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Limits of Isotropic Bias in Natural and
Artificial Models of Learning

Jean-Louis Dessalles !

Bias is always present in learning systems. There is no perfect, universal, way of
learning that would avoid any “innate” predetermination. However, all biases should
not be considered equivalent. Usually, it is implicitly regarded as desirable to avoid
anisotropic biases when designing a learning mechanism, especially when it is
intended as a cognitive model of some human or animal learning ability.
Anisotropic bias necessarily involves some ad hoc a priori knowledge that severely
limits the generality of the learning device.

We want to suggest, however, that isotropic models of learning, though they
seem to be of greater generality, may prove to be too limited. In many cases, living
beings of the same species reliably learn identical forms from different experiences.
We show that these situations, called convergent learning, are hardly explained by
isotropic models, unless learned forms are highly harmonious (i.e., symmetrical).
This anisotropy-harmony dilemma is derived from a formal characterization of bias,
based on simple geometrical properties. By showing how this dilemma affects
classical theories of learning, we try to clarify the classical nature-nurture debate in
the case of convergent learning.
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1. Introduction

Learning is an adaptive ability of higher animals and of more and more artificial
devices. It results in a new ability to discriminate situations that was not present
before exposure to experience. We can model this discrimination ability as a
classification which, at the end of the learning phase, allows to associate a decision
to each situation. Without loss of generality, we will consider a simple device that
learns binary classifications (figure 1).
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Theoretical work on Learning Theory is most often concerned with the problem
of making good inductions : among a given set of classifications, how to choose a
candidate which is good according to a given cost function. For example, the
Vapnik law relates the minimum number of examples required by any learning
device making good inductions to the “separating power” of available classifications
[Boucheron 1992].
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Figure 1: A simple learning device. Input is given through N binary
sensors. During the learning phase, the system is presented with a sample
of K examples of N bits. During the working phase, the system assigns
one of two classes (class 1 or class 0) to any binary N-uple.

In cognitive modeling, however, the learning device is given. From its assumed
properties, one draws conclusions upon the set of classifications it may or may not
learn. The work presented here belongs to this second approach. It does not refer to
cost functions nor to asymptotic correctness. It is based on qualitative, geometrical
considerations. Its purpose is to make a link between some intrinsic properties of the
learning device (esp. isotropy) and properties of the classifications that this device
may reach.

In what follows, we will define such properties : indifference for learning
devices, harmony for classifications. Then we show how both are connected : under
certain circumstances, indifferent mechanisms are bound to learn harmonious
classifications. We discuss the relevance of this result to cognitive modeling by
briefly reviewing some important cognitive learning mechanisms (Gestalt Theory,
Piaget’s Theory, Associationism, Inneism) and by showing how they comply with
these constraints.

2. Bias and specificity of learners

Generalist models of learning are often preferred : as computational learning
methods, they are more adaptable, and as cognitive models, they are more
parsimonious. Intuitively, generality does not tolerate strong bias. For instance, in
[Elman et al., 1997], much effort is devoted to showing that the learning
performance of children can be explained without invoking specific innate



knowledge about the task. Invoking such knowledge would require that a new
learning model has to be postulated for each cognitive competence, whereas in the
absence of such specific bias, a single generalist system like connectionism may
account for many of the child’s abilities.

When deliberately introduced, bias is intended to offer better learning efficiency.
However, such improvement will be observed only on a restricted range of
situations [Schaffer 1994], and strongly biased systems are thus expected to be more
specialized than less biased ones. A generalist learner would ideally rely on virtually
no bias. Strictly speaking, this is not possible. Even a simple nearest neighbor
device uses a bias : finding the nearest neighbor for a novel datum predetermines the
device to one type of inductive generalization instead of another. Can we think of
reducing bias to a minimum in order to preserve generality ? The results presented
in what follows suggest a negative answer : attempts to avoid unnecessary bias also
lead to a certain type of specialization.

Many learning mechanisms that have been proposed, either in cognitive
modeling or in computer science, share a property that we call indifference. This
property results from the avoidance of unnecessary specificity. Most systems
claiming to be generalist learners have an indifferent bias. We first define this
notion, then we show that this property has interesting consequences which affect
what can be learned by such systems.

