil-
houette index and Rand-index.

Davies-Bouldin index is an unsupervised index that measures the compactness
and the separability of clusters (Davies and Bouldin, 1979). It is defined as follows:

DB =
1
k

k

∑
i=1

max
j 6=i

∆i + ∆j

D(Ci, Cj)
(13.3)

where ∆i = minx,y∈Ci d(x, y) represents the minimal distance between two points in
a same cluster and D(., .) is a measure of separation of two clusters. The index is not
normalized but lower values indicate a better quality clustering.

Silhouette index is an unsupervised index that measures the compactness and
separability of clusters (Rousseeuw and Leroy, 2005). It is defined as follows:

SC =
1
K

K

∑
i=1

1
|Ci| ∑

x∈Ci

bx − ax

max(ax, bx)
(13.4)

where ax designates the mean distance between instance x and other objects in the
same cluster, and bx the mean distance between instance x and all objects that do
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not belong to the same cluster as x. Positive values of silhouette index correspond
to good clusterings.

The adjusted Rand index (Hubert and Arabie, 1985) is a supervised index that
exploits an external partition of data, considered as ground truth. This index is equal
to 1 if the two partitions are equal.

13.2 Multi-Source Clustering: An Overview

The clustering framework presented until now is classical and does not involve any
transfer in the sense of what has been investigated in supervised learning. We now
introduce the problem of multi-source clustering, which will be studied in the next
chapters. The domain of multi-source clustering originates from various practical
situations that have emerged recently. The purpose of this section is to illustrate
these problems as well as the need of a form of collaboration in clustering.

13.2.1 Overcoming the Individual Biases

As exposed before, clustering is an ill-defined problem, the intuitive definition of
which contains inherent ambiguities. As a consequence, any clustering algorithm
is intrinsically biased toward some tasks. Among the methods that have been de-
scribed earlier, we have for instance a clear bias of k-means for spherical clusters
(which will prevent it from getting satisfying results on datasets such as the half-
moons introduced before in this thesis), and it is well-known that DBSCAN is par-
ticularly inefficient for clusters of different sizes or densities.

The idea of refining the predictions by collaboration is well-known in supervised
clustering, where ensemble learning (in particular bagging or boosting methods) is
used to overcome the local failures of classifiers. Applying the same idea in cluster-
ing is thus tempting and would consist in a collaboration of the various clustering
algorithms. A discussion of this idea is proposed in Chapter 15.

13.2.2 Clustering in Distributed Environments

As seen in the case of data streams, modern technologies change the way data are
generated. Mobile sources of data are now frequent and produce large amounts
of data in heterogeneous distributed sources. These new distributed environments
have been studied in the perspective of supervised learning (Vanhaesebrouck, Bel-
let, and Tommasi, 2017) and unsupervised learning (Depaire, Falcón, Vanhoof, and
Wets, 2011). In these environments, centralizing the algorithms is not possible due
to the volume of data that would have to be stored.

Besides, as mentioned by (Pedrycz, 2002), such distributed environments can
also be limited by privacy issues: The different sources might not have the rights to
access data of other sources. Exchanging solutions and parameters of clustering can
be a solution to provide other sources with local information without providing data
directly.

13.2.3 Multi-view Data

In traditional datasets, a data point is represented by a fixed number of features. The
learning is done from all the features at once. In some datasets, the features can be of
different types or origins. In such situations, (Zimek and Vreeken, 2015) points out
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that the obtained clusters might vary from one origin to the other. This difference is
a consequence of the different distributions of data.

Consider for instance the dataset used in (Houthuys, Karevan, and Suykens,
2017). This dataset consists of daily meteorological data from multiple European
cities. Each day corresponds to an instance and each city can be interpreted as a
view, hence as a different aspect of the data. In the context of a clustering task on
this dataset, a question arises: Are all the views to be merged together, or do they
bring a variety of interpretation that must be held? On the one hand, classical clus-
tering techniques cannot run on multi-view data. On the other hand, not only the
interpretation of clustering meteorological conditions from multiple days is unclear,
but also a merged solution would ignore the local specificity of the weather in the
different considered cities.

13.2.4 The Solution of Multi-Source Clustering

All these problems make it clear that traditional clustering algorithms may have
weaknesses when addressing more sophisticated datasets, or data produced in mo-
bile and distributed environments. To cope with this problem, an idea emerged of
cooperation between several clustering algorithms. This idea is inspired by the en-
semble methods in supervised learning, but these techniques cannot be employed
directly because of the major differences between classification and clustering. In
classification, labels have a semantic interpretation, and it is sufficient to compare
the labels together in order to determine if two classifiers are coherent together or
not. However, in the unsupervised setting, this operation is not possible anymore:
The labels of the clusters vary from one method to the other and are completely ar-
bitrary. This simple but major difference requires an adaptation in the techniques,
that will be described later.

In practice, two problems are studied in multi-source clustering:

• Cooperative clustering: This task consists in extracting a consensus out of
multiple local clustering algorithms.

• Collaborative clustering: Unlike cooperative clustering, collaborative cluster-
ing does not aim to find a consensus but, on contrary, to refine the solutions
found by local algorithms by using external information brought by other al-
gorithms. Collaborative clustering can be used as a first step for cooperative
clustering.

In the following sections, we review briefly the main issues and methods existing
in the domain of cooperative clustering and collaborative clustering. This review is
not exhaustive and we refer the reader to specialized surveys such as (Cornuejols,
Wemmert, Gançarski, and Bennani, 2018) or (Vega-Pons and Ruiz-Shulcloper, 2011)
for more information.

13.3 Cooperative Clustering

The family of cooperative clustering algorithms regroups all methods that aim to
extract a consensus from various local clustering solutions. Cooperative learning
generally proceeds in two steps: First, the local solutions are estimated without any
communication between the algorithms; then the algorithms exchange their infor-
mation in order to determine a consensus. (Vega-Pons and Ruiz-Shulcloper, 2011)
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classifies cooperative clustering in two categories: consensus based on objects co-
occurrence and consensus based on median partition.

13.3.1 Consensus Based on Objects Co-Occurrence

The consensus functions based on objects co-occurrence consider how many times
two objects belong to the same cluster. When most local clusterings group two ob-
jects together, there is a higher chance that these objects are grouped together in the
consensus.

A first direction followed by these methods consists in solving the labeling corre-
spondence problem, hence to establish a cross-method mapping between the labels
of clusters.

For instance, SAMARAH (Wemmert and Gançarski, 2002) offers a first elegant
solution that works with any kind of local hard clustering algorithms. The method
exploits the existence of good correspondences between the local solutions. The
method can be divided in three steps: local clustering, collaboration and consen-
sus. The collaborative steps is based on the results of local clusterings and proposes
to build correspondences between clusters with help of a probabilistic confusion
matrix. The mapping is then refined by solving conflicts locally. The idea of this
refinement is very close to the method we will propose in Section 14.3. After the
refinement, the authors propose an aggregation algorithm based on a majority vote.

Among other methods based on pairwise relabeling, we could mention for in-
stance (Ayad and Kamel, 2010) which addresses this questions in terms of multi-
response regression.

A solution to avoid the labeling correspondence problem consists in using a co-
association matrix, hence merging the local partitions into a matrix, the value of
which represents the proportion of times data xi and xj belong to a same partition.
A simple approach consists then in thresholding the matrix, such as done by (Fred,
2001) which keeps all associations greater than .5.

13.3.2 Consensus Based on Median Partition

A completely different direction considers that the consensus solution corresponds
to a median partition, hence a “barycenter" of the local solutions. Such approaches
aim to minimize an objective of the form:

S∗ = arg max
S

J

∑
j=1

∆(S, Sj) (13.5)

where J is the number of local algorithms and ∆ a similarity measure between clus-
tering solutions.

The main difficulty of such methods is then the construction of the similarity
measure ∆. Various strategies can be found in the literature. The counting pairs
similarity measures are based on the pairwise correspondences. These measures
are often inspired by supervised indexes as exposed in Section 13.1.3. On the other
hand, some similarity measures use a comparison of clusters considered as pairs.
They can be based on measures such as Jaccard distance (Ben-Hur, Elisseeff, and
Guyon, 2001).

A class of measures are defined with the tools of information theory. However, to
our knowledge, they all rely on classical information theory and not on complexity.
Since Kolmogorov complexity is more or less related to mutual information, one
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may cite (Strehl and Ghosh, 2002) which defines function ∆ based on normalized
mutual information.

13.3.3 Discussion

As observed in Table 1 of (Vega-Pons and Ruiz-Shulcloper, 2011), very few algo-
rithms seeking consensus actually rely on the objects and on the characteristics of the
local clustering algorithms. Among them, the locally adaptive clustering algorithms
explicitly use the local object distribution, but mostly rely on prototype-based meth-
ods. For instance, a method like Weighted Similarity Partition Algorithm (Domeni-
coni and Al-Razgan, 2009) considers weighted distances of points to the center of
clusters.

This approach of not considering the local parameters nor the objects is arguable.
The main advantage of this choice is the global independence of the proposed meth-
ods to the nature of the algorithms. As a consequence, most cooperative clustering
algorithms can find consensus for any kind of local algorithms, and allow cooper-
ation between local algorithms of different nature. On the other hand, considering
local objects and parameters would be a strength, since they can bring valuable in-
formation to the consensus and refinement procedures.

13.4 Collaborative Clustering

Unlike cooperative clustering, the goal of which was to extract a consensus from
a list of partitions, the purpose of collaborative clustering is to refine the solutions
found by local clustering algorithms. Collaboration can be a step in a cooperative
process, but here we consider it as the main objective.

One of the first appearances of this idea can be found in the works of (Pedrycz,
2002) which investigates the problem of collaboration in distributed environments.
The methodology of the paper introduces a classical process in two steps: a local step
where local algorithms are trained on their dataset independently of each other, fol-
lowed by a collaborative step where the computed solutions and parameters are esti-
mated in order to refine the solutions. This technique has strong limitations though:
in particular, it can work only with a fuzzy k-means algorithm and a fixed number
of clusters.

Following the same direction, some work has been done to adapt the procedure
to other families of clustering algorithms: Self-Organizing Maps (Grozavu and Ben-
nani, 2010), Generative Topographic Maps (Ghassany, Grozavu, and Bennani, 2012b)
or Gaussian Mixture Models (Bickel and Scheffer, 2005; Cleuziou, Exbrayat, Martin,
and Sublemontier, 2009).

A strong limitations of the methods presented above is their dependency on one
single type of clustering algorithm. Some efforts have been done recently (Sublime,
Matei, Cabanes, Grozavu, Bennani, and Cornuéjols, 2017) to propose a general col-
laborative algorithm which would apply to various types of clustering algorithms,
but the proposed method applies only to probabilistic clustering algorithms.

13.5 Conclusion

In this chapter, we introduced the problem of collaboration and cooperation in un-
supervised learning. Due to its differences with supervised learning, it is not possi-
ble to apply directly the existing techniques such as Bagging. We have shown that
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two families of methods have emerged, that pursue different objectives: On the one
hand, cooperative clustering aims to find a consensus from different data clustering;
on the other hand, collaborative clustering aims to refine the solutions found at a local
level by exploiting global information brought by other clustering algorithms.

A brief study of the existing techniques enlightened an interesting phenomenon.
There does not exist a general method that exploits the data X and the parameters
of the local algorithms while enabling collaboration between algorithms of various
nature. Cooperative algorithms mostly rely on the produced solutions only in order
to estimate an average common solution, and collaborative algorithms use the data
points and local parameters but specialize on the collaboration between algorithms
of the same nature. In the next chapter, we will show how Minimum Description
Length principle can be used in order to define a generic method that exploits local
information.
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Chapter 14

Complexity-based Multisource
Clustering

In the previous chapter, we introduced the general problem of multi-source cluster-
ing, as well as a couple of methods that have been developed to solve this problem.
It appeared that these methods either lack generality or are not entirely satisfying in
the way they describe data. The purpose of this chapter is to present a framework,
based on a descriptive model, that helps solving this task in a general setting.

The main problem observed in the domain of unsupervised ensemble learning is
the difference of descriptions of the different algorithms. Indeed, there is no direct
way to compare the parameters of two algorithms such as K-Means and DBSCAN.
We show here that Kolmogorov complexity is a simple and intuitive language to
describe two different domains or views in a common unit of measure.

The remainder of this chapter is organized as follows: We first present our model
of collaboration. In Section 14.2, we describe how local clusterings can be measured
by complexity. In Section 14.3, we present a simple algorithm based on a direct
simplification of the model for collaborative clustering. Finally, in Section 14.4, we
provide experimental results obtained with our algorithm.

This chapter is an extended version of the article (Murena, Sublime, Matei, and
Cornuéjols, 2018).

14.1 Graphical Model for Unsupervised Collaboration

In this section, we propose a DGM for the task of unsupervised ensemble learning.

14.1.1 Notations

We consider a dataset X that can be divided into J views, denoted by X1, . . . , X J . A
view corresponds to a restricted representation of the dataset. Each data point has a
representation on each of the views. We call N the number of points.

We consider J clustering algorithms, denoted by A1, . . . ,AJ . A clustering al-
gorithm is defined as a mapping from the data points to integers. The clustering
algorithm Aj processes view X j and outputs a solution vector Sj ∈ NN . In practice,
we consider that the number of clusters is finite, and equal to K j for algorithm Aj.
This number can differ from one algorithm to the other.

A clustering algorithm Aj can be associated to a parameter θ j ∈ Θj. The param-
eter set may differ from one clustering algorithm to another.
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14.1.2 A Model for Collaboration

In Section 9.3.1, we presented a graphical model corresponding to transfer learning
for multiple target tasks (Figure 9.1). The framework we suggest for multi-source
clustering is very close to the introduced DGM.

The purpose of multi-source clustering is to provide a lossless description of all
views. We propose to follow the same direction as done in the previous chapters
and to consider that the transfer of information is not managed at the level of data
points but at the level of the underlying models. In our context, the model will be
the characterization of the clustering algorithms.

The resulting DGM is described in Figure 14.1 and corresponds to the following
objective function to minimize:

K(S) +
J

∑
j=1

K(θ j) + K(Sj|S) + K(X j|θ j, Sj) (14.1)

We introduce the term S, that we call a meta-solution. This term can be interpreted as
a consensus of all local clustering algorithms on the dataset.

S Sj

X j

θ j

J

FIGURE 14.1: Model-based DGM for multisource clustering.

The proposed method is generic since it does not make any assumption on the
nature of the algorithms nor on the representation of the views. Besides, it offers a
solution to all problems that can be addressed by multi-source clustering:

• The parameters θ j offer a description of the clustering on j-th view. In some
cases, these parameters can be used for generalization (when new points arrive
and have to be associated to one of the pre-trained clusters.

• The solutions Sj correspond to a partition of data on j-th view. These solutions
are refinements of the solutions without collaboration, ie. with algorithms Aj

only. Consequently, these partitions are the solution of the problem of collabo-
rative clustering.

• The meta-solution S is independent of the views and can be interpreted as
a global consensus. The local solutions Sj are described based on this meta-
solution which can be then interpreted as a “barycenter” of the local solutions.
The meta-solution S corresponds to the solution of multi-view clustering.

As a final remark, we can observe that the local solutions Sj are determined ac-
cording to a trade-off between good local description (which implies a low value
of K(X j|Sj, θ j)) and good collaboration with other local solutions (which implies a
low value of K(Sj|S)). We also notice that we do not consider any meta-parameter θ.
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This is due to the fact that, unlike the local solutions, the local parameters are all
defined on different sets. A consequence of this choice is that there is no possible
consensus on generalization: If a new point is observed (with various representa-
tions on all views), it is not possible to associate it directly to a cluster at the global
level.

14.2 Complexity of Local Clustering

In this section, we propose to express the term K(X j|θ j, Sj) for various classes of
clustering algorithms.

14.2.1 Complexity of Prototype-Based Models

Prototype-based models regroup a large number of clustering techniques including
K-Means, SOM, GTM or Affinity Propagation. As exposed in the previous chapter,
these methods rely on a lossy representation of data based on points (belonging or
not to the dataset X) called prototypes. The purpose of prototype-based methods
is to determine the optimal position of the prototype in the input space in order to
minimize a general objective function. It has been discussed in Section 8.2.2 why the
prototype-based methods allow data compression.

Obviously, the prototype position determined by the cited algorithms does not
necessarily correspond to the minimum complexity position. However, we assume
that they provide a good approximation of optimal position in the sense of Kol-
mogorov complexity. This property corresponds to a research bias: Instead of ex-
ploring the whole space in order to get the optimal solution, the choice of a specific
algorithm constrains the search of the optimum.

Prototype-based models are associated to a parameter θ describing the positions
of prototypes. The solution vector S corresponds to the solution, hence to the point-
prototype association. Given solution vector S and parameter θ, the construction of
the position of a point is simple: It is based on the relative position of the point to its
attached prototype.

All the corresponding computations are identical to the computations given in
Section 8.2.2. We refer the reader to this section for the corresponding values of
complexity.

14.2.2 Complexity of Probabilistic Models

Probabilistic models propose to model clusters by their density. They are often based
on mixture of models, in particular mixture of Gaussian distributions (GMM algo-
rithm).

The parameter θ associated to a probabilistic model corresponds to the parameter
of the distribution (we consider the case of parametric distributions). The solution
vector designates the distribution in the mixture to which each point is associated.
In order to actually compute the complexity, we use the property that the complexity
of a point x given a distribution p is upper-bounded by K(x|p) ≤ − log p(x) +O(1).

In particular, for a mixture of k distributions (p1, . . . , pk), a point in cluster i will
be described with a complexity:

K(x|S, θ) = − log pi(x) (14.2)
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14.2.3 Complexity of Density-Based Models

The family of density-based models corresponds to algorithms that use proximity
of points in the dataset to form the clusters. These methods have been presented in
previous chapters.

Even if these algorithms do not rely on an explicit parameter θ, it is possible to
propose a description of points based on a reordering of the dataset, which would
then be seen as the parameter of the algorithm. The density-based models aim to
find the better attachment of points inside the dataset. This is in particular the idea
proposed by OPTICS (Ankerst, Breunig, Kriegel, and Sander, 1999).

Based on this idea, the computation of the complexity can be done as follows.
We denote by πi the index of the parent of point i in the ordering proposed by the
method. Exactly as suggested for the prototype-based method, the idea will be to
describe the position of a point by its relative position with respect to a reference
point, which is not a prototype in this case but the parent in the ordering. Points that
have no parents (hence first point of a class in the ordering) are described by their
absolute position. The total complexity is then given by:

K(X j|Sj, θ j) =
n

∑
i=1

K(X j
i |X

j
πi) +O(1) (14.3)

In this expression, the value of π depends on the solution Sj: two points can be
linked only if they belong to the same class. Thus, changing S will change the order
of the points and thus affect the complexity.

14.2.4 Complexity of Other Models

We consider now the case of models that cannot be related to any of the three previ-
ous models. We have not used such models in our study, but the proposed frame-
work can be adapted to take such models into account. Three solutions can be found
in order to assess the complexity of data given such models.

• Ignoring the model: The simplest, but least satisfying, solution consists in
ignoring the model (Sj, θ j) and estimating the complexities of data as:

K(X j|θ j, Sj) = K(X j) +O(1)

This approach consists in ignoring the local description of models and focusing
on the collaborative part.

• Adding prototypes: Prototypes are very useful and can be added to the prob-
lem even if they are absent at first sight. The prototype of a class can be defined
as the mean position when data are elements of a vector space, or by equiva-
lent ways in other cases. This method is simple but has major drawbacks. The
position of prototypes found in this way can be extremely arbitrary, such as in
the example of concentric cases, where the prototype for the inner cluster and
the outer cluster are identical.

• Exploiting density: A convenient way to measure complexity is to adopt a
similar strategy as proposed for density-based models. The idea is to describe
a point in a cluster based on its relative position toward another well-chosen
point in the same cluster.
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14.3 Algorithm for Collaborative Clustering

In this section, we explain how we optimize the objective function in Equation 14.1.
In the scope of this work, we consider only the case where the solutions S1, · · · , SJ

produced by the algorithms are hard partitions, and therefore can be described as
vectors.

14.3.1 Forgetting Consensus

Even if the framework offers the opportunity to find a consensus, we focus on the
problem of collaborative clustering, hence on refining local solutions. Since S is used
only as an intermediate parameter, we can eliminate it from the algorithm.

To do so, we first isolate the minimization over S in the objective of Equation 14.1:

min
S,S1,...SJ

K(S) +
J

∑
j=1

K(θ j) + K(Sj|S) + K(X j|θ j, Sj)

= min
S1,...,SJ

J

∑
j=1

[
K(θ j) + K(X j|θ j, Sj) + min

S

(
1
J

K(S) + K(Sj|S)
)]

We consider that data are independent in the description of S, which implies that the
complexity term K(S) is constant and can be ignored in the minimization. In order
to forget the consensus term S, we use the following proposition:

Proposition 10. If S1, . . . , SJ are J solution vectors such that K(Si) does not depend on i.
If S corresponds to the space of solution vectors, then the following inequality holds true:

min
S∈S

J

∑
j=1

K(Sj|S) ≤ 1
J − 1

J

∑
j=1

∑
i 6=j

K(Sj|Si) +O(J) (14.4)

Proof. To prove this proposition, we use two properties from Table 5.1: K(x|y) ≤
K(x) +O(1) and the chain rule. Based on these two inequalities, we have:

J

∑
j=1

K(Sj|S) ≤
J

∑
j=1

K(Sj) +O(J) ≤
J

∑
j=1

min
i 6=j

{
K(Si) + K(Sj|Si)

}
+O(J)

We observe that the minimal value over a finite set is necessarily lower than the
mean value in the set, which means that

min
i 6=j

{
K(Si) + K(Sj|Si)

}
≤ 1

J − 1 ∑
i 6=j

{
K(Si) + K(Sj|Si)

}
This observation, as well as the hypothesis that K(Si) is constant, leads to the result.