Let us consider the simple learner of figure 1. Most learning situations can be
modeled by such a device. The separation between learning and working phases, the
digital representation of input and the restriction to only two classes are not
necessary features. The results given below can be extended to devices that lack
these limitations (e.g. continuous devices).

In the description of figure 1, some components of examples may represent
supervision information if any. It is worth noting that we make no assumption upon
the ability of the learning device to reach correct or accurate classifications. The
learning process is not even supposed to be inductive : the K “examples” are not
presumed members of class 0 or 1, and could act as mere triggers in the learning
process. In other words, the results presented here do not require the presence of an
“oracle” saying whether a learned classification is correct or accurate. Assessing
accuracy would be problematic in certain situations encountered in cognitive
modeling. What would it mean for human learners that they correctly learned
language, word meaning or accent ? In such cases, there is no independent reference
telling what is correct and what is not. As we will see, it is nevertheless possible,
without considering accuracy, to tell sometimes what a learning system cannot do.
We will suggest that some cognitive performances are not the result of isotropic or
indifferent learning mechanisms.



3. Isotropy, relativity and indifference of a learning mechanism

“Indifference” is characteristic of devices which do not take absolute properties
of their input into account. Devices that extract regularities are most often
indifferent mechanisms : they only use relative properties of data (distance,
sameness). By contrast, a digital sensor that becomes active for a particular
configuration of its input is by essence non indifferent : this particular configuration
works as an absolute reference. In a learning device, the sensitivity to absolute
features hinders the system from learning equivalent forms the same way. This is
why indifferent systems are usually preferred : they are more general, they are not
constrained by an absolute reference.

The system sketched in figure 2 gives an intuitive idea of what indifference
means.
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Figure 2 : illustration of the indifference property. A device using a
camera learns simple pattern recognition. In a subsequent phase, the
system is reset, the camera is rotated by a certain angle and the system
learns from the same sample. An indifferent device should give identical
results in both phases.

In this experiment, the same system is used twice for the same learning task. The
only difference is that the camera does not have the same orientation. We expect
from an indifferent device that the outcomes are indistinguishable : after learning,
the same images are assigned the same classes in both cases. Conversely, any
difference in the learned classification would mean that the system is sensitive to
some absolute orientation, e.g. that the system “knows” that the camera is vertical or
horizontal. Such a system would be non-indifferent (in this case, non-isotropic).

Let us give a formal definition of indifference. A learning device as shown in
figure 1 associates samples with binary classifications. If J is the training sample,
A(J) is the learned classification. Each classification operates a partition of the N-
hypercube into two classes. The learning device # is thus an application from the
set of samples into the set of binary partitions of the N-hypercube.

A learning system A, as defined figure 1, is indifferent w.r.t. isometries if its
global behavior, including both learning and working phases, remains identical



when inputs (i.e. examples and data) are systematically transformed through an
isometry. In other words, if p is an isometry (e.g. a rotation) and x a test input, then
A(p(J)) puts p(x) into the same class as #(J) does for x (p(J) results from the
application of pto every element of J). More precisely, a learning device # is
indifferent if, for any isometry p from the N-hypercube into itself and for any
sample J :

AU) =140 p)] 0 p

It can be shown that any isometry with respect to the Hamming distance in the
N-hypercube results from the composition of a translation (which complements
some given components of the binary vectors) and of a rotation (the effect of which
is to permute components). Systems that are indifferent w.r.t. isometries are both
isotropic and relative. Isotropic systems are indifferent w.r.t. any permutation of
coordinates, and relative systems are indifferent w.r.t. any (partial)
complementation. Since there are 2N possible translations and N/ different
permutations, the total number of isometries for the N-hypercube is 2NN It is
possible to define the indifference property with respect to any group of
transformations. The following results will still hold. The group of isometries seems
however to be the most relevant in many cases. In particular, systems that are only
sensitive to distances between data are indifferent to isometries.