In the minimization process It is important to note at this point that this change is
a purely mathematical trick and has no real foundation in terms of Turing machine
description: in this setting, a local solution would be constructed from another local
solution, but loops are not prohibited (for instance S1 constructed from S2 and S2

constructed from S1), which is not possible from a physical point of view.
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The simplified objective for complexity minimization is then:

S∗ = arg min
S

J

∑
j=1

K(X j|θ j, Sj) + K(θ j) +
1

J − 1 ∑
i 6=j

K(Sj|Si) (14.5)

14.3.2 Global Approach

Following the model of other collaborative and multi-view algorithms, the opti-
mization is done in 2 steps (Grozavu and Bennani, 2010; Sublime, Matei, Cabanes,
Grozavu, Bennani, and Cornuéjols, 2017):

• A local step during which each algorithm Aj processes its local view X j and
produces a first model Mj = 〈θ j, Sj〉 based only on the local information. These
local models are used as initial values.

• A global step during which Equation (14.5) is optimized.

The key difficulty of the algorithm lies therefore in the global step, and in partic-
ular in the estimation of the complexity K(Si|Sj). This term is evaluated by defining
a generic Turing machine which transforms a solution vector into another solution
vector. The most direct idea for such a machine is to build a naive mapping from
the clusters of Ai to the clusters of Aj. In supervised learning, such a mapping is
direct and obtained through the supervision: The groups of same label are mapped
together. In unsupervised setting, the semantics of the labels is arbitrary and does
not reflect any real information: It comes that the labels of the clusters can be per-
muted without changing the result, and, consequently, that the operation of building
a mapping is necessary and not trivial. In general, such a mapping does not have
any noticeable property: in particular, it is neither injective nor surjective (see the
example in Figure 14.2).

FIGURE 14.2: Illustration of a non-injective and non-surjective map-
ping. The colors represent the clusters. The majority mapping
from A1 to A2 is not surjective since the yellow class is not the im-
age of a class of A1. It is not injective either since the orange class is

the image of two classes of A1.

The mapping we propose to use is based on a symbolic system of rules and ex-
ceptions. We define general transformation rules, which affect the whole solution
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vector (for instance “Cluster 1 in Ai is transformed into cluster 7 in Aj"). The gen-
eral transformation is refined with exceptions, that are meant to override the rules
(for instance “Instead of applying the rules, point number 42 is associated to cluster
3 in Aj"). The principle of such a mapping is illustrated in Figure 14.3

FIGURE 14.3: Illustration of a mapping between three solution vec-
tors. The rules are given at the right of the figure. Exceptions are
displayed with red arrows, the direction of which corresponds to the

direction of the mapping.

More formally, we propose to encode the mapping as a key-value set

〈(1,Rj,i(1)), . . . , (Kj,Rj,i(K j))〉

(where K j denotes the number of clusters for algorithm Aj). The function Rj,i is
called a rule and associates each cluster index of Aj into a cluster index of Ai. For
instance, Rj,i(3) = 1 means that cluster 3 in Aj is transformed into cluster 1 in Ai.
A rule can be interpreted as the following program: if cluster == kj: return ki

for all values of kj. Thus, the complexity of a rule is:

K
(
Rj,i

)
=

K j

∑
j=1

(
K(kj) + K(Rj,i(kj))

)
= K j × (log K j + log Ki) (14.6)

Such a mapping is often not sufficient to offer a full description of a transforma-
tion from one solution into another: Some exceptions have to be added to describe
the exact transformation. An exception is encoded as a tuple (n, ki) ∈ {1, . . . , N} ×
Ki where n is the data index, ki the cluster index, and N is the size of the dataset. An
exception overwrites the transformation rule by stating that the n-th point is in the
cluster ki, or, in pseudo-code if point == n: return ki. If Ej,i designates the set
of all exceptions in the mapping Sj → Si, the complexity of Ej,i is then:

K(Ej,i) = ∑
e∈Ej,i

(
K(ne) + K(Si

ne
)
)
= |Ej,i| × (log N + log Ki) (14.7)

Consequently, merging the two complexities expressed in equations 14.6 and
14.7, we choose a machine defined in such a way that the description length K(Si|Sj)
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is equal to:

K(Si|Sj) = K j ×
(

log K j + log Ki
)
+ |Ej,i| ×

(
log N + log Ki

)
(14.8)

Based on this mapping, we propose to split the global step in two alternating
operations:

1. Solution mapping: Mappings are found for any pair of solutions (Si|Sj)

2. Mapping optimization: The obtained mappings are slightly corrected in order
to decrease complexity.

14.3.3 Solution Mapping

In order to define the mapping in practice, we consider a majority rule: The best rules
in terms of minimization of objective complexity 14.8 are the ones which minimize
the number of exceptions.

To this end, we consider the confusion matrix Ωi,j that maps the clusters of Si to
the clusters of Sj:

Ωi,j =


ω

i,j
1,1 · · · ω

i,j
1,Kj

...
. . .

...
ω

i,j
Ki ,1

· · · ω
i,j
Ki ,Kj

 where ω
i,j
a,b = |S

i
a ∩ Sj

b| (14.9)

From there an argmax on each line of Ωi,j in Equation 14.9 gives us the majority map-
ping rule for each cluster ofAi into a cluster ofAj. Using this method, a compression
is obtained by defining a general mapping transforming all labels of Si into labels of
Sj and correcting the errors afterwards. The time complexity to compute all the rules
between all solutions vectors using this method is in O(N) for solutions vectors of
length N.

This operation has to be repeated for each pair of solutions (Si|Sj), hence the time
complexity of the solution mapping step is O(N × J2). Afterwards, exceptions can
be obtained easily (in linear time complexity). The complete algorithm is detailed in
Algorithm 5.

Algorithm 5: SOLUTIONMAPPING

Input: A set of J clustering solutions S
Output: A set of rules {Rj,i}1≤i,j≤J and exceptions {E}1≤i,j≤J

for i = 1 . . . J do
for j = 1 . . . J do

Compute Ωi,j

for k = 1 . . . Ki do
Rj,i[k]← arg maxl Ωi,j

k,l

for n = 1 . . . N do
ifRj,i

[
Sj[n]

]
6= Si[n] then Ej,i[n]← Si[n]

return {Rj,i}1≤i,j≤J , {Ej,i}1≤i,j≤J
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14.3.4 Mapping Optimization

The mapping optimization step is based on a very simple idea: Optimizing Equation
14.1 consists in searching for errors the correction of which would have the most
positive impact on the collaborative term ∑j 6=i K(Si|Sj) with a minimal impact on
the local term K(Xi|Mi). Corrections that do not improve the collaborative term or
have a negative impact are ignored.

The mapping optimization is the most complex step of the method. It consists in
removing exceptions one by one in the obtained set {Ej,i}1≤i,j≤J . Removing an excep-
tion results in a single change inside a clustering solution. The system decides to re-
move an exception if this deletion leads to a reduction in complexity. Because a dele-
tion modifies the solutions, the deletion order has importance in this algorithm. This
issue is also encountered in SAMARAH method (Wemmert and Gançarski, 2002).

The key idea we rely on in order to solve the problem is the independence hy-
pothesis on data points. Considering that all data points are described indepen-
dently, the mapping optimization step can be done on all data points in parallel. It
consists in removing exceptions one by one until no exception removal makes the
complexity decrease. A recursive approach has been chosen to determine a solu-
tion for one data with fixed rules. The proposed algorithm, exposed in Algorithm 6,
tries to remove exceptions one by one in a backtracking process. The advantage of
backtracking is that it gives an exact solution.

Algorithm 6: MAPPINGOPTIMIZATION

Input: Multi-view solution vector for one point: s = (s1, . . . , sJ), Rules
(Ri,j)i,j

Output: Refined solution vector s, Associated complexity
E ← {}
for j = 1 . . . J do

for i = 1 . . . J do
if s[i] 6= Rj,i(j) then
E ← E ∪ {(j, i)}

K ← COMPUTECOMPLEXITY(s)
for (j, i) ∈ E do

s′ ← s
s′[i]← Rj,i(j)
s′, K′ ← MAPPINGOPTIMIZATION(s, (Ri,j)i,j)

if K < K′ then
s← s′

K ← K′

return s, K

Such as presented here, the algorithm might fail in solving some problems in
an expected way. Consider for instance a problem with J = 4 views on the data
and where the clustering algorithms are designed with the same number of clus-
ters and such that all the rules are identity mapping: Ri,j(k) = k for all i, j and
k. We also consider that the local complexity term is constant for all algorithms.
This situation correspond to a simple consensus. In this case, if one data point is
associated with the four clustering solutions s = (0, 0, 0, 1), the expected refined
solution is s′ = (0, 0, 0, 0). However, with Algorithm 6, the obtained result would
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be s′ = (1, 1, 1, 1) which has the same complexity with the imposed assumptions.
This example raises the question of discriminating between several different solu-
tions of same complexity. In practice, we added a constraint on the depth of the
solution in the backtracking tree. When two solutions are equal in complexity, the
modified algorithm selects the solution of minimal depth in the backtracking tree
(or, equivalently, the solution with the minimal number of corrections).

14.3.5 Dealing with Sparsity

One advantage of the rule-based representation of the mapping is that it does not
require a full knowledge of the data. Since the construction of the rules, as exposed
in Algorithm 5, relies on a majority vote only, it is not required that all data points are
associated to a cluster. Missing values can be inferred afterwards using the estimated
rules.

We consider one missing view j for one data point and we denote by x the multi-
view representation of the considered point (hence the value of xj is missing). The
problem consists in associating the value of the solution sj ∈ {1, . . . , K j}. Since the
view xj is empty, the local complexity term for algorithm Aj is constant and the
problem consists in minimizing over sj the collaborative term:

sj = arg min
sj

∑
i 6=j

(
K(si|sj) + K(sj|si)

)
(14.10)

where the conditional complexity K(si|sj) is equal to I(si 6= Rj,i(sj)). Finding the
optimal value can be done with a naive algorithm testing all the possible solutions.
The complexity of such an algorithm is linear in K j, the number of clusters of algo-
rithm Aj, and in J, the total number of algorithms: O(K j × J). We notice the sim-
ilarity between the problem described in 14.10 and the median-partition problem
described in Equation 13.5.

When more than one view is missing, the optimization problem becomes more
complex, since inter-dependencies between the estimated values appear. The brute
force approach consists then in testing all possible combinations of solutions, which
is computationally too expensive. Two simplified strategies are then possible:

1. Total independence: Filling in parallel all missing values, considering only
observed values. The sum in Equation 14.10 is over observed data only.

2. Ordered filling: Filling the missing values in a pre-determined order, consid-
ering then all previously filled values for the minimization of Equation 14.10.

None of these two strategies is guaranteed to converge to the global optimum.
The question of the order is crucial for the second strategy: If it is not well-chosen,

the algorithm might converge to sub-optimal solutions. The question is difficult
though: Which missing data should be filled first? Apart from random order, which
is clearly sub-optimal, we can imagine two main strategies: either filling the least
ambiguous missing values first (ie. values which bring the highest consensus) or
filling the most ambiguous ones first. Further analysis is required to answer this
question, that has not been done in the scope of this thesis. In the experimental
section, we worked with the total independence hypothesis.
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14.4 Experimental Validation

In this section, we present experimental results obtained with the algorithm pre-
sented above.

14.4.1 Datasets

In this section, we propose an applicative setting in which we used our proposed
method on various multi-view data sets, real and artificial.

We considered the following data sets:

• The Wisconsin Data Breast Cancer (UCI): this data set contains 569 instances
with 30 parameters and 2 classes. These 30 parameters contain 10 descriptors
for 3 different cells (10 each) of the same patient. This data set can easily be
split into 3 views: one for each cell.

• The Spam Base data set (UCI): The Spam Base data set contains 4601 observa-
tions described by 57 attributes and a label column: Spam or not Spam (1 or
0). The different attributes can be split into views containing word frequencies,
letter frequencies and capital run sequences.

• The VHR Strasbourg data set (Rougier and Puissant, 2014): it contains the de-
scription of 187058 segments extracted from a very high resolution satellite
image of the French city of Strasbourg. Each segment is described by 27 at-
tributes that can be split between radiometical attributes, shape attributes, and
texture attributes. Furthermore, the color attributes can also be split between
red, blue and near-infrared attributes. The data set is provided with a partial
hybrid ground-truth containing 15 expert classes.

• The Battalia3 data set (artificial): Battalia3 is an artificial dataset created using
the exoplanet random generator from the online game Battalia.fr; This data set
describes 2000 randomly generated exoplanets with 27 numerical attributes
and their associated class (6 classes). The attributes can be split between system
and orbital parameters (7 attributes), planet characteristics (10 attributes) and
atmospheric characteristics (10 attributes).

• The “MV2" data set (artificial): a data set created specifically to test this kind
of algorithm. It features 2000 randomly generated data, split into 4 views of
6 attributes each, and a total of 4 classes. All attributes were generated either
from Gaussian distributions with parameters linked to the matching class, or
are random noise, or are linear combinations of other attributes.

Dataset Size Attributes Views
WDBC 569 30 3

SpamBase 4601 57 3
VHR Strasbourg 187058 27 3

Battalia3 2000 27 3
MV2 2000 24 4

TABLE 14.1: Dataset characteristics.
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14.4.2 Experimental Results

To assess the effectiveness of our proposed method, in this section we propose an
experiment in which we compare it with four other collaborative and multi-view
methods from the literature: the entropy based collaborative clustering (EBCC) (Sub-
lime, Matei, Cabanes, Grozavu, Bennani, and Cornuéjols, 2017), a re-implementation
of the multi-view EM algorithm (Bickel and Scheffer, 2005), the collaborative GTM
algorithm (Ghassany, Grozavu, and Bennani, 2012a) and the collaborative SOM al-
gorithm (Nistor Grozavu, 2009). For fairness purposes, with collaborative GTM,
collaborative SOM and MV-EM all being based on Gaussian Mixture models, we
used both our proposed method and the EBCC algorithm with GMM clustering al-
gorithms as well.

The 3 methods are compared using two unsupervised indexes: the Davies-Boul-
din index (DBI) and the Silhouette index (Sil.), both of which assess in different ways
the quality of the cluster in terms of compacity and whether or not they are well
separated. The Davies-Bouldin index is a positive not normalized index the value of
which is better when it is lower. The Silhouette index is a normalized index which
takes values between −1 and 1, 1 being the best possible value.

Furthermore, since all data sets were acquired from originally supervised prob-
lems, they were all provided with available labels. Consequently, in our experi-
ments, we also used the Rand Index based on the original classes as an external
index.

Dataset Our Model MV-EM EBCC GTMcol SOMcol

DBI Sil. DBI Sil. DBI Sil. DBI Sil. DBI Sil.
WDBC 0.98 0.55 1.63 0.42 1.63 0.42 1.8 0.37 1.68 0.41

SpamBase 3.08 0.19 4.77 0.086 4.73 0.085 4.60 0.093 4.35 0.113
VHR Strasbourg 3.46 0.14 3.21 0.12 2.89 0.175 - - - -

Battalia3 2.29 0.34 2.43 0.16 2.83 0.14 2.68 0.35 2.51 0.25
MV2 1.61 0.37 1.34 0.35 1.34 0.35 1.61 0.38 1.44 0.39

TABLE 14.2: Experimental results: raw average results on unsuper-
vised indexes.

Dataset / Rand Our Model MV-EM EBCC GTMcol SOMcol

WDBC 0.95 0.79 0.87 0.96 0.97
SpamBase 0.76 0.74 0.86 0.83 0.84

VHR Strasbourg 0.78 0.73 0.75 - -
Battalia3 0.86 0.78 0.80 0.78 0.79

MV2 0.93 0.93 0.93 0.90 0.90

TABLE 14.3: Experimental results: raw average results on the Rand
Index.

For VHR Strasbourg dataset, the runtime (without the initial local clusterings)
was less than one hour with parallel computing, a couple hours otherwise. For other
data the runtime ranged from less than one second to 2-3 minutes for larger data sets.

In Table 14.2, we show the average results achieved on the unsupervised indexes
at the end for the multi-view or collaborative process. The results for the supervised
indexes (Rand index) are shown in Table 14.3. Both the Davies-Bouldin index and
the Silhouette index where computed using the partitions found on the local views
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and the complete data as reference. The absence of results for both collaborative
GTM and SOM algorithms for the VHR Strasbourg dataset is due to the fact that
neither of these algorithms was able to provide a result in a reasonable amount of
time.

In Figure 14.4, we show a radar map made from the Silhouette and Rand Index
tables. As one can see from the figure, our method overall outperforms the other al-
gorithms with a much larger area coverage and we still achieve close to state of the
art results with datasets for which our method is not the best one. Without surprises,
the older MV-EM algorithm has the overall worst performances, followed by Koho-
nen maps based collaborative algorithms and then the more recent Entropy based
collaborative Framework (EBCC) which sometimes has better results than our pro-
posed method albeit with a smaller coverage area in both supervised and unsuper-
vised indexes. Furthermore, unlike the collaborative SOM and GTM algorithms, our
method does scale to relatively large dataset like VHR Strasbourg. We would like
to point out that scaling is not an issue here, neither in terms of number of data nor
in terms of number of features. As explained in the paper, each data can be treated
separately, so a parallel run can be done. Moreover, time complexity depends on the
local complexities (which are, in general, linear in the number of features). These
results highlight the strength of our method, and come to back up its strong theo-
retical background, compared with the other competitors, with good experimental
performance.

14.5 Conclusion

In this chapter, we have proposed a new perspective on the problem of multi-source
clustering by showing that it can be reduced to a model selection with the MDL
principle. Compared to state of the art methods, our methodology is based on a
theoretical background and does not rely on heuristics, but leads to a very similar
minimization problem. Besides, its strength is highlighted by excellent experimental
results both for artificial and real data, with a naive and parameter-free algorithm.

The study proposed here is just one of the various approaches to the problem.
First, the properties of the designed algorithms have to be investigated from a theo-
retical point of view, in particular in the direction of stability. In addition, our focus
was on collaborative clustering but an adaptation of our method to unsupervised
ensemble learning (finding consensus) comes directly. Finally, a study of the ap-
plications of sparse multi-source clustering can be an interesting perspective to this
work.

In the next chapter, we present a general discussion on the possibility of multi-
source clustering. In particular, we will discuss in more details the question of sta-
bility and will provide a couple of initial properties.
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(A) Silhouette index

(B) Rand Index

FIGURE 14.4: Radar maps for Silhouette and Rand Index on the
datasets of interest.
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Chapter 15

Can clustering algorithms
collaborate?

In Chapter 13, we introduced the problem of multi-source clustering from the ap-
plicative point of view and exposed it as a problem encountered in real-life situation.
Although the method presented in Chapter 14 shows very good results on a couple
of multi-source datasets, a fundamental perspective on multi-source clustering is
still needed.

The purpose of this chapter is to introduce some ideas on the possibility of a
collaboration in clustering. We will discuss a couple of questions relative to collab-
oration, with a main focus on the fundamental question of multi-source clustering:
Can clustering algorithms collaborate? Before answering this question, we will have
to discuss its actual meaning and the various ways it can be answered.

The remainder of this chapter is organized as follows: In a first section, we pro-
pose a general discussion on the idea of collaboration in unsupervised learning.
Based on this discussion, we propose a first attempt of an answer in Section 15.2,
by studying the way to define the “best” collaborators. Finally, in Section 15.3, we
interpret collaboration from the point of view of stability, both from a theoretical and
an applied point of view.

This chapter is an opening chapter which aims to discuss the very nature of col-
laboration in unsupervised learning. Consequently, it is different from the previous
chapters and, in particular, will not refer to complexity. It has to be seen as an open-
ing to other research perspectives relative to the transfer of knowledge.

15.1 Collaboration: A Difficult Concept in the Absence of
Supervision

The general idea of collaboration (or, in general, of ensemble learning) is inspired by
the supervised setting where ensemble methods, such as Bootstrap aggregating (or
bagging), are commonly used to enhance the quality of prediction for the learned
classifiers. Behind the ensemble techniques lies the idea that a group of predictors
must be better than individual ones. This assumption has been observed in psychol-
ogy since the seminal research of (Galton, 1907) which shows that, when predicting
the weight of an ox, the average precision obtained by a crowd is better than the
individual precision of all individuals in the crowd. This phenomenon of collec-
tive wisdom is presented in more details in (Surowiecki, 2004). However, is there
any fundamental argument that justifies this phenomenon? Is it legit to extend it to
machine learning?

Three main arguments are given in (Dietterich, 2000) to justify the success of
ensemble methods:
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1. Statistical argument: When there is not enough points in the training set, the
set of hypotheses giving good accuracy on the data is large. Ensemble learn-
ing is a way to select a good classifier in this large hypothesis set, averaging
incorrect decisions.

2. Computational argument: Many objective functions in machine learning are
actually not convex and the optimization scheme tends to be stuck in local
minima. Ensemble avoids this by combining the decisions taken by initiating
the optimization from various starting points.

3. Representational argument: It happens that the true function is not an ele-
ment of the hypothesis space. In such cases, ensemble is a way to explore
functions that do not necessary belong to the hypothesis space of the algo-
rithm.

These informal arguments apply to the case of unsupervised ensemble learning
as well. As presented in previous chapters, collaboration is supposed to compensate
for the “errors” done by local clustering methods. The real problem in the adaptation
of the ideas of collaboration to unsupervised learning is the absence of notion of
“good prediction" or “bad prediction".

It is well-known that the quality of the collaborator is important in supervised
ensemble learning. If the collaborators are worse than random classifiers, the collab-
oration does not lead to a global improvement of the collaboration.

In unsupervised ensemble learning, there is no way to evaluate the quality of a
clustering. Since the clusters are not labeled, the absence of semantic prevents from
defining errors and, as a consequence, misclassification rate or risk. From there,
there is a priori no guarantee at all that collaborators engaged in collaboration will
provide a better clustering together than independently.

The notion of “good" clustering is also complex and requires to come back to the
fundamental description of clustering. In this thesis, we have claimed that clustering
is a descriptive task and that a good description is a short description. An attempt
has been proposed by (Kleinberg, 2003) to define good clustering: The authors pro-
pose three theoretical criteria that a good clustering should satisfy (scale-invariance,
richness and consistency). However, it is shown that no clustering method can sat-
isfy these three criteria together.

Another attempt to define the quality of clustering is the approach of stability de-
veloped by (Ben-David, Von Luxburg, and Pál, 2006). This theory, which proposes
an adaptation of PAC learning to the unsupervised case, defines the stability of a
clustering algorithm. Stability is a notion that is shared by supervised and unsu-
pervised worlds and thus can be an interesting candidate to assess the quality of a
collaboration.

15.2 Selecting the Best Collaborators

In this section, we propose to find a way to discover the best collaborators in collab-
orative clustering in a context where the objective problem is of the form:

S∗ = arg min
S

J

∑
j=1
L(X j, Sj)−∑

i 6=j
τi,j∆(Si, Sj) (15.1)
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hence the sum of local terms L and of a collaborative penalty ∆. The results pre-
sented in this section are adapted from the results published in (Sublime, Matei, and
Murena, 2017) (mainly Sections 3 and 4).

15.2.1 Introducing the problem

As presented in Chapter 13, many collaborative clustering problems share a same
methodology. They aim to find the solutions S = (S1, . . . , SJ) that maximize an
objective function of the form:

J

∑
j=1
L(X j, Sj)−∑

i 6=j
τi,j∆(Si, Sj) (15.2)

The term L(X j, Sj) measures the local score of a solution Sj for data Sj, hence a qual-
ity of a solution in the description of data. The term ∆(Si, Sj) corresponds to a dis-
similarity between two solutions and measures the quality of the collaboration. The
coefficients τi,j measure the weight of a collaboration between algorithm Ai and al-
gorithm Aj.

In most techniques (including in the complexity-based objective given in Equa-
tion 14.5), the weights are chosen to be uniform, which implies that all collaborators
have the same impact. However, we can wonder how optimally these coefficients
can be chosen in order to maximize the score of the algorithm.

Including this idea leads to the maximization of Equation 15.2 over both the so-
lutions S and the coefficients (τi,j). This problem can be solved by alternating max-
imization over the solutions and the coefficients. General algorithms focus only on
the first step (maximizing with respect to the solutions), but we propose to consider
here the second problem. Since the local term does not involve the coefficients, the
problem can be reduced to:

minimize
τ

J

∑
j=1

∑
i 6=j

τi,j · ∆(Si, Sj) (15.3)

If the only constraint on the coefficients τi,j is their non-negativity, and assuming
that ∆ ≥ 0, the solution is necessarily τi,j = 0. This case is trivial and corresponds
to the complete absence of collaboration. To overcome this problem, we propose a
normalization constraint over the coefficients. The constraint, given with parame-
ter p ∈N∗, is the following:

∀i
J

∑
j 6=i

(τj,i)
p = 1, p ∈N∗ (15.4)

15.2.2 Optimizing the Collaboration

We propose to solve the following optimization system: given the ∆(Si, Sj) ≥ 0
and p ∈ N∗, we are trying to find the matrix T = {τi,j}J×J solving the following
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optimization problem:

minimize
T

J

∑
j=1

∑
i 6=j

τi,j · ∆(Si, Sj)

subject to
J

∑
i 6=j

(τi,j)
p = 1, ∀j,

τi,j ≥ 0 ∀(i, j).

(15.5)

The solution of this problem for p > 1 is given in the following proposition.

Proposition 11. Any solution of system 15.5 for p > 1 verifies:

∀j, ∀i /∈ arg min
k 6=j

∆(Sk, Sj), τj,i = 0 (15.6)

Proof. We solve this problem by considering the Karush–Kuhn–Tucker (KKT) condi-
tions (Kuhn and Tucker, 1951). The five conditions form the following system:

∀(i, j), i 6= j



(1) τi,j ≥ 0 (primal feasibility)
(2) ∑J

i 6=j(τi,j) = 1 (primal feasibility)

(3) λi,j ≥ 0 (dual feasibility)
(4) τi,j · λi,j = 0 (complementary slackness)
(5) ∆(Si, Sj)− λi,j + νj = 0 (stationarity)

(15.7)

We fix j. Consider k j such that τk j,j > 0 (such a k j necessarily exists, from the
primal feasibility condition). Complementary slackness imposes that λk j,j = 0 and
thus:

νj = −∆(Sk j , Sj) (15.8)

For other collaborators i 6= k j, two cases are possible: either τi,j > 0 or τi,j = 0
(the case τi,j < 0 is discarded by the primal feasibility).
Case 1: τi,j > 0. In this case, we can use the stationarity condition in the same
way as done for k. We obtain that νj = −∆(Si, Sj). Using Equation 15.8, we have
that all positive coefficients correspond to views i that have the same dissimilarity
value ∆(Si, Sj) with view j.
Case 2: τi,j = 0. In this case, the stationarity condition gives the following value
for λi,j:

λi,j = νj + ∆(Si, Sj) = ∆(Si, Sj)− ∆(Sk j , Sj)

Since λi,j ≥ 0 (feasibility on the dual), we have the condition ∆(Si, Sj) > ∆(Sk j , Sj),
which means that k j minimizes the dissimilarity value.

We notice in this result that only views with minimal dissimilarity can collab-
orate. However, if several views i have the same dissimilarity with a view j, their
coefficients are not necessarily uniform. Any possible weighting satisfying condi-
tion 15.6 is a solution of the problem 15.5. The corresponding minimal value is equal
to ∑J

j=1 mink 6=j ∆(Sk, Sj).

The summary of this proposition is the following: In the context of collaborative
clustering, the results should be better if each individual algorithm collaborates only
with the algorithm that has the most similar solution. If several algorithms have the
same most similar solution, they can be given any weight. However, this result
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has to be taken with care: it depends on the choice of the regularization. Here, we
considered that the coefficients must sum to 1, but other feasibility restrictions could
be considered.

15.2.3 Discussion

These results are interesting because they go against the common idea that collabo-
ration works best between collaborators having an average diversity (Grozavu, Ca-
banes, and Bennani, 2014; Rastin, Cabanes, Grozavu, and Bennani, 2015). Indeed,
common sense would want us to think that a low diversity means not much room
for improvement since everyone agrees, and a high diversity not enough common
ground to reach an agreement, thus making average diversity the best case scenario.

However it is our opinion that this interpretation carries the bias of supervised
learning. If we think about the goal of collaboration in the context of unsupervised
learning, these mathematical results make sense: We are in a situation where each
algorithm does an exploratory task and has no supervised index to rely on to guess
quality of its solution. Therefore, when several algorithms find solutions that are
similar, it is quite likely that they have actually found a structure in the data. As
a consequence collaborating with algorithms that have solutions similar to the local
partitioning is a convenient way to avoid the risk of negative collaboration. There are
actually good reasons not to collaborate with an algorithm the results of which are
too different from the local partition: Such collaborators may be in a feature space
where the clusters to be found are completely different even for the same objects.
The dissimilarity of a solution with all others may simply mean that this solution is
a poor one.

These results can also be linked to recent works on clustering stability (Ben-
David, Von Luxburg, and Pál, 2006). A clustering is said to be stable if the partition
remains similar when the data set or the clustering process are perturbed. In the con-
text of collaborative clustering, the perturbations would be that (1) we observe the
same data in different feature spaces, and (2) we use different algorithms. With our
proposed weighting methods, the algorithms with the strongest influence will be
these with solutions most often similar to the other algorithms’ solutions. It matches
with the definition of stability: Such solutions that highlight common structures and
clusters through several feature spaces with different algorithms are the most stable.
The problem of stability in collaborative clustering will be discussed in more details
in next section.

15.3 Stability of Collaborative Clustering

In this section, we introduce the problem of stability in collaborative clustering. The
presented results are prospective on-going works.

15.3.1 Reminder: Clustering Stability

Before we propose our analysis of stability in collaborative clustering, we propose
to introduce the original definitions proposed for classical clustering stability. This
section exposes the notions introduced in (Ben-David, Von Luxburg, and Pál, 2006).

We consider a data space X endowed with probability measure P. If X happens
to be a metric space, we denote by ` its metric. A sample S = {x1, . . . , xm} is drawn
i.i.d from (X, P).
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A clustering C of a subset X ⊆ X is a function C : X → N which to any data
subset X ⊆ X associates a solution vector in the form of matching clusters: S =
C(X). The clusters are defined by Ci = C−1({i}) = {x ∈ X; C(x) = i}. A clustering
algorithmA is a function that computes a clustering of X for any given finite sample
S ⊆ X.

The proposed definition of clustering is very different from the approaches fol-
lowed until now. In previous approaches (and in particular in Chapter 14), we con-
sidered that clustering regards partitioning one precise dataset without any aim to
generalize. In the described approach, a clustering is a partitioning of the entire
data space and not only of the observed dataset. The space can be chosen to be the
dataset, but this trivial case is not interesting in the theory of stability.

A large class of clustering algorithms choose the clustering by optimizing some
risk function. The large class of centroid based algorithms falls into this category,
and spectral clustering can also be interpreted in this way as well.

Definition 16 (Risk optimization scheme). A risk optimization scheme is defined by a
quadruple (X, Σ,P , R), where X is some domain set, Σ is a set of legal clusterings of X ,
and P is a set of probability distributions over X, and R : P × Σ → [0, ∞) is an objective
function (or risk) that the clustering algorithm aims to minimize.

Denote opt(P) := infC∈Σ R(P, C). For a sample X ⊆ X, we call R(PX, C) the empirical
risk of C, where PX is the uniform probability distribution over S. A clustering algorithm A
is called R-minimizing, if R(PX,A(X)) = opt(PX), for any sample X.

In the context of this theoretical analysis, we aim to compare different clustering
solutions. For this purpose, we define clustering distances.

Definition 17 (Clustering distance). Let P be family of probability distributions over
some domain X. Let Σ be a family of clusterings of X. A clustering distance is function
d : P × Σ× Σ→ [0, 1] satisfying for any P ∈ P and any C1, C2, C3 ∈ Σ:

1. dP(C1, C1) = 0

2. dP(C1, C2) = dP(C2, C1) (symmetry)

3. dP(C1, C3) ≤ dP(C1, C2) + dP(C2, C3) (triangle inequality)

We do not require that a clustering distance satisfies the implication dP(C1, C2) =
0⇒ C1 = C2.

Stability measures how a perturbation in data affects the result of a clustering
algorithm. It is possible to define the stability of an algorithm A for a sample size m
with respect to a probability distribution P as follows:

Definition 18 (Stability). Let P be a probability distribution over X . Let d be a clustering
distance. Let A be a clustering algorithm. The stability of the algorithm A for the sample
size m with respect to the probability distribution P is

stab(A, P, m) = E
X1∼Pm

X2∼Pm

[dP(A(X1),A(X2))] (15.9)

The stability of the algorithm A with respect to the probability distribution P is

stab(A, P) = lim sup
m→∞

stab(A, P, m)

We say that algorithm A is stable for P, if stab(A, P) = 0.
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15.3.2 Definitions: Collaborative Clustering

In the context of collaborative clustering, we consider that the total space X can be
decomposed into the product X1 × . . .×XJ of J view spaces Xj.

Definition 19 (Global clustering). A global clustering is defined as a combination of local
clustering in the following sense: A global clustering C of the subset X ⊆ X is a function
C : X →NJ . The i-th local cluster for view j, denoted C j

i , is defined as:

C j
i = {x ∈ X ;

(
C(x)

)j
= i} ⊆ X (15.10)

A collaborative clustering algorithm A = 〈A1, . . . ,AJ〉 is a function which com-
putes a global clustering based on local clustering algorithms C j on Xj. More for-
mally, if we denote by Aj the set of clustering algorithms on Xj, C the set of global
clusterings on X ⊆ X and Σ the set of finite partitions of X , a collaborative cluster-
ing algorithm is defined as a mapping A1 × . . .×AJ × Σ→ C.

In general, the projection of the clustering obtained by a collaborative algorithm
onto one of the views j is distinct of the local clustering obtained by the local algo-
rithm Aj: If C = A(X), then in general C j 6= Aj(X j). We define a very particular
case of collaborative clustering algorithms for which this general property does not
hold.

Definition 20 (Concatenation of local clustering algorithms). The concatenation of lo-
cal clustering algorithms A1 to AJ , denoted by

⊕J
j=1Aj is defined as follows: If C is the

global clustering induced by A =
⊕J

j=1Aj on a data set X, then

∀x ∈ X, ∀j ∈ {1, . . . , J}, C j(xj) =
(
Aj(X j)

)
(xj) (15.11)

This definition means that the local clustering on each view j obtained with the
collaborative algorithm is exactly the same as the local clustering obtained with the
local algorithm Aj only.

Since NJ is isomorphic to N, a global clustering can be interpreted as a clustering
of X ⊆ X. Consider the isomorphism νJ : NJ → N (which will be denoted by ν
when the value J is obvious in the context). Then the mapping ν ◦ C is a a clustering
of X ⊆ X.

Using this equivalence, the notions of risk optimization scheme and clustering
distance hold for global clustering.

Proposition 12. Let X = X1 × . . .×XJ be a domain and dj clustering distances on Xj.
We define the function d : P × S × S → [0, 1] such that dP(C1, C2) =

1
J ∑J

j=1 dj
Pj
(C j

1, C j
2).

Then d defines a clustering distance on X . We call it the canonical collaborative clustering
distance.

Proof. The clustering distance properties follow from the linearity in terms of dj and
from the properties of the local clustering distances.

15.3.3 Stability of Collaborative Clustering

As noticed above, a global clustering can be interpreted as a standard clustering.
Hence, the definition of stability given in the standard case can be extended to the
collaborative case.
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Proposition 13 above shows a direct adaptation of Ben-David’s key theorem on
clustering stability (Theorem 10 in (Ben-David, Von Luxburg, and Pál, 2006)) to col-
laborative clustering.

Proposition 13. If P has a unique minimizer C∗ for risk R, then any R-minimizing collab-
orative clustering algorithm which is risk converging is stable on P.

Proof. Let A be a collaborative clustering algorithm on X = X1 × . . .×Xj.
Consider an isomorphism ν : NJ →N. Based on collaborative algorithm A, one

can build a clustering algorithm Ã such that the clustering C̃ induced by sample S
for Ã is such that C̃ = ν ◦ (A(S)). For simplicity purpose, we will denote this algo-
rithm Ã = ν ◦ A. We call dP the global clustering distance and d̃P its associated local
distance such that d̃P(C̃1, C̃2) = dP(ν

−1 ◦ C̃1, ν−1 ◦ C̃2).
Using these two clustering distances in Equation 15.9, the following lemma is

straightforward:

Lemma 1. If Ã = ν ◦ A is stable (for distance d̃P), then A is stable (for distance dP).

If A is R-minimizing, then Ã is R̃-minimizing with R̃(P, C̃) = R(P, ν−1 ◦ C̃). It is
direct that optR̃(P) = optR(P) and that Ã is risk-converging. It is also direct that P
has a unique minimizer C̃∗ associated to R̃.

Combining all the previous results together, we have that Ã is R̃-minimizing and
risk converging. Since P has a unique minimizer for R̃, it follows from (Ben-David,
Von Luxburg, and Pál, 2006) that Ã is stable. Lemma 1 guarantees the result.

The idea of the proof is simply to build a clustering algorithm from the collab-
orative clustering algorithm based on the isomorphism ν. From this proposition, it
comes that collaborative clustering algorithms can be treated exactly the same way
as standard clustering algorithms when it comes to stability analysis.

A first result can be shown about the concatenation of clustering algorithms.
Proposition 14 states that a concatenation of local algorithms is stable provided that
the local algorithms are stable.

Proposition 14. Suppose that the local algorithms Aj are stable for distance dj
Pj . Then the

collaborative algorithm A =
⊕J

j=1Aj is stable for canonical distance.

Proof. If X1 and X2 are two samples drawn from distribution P, then we have:

dP (A(X1),A(X2)) =
1
J

J

∑
j=1

dj
Pj

(
(A(X1))

j , (A(X2))
j
)
=

1
J

J

∑
j=1

dj
Pj

(
Aj(X j

1),A
j(X j

2)
)

(15.12)
From the linearity of the expected value, it comes that

stab(A, P, m) =
1
J

J

∑
j=1

stab(Aj, Pj, m)

hence the stability of A.

This result is rather intuitive, since concatenation corresponds to an absence of
collaboration. From this point of view, it is expected that, when stable local algo-
rithms do not collaborate, the result of the non-collaboration remains stable. More
interestingly, the same proof can be applied to get a more general result.
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Before we present this general result, we have to introduce a key notion of col-
laborative clustering, consistency. Consistency is a desired property of collaborative
clustering algorithms which states that the updated results must be somehow simi-
lar to the original local results. We formalize this notion in the following definition:

Definition 21. Let P be a probability distribution over X . Let d be a clustering distance.
Let A be a collaborative clustering algorithm. The consistency of the collaborative algorithm
A = 〈A1, . . . ,AJ〉 for the sample size m with respect to the probability distribution P is

cons(A, P, m) = E
X∼Pm

dP

A(X),
J⊕

j=1

Aj(X j)

 .

The consistency of algorithm A with respect to the probability distribution P is

cons(A, P) = lim sup
m→∞

cons(A, P, m)

Intuitively, consistency measures the distance of the global clustering produced
by the collaboration to the clustering produced by concatenation of local algorithms.
We recall that the clustering distances are pseudo-distance and do not satisfy the
property d(C1, C2) = 0 ⇒ C1 = C2. For instance, it can be easily verified that,
with the Hamming distance dP(C1, C2) = PrX,Y∼P[(x ∼C1 y) ⊕ (x ∼C2 y)], where
⊕ designates the XOR operation, two clusterings have a zero distance if they differ
only a zero measure set. As a consequence, consistent algorithms are not necessarily
concatenations.

As an example, consider two collaboratorsA1 andA2 working on X1 = X2 = R.
We define a collaborative clustering algorithm A = 〈A1,A2〉 that produces local
clusterings of the form:

C(x, y) =

{
〈C2(x), C2(y)〉 if x ∈ Q

〈C1(x), C2(y)〉 otherwise
(15.13)

where Q is the set of rational numbers, and C1 is the local clustering computed by
algorithm Ai. This clustering differs from the simple concatenation on the set of ra-
tional numbers for the first collaborator, hence has a zero Hamming distance toward
concatenation. As a consequence, algorithm A is consistent.

Consistency is naturally involved in a fundamental result on stability:

Theorem 10. Let A = 〈A1, . . . ,AJ〉 be a collaborative clustering algorithm. Then the
stability of A relatively to the canonical distance is upper-bounded as follows:

stab(A, P) ≤ cons(A, P) +
1
J

J

∑
j=1

stab(Aj, Pj) (15.14)
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Proof. Consider X1 and X2 two samples drawn from distribution P. Since the canon-
ical distance satisfies the triangular inequality:

dP(A(X1),A(X1)) ≤ dP

A(X1),

 J⊕
j=1

Aj

 (X1)


+ dP

 J⊕
j=1

Aj

 (X1),

 J⊕
j=1

Aj

 (X2)

+ dP

 J⊕
j=1

Aj

 (X2),A(X2)


Taking the expected value of this expression, we obtain:

stab(A, P, m) ≤ 2×EX∼Pm

dP

A(X),

 J⊕
j=1

Aj

 (X)


+ EX1,X2∼Pm

dP

 J⊕
j=1

Aj

 (X1),

 J⊕
j=1

Aj

 (X2)


which is exactly the desired result.

This result is really general since it does not require any information on the col-
laborative process. It has a direct consequence on collaborative clustering stability:

Corollary 3. Any consistent collaboration of stable algorithms is stable for the canonical
distance.

It is noticeable that these two results are extremely limited. The consistency as-
sumption is extremely strong and does not apply to “reasonable" collaborations,
which are expected to find new structures in each view, and thus differ significantly
from the concatenation. In practice, collaborative clustering has to find a trade-off
between novelty (finding new structures and partitions) and consistency (relying on
locally determined structures). Consequently, the result of this Corollary is barely
applicable to real situations.

As another remark, Theorem 10 does not mean that non-consistent collaborations
cannot be stable, or, equivalently, that a collaboration of unstable local algorithms
cannot be stable. However, the result relies on the triangle inequality only, hence is
the most precise result that can be obtained based on the definition only. Further in-
vestigations on collaborative clustering stability has to be found elsewhere, probably
in the direction of Proposition 13.

15.3.4 Perspectives

The results on collaborative clustering stability presented above are the result of pre-
liminary works that has been done with the idea of building a theoretical framework
for unsupervised collaboration. At this stage, it is almost only an adaptation of the
existing theory to the multi-view context. We proposed two main theorems on clus-
tering stability.