4. Examples of indifferent mechanisms

Most statistical learning algorithms, including connectionist networks and
Similarity Based Learning (SBL) algorithms, are indifferent or quasi-indifferent. For
example, a Kohonen network [Kohonen 1984], completed with a decision device, is
an indifferent system: both wiring and algorithm make reference to relative
properties of the input only. Usual multi-layer perceptrons are almost indifferent : if
one such perceptron, used in pattern recognition, is presented with “shuffled” input,
i.e. if we systematically permute pixels of images to be learned and classified so as
to make them unrecognizable to the human eye, the system behaves as it would have

done with intact input?. The same happens if some pixels are inverted, i.e. if part of
the input images is systematically negative. The only exceptions are permutations
between data inputs and supervision inputs : after such a permutation, the system
would probably be unable to learn the intended classification.

Most systems which, like the previous ones, learn by extracting statistical
regularities from input are indifferent with respect to isometries. This holds, for
instance, for usual Similarity Based Learning algorithms. Extraction of regularities
is not a necessary feature of indifferent systems, however. Imagine a system that

2 In the case of a Kohonen network, one should not confuse shuffled input with transformations in
the Kohonen map. The former is represented by a mere point in the latter.



learns parity this way : it computes the parity to be learned by summing the N bits of
one example (K=1), and then puts into class 1 all data having the same sum. Such a
system is indifferent to any permutation (obvious) and to any complementation : if
both example and data have some of their components systematically
complemented, the result (class 1 or 0) will not change.

There are many different ways to be non indifferent. A crude example will be a
device that computes an integer from the input (using the usual binary code) and
decides class 1 iff the result is above the integer computed from the example (K=1).
If the example is 0011 (here N=4) and the input is 0101, the latter will be assigned
class 1 since 5 is above 3. But after systematic permutation of first and third bit, we
get 1001 for the example and 0101 for the data, and the decision will be class 0
since 5 is below 9. This system is not indifferent. There is an absolute reference that
assigns a priori different roles to input components. Any system that makes use of a
priori knowledge, as for instance structured matching systems [Ganascia 1987], has
little chance to be indifferent.

We can see through these examples that indifference is not a quantitative
measure of bias. For instance, the system learning parity from one example is
indifferent, but is nevertheless strongly biased. It has an innate knowledge of parity.
It has however no a priori knowledge of even and odd. What indifference checks is
the absence of absolute bias.

5. The anisotropy-harmony dilemma

It can be shown [Dessalles 1993] that if an indifferent learning system can reach
only a limited number of different classifications, then these classifications are
necessarily harmonious. The harmony of a classification is the number of isometries
which leave classes globally invariant. More precisely, for any indifferent system
A

Harm(-A4J)) - Var(-#J)) = 2N.N!

The harmony Harm(+#(J)) of a classification 4(J) that has been learned from the
sample J is inversely proportional to its variety Var(#(J)), which is defined as
A(p(J))} where p is any isometry in turn3. One consequence of this result is :

If an indifferent learning mechanism ~# can reach only a

limited number (<< 2NxN!) of classifications, then these
classifications are harmonious.

3The core of the demonstration lies in the fact that when a classification € can be reached by the
learning system, C = #(J), then all the other classifications obtained by isometric transformation from the
classes of (" are accessible as well, and can be written #(p(J)).



This comes from the fact that if the system is able to learn only a few
classifications, then Var(+#(J)) must be small, and Harm(»#(J)) must be high. We call
it the anisotropy-harmony dilemma: when few forms can be learned, as in
convergent learning, then either the learner is non-indifferent (anisotropic or non-
relative) or the accessible forms are harmonious. This result has interesting
consequences that we explore now.

6. Constraints on convergent learning

In many situations, we observe that different algorithms or organisms learn
roughly the same things under various circumstances. Children learn to ride a
bicycle the same way : they learn to turn the handlebars to the falling side by an
appropriate angle, without trying to change pressure on pedals. They learn to speak
their mother language in a way which is hardly distinguishable from the way of
speaking of other children of the same school (pronounced phonemes, accent,
syntactic forms used, etc.). They acquire roughly the same knowledge on a given
subject (e.g. highway code). When very young, all of them draw trees perpendicular
to the slope, and later draw them correctly [Piaget & Inhelder 1947:444]. Technical
systems also learn reliably : different clustering algorithms (e.g. a moving center
algorithm with different choices for the seeds) may come upon the same partition of
a given set of data. A SBL algorithm may give the same characterization of classes
when different (but coherent) sets of examples are given as input.