The first theorem (Proposition 13) is based on a risk-minimization scheme and
proves the stability of a collaborative clustering algorithm under two conditions:
existence of a unique global minimizer and risk convergence. The main question that
arises from this theorem is to determine if these two conditions can be expressed in a
more suitable way for collaborative clustering? This question can be divided in two
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parts. The question of the existence of a unique minimizer is relative to the division
of the space into local subspaces (the views). However, it is important to keep in
mind that the notion of minimizer is related to a specific risk. The choice of a risk
function is also inherently fundamental in the risk convergence property.

Given the state of the art and the model that has been used in Section 15.2, it
seems tempting to consider the generic form of risk as the sum of local risks and of
a collaborative term:

R(P, C) =
J

∑
j=1

(
Rj(Pj, C j) + ∑

i 6=j
∆(P, C i, C j)

)
(15.15)

The second theorem (Theorem 10 gives an upper-bound of stability in terms of
the stability of local algorithms and global consistency (ie. distance to concatena-
tion). A restricted application of this theorem states that any consistent collaboration
of stable algorithms remains stable. However, this algorithm does not solve the other
cases: inconsistent collaboration or unstable local algorithms. In particular, several
questions remain open: Is one unstable local algorithm enough to make the collab-
oration of stable algorithms unstable? Can an inconsistent collaboration of stable
elements be stable? Such questions are of real interest for the theory of collaboration
and should find an answer.

However, we considered here the case of a global stability, which means the sta-
bility of the collaborative clustering algorithm considered as a clustering algorithm
on X. Another open question is the stability of the local algorithms defined from A
(hence the restriction of A on one of the views).

15.4 Conclusion

In this chapter, we presented a couple of thoughts relative to the fundamental nature
of collaborative clustering. We have shown that the issues raised in this domain are
completely different from the questions of supervised ensemble learning, because
of the absence of supervision and of objective quality measure. We proposed two
models for the quality of a collaboration. In the first model, we asked the question
of the choice of good collaborators in a general setting. We have shown that, un-
der some simple but non-restrictive assumptions, the best collaboration (in terms of
score, or likelihood) is actually no collaboration at all: The best way for an algorithm
to collaborate is to collaborate with the most similar algorithm. The second model
we propose is an adaptation of the theory of stability. First theoretical results were
introduced but the whole question of collaboration remains open. Such questions
will have to be investigated in future works.
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Part V

Conclusion
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Chapter 16

Conclusion

The general scope of this thesis being rather wide, exploring various domains, we
would like to conclude with a short reminder of the main contributions of our work.
This recap will leave a sour taste of unfinished work, but the main lesson we have
learned from these three years is that, in research, a conclusion is necessarily an
opening to new questions: Following this optimistic philosophy, we will conclude
this thesis by some perspectives for future works, to be done by ourselves or by
other passionate researchers.

16.1 Contributions

We first provide a short list of our main contributions. We divide this list in two
parts: general contributions first, followed by contributions specific to one precise
domain.

16.1.1 General Contributions

The main direction chosen in this thesis is rather unusual to our knowledge. The
ambition was to address multiple research questions, taken from various domains,
with only one aspect in common: the notion of knowledge transfer. We defined
knowledge transfer in a very informal way as the necessity to share information in
the learning process, either from one task to another task (such as in analogical rea-
soning and in transfer learning), from the past to the present (such as in incremental
learning) or from one agent to the other (such as in collaborative clustering). Given
this unified definition, many questions arose, to which we tried to find general an-
swers:

• Is there a general tool to assess the general question of knowledge transfer?
We claimed that Kolmogorov complexity is a perfect candidate to play this
role. Complexity of an object is defined as the length of the shortest program,
on a Turing machine, that can generate this object. It measures the information
contained in an object, and can be used in particular to measure the quantity
of transferred information.

• Is transfer always possible? We have seen that this question is quite ambigu-
ous and does not correctly illustrate the actual issues of transfer. We gave two
answers to this question. The first answer is yes: Given a transfer algorithm,
it is always possible to apply it to a problem requiring transfer. The second
answer is no: Sometimes, transferring unrelated knowledge is worse, in terms
of the followed objective, than relying on the target problem only. These two
observations lead naturally to the next question:
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• When is transfer helpful? We do not have any answer to this question yet. We
proposed a framework to assess this question (Chapter 9) but the suggested
definitions are first steps in a direction that remains to be better defined. The
proposed solution is the following: Transfer is possible only in case the source
knowledge leads to a better compression of the target problem. We will dis-
cuss, in the perspectives, the questions opened by this approach.

More technically, one of our main contributions is the definition of Descriptive
Graphical Models (DGM), which are generalization of Probabilistic Graphical Mod-
els to non-probabilistic Turing machines. These models are based on the use of Kol-
mogorov complexity and can be interpreted as general machines that can produce
complex objects. Based on these machines, we suggested a general methodology
for the description of transfer problems. This model is widely inspired by an ap-
proach to analogical reasoning developed by (Cornuéjols and Ales-Bianchetti, 1998),
its main strength is to rely not on a direct description of data, but on intermediate
objects that we called models. Models are helpful since they are ideal candidates
for the transfer phase. As exposed first by the Structure Mapping Theory (Gentner,
1983), a good transfer has to focus on structural description of objects, and not on
local irregularities (noise or high level descriptors), and thus data themselves are
not adapted. If all the common information about objects is stored in these models,
the transfer can be done at this low level only and be more efficient. We followed
this idea of using models in the four domains we have explored: analogy, transfer
learning, stream mining and multi-source clustering.

16.1.2 Local Contributions

We choose to group our contributions by domains. These domains can be related to
the four parts of the thesis or are more transverse.

16.1.2.1 Analogical Reasoning

Analogical reasoning is a domain that focuses on questions of the form “A is to B
as C is to x", where x is unknown and has to be found. As mentioned above, a
first model, based on Kolmogorov complexity, was introduced by (Cornuéjols and
Ales-Bianchetti, 1998). Our contribution, relative to this model, is to be found in
the formalization that we proposed. This formalization is based on the Descriptive
Graphical Models, described as a general contribution.

Our second contribution is a formal study of minimum complexity analogies in
geometric spaces (Chapter 6). Our idea is that analogies can be defined in terms
of transformations, and that some transformations are more “natural" than others.
For instance, the very nature of vector spaces makes additions and substractions in-
tuitive, hence simple, operations. In Riemannian spaces, we suggested that parallel
transport is a natural operation, defined directly by the metric. We proposed an anal-
ysis of the produced analogies and compared them with the axioms of proportional
analogy.

Our last contribution follows from the previous one. We showed that the analogy
defined with help of parallel transport does not satisfy the axioms of analogical pro-
portion. We thus addressed the following question: Is it possible to define analogical
proportions on differential manifolds? The answer to this question is yes. However,
we could not provide any evidence that these proportions are “continuous".
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16.1.2.2 Transfer Learning

Our main contribution in the domain of transfer learning is to propose an interpre-
tation of transfer in terms of analogical reasoning. Based on this observation, we
used the same model as presented to solve analogies. This methodology is based on
models, hence intermediate objects that encode global low level information about
observed objects. This approach is consistent with mapping-based methods, that
project source and target data into a common intermediate space.

We illustrated our approach by developing a simple prototype-based model, in-
spired by Learning Vector Quantization. We illustrated the transfer with multiple
simple algorithms based on this model.

16.1.2.3 Data Stream Mining

Data stream mining is a bit different from the previously exposed tasks, since it does
not consist of a source and a target, but of a stream of data. We proposed to use
the same approach as transfer learning, but to provide a model adaptation based
on the past sequence. The main advantage of our description is that it provides a
general formalization of the problem of data stream mining, which can be used for
theoretical studies of data stream mining.

Our second contribution to the domain of data stream mining is a study of on-
line recommendation, with applications on textual data (Chapter 11). We proposed
a very simple algorithm to deal with streams of text and provide an up-to-date topic
model. Based on this idea, we proposed an hybrid recommendation algorithm. The
results we have shown tend to confirm the intuition that online recommender sys-
tems have issues of their own: In particular, we have demonstrated in our exper-
iments that hybrid recommender systems perform worse than only collaborative
filtering algorithms when the item model is not regularly updated.

16.1.2.4 A Cognitive Model

Humans are known to be sensible to Kolmogorov complexity (Chater, 1999). We
have studied this question in the restricted context of analogies on character strings
and their applications.

A first contribution is the formal study of the models in the case of Hofstadter’s
micro-world. Hofstadter’s micro-world is a set of analogical problems defined on
character strings. In Chapter 4, we have proposed a way to define the models used in
the DGM suggested for analogical reasoning. Our solution is based on a descriptive
and memory-based language. We have shown that the complexity results obtained
with this language were coherent with the results obtained by humans.

The defined models were then used as an application of our approach of data
stream mining (Chapter 12). We studied a well-known phenomenon in cognitive
sciences called “U-shaped learning". This phenomenon models a process of learning,
un-learning and re-learning that is typical of first language acquisition for instance.
We provided simple experiments (on a restricted domain) in order to observe if our
model can produce such a phenomenon and we observed that it actually can.

A last contribution was a short interpretation of the phenomenon of syntactic
priming, that can be modeled as an analogical reasoning problem.
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16.1.2.5 Multi-Source Clustering

As opposed to standard clustering, multi-source clustering regards the cooperation
or collaboration between several clustering algorithms operating on the same data
but with different views or biases on them.

We first interpreted the problem in terms of DGM and Kolmogorov complexity
(Chapter 14). We developed a very simple framework, as well as an algorithm to
test it. An advantage of our approach is that it allows a collaboration between any
type of algorithm, but also considers local information about the algorithms. To our
knowledge, there is no other method that satisfies these two constraints together.

Finally, we proposed a preliminary study of the idea of collaboration in cluster-
ing. First, we asked the question of the choice of good collaborators. Using a very
simple weighting approach, we demonstrated that the best collaboration strategy
for a clustering algorithm is to exchange information with algorithms that gives the
same results. This observation is a major difference with collaboration in supervised
setting. Finally, we proposed a formalism and several preliminary results for the
study of stability for collaborative clustering.

16.2 Perspectives and Future Works

The results presented in this thesis open new perspectives in the domains we have
explored. We want to conclude with an incomplete list of research directions that
directly follow from our work.

• Automatic search for structures in Hofstadter’s micro-world: The developed
language seems very convenient for the description of character strings, but
in this thesis, all the programs were designed at hand. An automatic search
for the shortest program will have to be done, maybe following the directions
exposed in Section 4.4.

• Existence of continuous proportional analogies on differential manifolds:
We have shown the existence of continuous non-proportional analogies, and of
non-continuous proportional analogies on Riemannian manifolds. The ques-
tion we have not succeeded to answer regards the existence of continuous pro-
portional analogies on manifolds.

• Extension of the parallelogrammoid procedure: The algorithm proposed in
Chapter 6 works only when the four terms of the analogy are in the same space.
It would be interesting to find a generalization of this procedure when the
spaces differ.

• Study of learnability: We proposed new notions of learnability and transfer-
ability, but in a very preliminary way. More work has to be proposed in order
to determine whether this approach is useful. In particular, a strong result that
could be obtained would show a link between our notion of learnability and
PAC-learnability.

• Universal Prior for Learning with Concern for Future Questions: Learning
with concern for future questions is a general learning framework, which gives
to the learner a prior over the future. This framework is intended to go beyond
classical assumptions such as the i.i.d. hypothesis. The question of the defini-
tion of the prior remains open, but we suggest to consider universal distribu-
tion as a potential prior.
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• Clustering cooperation with MDL principle: The algorithm we proposed in
Chapter 14 works only for collaborative clustering. An adaptation is required
for cooperative clustering (ie. to find a consensus between different views).

• Collaborative clustering stability: The results presented in Section 15.3 are
preliminary results and must be completed.

A larger, and maybe more philosophical perspective, is more a promise than a
merely technical question. All along this thesis, we have done our best to merge the
spirits of various disciplines and to take the best of all these domains, ranging from
clustering to cognitive modeling. We have demonstrated that it is possible to unify
them with common principles. In future works, we will do our best to keep this
distance in order to propose results as general as possible.
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Appendix A

Experiment on Hofstadter’s
Analogies

In this chapter, we present the protocol and complete results of the small experiment
on Hofstadter’s analogies, presented in Chapter 4. This presentation is divided into
three sections. In a first section, we expose the whole protocol as well as the complete
set of questions. In a second section, we discuss the way we filtered and processed
collected data. Finally, we propose detailed results of these experiment as well as a
short analysis of the profile of participants.

A.1 Experiment Protocol

In order to evaluate human results on Hofstadter’s analogy problems, we proposed
an online experiment1. The experiment was designed on the IBEX farm platform (Drum-
mond, 2013).

The test was publicly opened and made available online. The link to the test
was sent directly to a couple of potential participants (external to the research prob-
lem) and shared on social networks in order to reach a broader audience in terms of
academic background.

The home page of the survey is reproduced in Figure A.2. The page correspond-
ing to a question is reproduced in Figure

FIGURE A.1: Home page of the online survey.

1Available at the address http://spellout.net/ibexexps/pam/Analogy/experiment.html.

http://spellout.net/ibexexps/pam/Analogy/experiment.html
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FIGURE A.2: Question page in the online survey.

A.2 Filtering Results

In order to have significant results, we removed all participants who did not provide
a “serious” answer to more than three questions. As “not serious”, we designate the
answers which:

• Correspond to general comments on a question or on the whole experiment
(e.g. “this test is random”)

• Are purposely out of the context (e.g. “ABC : ABD :: IJK : 42”).

• Are sentences or equivalent (e.g. “I believe I can flyyyy” or “LOL”)

After this initial filtering step, we removed six participants. Notice that some
answers remain that satisfy at least one of the mentioned conditions (which can be
seen in the detailed results presented in the next section).

In order to make the results homogeneous, we show the results in capital letters.
For instance, we transfered the proposed solution“abd” into “ABD”.

No other processing has been made on the data. In particular, we did not fix
obvious typos (for instance IJK : OJL) nor changed the additional blanks (for instance
“1 4 10” is not merged with the answer “1410”).

A.3 Detailed Results

We present the results obtained with our experiment. To make them understandable,
we first present them in their raw form, and then group results by categories.

A.3.1 Raw Results

The raw results are presented in the following pages. The results are grouped by
submission, giving the submission date, the age and the gender, as well as the pro-
posed solutions to the analogy.
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Result:

• Date: Friday January 13 2017 16:07:50 UTC

• Age: 24

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 9296

ABC : ABD :: BCA BCB 12217
ABC : ABD :: AABABC AABABD 25871

ABC : ABD :: IJKLM IJKLN 16423
ABC : ABD :: 123 124 5100
ABC : ABD :: KJI LJI 11499
ABC : ABD :: 135 136 10245

ABC : ABD :: BCD BCE 12451
ABC : ABD :: IJJKKK IJJLLL 11587

ABC : ABD :: XYZ XYA 5202
ABC : ABD :: 122333 122444 9532

ABC : ABD :: RSSTTT RSSUUU 10543
ABC : ABD :: IJJKKK IJJLLL 6792

ABC : ABD :: AABABC AABABB 26272
ABC : ABD :: MRRJJJ MRRKKK 12610

ABC : ABD :: 147 148 7053

Result:

• Date: Friday January 13 2017 16:08:14 UTC

• Age: 21

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 9285

ABC : ABD :: BCA BCB 27811
ABC : ABD :: AABABC AACABD 27265

ABC : ABD :: IJKLM IJLLM 9216
ABC : ABD :: 123 124 4472
ABC : ABD :: KJI KJJ 16146
ABC : ABD :: 135 136 4720

ABC : ABD :: BCD BCE 6573
ABC : ABD :: IJJKKK IJKKKL 9525

ABC : ABD :: XYZ XYA 5813
ABC : ABD :: 122333 123334 6661

ABC : ABD :: RSSTTT RSTTTU 17073
ABC : ABD :: IJJKKK IJKKKL 13133

ABC : ABD :: AABABC AACABD 10773
ABC : ABD :: MRRJJJ MRSJJK 13505

ABC : ABD :: 147 148 14247



226 Appendix A. Experiment on Hofstadter’s Analogies

Result:

• Date: Friday January 13 2017 16:18:26 UTC

• Age: 23

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJD 8382

ABC : ABD :: BCA BCD 10748
ABC : ABD :: AABABC AADABC 34092

ABC : ABD :: IJKLM IJKLD 16961
ABC : ABD :: 123 123 6818
ABC : ABD :: KJI KJD 18691
ABC : ABD :: 135 13D 16643

ABC : ABD :: BCD BCD 8900
ABC : ABD :: IJJKKK IJDDDD 58865

ABC : ABD :: XYZ XYA 12246
ABC : ABD :: 122333 122334 14910

ABC : ABD :: RSSTTT RSDTTT 11039
ABC : ABD :: IJJKKK IJJDDD 12706

ABC : ABD :: AABABC AABDBD 24916
ABC : ABD :: MRRJJJ MRDJJD 29014

ABC : ABD :: 147 148 14198

Result:

• Date: Friday January 13 2017 16:25:19 UTC

• Age: 24

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 35122

ABC : ABD :: BCA BCB 47165
ABC : ABD :: AABABC AABABD 25501

ABC : ABD :: IJKLM IJKLN 6597
ABC : ABD :: 123 124 6381
ABC : ABD :: KJI KJJ 6190
ABC : ABD :: 135 136 5308

ABC : ABD :: BCD BCE 13289
ABC : ABD :: IJJKKK IJJKKL 8097

ABC : ABD :: XYZ XYA 12364
ABC : ABD :: 122333 122334 7236

ABC : ABD :: RSSTTT RSSTTU 5694
ABC : ABD :: IJJKKK IJJKKL 7430

ABC : ABD :: AABABC AABABD 7262
ABC : ABD :: MRRJJJ MRRJJK 9062

ABC : ABD :: 147 148 5422
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Result:

• Date: Friday January 13 2017 16:27:08 UTC

• Age: 23

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 18384

ABC : ABD :: BCA BCB 9272
ABC : ABD :: AABABC AABABD 58382

ABC : ABD :: IJKLM IJJKLM 17079
ABC : ABD :: 123 124 9192
ABC : ABD :: KJI KJI 6712
ABC : ABD :: 135 145 11286

ABC : ABD :: BCD BDD 9019
ABC : ABD :: IJJKKK IJJKKK 9507

ABC : ABD :: XYZ XYZ 8505
ABC : ABD :: 122333 122433 16922

ABC : ABD :: RSSTTT RSSTTT 7365
ABC : ABD :: IJJKKK IJJKKK 7733

ABC : ABD :: AABABC AABABD 18104
ABC : ABD :: MRRJJJ MRRJJJ 5331

ABC : ABD :: 147 147 6790

Result:

• Date: Friday January 13 2017 16:32:34 UTC

• Age: 25

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 6218

ABC : ABD :: BCA BDA 8034
ABC : ABD :: AABABC AABABD 8900

ABC : ABD :: IJKLM IJLMN 16037
ABC : ABD :: 123 124 4717
ABC : ABD :: KJI LJI 5922
ABC : ABD :: 135 137 3866

ABC : ABD :: BCD BCE 9358
ABC : ABD :: IJJKKK IJJLLL 6835

ABC : ABD :: XYZ XYA 8131
ABC : ABD :: 122333 122444 6691

ABC : ABD :: RSSTTT RSSUUU 5158
ABC : ABD :: IJJKKK IJJLLL 3924

ABC : ABD :: AABABC AABABD 3761
ABC : ABD :: MRRJJJ MRRLLL 18779

ABC : ABD :: 147 1410 6964
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Result:

• Date: Friday January 13 2017 16:49:48 UTC

• Age: 22

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 12615

ABC : ABD :: BCA BCB 11204
ABC : ABD :: AABABC AACABD 15706

ABC : ABD :: IJKLM IJLLM 15646
ABC : ABD :: 123 124 6169
ABC : ABD :: KJI KJJ 6777
ABC : ABD :: 135 136 5069

ABC : ABD :: BCD BCE 7280
ABC : ABD :: IJJKKK IJKKKL 13533

ABC : ABD :: XYZ XYA 7175
ABC : ABD :: 122333 123334 8369

ABC : ABD :: RSSTTT RSSTTTU 14351
ABC : ABD :: IJJKKK IJKKKL 9871

ABC : ABD :: AABABC AACABD 103440
ABC : ABD :: MRRJJJ MRSJJK 9189

ABC : ABD :: 147 148 5247

Result:

• Date: Friday January 13 2017 16:59:13 UTC

• Age: 21

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 11331

ABC : ABD :: BCA BDA 36865
ABC : ABD :: AABABC AABABD 14020

ABC : ABD :: IJKLM IJLLM 18310
ABC : ABD :: 123 124 4513
ABC : ABD :: KJI LJI 9401
ABC : ABD :: 135 136 3627

ABC : ABD :: BCD BCE 6388
ABC : ABD :: IJJKKK IJJLLL 5865

ABC : ABD :: XYZ XYA 5217
ABC : ABD :: 122333 122444 5390

ABC : ABD :: RSSTTT RSSUUU 8748
ABC : ABD :: IJJKKK IJJLLL 4781

ABC : ABD :: AABABC AABABD 6157
ABC : ABD :: MRRJJJ MSSJJJ 22565

ABC : ABD :: 147 148 3357
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Result:

• Date: Friday January 13 2017 17:06:34 UTC

• Age: 54

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 23580

ABC : ABD :: BCA DBA 13741
ABC : ABD :: AABABC AABABD 38607

ABC : ABD :: IJKLM IJLLM 82164
ABC : ABD :: 123 124 6050
ABC : ABD :: KJI LJI 17936
ABC : ABD :: 135 137 18110

ABC : ABD :: BCD BCE 9625
ABC : ABD :: IJJKKK IJJLLL 18578

ABC : ABD :: XYZ XYA 11441
ABC : ABD :: 122333 122444 14694

ABC : ABD :: RSSTTT RSSUUU 12600
ABC : ABD :: IJJKKK IJJLLL 10090

ABC : ABD :: AABABC AABABD 16645
ABC : ABD :: MRRJJJ MRRLLL 68325

ABC : ABD :: 147 140 20549

Result:

• Date: Friday January 13 2017 17:08:25 UTC

• Age: 25

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 14284

ABC : ABD :: BCA BCB 21688
ABC : ABD :: AABABC AACABD 39292

ABC : ABD :: IJKLM IJKLN 13682
ABC : ABD :: 123 124 5134
ABC : ABD :: KJI KJH 23245
ABC : ABD :: 135 136 5185

ABC : ABD :: BCD BCE 12538
ABC : ABD :: IJJKKK IJJKKL 8479

ABC : ABD :: XYZ XYA 6389
ABC : ABD :: 122333 122334 7606

ABC : ABD :: RSSTTT RSSTTU 7600
ABC : ABD :: IJJKKK IJJKKL 6607

ABC : ABD :: AABABC AABABC 8263
ABC : ABD :: MRRJJJ MRRJJK 8557

ABC : ABD :: 147 148 8372
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Result:

• Date: Friday January 13 2017 17:16:25 UTC

• Age: 22

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IKL 18426

ABC : ABD :: BCA BCB 11544
ABC : ABD :: AABABC AABABD 36563

ABC : ABD :: IJKLM IJKLN 21096
ABC : ABD :: 123 124 5553
ABC : ABD :: KJI KJJ 7642
ABC : ABD :: 135 136 5864

ABC : ABD :: BCD BCE 5426
ABC : ABD :: IJJKKK IJJKL 8137

ABC : ABD :: XYZ XYA 13009
ABC : ABD :: 122333 122334 7821

ABC : ABD :: RSSTTT RSSTTU 7190
ABC : ABD :: IJJKKK IJJKKL 7360

ABC : ABD :: AABABC AABABD 6576
ABC : ABD :: MRRJJJ MRRJJK 9412

ABC : ABD :: 147 148 4409

Result:

• Date: Friday January 13 2017 17:25:20 UTC

• Age: 25

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 8412

ABC : ABD :: BCA BDA 12029
ABC : ABD :: AABABC AABABD 6338

ABC : ABD :: IJKLM IJLMN 10479
ABC : ABD :: 123 124 3260
ABC : ABD :: KJI LJI 6950
ABC : ABD :: 135 146 4962

ABC : ABD :: BCD BDE 5386
ABC : ABD :: IJJKKK IJJLLL 8696

ABC : ABD :: XYZ XYA 6277
ABC : ABD :: 122333 122444 2990

ABC : ABD :: RSSTTT RSSUUU 5344
ABC : ABD :: IJJKKK IJJLLL 5909

ABC : ABD :: AABABC AABABD 3844
ABC : ABD :: MRRJJJ MRRJJ 48148

ABC : ABD :: 147 158 2683
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Result:

• Date: Friday January 13 2017 18:28:42 UTC

• Age: 25

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 16344

ABC : ABD :: BCA BCB 26013
ABC : ABD :: AABABC AABABD 32465

ABC : ABD :: IJKLM IJKLN 8777
ABC : ABD :: 123 123 3962
ABC : ABD :: KJI KJJ 9506
ABC : ABD :: 135 135 5220

ABC : ABD :: BCD BCE 5587
ABC : ABD :: IJJKKK IJJKKL 6329

ABC : ABD :: XYZ XYA 5982
ABC : ABD :: 122333 122333 6475

ABC : ABD :: RSSTTT RSSTTU 8298
ABC : ABD :: IJJKKK IJJKKL 5226

ABC : ABD :: AABABC AABABD 5711
ABC : ABD :: MRRJJJ MRRJJK 7781

ABC : ABD :: 147 147 6557

Result:

• Date: Friday January 13 2017 18:38:03 UTC

• Age: 22

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 11248

ABC : ABD :: BCA BDA 17609
ABC : ABD :: AABABC AABABD 28406

ABC : ABD :: IJKLM IJKLN 59997
ABC : ABD :: 123 124 8859
ABC : ABD :: KJI KJH 67923
ABC : ABD :: 135 137 20330

ABC : ABD :: BCD BCE 18551
ABC : ABD :: IJJKKK IJJLLL 41267

ABC : ABD :: XYZ XYA 8104
ABC : ABD :: 122333 122444 40548

ABC : ABD :: RSSTTT RSSUUU 10920
ABC : ABD :: IJJKKK IJJLLL 10593

ABC : ABD :: AABABC AABABD 12371
ABC : ABD :: MRRJJJ MRREEE 138518

ABC : ABD :: 147 1 4 10 321388
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Result:

• Date: Friday January 13 2017 19:46:44 UTC

• Age: 25

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 6438

ABC : ABD :: BCA BCB 8632
ABC : ABD :: AABABC AABABD 8557

ABC : ABD :: IJKLM IJKLN 5226
ABC : ABD :: 123 124 2746
ABC : ABD :: KJI KJJ 5157
ABC : ABD :: 135 136 4529

ABC : ABD :: BCD BCE 3831
ABC : ABD :: IJJKKK IJJKKL 4431

ABC : ABD :: XYZ XYA 4346
ABC : ABD :: 122333 122334 3561

ABC : ABD :: RSSTTT RSSTTU 5357
ABC : ABD :: IJJKKK IJJKKL 4869

ABC : ABD :: AABABC AABABD 6651
ABC : ABD :: MRRJJJ MRRJJK 4817

ABC : ABD :: 147 148 2045

Result:

• Date: Friday January 13 2017 20:12:32 UTC

• Age: 24

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 14409

ABC : ABD :: BCA BCB 33572
ABC : ABD :: AABABC AABBD 23395

ABC : ABD :: IJKLM IJKLN 25401
ABC : ABD :: 123 124 6317
ABC : ABD :: KJI KJK 15208
ABC : ABD :: 135 136 9715

ABC : ABD :: BCD BCE 11632
ABC : ABD :: IJJKKK IJJKL 8506

ABC : ABD :: XYZ XYA 7535
ABC : ABD :: 122333 1224444 24557

ABC : ABD :: RSSTTT RSSUUU 10172
ABC : ABD :: IJJKKK IJLLL 10006

ABC : ABD :: AABABC AABACD 18653
ABC : ABD :: MRRJJJ MRRLLLL 14354

ABC : ABD :: 147 148 9052
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Result:

• Date: Friday January 13 2017 23:33:25 UTC

• Age: 23

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 21705

ABC : ABD :: BCA BDA 85800
ABC : ABD :: AABABC AABABD 26153

ABC : ABD :: IJKLM IJKLN 16036
ABC : ABD :: 123 124 5926
ABC : ABD :: KJI LJI 48820
ABC : ABD :: 135 137 15169

ABC : ABD :: BCD BCE 755995
ABC : ABD :: IJJKKK IJJLLL 12319

ABC : ABD :: XYZ XYA 23299
ABC : ABD :: 122333 122444 9123

ABC : ABD :: RSSTTT RSSUUU 9422
ABC : ABD :: IJJKKK IJJLLL 12087

ABC : ABD :: AABABC AABABD 9680
ABC : ABD :: MRRJJJ MRRKKK 226000

ABC : ABD :: 147 148 27414

Result:

• Date: Saturday January 14 2017 02:59:21 UTC

• Age: 26

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 18110

ABC : ABD :: BCA BCB 15976
ABC : ABD :: AABABC AACABD 22266

ABC : ABD :: IJKLM IJLLM 14518
ABC : ABD :: 123 124 7144
ABC : ABD :: KJI KJJ 18050
ABC : ABD :: 135 136 4328

ABC : ABD :: BCD BCE 8835
ABC : ABD :: IJJKKK IJKKKL 12427

ABC : ABD :: XYZ XYA 8993
ABC : ABD :: 122333 123334 7917

ABC : ABD :: RSSTTT RSTTTU 14135
ABC : ABD :: IJJKKK IJKKKL 13472

ABC : ABD :: AABABC AACABD 10679
ABC : ABD :: MRRJJJ MRSJJK 15913

ABC : ABD :: 147 148 3669
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Result:

• Date: Saturday January 14 2017 08:32:53 UTC

• Age: 27

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 7835

ABC : ABD :: BCA BDA 18189
ABC : ABD :: AABABC AABABD 16898

ABC : ABD :: IJKLM IJKLN 9680
ABC : ABD :: 123 124 4218
ABC : ABD :: KJI LJI 9687
ABC : ABD :: 135 136 8304

ABC : ABD :: BCD BCE 8992
ABC : ABD :: IJJKKK IJJLLL 7533

ABC : ABD :: XYZ XYA 11559
ABC : ABD :: 122333 122444 5619

ABC : ABD :: RSSTTT RSSUUU 7433
ABC : ABD :: IJJKKK IJJLLL 8370

ABC : ABD :: AABABC AABABD 6763
ABC : ABD :: MRRJJJ MSSJJJ 18354

ABC : ABD :: 147 148 4553

Result:

• Date: Saturday January 14 2017 08:40:14 UTC

• Age: 27

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 22623

ABC : ABD :: BCA BCB 19339
ABC : ABD :: AABABC AABABD 40208

ABC : ABD :: IJKLM IJKLN 33272
ABC : ABD :: 123 124 8122
ABC : ABD :: KJI KJJ 26485
ABC : ABD :: 135 136 9773

ABC : ABD :: BCD BCE 13645
ABC : ABD :: IJJKKK IJJLLL 33025

ABC : ABD :: XYZ XYA1 40983
ABC : ABD :: 122333 122444 16021

ABC : ABD :: RSSTTT RSSUUU 16811
ABC : ABD :: IJJKKK IJJLLL 11794

ABC : ABD :: AABABC AABABD 20219
ABC : ABD :: MRRJJJ MRRKKK 13671

ABC : ABD :: 147 148 9625
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Result:

• Date: Saturday January 14 2017 11:08:43 UTC

• Age: 23

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 18429

ABC : ABD :: BCA BDA 20353
ABC : ABD :: AABABC AABABD 13758

ABC : ABD :: IJKLM IJKLN 12219
ABC : ABD :: 123 124 5227
ABC : ABD :: KJI LJI 20804
ABC : ABD :: 135 137 18316

ABC : ABD :: BCD BCE 16920
ABC : ABD :: IJJKKK IJJLLL 12536

ABC : ABD :: XYZ XYA 16401
ABC : ABD :: 122333 122444 12212

ABC : ABD :: RSSTTT RSSUUU 12707
ABC : ABD :: IJJKKK IJJLLL 5645

ABC : ABD :: AABABC AABABD 7959
ABC : ABD :: MRRJJJ MRRLLL 37846

ABC : ABD :: 147 1410 16147

Result:

• Date: Saturday January 14 2017 12:37:44 UTC

• Age: 24

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 18417

ABC : ABD :: BCA BCB 10142
ABC : ABD :: AABABC AABABD 19801

ABC : ABD :: IJKLM IJKLN 9516
ABC : ABD :: 123 124 5851
ABC : ABD :: KJI KJJ 10121
ABC : ABD :: 135 136 6505

ABC : ABD :: BCD BCE 5634
ABC : ABD :: IJJKKK IJJKKL 7490

ABC : ABD :: XYZ XYA 7632
ABC : ABD :: 122333 122334 7985

ABC : ABD :: RSSTTT RSSTTU 5247
ABC : ABD :: IJJKKK IJJKKL 5256

ABC : ABD :: AABABC AABABD 5592
ABC : ABD :: MRRJJJ MRRJJK 7545

ABC : ABD :: 147 148 3906
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Result:

• Date: Saturday January 14 2017 12:48:58 UTC

• Age: 23

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 8494

ABC : ABD :: BCA BDA 10007
ABC : ABD :: AABABC AABABD 27012

ABC : ABD :: IJKLM IJLLM 15836
ABC : ABD :: 123 124 2977
ABC : ABD :: KJI KJI 7612
ABC : ABD :: 135 135 5022

ABC : ABD :: BCD BCE 9227
ABC : ABD :: IJJKKK IJKKKL 9646

ABC : ABD :: XYZ XYA 3718
ABC : ABD :: 122333 123334 6046

ABC : ABD :: RSSTTT RSTTTU 7745
ABC : ABD :: IJJKKK IJKKKL 6749

ABC : ABD :: AABABC AACABD 5783
ABC : ABD :: MRRJJJ MRRJJJ 18445

ABC : ABD :: 147 148 3677

Result:

• Date: Saturday January 14 2017 12:49:09 UTC

• Age: 25

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 7588

ABC : ABD :: BCA BDA 9590
ABC : ABD :: AABABC AABABD 12021

ABC : ABD :: IJKLM IJLLM 17279
ABC : ABD :: 123 124 5491
ABC : ABD :: KJI KJJ 9978
ABC : ABD :: 135 136 3304

ABC : ABD :: BCD BCE 5090
ABC : ABD :: IJJKKK IJKKKL 8328

ABC : ABD :: XYZ XYA 5947
ABC : ABD :: 122333 123334 5545

ABC : ABD :: RSSTTT RSTTTU 7268
ABC : ABD :: IJJKKK IJKKKL 7798

ABC : ABD :: AABABC AACABD 15746
ABC : ABD :: MRRJJJ MROJJK 13748

ABC : ABD :: 147 148 2688
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Result:

• Date: Saturday January 14 2017 14:29:17 UTC

• Age: 23

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 20479

ABC : ABD :: BCA BCB 10539
ABC : ABD :: AABABC AABABD 15604

ABC : ABD :: IJKLM IJKLN 10034
ABC : ABD :: 123 124 3908
ABC : ABD :: KJI KJJ 5829
ABC : ABD :: 135 136 2529

ABC : ABD :: BCD BCE 3539
ABC : ABD :: IJJKKK IJJKKL 10661

ABC : ABD :: XYZ XYA 5609
ABC : ABD :: 122333 122334 5448

ABC : ABD :: RSSTTT RSSTTU 6139
ABC : ABD :: IJJKKK IJJKKL 5460

ABC : ABD :: AABABC AABABD 5677
ABC : ABD :: MRRJJJ MRRJJK 8132

ABC : ABD :: 147 148 2897

Result:

• Date: Saturday January 14 2017 20:59:26 UTC

• Age: 25

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 5400

ABC : ABD :: BCA BCB 5801
ABC : ABD :: AABABC BBCBCD 8320

ABC : ABD :: IJKLM IJKLN 11651
ABC : ABD :: 123 124 3839
ABC : ABD :: KJI KJJ 3885
ABC : ABD :: 135 136 2487

ABC : ABD :: BCD BCE 3250
ABC : ABD :: IJJKKK IJJKKL 4424

ABC : ABD :: XYZ XYA 9550
ABC : ABD :: 122333 122334 3175

ABC : ABD :: RSSTTT RSSTTU 4851
ABC : ABD :: IJJKKK IJJKKL 4095

ABC : ABD :: AABABC AABABD 4716
ABC : ABD :: MRRJJJ MRRJJK 4632

ABC : ABD :: 147 148 2150



238 Appendix A. Experiment on Hofstadter’s Analogies

Result:

• Date: Saturday January 14 2017 21:47:43 UTC

• Age: 27

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 11708

ABC : ABD :: BCA BDA 9195
ABC : ABD :: AABABC AABABD 43157

ABC : ABD :: IJKLM IJKLN 7573
ABC : ABD :: 123 124 5558
ABC : ABD :: KJI KJL 22756
ABC : ABD :: 135 136 4160

ABC : ABD :: BCD BDE 6376
ABC : ABD :: IJJKKK IJJLLL 20304

ABC : ABD :: XYZ XY0 8958
ABC : ABD :: 122333 122444 9520

ABC : ABD :: RSSTTT RSSUUU 6235
ABC : ABD :: IJJKKK IJJLLL 6195

ABC : ABD :: AABABC AABABD 18374
ABC : ABD :: MRRJJJ MRRKKK 7494

ABC : ABD :: 147 148 13840

Result:

• Date: Sunday January 15 2017 22:28:27 UTC

• Age: 22

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 13296

ABC : ABD :: BCA BDA 18938
ABC : ABD :: AABABC AABABD 24628

ABC : ABD :: IJKLM IJLMN 19072
ABC : ABD :: 123 124 4415
ABC : ABD :: KJI LJI 9103
ABC : ABD :: 135 137 12626

ABC : ABD :: BCD BCE 11543
ABC : ABD :: IJJKKK IJJLLL 9184

ABC : ABD :: XYZ XYA 8966
ABC : ABD :: 122333 122444 8888

ABC : ABD :: RSSTTT RSSUUU 8519
ABC : ABD :: IJJKKK IJJLLL 7651

ABC : ABD :: AABABC AABABD 9940
ABC : ABD :: MRRJJJ MRRIII 45999

ABC : ABD :: 147 1410 8875



A.3. Detailed Results 239

Result:

• Date: Monday January 16 2017 10:29:22 UTC

• Age: 21

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 11277

ABC : ABD :: BCA BCZ 11188
ABC : ABD :: AABABC AABABCABD 21088

ABC : ABD :: IJKLM IJKLN 18925
ABC : ABD :: 123 124 3193
ABC : ABD :: KJI KJH 10638
ABC : ABD :: 135 137 6768

ABC : ABD :: BCD BCE 4983
ABC : ABD :: IJJKKK IJJKKKMMMM 6616

ABC : ABD :: XYZ XYA 6206
ABC : ABD :: 122333 1224444 8235

ABC : ABD :: RSSTTT RSSUUUU 23541
ABC : ABD :: IJJKKK IJJLLLL 4786

ABC : ABD :: AABABC AABABCABD 7185
ABC : ABD :: MRRJJJ MRRSSSS 54646

ABC : ABD :: 147 141 9338

Result:

• Date: Thursday January 26 2017 17:12:48 UTC

• Age: 25

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 17609

ABC : ABD :: BCA BDA 23333
ABC : ABD :: AABABC AABBCD 37205

ABC : ABD :: IJKLM IJKLN 26723
ABC : ABD :: 123 124 6169
ABC : ABD :: KJI LJI 18242
ABC : ABD :: 135 137 10343

ABC : ABD :: BCD BCE 7711
ABC : ABD :: IJJKKK IJJLLL 18997

ABC : ABD :: XYZ XYA 11460
ABC : ABD :: 122333 1224444 13296

ABC : ABD :: RSSTTT RSSUUU 14901
ABC : ABD :: IJJKKK IJJLLL 9304

ABC : ABD :: AABABC AABABD 16606
ABC : ABD :: MRRJJJ MRRKKK 30393

ABC : ABD :: 147 1410 18961
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Result:

• Date: Friday January 27 2017 12:58:40 UTC

• Age: 67

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 20943

ABC : ABD :: BCA BCB 55635
ABC : ABD :: AABABC AABABD 63417

ABC : ABD :: IJKLM IJKLN 16510
ABC : ABD :: 123 124 8395
ABC : ABD :: KJI KJJ 32697
ABC : ABD :: 135 136 7370

ABC : ABD :: BCD BCE 11837
ABC : ABD :: IJJKKK IJJLLL 19661

ABC : ABD :: XYZ XY. 38204
ABC : ABD :: 122333 122444 10991

ABC : ABD :: RSSTTT RSSUUU 10933
ABC : ABD :: IJJKKK IJJLLL 8942

ABC : ABD :: AABABC AABABD 10925
ABC : ABD :: MRRJJJ MRRKKK 10927

ABC : ABD :: 147 148 4689

Result:

• Date: Friday January 27 2017 13:41:24 UTC

• Age: 22

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 8807

ABC : ABD :: BCA BCB 10416
ABC : ABD :: AABABC AABACD 16054

ABC : ABD :: IJKLM IJKMN 10228
ABC : ABD :: 123 124 4968
ABC : ABD :: KJI KJJ 15528
ABC : ABD :: 135 136 4971

ABC : ABD :: BCD BCE 4880
ABC : ABD :: IJJKKK IJJKLL 14926

ABC : ABD :: XYZ XYA 5355
ABC : ABD :: 122333 122344 8883

ABC : ABD :: RSSTTT RSSTWW 15366
ABC : ABD :: IJJKKK IJJKLL 6490

ABC : ABD :: AABABC AABACD 6917
ABC : ABD :: MRRJJJ MRRJKK 13551

ABC : ABD :: 147 148 5478
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Result:

• Date: Friday January 27 2017 23:26:48 UTC

• Age: 22

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 27470

ABC : ABD :: BCA BDA 26433
ABC : ABD :: AABABC AABABD 11579

ABC : ABD :: IJKLM IJKLM 11003
ABC : ABD :: 123 124 6890
ABC : ABD :: KJI KJJ 7467
ABC : ABD :: 135 136 7039

ABC : ABD :: BCD BDD 18332
ABC : ABD :: IJJKKK IJJKKK 6891

ABC : ABD :: XYZ XYA 8189
ABC : ABD :: 122333 122333 11164

ABC : ABD :: RSSTTT RSSTTT 5368
ABC : ABD :: IJJKKK IJJKKK 7312

ABC : ABD :: AABABC AABABD 10664
ABC : ABD :: MRRJJJ MRRJJJ 5185

ABC : ABD :: 147 148 4324

Result:

• Date: Wednesday February 01 2017 17:05:32 UTC

• Age: 21

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 10949

ABC : ABD :: BCA BDA 15484
ABC : ABD :: AABABC AABABD 9188

ABC : ABD :: IJKLM IJKLN 6894
ABC : ABD :: 123 124 3685
ABC : ABD :: KJI KJG 27173
ABC : ABD :: 135 136 6636

ABC : ABD :: BCD BDC 33497
ABC : ABD :: IJJKKK IJJKKM 11046

ABC : ABD :: XYZ XYA 8390
ABC : ABD :: 122333 122334 7183

ABC : ABD :: RSSTTT RSSTTU 8270
ABC : ABD :: IJJKKK IJKKL 4461

ABC : ABD :: AABABC AABABD 6512
ABC : ABD :: MRRJJJ MRRJJK 10759

ABC : ABD :: 147 148 4263
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Result:

• Date: Wednesday February 01 2017 17:09:25 UTC

• Age: 26

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 13519

ABC : ABD :: BCA BDA 16917
ABC : ABD :: AABABC AABABD 9201

ABC : ABD :: IJKLM IJKLN 23954
ABC : ABD :: 123 124 6362
ABC : ABD :: KJI LJI 34550
ABC : ABD :: 135 136 8417

ABC : ABD :: BCD BCE 10189
ABC : ABD :: IJJKKK IJJLLL 10422

ABC : ABD :: XYZ XYA 9418
ABC : ABD :: 122333 122444 4729

ABC : ABD :: RSSTTT RSSUUU 8026
ABC : ABD :: IJJKKK IJJLLL 7223

ABC : ABD :: AABABC AABABD 6157
ABC : ABD :: MRRJJJ MRRKKK 12545

ABC : ABD :: 147 148 5652

Result:

• Date: Wednesday February 01 2017 17:09:58 UTC

• Age: 24

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 12530

ABC : ABD :: BCA BCB 11233
ABC : ABD :: AABABC AACABD 10508

ABC : ABD :: IJKLM IJLLM 12200
ABC : ABD :: 123 124 4016
ABC : ABD :: KJI KJJ 5216
ABC : ABD :: 135 136 4183

ABC : ABD :: BCD BCE 4791
ABC : ABD :: IJJKKK IJKKKL 7442

ABC : ABD :: XYZ XYA 5277
ABC : ABD :: 122333 123334 6209

ABC : ABD :: RSSTTT RSTTTU 8359
ABC : ABD :: IJJKKK IJKKKL 8186

ABC : ABD :: AABABC AACABD 7851
ABC : ABD :: MRRJJJ MRSJJK 6296

ABC : ABD :: 147 148 5647
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Result:

• Date: Wednesday February 01 2017 17:11:28 UTC

• Age: 21

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 24640

ABC : ABD :: BCA BDA 12560
ABC : ABD :: AABABC AABABD 9886

ABC : ABD :: IJKLM IJLKM 41982
ABC : ABD :: 123 124 4419
ABC : ABD :: KJI KJI 25280
ABC : ABD :: 135 135 2687

ABC : ABD :: BCD BCD 3403
ABC : ABD :: IJJKKK IJJKKK 3114

ABC : ABD :: XYZ XYZ 3411
ABC : ABD :: 122333 122333 4466

ABC : ABD :: RSSTTT RSSTTT 4055
ABC : ABD :: IJJKKK IJJKKK 3567

ABC : ABD :: AABABC AABABC 3071
ABC : ABD :: MRRJJJ MRRJJJ 3211

ABC : ABD :: 147 147 2443

Result:

• Date: Wednesday February 01 2017 17:14:02 UTC

• Age: 23

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 12202

ABC : ABD :: BCA BCB 15756
ABC : ABD :: AABABC AABABD 30659

ABC : ABD :: IJKLM IJKLN 9143
ABC : ABD :: 123 124 4759
ABC : ABD :: KJI KJL 4892
ABC : ABD :: 135 136 3580

ABC : ABD :: BCD BCE 6241
ABC : ABD :: IJJKKK IIJJKKL 7164

ABC : ABD :: XYZ XYA 5453
ABC : ABD :: 122333 122334 4066

ABC : ABD :: RSSTTT RSSTTU 4991
ABC : ABD :: IJJKKK IJJKKL 5457

ABC : ABD :: AABABC AABABD 4404
ABC : ABD :: MRRJJJ MRRJJK 5019

ABC : ABD :: 147 148 7256
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Result:

• Date: Wednesday February 01 2017 17:14:21 UTC

• Age: 24

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 11780

ABC : ABD :: BCA BCB 19005
ABC : ABD :: AABABC AABACD 17475

ABC : ABD :: IJKLM IJKLN 18445
ABC : ABD :: 123 124 5623
ABC : ABD :: KJI LJI 14819
ABC : ABD :: 135 137 4725

ABC : ABD :: BCD BCE 6637
ABC : ABD :: IJJKKK IJJLLL 9473

ABC : ABD :: XYZ XYA 8908
ABC : ABD :: 122333 122444 8252

ABC : ABD :: RSSTTT RSSUUU 7655
ABC : ABD :: IJJKKK IJJLLL 13052

ABC : ABD :: AABABC AABACD 11440
ABC : ABD :: MRRJJJ MRRKKK 16723

ABC : ABD :: 147 148 5953

Result:

• Date: Wednesday February 01 2017 17:17:51 UTC

• Age: 18

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK ADE 18055

ABC : ABD :: BCA BCB 39511
ABC : ABD :: AABABC AABBAD 23157

ABC : ABD :: IJKLM IJKLMN 19895
ABC : ABD :: 123 124 6214
ABC : ABD :: KJI KJJ 35801
ABC : ABD :: 135 136 4800

ABC : ABD :: BCD BCE 5706
ABC : ABD :: IJJKKK IJJKKK 5011

ABC : ABD :: XYZ XYA 11980
ABC : ABD :: 122333 1122444 7672

ABC : ABD :: RSSTTT RSSUUU 20793
ABC : ABD :: IJJKKK IJJLLL 21970

ABC : ABD :: AABABC AABABD 8052
ABC : ABD :: MRRJJJ MRRKKK 6495

ABC : ABD :: 147 148 8401
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Result:

• Date: Wednesday February 01 2017 17:22:08 UTC

• Age: 25

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 12928

ABC : ABD :: BCA BCB 26200
ABC : ABD :: AABABC AABABD 25984

ABC : ABD :: IJKLM IJKLN 9526
ABC : ABD :: 123 124 3710
ABC : ABD :: KJI KJK 9142
ABC : ABD :: 135 136 4328

ABC : ABD :: BCD BCE 6028
ABC : ABD :: IJJKKK IJJKKL 8104

ABC : ABD :: XYZ XYA 3871
ABC : ABD :: 122333 122334 4589

ABC : ABD :: RSSTTT RSSTTU 11572
ABC : ABD :: IJJKKK IJJKKL 7356

ABC : ABD :: AABABC AABABD 10230
ABC : ABD :: MRRJJJ MRRJJK 8004

ABC : ABD :: 147 148 3097

Result:

• Date: Wednesday February 01 2017 17:25:57 UTC

• Age: 25

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 8904

ABC : ABD :: BCA BDA 18194
ABC : ABD :: AABABC AABABD 15603

ABC : ABD :: IJKLM IJKLN 9539
ABC : ABD :: 123 124 3354
ABC : ABD :: KJI LJI 22057
ABC : ABD :: 135 137 7870

ABC : ABD :: BCD BCE 5040
ABC : ABD :: IJJKKK IJJLLL 16576

ABC : ABD :: XYZ XY 6946
ABC : ABD :: 122333 122444 8592

ABC : ABD :: RSSTTT RSSUUU 11611
ABC : ABD :: IJJKKK IJJLLL 6655

ABC : ABD :: AABABC AABABD 7937
ABC : ABD :: MRRJJJ MRRJJJ 9786

ABC : ABD :: 147 14A 17713
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Result:

• Date: Wednesday February 01 2017 17:26:03 UTC

• Age: 20

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 9997

ABC : ABD :: BCA BDA 16256
ABC : ABD :: AABABC AABABD 15492

ABC : ABD :: IJKLM IJKLN 14361
ABC : ABD :: 123 124 3645
ABC : ABD :: KJI KJJ 8060
ABC : ABD :: 135 136 8036

ABC : ABD :: BCD BCE 9432
ABC : ABD :: IJJKKK IJJKKL 13213

ABC : ABD :: XYZ XYA 14526
ABC : ABD :: 122333 122334 7395

ABC : ABD :: RSSTTT RSSTTU 7431
ABC : ABD :: IJJKKK IJJKKL 6484

ABC : ABD :: AABABC AABABD 7655
ABC : ABD :: MRRJJJ MRRJJK 6145

ABC : ABD :: 147 148 3898

Result:

• Date: Wednesday February 01 2017 17:43:13 UTC

• Age: 21

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 6367

ABC : ABD :: BCA BDA 25907
ABC : ABD :: AABABC AACABD 16107

ABC : ABD :: IJKLM IJLLM 12552
ABC : ABD :: 123 124 3957
ABC : ABD :: KJI LJI 18573
ABC : ABD :: 135 136 5451

ABC : ABD :: BCD BCE 13112
ABC : ABD :: IJJKKK IJKKKL 19793

ABC : ABD :: XYZ XYA 5822
ABC : ABD :: 122333 123334 7427

ABC : ABD :: RSSTTT RSTTTU 10900
ABC : ABD :: IJJKKK IJKKKL 6149

ABC : ABD :: AABABC AACABD 9326
ABC : ABD :: MRRJJJ MRSJJK 18177

ABC : ABD :: 147 148 21250
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Result:

• Date: Wednesday February 01 2017 17:43:35 UTC

• Age: 21

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 14650

ABC : ABD :: BCA BDA 10056
ABC : ABD :: AABABC AABABD 19760

ABC : ABD :: IJKLM IJKLN 19622
ABC : ABD :: 123 124 3630
ABC : ABD :: KJI LJI 9252
ABC : ABD :: 135 137 12381

ABC : ABD :: BCD BCE 31000
ABC : ABD :: IJJKKK IJJLLL 7506

ABC : ABD :: XYZ XYA 7200
ABC : ABD :: 122333 122444 6446

ABC : ABD :: RSSTTT RSSUUU 27380
ABC : ABD :: IJJKKK IJJLLL 11655

ABC : ABD :: AABABC AABABD 9126
ABC : ABD :: MRRJJJ :( 68133

ABC : ABD :: 147 1410 9986

Result:

• Date: Wednesday February 01 2017 17:47:07 UTC

• Age: 25

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 21270

ABC : ABD :: BCA BCB 58722
ABC : ABD :: AABABC AACABD 24809

ABC : ABD :: IJKLM IJKLN 21834
ABC : ABD :: 123 124 9113
ABC : ABD :: KJI KJJ 31531
ABC : ABD :: 135 137 15981

ABC : ABD :: BCD BCC 23049
ABC : ABD :: IJJKKK IJJLLL 22396

ABC : ABD :: XYZ XYZS 35735
ABC : ABD :: 122333 122444 16452

ABC : ABD :: RSSTTT RSSUUU 22362
ABC : ABD :: IJJKKK IJJLLL 9462

ABC : ABD :: AABABC AABACD 29083
ABC : ABD :: MRRJJJ MRRKKK 12945

ABC : ABD :: 147 1410 37495
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Result:

• Date: Wednesday February 01 2017 17:47:52 UTC

• Age: 22

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJF 20578

ABC : ABD :: BCA BCZS 47469
ABC : ABD :: AABABC ABE 32944

ABC : ABD :: IJKLM IJKLO 25060
ABC : ABD :: 123 124 16210
ABC : ABD :: KJI KJH 16931
ABC : ABD :: 135 137 13632

ABC : ABD :: BCD BCE 8872
ABC : ABD :: IJJKKK IJJKKF 26918

ABC : ABD :: XYZ XYA 21615
ABC : ABD :: 122333 122334 8654

ABC : ABD :: RSSTTT RSSTTU 13180
ABC : ABD :: IJJKKK IJJKKL 16494

ABC : ABD :: AABABC AABABE 48649
ABC : ABD :: MRRJJJ MRRJJH 14513

ABC : ABD :: 147 141 14992

Result:

• Date: Wednesday February 01 2017 17:49:19 UTC

• Age: 20

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 18134

ABC : ABD :: BCA BCB 19512
ABC : ABD :: AABABC AABABD 36044

ABC : ABD :: IJKLM IJKLN 22179
ABC : ABD :: 123 124 9271
ABC : ABD :: KJI KJK 6977
ABC : ABD :: 135 136 4562

ABC : ABD :: BCD BCE 11161
ABC : ABD :: IJJKKK IJJKKL 13031

ABC : ABD :: XYZ XYA 8311
ABC : ABD :: 122333 122334 21927

ABC : ABD :: RSSTTT RSSTTU 8081
ABC : ABD :: IJJKKK IJJKKL 7529

ABC : ABD :: AABABC AABABD 9742
ABC : ABD :: MRRJJJ MRRJJK 8142

ABC : ABD :: 147 148 6239
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Result:

• Date: Wednesday February 01 2017 17:52:48 UTC

• Age: 23

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 10033

ABC : ABD :: BCA BDA 50919
ABC : ABD :: AABABC AABABD 19095

ABC : ABD :: IJKLM IJKLN 14539
ABC : ABD :: 123 124 4752
ABC : ABD :: KJI LJI 12019
ABC : ABD :: 135 136 4804

ABC : ABD :: BCD BCE 10498
ABC : ABD :: IJJKKK IJJLLL 11036

ABC : ABD :: XYZ XYA 9250
ABC : ABD :: 122333 122444 8388

ABC : ABD :: RSSTTT RSSUUU 19215
ABC : ABD :: IJJKKK IJJLLL 8090

ABC : ABD :: AABABC AABABD 13131
ABC : ABD :: MRRJJJ MRRLLL 12276

ABC : ABD :: 147 148 6318

Result:

• Date: Wednesday February 01 2017 17:58:50 UTC

• Age: 21

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 18119

ABC : ABD :: BCA BDA 17172
ABC : ABD :: AABABC AABABD 13856

ABC : ABD :: IJKLM IJKLN 13652
ABC : ABD :: 123 124 4425
ABC : ABD :: KJI LJI 12139
ABC : ABD :: 135 136 4580

ABC : ABD :: BCD BDE 8410
ABC : ABD :: IJJKKK IJJLLL 6697

ABC : ABD :: XYZ XYA 4540
ABC : ABD :: 122333 122444 5214

ABC : ABD :: RSSTTT RSSUUU 8032
ABC : ABD :: IJJKKK IJJLLL 6055

ABC : ABD :: AABABC AABABD 6132
ABC : ABD :: MRRJJJ MSSJJJ 12550

ABC : ABD :: 147 148 4565
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Result:

• Date: Wednesday February 01 2017 17:59:55 UTC

• Age: 23

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 14893

ABC : ABD :: BCA BCB 23234
ABC : ABD :: AABABC AABABD 15678

ABC : ABD :: IJKLM IJKMN 9509
ABC : ABD :: 123 124 3361
ABC : ABD :: KJI KJJ 18442
ABC : ABD :: 135 136 3909

ABC : ABD :: BCD BCE 7567
ABC : ABD :: IJJKKK IJJKKL 6845

ABC : ABD :: XYZ XYA 6270
ABC : ABD :: 122333 122334 6836

ABC : ABD :: RSSTTT RSSTTU 4973
ABC : ABD :: IJJKKK IJJKKL 7974

ABC : ABD :: AABABC AABABD 4847
ABC : ABD :: MRRJJJ MRRJJK 8972

ABC : ABD :: 147 148 2810

Result:

• Date: Wednesday February 01 2017 18:23:51 UTC

• Age: 19

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 8446

ABC : ABD :: BCA BCB 11092
ABC : ABD :: AABABC AABABD 17417

ABC : ABD :: IJKLM IJKLN 12611
ABC : ABD :: 123 124 6562
ABC : ABD :: KJI KJJ 6819
ABC : ABD :: 135 136 3680

ABC : ABD :: BCD BCE 5787
ABC : ABD :: IJJKKK IJJKKL 6903

ABC : ABD :: XYZ XYA 6956
ABC : ABD :: 122333 122334 6398

ABC : ABD :: RSSTTT RSSTTU 8857
ABC : ABD :: IJJKKK IJJKKL 7308

ABC : ABD :: AABABC AABABD 8692
ABC : ABD :: MRRJJJ MRRJJK 10360

ABC : ABD :: 147 148 3494
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Result:

• Date: Wednesday February 01 2017 19:01:42 UTC

• Age: 31

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 29694

ABC : ABD :: BCA BCB 24914
ABC : ABD :: AABABC AABABD 22848

ABC : ABD :: IJKLM IJKLN 12492
ABC : ABD :: 123 124 47918
ABC : ABD :: KJI LJI 88186
ABC : ABD :: 135 136 10442

ABC : ABD :: BCD BCE 10218
ABC : ABD :: IJJKKK IJJLLL 88715

ABC : ABD :: XYZ XYA 28735
ABC : ABD :: 122333 122444 74218

ABC : ABD :: RSSTTT RSSUUU 17606
ABC : ABD :: IJJKKK IJJLLL 15499

ABC : ABD :: AABABC AABABD 14480
ABC : ABD :: MRRJJJ MSSJJJ 42900

ABC : ABD :: 147 148 12001

Result:

• Date: Wednesday February 01 2017 19:04:19 UTC

• Age: 21

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 14689

ABC : ABD :: BCA BDA 24641
ABC : ABD :: AABABC AABABD 14517

ABC : ABD :: IJKLM IJLP 33019
ABC : ABD :: 123 124 3746
ABC : ABD :: KJI LJI 12128
ABC : ABD :: 135 137 33109

ABC : ABD :: BCD BCE 8284
ABC : ABD :: IJJKKK IJJLLL 11323

ABC : ABD :: XYZ XYA 10687
ABC : ABD :: 122333 122444 7360

ABC : ABD :: RSSTTT RSSUUU 12099
ABC : ABD :: IJJKKK IJJLLL 9444

ABC : ABD :: AABABC AABABD 9497
ABC : ABD :: MRRJJJ MRRKKK 27402

ABC : ABD :: 147 148 8235



252 Appendix A. Experiment on Hofstadter’s Analogies

Result:

• Date: Wednesday February 01 2017 19:42:32 UTC

• Age: 23

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 9593

ABC : ABD :: BCA BDA 6681
ABC : ABD :: AABABC AABABD 17378

ABC : ABD :: IJKLM IJKMN 14004
ABC : ABD :: 123 124 6823
ABC : ABD :: KJI JJI 10478
ABC : ABD :: 135 136 7727

ABC : ABD :: BCD BCE 9502
ABC : ABD :: IJJKKK IJJKLL 11823

ABC : ABD :: XYZ XYA 7144
ABC : ABD :: 122333 122344 8326

ABC : ABD :: RSSTTT RSTUU 6150
ABC : ABD :: IJJKKK IJKLL 7251

ABC : ABD :: AABABC AABACD 6789
ABC : ABD :: MRRJJJ MRJII 7020

ABC : ABD :: 147 148 4165

Result:

• Date: Wednesday February 01 2017 19:44:54 UTC

• Age: 25

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 8671

ABC : ABD :: BCA BDA 19076
ABC : ABD :: AABABC AABABD 20305

ABC : ABD :: IJKLM IJKLN 19560
ABC : ABD :: 123 124 8719
ABC : ABD :: KJI LJI 16514
ABC : ABD :: 135 137 68012

ABC : ABD :: BCD BED 62938
ABC : ABD :: IJJKKK IJJLLL 23493

ABC : ABD :: XYZ XYA 6341
ABC : ABD :: 122333 122444 8029

ABC : ABD :: RSSTTT RSSUUU 7254
ABC : ABD :: IJJKKK IJJLLL 8105

ABC : ABD :: AABABC AABABD 6708
ABC : ABD :: MRRJJJ ? 17494

ABC : ABD :: 147 ? 3062
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Result:

• Date: Wednesday February 01 2017 19:48:34 UTC

• Age: 19

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 11339

ABC : ABD :: BCA BDA 26919
ABC : ABD :: AABABC AABABD 20360

ABC : ABD :: IJKLM IJKLN 9724
ABC : ABD :: 123 124 4318
ABC : ABD :: KJI LJI 10594
ABC : ABD :: 135 137 7247

ABC : ABD :: BCD BCE 8273
ABC : ABD :: IJJKKK IJJLLL 7600

ABC : ABD :: XYZ XYA 11853
ABC : ABD :: 122333 122444 6139

ABC : ABD :: RSSTTT RSSUUU 6672
ABC : ABD :: IJJKKK IJJLLL 7621

ABC : ABD :: AABABC AABABD 6291
ABC : ABD :: MRRJJJ MRRLLL 10440

ABC : ABD :: 147 149 10128

Result:

• Date: Wednesday February 01 2017 19:50:04 UTC

• Age: 72

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 12087

ABC : ABD :: BCA BCB 26900
ABC : ABD :: AABABC AABABD 17040

ABC : ABD :: IJKLM IJKLN 12754
ABC : ABD :: 123 124 10402
ABC : ABD :: KJI KJJ 11815
ABC : ABD :: 135 136 9319

ABC : ABD :: BCD BCE 14685
ABC : ABD :: IJJKKK IJJKKL 13601

ABC : ABD :: XYZ XYA 8774
ABC : ABD :: 122333 122334 10446

ABC : ABD :: RSSTTT RSSTTU 11694
ABC : ABD :: IJJKKK OJJKKL 9902

ABC : ABD :: AABABC AABABD 13430
ABC : ABD :: MRRJJJ MRRJJK 10526

ABC : ABD :: 147 148 7501



254 Appendix A. Experiment on Hofstadter’s Analogies

Result:

• Date: Wednesday February 01 2017 19:58:13 UTC

• Age: 23

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 22882

ABC : ABD :: BCA BCB 18270
ABC : ABD :: AABABC AABABD 23823

ABC : ABD :: IJKLM IJKLN 14170
ABC : ABD :: 123 124 5479
ABC : ABD :: KJI KJJ 27526
ABC : ABD :: 135 136 6623

ABC : ABD :: BCD BCE 8487
ABC : ABD :: IJJKKK IJJKKL 9977

ABC : ABD :: XYZ XYA 19824
ABC : ABD :: 122333 122334 7176

ABC : ABD :: RSSTTT RSSTTU 12240
ABC : ABD :: IJJKKK IJJKKL 5214

ABC : ABD :: AABABC AABABD 6918
ABC : ABD :: MRRJJJ MRRJJK 6729

ABC : ABD :: 147 148 3776

Result:

• Date: Wednesday February 01 2017 20:03:55 UTC

• Age: 28

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 21253

ABC : ABD :: BCA BCB 12020
ABC : ABD :: AABABC AABABD 32957

ABC : ABD :: IJKLM IJKLN 34314
ABC : ABD :: 123 124 6856
ABC : ABD :: KJI KJJ 8382
ABC : ABD :: 135 136 5247

ABC : ABD :: BCD BCE 8594
ABC : ABD :: IJJKKK IJJKKL 11274

ABC : ABD :: XYZ XYA 9673
ABC : ABD :: 122333 122334 3694

ABC : ABD :: RSSTTT RSSTTU 7331
ABC : ABD :: IJJKKK IJJKKL 5615

ABC : ABD :: AABABC AABABD 7825
ABC : ABD :: MRRJJJ MRRJJK 9536

ABC : ABD :: 147 148 3998
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Result:

• Date: Wednesday February 01 2017 20:09:10 UTC

• Age: 31

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 19714

ABC : ABD :: BCA BDA 27305
ABC : ABD :: AABABC AABABD 22628

ABC : ABD :: IJKLM IJKLN 22144
ABC : ABD :: 123 124 7962
ABC : ABD :: KJI LJI 51049
ABC : ABD :: 135 136 16810

ABC : ABD :: BCD BCE 15240
ABC : ABD :: IJJKKK IJJLLL 13999

ABC : ABD :: XYZ XYA 10232
ABC : ABD :: 122333 122444 10664

ABC : ABD :: RSSTTT RSSUUU 11287
ABC : ABD :: IJJKKK IJJLLL 10229

ABC : ABD :: AABABC AABABD 11475
ABC : ABD :: MRRJJJ MRRKKK 14905

ABC : ABD :: 147 148 8260

Result:

• Date: Wednesday February 01 2017 20:30:00 UTC

• Age: 20

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 13294

ABC : ABD :: BCA BCB 11466
ABC : ABD :: AABABC AABABD 16565

ABC : ABD :: IJKLM IJKLM 12250
ABC : ABD :: 123 124 6496
ABC : ABD :: KJI KJI 14340
ABC : ABD :: 135 145 9352

ABC : ABD :: BCD BDD 8040
ABC : ABD :: IJJKKK IJJKKK 5007

ABC : ABD :: XYZ XYZ 6279
ABC : ABD :: 122333 122444 6238

ABC : ABD :: RSSTTT RSSTTT 4752
ABC : ABD :: IJJKKK IJJKKK 4840

ABC : ABD :: AABABC AABABD 7798
ABC : ABD :: MRRJJJ MRJJ 4583

ABC : ABD :: 147 147 6092



256 Appendix A. Experiment on Hofstadter’s Analogies

Result:

• Date: Wednesday February 01 2017 20:37:38 UTC

• Age: 23

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 39505

ABC : ABD :: BCA BDA 46348
ABC : ABD :: AABABC AABABD 41253

ABC : ABD :: IJKLM IJKLN 22753
ABC : ABD :: 123 124 6536
ABC : ABD :: KJI LJI 14151
ABC : ABD :: 135 136 12040

ABC : ABD :: BCD BCE 10639
ABC : ABD :: IJJKKK IJJKKL 12048

ABC : ABD :: XYZ XYA 30566
ABC : ABD :: 122333 122334 7141

ABC : ABD :: RSSTTT RSSTTU 7522
ABC : ABD :: IJJKKK IJJKKL 8032

ABC : ABD :: AABABC AABABD 21039
ABC : ABD :: MRRJJJ MRRJJW 84508

ABC : ABD :: 147 14711 53820

Result:

• Date: Wednesday February 01 2017 20:49:01 UTC

• Age: 23

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 10302

ABC : ABD :: BCA DBA 7545
ABC : ABD :: AABABC AABABD 9755

ABC : ABD :: IJKLM IJKLN 8844
ABC : ABD :: 123 124 6042
ABC : ABD :: KJI KJH 28075
ABC : ABD :: 135 136 7828

ABC : ABD :: BCD BCE 5291
ABC : ABD :: IJJKKK IJJLLL 10604

ABC : ABD :: XYZ XYA 6180
ABC : ABD :: 122333 1224444 9344

ABC : ABD :: RSSTTT RSSUUU 9197
ABC : ABD :: IJJKKK IJJLLL 7180

ABC : ABD :: AABABC AABABD 5608
ABC : ABD :: MRRJJJ MRRKKK 11814

ABC : ABD :: 147 148 5747
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Result:

• Date: Wednesday February 01 2017 20:50:02 UTC

• Age: 22

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 21043

ABC : ABD :: BCA BDA 48194
ABC : ABD :: AABABC AABABD 22754

ABC : ABD :: IJKLM VRJTN 399996
ABC : ABD :: 123 124 7200
ABC : ABD :: KJI LJI 56775
ABC : ABD :: 135 1416 57686

ABC : ABD :: BCD BDH 26185
ABC : ABD :: IJJKKK IJJKKKK 29705

ABC : ABD :: XYZ XYA 13743
ABC : ABD :: 122333 1223333 12803

ABC : ABD :: RSSTTT RSSTTTT 12846
ABC : ABD :: IJJKKK IJJKKKK 15652

ABC : ABD :: AABABC AABABD 14457
ABC : ABD :: MRRJJJ MRRJJJJ 10943

ABC : ABD :: 147 1410 25894

Result:

• Date: Wednesday February 01 2017 20:51:40 UTC

• Age: 21

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 16872

ABC : ABD :: BCA BCB 13812
ABC : ABD :: AABABC AACABD 18004

ABC : ABD :: IJKLM IJLLM 8024
ABC : ABD :: 123 124 3933
ABC : ABD :: KJI KJJ 14830
ABC : ABD :: 135 136 4887

ABC : ABD :: BCD BCE 5409
ABC : ABD :: IJJKKK IJKKKL 8451

ABC : ABD :: XYZ XYA 6086
ABC : ABD :: 122333 123334 5967

ABC : ABD :: RSSTTT RSTTTU 9706
ABC : ABD :: IJJKKK IJKKKL 7292

ABC : ABD :: AABABC AACABD 6528
ABC : ABD :: MRRJJJ MRSJJK 7763

ABC : ABD :: 147 148 3302



258 Appendix A. Experiment on Hofstadter’s Analogies

Result:

• Date: Wednesday February 01 2017 20:52:39 UTC

• Age: 18

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 22147

ABC : ABD :: BCA BCB 23027
ABC : ABD :: AABABC AABABD 11582

ABC : ABD :: IJKLM IJKLN 11404
ABC : ABD :: 123 124 4491
ABC : ABD :: KJI KJJ 11072
ABC : ABD :: 135 136 6135

ABC : ABD :: BCD BCE 5691
ABC : ABD :: IJJKKK IJJKKL 7186

ABC : ABD :: XYZ XYA 8413
ABC : ABD :: 122333 122334 6150

ABC : ABD :: RSSTTT RSSTTU 5959
ABC : ABD :: IJJKKK IJJKKL 4589

ABC : ABD :: AABABC AABABD 4608
ABC : ABD :: MRRJJJ MRRJJK 5622

ABC : ABD :: 147 148 5276

Result:

• Date: Wednesday February 01 2017 21:16:00 UTC

• Age: 21

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 21467

ABC : ABD :: BCA BDA 24263
ABC : ABD :: AABABC AABABD 43361

ABC : ABD :: IJKLM IJKLN 20825
ABC : ABD :: 123 124 6626
ABC : ABD :: KJI KJH 42076
ABC : ABD :: 135 137 11769

ABC : ABD :: BCD BCE 10531
ABC : ABD :: IJJKKK IJJLLL 1932229

ABC : ABD :: XYZ XYA 12774
ABC : ABD :: 122333 1122444 12973

ABC : ABD :: RSSTTT RSSUUU 115286
ABC : ABD :: IJJKKK IJJLLL 11653

ABC : ABD :: AABABC AABABD 16310
ABC : ABD :: MRRJJJ MRRPPP 119159

ABC : ABD :: 147 1410 85610
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Result:

• Date: Wednesday February 01 2017 21:25:12 UTC

• Age: 19

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 33475

ABC : ABD :: BCA BDA 64007
ABC : ABD :: AABABC AABABD 22223

ABC : ABD :: IJKLM IJKLN 57824
ABC : ABD :: 123 124 12878
ABC : ABD :: KJI MJI 35437
ABC : ABD :: 135 136 57884

ABC : ABD :: BCD BCE 92921
ABC : ABD :: IJJKKK IJJLLL 32232

ABC : ABD :: XYZ XYä 60588
ABC : ABD :: 122333 122444 23518

ABC : ABD :: RSSTTT RSSUUU 14221
ABC : ABD :: IJJKKK IJJLLL 14336

ABC : ABD :: AABABC AABABD 24525
ABC : ABD :: MRRJJJ I BELIEVE I CAN FLYYYYY 65813

ABC : ABD :: 147 1410 150393

Result:

• Date: Wednesday February 01 2017 21:31:21 UTC

• Age: 20

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJF 12721

ABC : ABD :: BCA BDA 9518
ABC : ABD :: AABABC AABABD 12653

ABC : ABD :: IJKLM IJKLN 17308
ABC : ABD :: 123 124 2595
ABC : ABD :: KJI LJI 21154
ABC : ABD :: 135 137 4719

ABC : ABD :: BCD BCE 10252
ABC : ABD :: IJJKKK IJJLLLL 8121

ABC : ABD :: XYZ XYA 7696
ABC : ABD :: 122333 1224444 5091

ABC : ABD :: RSSTTT RSSUUUU 10889
ABC : ABD :: IJJKKK IJJLLLL 5504

ABC : ABD :: AABABC AABABD 10034
ABC : ABD :: MRRJJJ MRRKKKK 18978

ABC : ABD :: 147 1411 20698



260 Appendix A. Experiment on Hofstadter’s Analogies

Result:

• Date: Wednesday February 01 2017 21:31:44 UTC

• Age: 20

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 8018

ABC : ABD :: BCA BAC 67151
ABC : ABD :: AABABC AABB 7119

ABC : ABD :: IJKLM OPQRS 9025
ABC : ABD :: 123 456 6059
ABC : ABD :: KJI LMN 5915
ABC : ABD :: 135 136 6020

ABC : ABD :: BCD EFG 6093
ABC : ABD :: IJJKKK LLLLMMMMMNNNNNN 17586

ABC : ABD :: XYZ ABC 4775
ABC : ABD :: 122333 444455555666666 13992

ABC : ABD :: RSSTTT UUUUVVVVVWWWWWW 26976
ABC : ABD :: IJJKKK LLLLMMMMMNNNNNN 12717

ABC : ABD :: AABABC ABBA 4014
ABC : ABD :: MRRJJJ MDR 3956

ABC : ABD :: 147 148 5553

Result:

• Date: Wednesday February 01 2017 21:33:46 UTC

• Age: 20

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 15227

ABC : ABD :: BCA BCB 18381
ABC : ABD :: AABABC AACABD 26746

ABC : ABD :: IJKLM IJLLM 28962
ABC : ABD :: 123 124 5422
ABC : ABD :: KJI KJJ 10338
ABC : ABD :: 135 136 4234

ABC : ABD :: BCD BCE 7285
ABC : ABD :: IJJKKK IJKKKL 8941

ABC : ABD :: XYZ XYA 5071
ABC : ABD :: 122333 123334 8692

ABC : ABD :: RSSTTT RSTTTU 11714
ABC : ABD :: IJJKKK IJKKKL 7909

ABC : ABD :: AABABC AACABD 8087
ABC : ABD :: MRRJJJ MRSJJK 12492

ABC : ABD :: 147 148 3440
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Result:

• Date: Wednesday February 01 2017 21:41:46 UTC

• Age: 26

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 12295

ABC : ABD :: BCA BCB 22500
ABC : ABD :: AABABC AACABD 7821

ABC : ABD :: IJKLM IJKLN 18036
ABC : ABD :: 123 124 3981
ABC : ABD :: KJI KJJ 6852
ABC : ABD :: 135 136 2853

ABC : ABD :: BCD BCE 5021
ABC : ABD :: IJJKKK IJKKKL 7653

ABC : ABD :: XYZ XYA 4341
ABC : ABD :: 122333 123334 4714

ABC : ABD :: RSSTTT RSTTTU 5414
ABC : ABD :: IJJKKK IJKKKL 8829

ABC : ABD :: AABABC AACABD 5262
ABC : ABD :: MRRJJJ MRSJJK 8645

ABC : ABD :: 147 148 4053

Result:

• Date: Wednesday February 01 2017 22:14:01 UTC

• Age: 20

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 15765

ABC : ABD :: BCA DAB 62291
ABC : ABD :: AABABC AABABD 18051

ABC : ABD :: IJKLM IJLMN 28241
ABC : ABD :: 123 124 7393
ABC : ABD :: KJI LKI 33011
ABC : ABD :: 135 136 5659

ABC : ABD :: BCD BCE 6997
ABC : ABD :: IJJKKK IJJLLL 28826

ABC : ABD :: XYZ XYA 21925
ABC : ABD :: 122333 122444 5772

ABC : ABD :: RSSTTT RSSUUU 7934
ABC : ABD :: IJJKKK IJJLLL 6008

ABC : ABD :: AABABC AAABABD 9607
ABC : ABD :: MRRJJJ MRRKKK 106102

ABC : ABD :: 147 369 61982



262 Appendix A. Experiment on Hofstadter’s Analogies

Result:

• Date: Wednesday February 01 2017 22:18:58 UTC

• Age: 18

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 17334

ABC : ABD :: BCA BCB 14359
ABC : ABD :: AABABC AABABD 29527

ABC : ABD :: IJKLM IJKLM 6546
ABC : ABD :: 123 123 5630
ABC : ABD :: KJI KJI 3316
ABC : ABD :: 135 135 4389

ABC : ABD :: BCD BCD 40136
ABC : ABD :: IJJKKK IJJKKK 6644

ABC : ABD :: XYZ XYZ 4578
ABC : ABD :: 122333 122333 4879

ABC : ABD :: RSSTTT RSSTTT 4592
ABC : ABD :: IJJKKK IJJKKK 4395

ABC : ABD :: AABABC AABABD 10306
ABC : ABD :: MRRJJJ MRRJJJ 4916

ABC : ABD :: 147 147 4301

Result:

• Date: Wednesday February 01 2017 22:21:21 UTC

• Age: 23

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 3996

ABC : ABD :: BCA BCB 4578
ABC : ABD :: AABABC AACABD 5238

ABC : ABD :: IJKLM AJLLM 8311
ABC : ABD :: 123 124 4813
ABC : ABD :: KJI KJJ 3361
ABC : ABD :: 135 136 5420

ABC : ABD :: BCD BCE 3176
ABC : ABD :: IJJKKK IJKKKL 6454

ABC : ABD :: XYZ XYZS 5267
ABC : ABD :: 122333 123334 5440

ABC : ABD :: RSSTTT RSTTTU 4384
ABC : ABD :: IJJKKK IJKKKL 5110

ABC : ABD :: AABABC AACABD 4301
ABC : ABD :: MRRJJJ MRSJJK 7475

ABC : ABD :: 147 148 3806



A.3. Detailed Results 263

Result:

• Date: Wednesday February 01 2017 23:03:22 UTC

• Age: 22

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 21976

ABC : ABD :: BCA BCB 13099
ABC : ABD :: AABABC AABABD 16463

ABC : ABD :: IJKLM IJKLN 9873
ABC : ABD :: 123 124 4839
ABC : ABD :: KJI KJJ 13159
ABC : ABD :: 135 136 4615

ABC : ABD :: BCD BCE 5692
ABC : ABD :: IJJKKK IJJKKL 6547

ABC : ABD :: XYZ XYA 6725
ABC : ABD :: 122333 122334 8009

ABC : ABD :: RSSTTT RSSTTTUUUU 18833
ABC : ABD :: IJJKKK IJJKKKLLLL 8566

ABC : ABD :: AABABC AABABCB 24548
ABC : ABD :: MRRJJJ MRRJJJSSSS 18367

ABC : ABD :: 147 14711 9404

Result:

• Date: Wednesday February 01 2017 23:03:28 UTC

• Age: 21

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 12880

ABC : ABD :: BCA BDA 13036
ABC : ABD :: AABABC AABABD 19920

ABC : ABD :: IJKLM IJLLN 14154
ABC : ABD :: 123 124 9298
ABC : ABD :: KJI KJI 23457
ABC : ABD :: 135 136 7063

ABC : ABD :: BCD CDE 15202
ABC : ABD :: IJJKKK IJJLLL 17334

ABC : ABD :: XYZ XYZ 14045
ABC : ABD :: 122333 1224444 15762

ABC : ABD :: RSSTTT RSSUUU 26300
ABC : ABD :: IJJKKK IJJLLL 12772

ABC : ABD :: AABABC AABABD 35890
ABC : ABD :: MRRJJJ MRRKKK 17308

ABC : ABD :: 147 148 9386



264 Appendix A. Experiment on Hofstadter’s Analogies

Result:

• Date: Wednesday February 01 2017 23:14:20 UTC

• Age: 20

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 10521

ABC : ABD :: BCA BCB 18406
ABC : ABD :: AABABC AABABD 14970

ABC : ABD :: IJKLM IJKLN 9010
ABC : ABD :: 123 124 5918
ABC : ABD :: KJI KJJ 9055
ABC : ABD :: 135 136 5938

ABC : ABD :: BCD BCE 9546
ABC : ABD :: IJJKKK IJJKKL 9853

ABC : ABD :: XYZ XYA 8512
ABC : ABD :: 122333 122334 7168

ABC : ABD :: RSSTTT RSSTTU 9061
ABC : ABD :: IJJKKK IJJKKL 11726

ABC : ABD :: AABABC AABABD 8115
ABC : ABD :: MRRJJJ MRRJJK 9615

ABC : ABD :: 147 148 4332

Result:

• Date: Wednesday February 01 2017 23:16:39 UTC

• Age: 20

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 26442

ABC : ABD :: BCA CDA 33388
ABC : ABD :: AABABC AABABD 20633

ABC : ABD :: IJKLM IJKLN 15300
ABC : ABD :: 123 124 6483
ABC : ABD :: KJI LJI 8850
ABC : ABD :: 135 136 13938

ABC : ABD :: BCD CDE 10517
ABC : ABD :: IJJKKK IJJKKL 15941

ABC : ABD :: XYZ YZA 27439
ABC : ABD :: 122333 122334 8951

ABC : ABD :: RSSTTT RSSTTU 7169
ABC : ABD :: IJJKKK IJJKKL 11550

ABC : ABD :: AABABC AACABD 16224
ABC : ABD :: MRRJJJ MRSJJK 11869

ABC : ABD :: 147 148 7136



A.3. Detailed Results 265

Result:

• Date: Thursday February 02 2017 06:29:06 UTC

• Age: 20

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 17912

ABC : ABD :: BCA BCB 37716
ABC : ABD :: AABABC AABABD 29088

ABC : ABD :: IJKLM IJKLN 21746
ABC : ABD :: 123 124 9784
ABC : ABD :: KJI KJJ 12403
ABC : ABD :: 135 136 16567

ABC : ABD :: BCD BCE 8512
ABC : ABD :: IJJKKK IJKKL 7833

ABC : ABD :: XYZ XZA 37571
ABC : ABD :: 122333 122334 8817

ABC : ABD :: RSSTTT RSSTTU 20544
ABC : ABD :: IJJKKK IJJKKL 23801

ABC : ABD :: AABABC AABABD 15902
ABC : ABD :: MRRJJJ MRRJJK 16661

ABC : ABD :: 147 148 16935

Result:

• Date: Thursday February 02 2017 08:31:52 UTC

• Age: 20

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 20443

ABC : ABD :: BCA CBA 38838
ABC : ABD :: AABABC AABABD 33237

ABC : ABD :: IJKLM IJKLN 10389
ABC : ABD :: 123 124 4663
ABC : ABD :: KJI LJI 9181
ABC : ABD :: 135 136 12771

ABC : ABD :: BCD BCE 7855
ABC : ABD :: IJJKKK IJJLLL 12301

ABC : ABD :: XYZ XYA 7690
ABC : ABD :: 122333 122444 6943

ABC : ABD :: RSSTTT RSSUUU 7426
ABC : ABD :: IJJKKK IJJLLL 14484

ABC : ABD :: AABABC AABABD 8799
ABC : ABD :: MRRJJJ MRRKKK 10505

ABC : ABD :: 147 148 4988
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Result:

• Date: Thursday February 02 2017 09:45:39 UTC

• Age: 23

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 10730

ABC : ABD :: BCA BCB 16478
ABC : ABD :: AABABC AABABD 9841

ABC : ABD :: IJKLM IJLMN 9596
ABC : ABD :: 123 124 7396
ABC : ABD :: KJI KJJ 15114
ABC : ABD :: 135 136 6318

ABC : ABD :: BCD BCE 4348
ABC : ABD :: IJJKKK IJKLLL 11670

ABC : ABD :: XYZ XZZ 10415
ABC : ABD :: 122333 122444 5457

ABC : ABD :: RSSTTT RSSUUU 6045
ABC : ABD :: IJJKKK IJKLLL 6019

ABC : ABD :: AABABC AABABD 5354
ABC : ABD :: MRRJJJ MRRKKK 8740

ABC : ABD :: 147 148 5389

Result:

• Date: Thursday February 02 2017 10:43:21 UTC

• Age: 20

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 13474

ABC : ABD :: BCA BDA 41879
ABC : ABD :: AABABC AABABD 17399

ABC : ABD :: IJKLM IJKLN 50800
ABC : ABD :: 123 124 3879
ABC : ABD :: KJI KJH 18552
ABC : ABD :: 135 136 8516

ABC : ABD :: BCD BCE 10040
ABC : ABD :: IJJKKK IJJKKKK 15297

ABC : ABD :: XYZ XYA 14582
ABC : ABD :: 122333 1224444 9279

ABC : ABD :: RSSTTT RSSUUUU 10495
ABC : ABD :: IJJKKK IJJLLLL 15285

ABC : ABD :: AABABC AABABD 18618
ABC : ABD :: MRRJJJ MRRJJD 25586

ABC : ABD :: 147 148 13126
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Result:

• Date: Thursday February 02 2017 10:48:58 UTC

• Age: 24

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 6723

ABC : ABD :: BCA BCZ 6450
ABC : ABD :: AABABC AACABD 11294

ABC : ABD :: IJKLM IJLLM 6089
ABC : ABD :: 123 124 3004
ABC : ABD :: KJI KJH 10429
ABC : ABD :: 135 136 4462

ABC : ABD :: BCD BCE 2744
ABC : ABD :: IJJKKK IJKKKL 5887

ABC : ABD :: XYZ XYA 3175
ABC : ABD :: 122333 123334 3831

ABC : ABD :: RSSTTT RSTTTU 4125
ABC : ABD :: IJJKKK IJKKKL 5690

ABC : ABD :: AABABC AACABD 4832
ABC : ABD :: MRRJJJ MRSJJK 7870

ABC : ABD :: 147 148 2269

Result:

• Date: Thursday February 02 2017 12:28:02 UTC

• Age: 29

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 25252

ABC : ABD :: BCA BCB 16043
ABC : ABD :: AABABC AABABD 16088

ABC : ABD :: IJKLM IJKLN 9549
ABC : ABD :: 123 124 5091
ABC : ABD :: KJI KJK 16751
ABC : ABD :: 135 136 6460

ABC : ABD :: BCD BCE 6105
ABC : ABD :: IJJKKK IJJKKL 8258

ABC : ABD :: XYZ XYA 7036
ABC : ABD :: 122333 122334 6009

ABC : ABD :: RSSTTT RSSTTU 10282
ABC : ABD :: IJJKKK IJJKKL 7595

ABC : ABD :: AABABC AABAABD 7260
ABC : ABD :: MRRJJJ MRRJJK 7428

ABC : ABD :: 147 148 7607
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Result:

• Date: Thursday February 02 2017 13:03:15 UTC

• Age: 20

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 14381

ABC : ABD :: BCA BDA 24101
ABC : ABD :: AABABC AABABD 13355

ABC : ABD :: IJKLM IJLLM 12095
ABC : ABD :: 123 124 6273
ABC : ABD :: KJI LJI 44882
ABC : ABD :: 135 136 6452

ABC : ABD :: BCD BCE 13310
ABC : ABD :: IJJKKK IJJLLL 64941

ABC : ABD :: XYZ XYA 6954
ABC : ABD :: 122333 122444 5661

ABC : ABD :: RSSTTT RSSUUU 11779
ABC : ABD :: IJJKKK IJJLLL 10877

ABC : ABD :: AABABC AABABD 101031
ABC : ABD :: MRRJJJ MRRKKK 25249

ABC : ABD :: 147 148 5120

Result:

• Date: Thursday February 02 2017 13:36:24 UTC

• Age: 20

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 12002

ABC : ABD :: BCA BCB 17113
ABC : ABD :: AABABC AABABD 14849

ABC : ABD :: IJKLM IJKLN 7315
ABC : ABD :: 123 124 3443
ABC : ABD :: KJI KJJ 9851
ABC : ABD :: 135 136 7324

ABC : ABD :: BCD BCE 7187
ABC : ABD :: IJJKKK IJJKKL 5537

ABC : ABD :: XYZ XYA 7083
ABC : ABD :: 122333 122334 5766

ABC : ABD :: RSSTTT RSSTTU 6074
ABC : ABD :: IJJKKK IJJKKL 4706

ABC : ABD :: AABABC AABABD 8462
ABC : ABD :: MRRJJJ MRRJJK 5267

ABC : ABD :: 147 148 3405
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Result:

• Date: Thursday February 02 2017 14:59:03 UTC

• Age: 23

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 10208

ABC : ABD :: BCA BCB 13918
ABC : ABD :: AABABC AABABD 11127

ABC : ABD :: IJKLM IJKLN 9909
ABC : ABD :: 123 124 4892
ABC : ABD :: KJI KJJ 3793
ABC : ABD :: 135 136 6266

ABC : ABD :: BCD BCE 4291
ABC : ABD :: IJJKKK IJJKKL 13148

ABC : ABD :: XYZ XYA 4885
ABC : ABD :: 122333 122334 4036

ABC : ABD :: RSSTTT RSSTTU 7046
ABC : ABD :: IJJKKK IJJKKL 5071

ABC : ABD :: AABABC AABABD 4243
ABC : ABD :: MRRJJJ MRRJJK 5427

ABC : ABD :: 147 148 2717

Result:

• Date: Thursday February 02 2017 15:11:27 UTC

• Age: 20

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 17338

ABC : ABD :: BCA BCB 22786
ABC : ABD :: AABABC AABABD 38754

ABC : ABD :: IJKLM IJKLN 23407
ABC : ABD :: 123 124 12117
ABC : ABD :: KJI KJJ 12166
ABC : ABD :: 135 136 7512

ABC : ABD :: BCD BCE 8021
ABC : ABD :: IJJKKK IJJKKL 10607

ABC : ABD :: XYZ XYA 7517
ABC : ABD :: 122333 122334 9450

ABC : ABD :: RSSTTT RSSTTU 9192
ABC : ABD :: IJJKKK IJKKKL 11751

ABC : ABD :: AABABC AACABD 7984
ABC : ABD :: MRRJJJ MRSJJK 10426

ABC : ABD :: 147 148 8398
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Result:

• Date: Thursday February 02 2017 16:32:57 UTC

• Age: 19

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 7968

ABC : ABD :: BCA DCA 8331
ABC : ABD :: AABABC AABABD 7990

ABC : ABD :: IJKLM IJKLN 7843
ABC : ABD :: 123 124 3663
ABC : ABD :: KJI LJI 14490
ABC : ABD :: 135 135 6819

ABC : ABD :: BCD DCB 17939
ABC : ABD :: IJJKKK IJJLLL 76006

ABC : ABD :: XYZ XYA 4638
ABC : ABD :: 122333 1224444 9098

ABC : ABD :: RSSTTT RSSUUU 39569
ABC : ABD :: IJJKKK IJJLLL 7199

ABC : ABD :: AABABC AABABD 14657
ABC : ABD :: MRRJJJ MRJJJ 7822

ABC : ABD :: 147 147 4053

Result:

• Date: Thursday February 02 2017 16:37:05 UTC

• Age: 19

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 20667

ABC : ABD :: BCA BCB 15044
ABC : ABD :: AABABC AACABD 14158

ABC : ABD :: IJKLM IJLLN 18316
ABC : ABD :: 123 124 7408
ABC : ABD :: KJI KJJ 8280
ABC : ABD :: 135 136 6779

ABC : ABD :: BCD BCE 8290
ABC : ABD :: IJJKKK IJKLL 18236

ABC : ABD :: XYZ XYA 7763
ABC : ABD :: 122333 123444 25913

ABC : ABD :: RSSTTT RSTUUU 12780
ABC : ABD :: IJJKKK IJKLLL 5795

ABC : ABD :: AABABC AACBCD 31453
ABC : ABD :: MRRJJJ MRSKKK 7322

ABC : ABD :: 147 148 5032
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Result:

• Date: Thursday February 02 2017 16:45:13 UTC

• Age: 22

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 20113

ABC : ABD :: BCA BDA 33611
ABC : ABD :: AABABC AABABD 29971

ABC : ABD :: IJKLM IJLMN 40741
ABC : ABD :: 123 124 7205
ABC : ABD :: KJI LJI 37716
ABC : ABD :: 135 137 24918

ABC : ABD :: BCD BCE 14230
ABC : ABD :: IJJKKK IJJLLL 19145

ABC : ABD :: XYZ XYA 7189
ABC : ABD :: 122333 122444 9732

ABC : ABD :: RSSTTT RSSUUU 17441
ABC : ABD :: IJJKKK IJJLLL 11258

ABC : ABD :: AABABC AABABD 28230
ABC : ABD :: MRRJJJ MRRKKK 28746

ABC : ABD :: 147 1410 28884

Result:

• Date: Thursday February 02 2017 18:21:01 UTC

• Age: 19

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IKL 9096

ABC : ABD :: BCA BCB 25344
ABC : ABD :: AABABC AABABD 18809

ABC : ABD :: IJKLM IJKLN 13477
ABC : ABD :: 123 124 5152
ABC : ABD :: KJI LJI 10098
ABC : ABD :: 135 136 6261

ABC : ABD :: BCD BCE 7018
ABC : ABD :: IJJKKK IJJLLL 12502

ABC : ABD :: XYZ XYA 7483
ABC : ABD :: 122333 123444 5836

ABC : ABD :: RSSTTT RSSUUU 5819
ABC : ABD :: IJJKKK IJJLLL 5870

ABC : ABD :: AABABC AABABD 9169
ABC : ABD :: MRRJJJ MRRKKK 13798

ABC : ABD :: 147 148 4509
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Result:

• Date: Thursday February 02 2017 23:32:40 UTC

• Age: 21

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 41117

ABC : ABD :: BCA BDA 75011
ABC : ABD :: AABABC AABABD 23195

ABC : ABD :: IJKLM IJKLN 121816
ABC : ABD :: 123 124 9761
ABC : ABD :: KJI LJI 65275
ABC : ABD :: 135 136 18000

ABC : ABD :: BCD BCE 14578
ABC : ABD :: IJJKKK IJJLLL 39866

ABC : ABD :: XYZ XYA 17660
ABC : ABD :: 122333 122444 19024

ABC : ABD :: RSSTTT RSUUU 20013
ABC : ABD :: IJJKKK IJJLLL 29972

ABC : ABD :: AABABC AABABD 14789
ABC : ABD :: MRRJJJ MRRKKK 113744

ABC : ABD :: 147 148 23078

Result:

• Date: Friday February 03 2017 00:21:31 UTC

• Age: 19

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 12982

ABC : ABD :: BCA BCB 10519
ABC : ABD :: AABABC AACABD 9057

ABC : ABD :: IJKLM IJLLM 13059
ABC : ABD :: 123 124 5714
ABC : ABD :: KJI KJJ 5907
ABC : ABD :: 135 136 4026

ABC : ABD :: BCD BCE 4770
ABC : ABD :: IJJKKK IJKKKL 12981

ABC : ABD :: XYZ XYA 6917
ABC : ABD :: 122333 123334 10684

ABC : ABD :: RSSTTT RSTTTU 6940
ABC : ABD :: IJJKKK IJKKKL 11403

ABC : ABD :: AABABC AACABD 9773
ABC : ABD :: MRRJJJ MRSJJK 9407

ABC : ABD :: 147 148 5043
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Result:

• Date: Friday February 03 2017 14:43:34 UTC

• Age: 19

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 11602

ABC : ABD :: BCA DBA 10218
ABC : ABD :: AABABC AABABD 12242

ABC : ABD :: IJKLM IJKLMO 13223
ABC : ABD :: 123 124 7932
ABC : ABD :: KJI LJI 15332
ABC : ABD :: 135 137 15492

ABC : ABD :: BCD BCE 12572
ABC : ABD :: IJJKKK IJJLLL 17772

ABC : ABD :: XYZ XYA 7076
ABC : ABD :: 122333 122444 6584

ABC : ABD :: RSSTTT RSSUUU 8342
ABC : ABD :: IJJKKK IJJLLL 7400

ABC : ABD :: AABABC AABABD 8473
ABC : ABD :: MRRJJJ MRRKKK 17010

ABC : ABD :: 147 150 13468

Result:

• Date: Friday February 03 2017 16:29:34 UTC

• Age: 19

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 14267

ABC : ABD :: BCA BCB 18297
ABC : ABD :: AABABC AABABD 12035

ABC : ABD :: IJKLM IJKLN 7964
ABC : ABD :: 123 124 5364
ABC : ABD :: KJI KJK 5670
ABC : ABD :: 135 136 10404

ABC : ABD :: BCD BCE 8046
ABC : ABD :: IJJKKK IJJKKL 6550

ABC : ABD :: XYZ XYA 5161
ABC : ABD :: 122333 122334 6590

ABC : ABD :: RSSTTT RSSTTU 7033
ABC : ABD :: IJJKKK IJJKKL 5764

ABC : ABD :: AABABC AABABD 6582
ABC : ABD :: MRRJJJ MRRJJK 11245

ABC : ABD :: 147 148 4564
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Result:

• Date: Sunday February 05 2017 12:33:27 UTC

• Age: 14

• Gender: female

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 17704

ABC : ABD :: BCA BDA 12851
ABC : ABD :: AABABC AABABD 56625

ABC : ABD :: IJKLM IJKLN 33381
ABC : ABD :: 123 124 4694
ABC : ABD :: KJI 45 23324
ABC : ABD :: 135 136 4888

ABC : ABD :: BCD BCE 8335
ABC : ABD :: IJJKKK IJJLLL 19736

ABC : ABD :: XYZ XYA 6352
ABC : ABD :: 122333 122444 6805

ABC : ABD :: RSSTTT RSSUUU 7097
ABC : ABD :: IJJKKK IJJLLL 12932

ABC : ABD :: AABABC AABABD 42851
ABC : ABD :: MRRJJJ MRRKKK 17162

ABC : ABD :: 147 148 5506

Result:

• Date: Wednesday March 01 2017 17:24:37 UTC

• Age: 19

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 12960

ABC : ABD :: BCA BCB 16342
ABC : ABD :: AABABC AACABD 9508

ABC : ABD :: IJKLM IJLLM 24006
ABC : ABD :: 123 124 7492
ABC : ABD :: KJI KJJ 4500
ABC : ABD :: 135 136 3966

ABC : ABD :: BCD BCE 3661
ABC : ABD :: IJJKKK IJKKKL 9258

ABC : ABD :: XYZ XYA 6598
ABC : ABD :: 122333 123334 6150

ABC : ABD :: RSSTTT RSTTTU 9623
ABC : ABD :: IJJKKK IJKKKL 8721

ABC : ABD :: AABABC AACABD 7677
ABC : ABD :: MRRJJJ MRSJJK 9172

ABC : ABD :: 147 148 6378
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Result:

• Date: Saturday July 21 2018 10:03:40 UTC

• Age: 36

• Gender: male

Problem Solution Time (ms)
ABC : ABD :: IJK IJL 21702

ABC : ABD :: BCA BCB 21259
ABC : ABD :: AABABC AABABD 31015

ABC : ABD :: IJKLM IJKLN 20648
ABC : ABD :: 123 124 8382
ABC : ABD :: KJI KJJ 13585
ABC : ABD :: 135 136 7493

ABC : ABD :: BCD BCE 9792
ABC : ABD :: IJJKKK IJJKKL 22036

ABC : ABD :: XYZ XYA 14340
ABC : ABD :: 122333 122334 7466

ABC : ABD :: RSSTTT RSSTTU 17111
ABC : ABD :: IJJKKK IJJKKL 11289

ABC : ABD :: AABABC AABABD 22691
ABC : ABD :: MRRJJJ MRRJJK 19535

ABC : ABD :: 147 148 4561

A.3.2 Ages

We show the age distribution in Table A.1. The large number of participants aged
15-30 is a bias inherent to the diffusion method for the experiment (through social
networks).

14 1 18 3 19 10 20 15 21 13 22 10
23 16 24 7 25 12 26 3 27 3 28 1
29 1 31 2 36 1 54 1 67 1 72 1

TABLE A.1: Age distribution. In a row, the ages (in bold font) are
followed by the corresponding number of participants (in italic).

A.3.3 Results by Question

We now give the full statistics of the results grouped by question. Each one of the
following tables corresponds to an analogy equation (displayed in first row). The
proposed answers for the equation are given in the table, followed by the number of
times it has been suggested.

ABC : ABD :: IJK : x
IJL 95 IKL 2 IJF 2
IJD 1 ADE 1
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ABC : ABD :: BCA : x
BCB 51 BDA 38 DBA 3
BCZ 2 BCD 1 BCZS 1
BAC 1 DAB 1 CDA 1
CBA 1 DCA 1

ABC : ABD :: AABABC : x
AABABD 76 AACABD 15 AABACD 2
AADABC 1 AABBD 1 BBCBCD 1
AABB 1 ABE 1 AABBAD 1
AABBCD 1 AABABCABD 1

ABC : ABD :: IJKLM : x
IJKLN 62 IJLLM 15 IJLMN 6
IJKMN 3 IJKLM 3 IJLLN 2
IJKLD 1 IJJKLM 1 IJLKM 1
IJKLMN 1 IJKLO 1 IJLP 1
VRJTN 1 OPQRS 1 AJLLM 1
IJKLMO 1

ABC : ABD :: 123 : x
124 97 123 3 456 1

ABC : ABD :: KJI : x
KJJ 40 LJI 33 KJH 8
KJI 6 KJK 5 KJL 2
KJD 1 KJG 1 JJI 1
MJI 1 LMN 1 LKI 1
45 1

ABC : ABD :: 135 : x
136 71 137 20 135 5
145 2 13D 1 146 1
1416 1

ABC : ABD :: BCD : x
BCE 84 BCD 3 BDD 3
BDE 3 CDE 2 BDC 1
BCC 1 BED 1 BDH 1
EFG 1 DCB 1

ABC : ABD :: IJJKKK : x
IJJLLL 39 IJJKKL 26 IJKKKL 14
IJJKKK 6 IJJKL 2 IJJKLL 2
IJJKKKK 2 IJDDDD 1 IJJKKKMMMM 1
IJJKKM 1 IIJJKKL 1 IJJKKF 1
IJJLLLL 1 IJKLL 1 IJKKL 1
IJKLLL 1 LLLLMMMMMNNNNNN 1
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ABC : ABD :: XYZ : x
XYA 85 XYZ 5 XYZS 2
XYA1 1 XY0 1 XY. 1
XY 1 XYä 1 ABC 1
YZA 1 XZA 1 XZZ 1

ABC : ABD :: 122333 : x
122444 35 122334 31 123334 14
1224444 8 122333 4 122344 2
1122444 2 123444 2 122433 1
1223333 1 444455555666666 1

ABC : ABD :: RSSTTT : x
RSSUUU 41 RSSTTU 30 RSTTTU 13
RSSTTT 5 RSSUUUU 3 RSDTTT 1
RSSTTTU 1 RSSTWW 1 RSTUU 1
RSSTTTT 1 UUUUVVVVVWWWWWW 1
RSSTTTUUUU 1 RSUUU 1

ABC : ABD :: IJJKKK : x
IJJLLL 40 IJJKKL 27 IJKKKL 15
IJJKKK 5 IJJLLLL 3 IJKLLL 2
IJJDDD 1 IJLLL 1 IJJKLL 1
IJKKL 1 IJKLL 1
LLLLMMMMMNNNNNN 1 OJJKKL 1
IJJKKKK 1 IJJKKKLLLL 1

ABC : ABD :: AABABC : x
AABABD 69 AACABD 16 AABACD 5
AABABC 2 AABABB 1 AABDBD 1
AABABCABD 1 AABABE 1 ABBA 1
AAABABD 1 AABABCB 1 AABAABD 1
AACBCD 1

ABC : ABD :: MRRJJJ : x
MRRJJK 26 MRRKKK 23 MRSJJK 14
MRRJJJ 6 MRRLLL 5 MSSJJJ 4
MRDJJD 1 MRRJJ 1 MRREEE 1
MRRLLLL 1 MROJJK 1 MRRIII 1
MRRSSSS 1 MRRJKK 1 :( 1
MRRJJH 1 MRJII 1 ? 1
MRJJ 1 MRRJJW 1 MRRJJJJ 1
MRRPPP 1 I BELIEVE

I CAN FLY-
YYYY

1 MRRKKKK 1

MDR 1 MRRJJJSSSS 1 MRRJJD 1
MRJJJ 1 MRSKKK 1
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ABC : ABD :: 147 : x
148 72 1410 10 147 6
141 2 14711 2 140 1
158 1 1 4 10 1 14A 1
? 1 149 1 1411 1
369 1 150 1
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