Convergence is an especially crucial requirement when the problem is to learn
how to communicate. Learning introduces variety in communication. Contrary to
bees, which are unable to vary their way of expressing the location of a food source,
we learn how to express such things and many others. However, this only works
because our fellows learned exactly the same code, and not a different one. In most
situations relevant to social or evolutionary adaptability, we observe that there is
“something” to be learned, and that learning individuals or species come most often
upon similar solutions.

Now the question is, where does convergence come from ? The answer is quite
obvious : either from exposure to quasi-identical data, or because a very small
number of final sates are reachable. The first case is illustrated by biological
convergence. For instance, dolphins and sharks evolved similar caudal fins. This
convergence between two non related species results from physical constraints in
the water medium that generates similar pressures on the body of both animals.
Here, the identical “input” explains why two adaptive systems could converge
towards similar states.

An opposite example is offered by Jean Piaget’s theory of learning. The core of
this theory is the existence of a few definite states the child may reach [Piaget
1967]. These states are characterized by a set of operations the child can perform,
which is closed for the combinations that the child is able to conceive. When this set
reaches a group structure, then learning is complete (until a new kind of operation is



discovered). For Piaget, all children go through the same states, and this is because
there are only a few sets of actions which are closed for any combination.

How is convergent learning constrained by the anisotropy-harmony dilemma ?
Whenever convergent learning is observed, then at least one of these alternatives
must be true :

m there are many reachable forms
=» then convergence must follow from the reliability of data in the learning
phase. Organisms must have been exposed to similar data (ie.
convergence is in the data).

m there are few reachable forms (i.e. convergence is a consequence of the
organism’s structure)

o the learning mechanism is indifferent
=>» then learned forms are necessarily harmonious.

o the learning mechanism is not indifferent
=>» then it possesses an a priori sensitivity to absolute features of
input.

In other words, convergence is either in the data or is due to the learner’s bias. In
the latter case, the anisotropy-harmony dilemma applies : if what is learned is not
harmonious, then an absolute innate reference must be postulated.

In cognitive modeling, when we are faced with a situation of convergent
learning, we have first to check the reliability of data the organisms were exposed
to. If there is no guarantee that the organisms had access to similar data, then we
have to check the harmony of learned form. If it is low, then the learning mechanism
is necessarily non indifferent. In other words, the organisms have some absolute
bias towards a specific, non harmonious, form ; they are able to learn this form but
not other, isometric, forms.

The presence of an absolute reference bias implies the existence of a specific
innate component, but, as previously noticed, the converse is not true. The parity
learning device imagined above is indifferent (i.e., there is no absolute reference),
but it has a strong innate “knowledge” of the way of computing parity. No wonder
that parity is so easily learned by such an indifferent mechanism : both odd and even
subsets of the hypercube are highly harmonious. The situation is much more
interesting when some inharmonious form F; is reliably learned by a learning device
under various circumstances. We are forced to conclude that this device has an
absolute reference bias. It is so particular that it may be unable to learn a form F,,
isometric to F;, whatever the kind of examples it is exposed to. For cognitive
modeling purposes, it is thus interesting to check the harmony of learned forms,
especially in the case of convergent human learning.



7. Human learning of harmonious forms

Human learning often seems to be convergent. To what extent are learned forms
harmonious ? The idea that learned forms must be harmonious is at the root of the
Gestalt theory. This theory insists on the importance of « good shapes », shapes that
are simple, regular and symmetrical. For instance, the visual system is supposed to
prefer the most regular and symmetrical perception which is compatible with
sensory data. “Good” images, which can be described using less information, are
recognized faster and are memorized better than odd ones [Rock & Palmer 1991].
Furthermore, any departure from symmetry is perceived as such and is analyzed as
revealing the history of the object [Leyton 1992]. According to Gestalt theory, this
holds not only for perception, but also for many abstract forms of learning,
including the learning of conceptual knowledge, as Fritz Heider suggests [Rock &
Palmer 1991]. This theory explains the convergence between mental processes
acquired by different individuals by a preference for harmonious shapes. This leaves
the door open for an indifferent learning mechanism.

We mentioned above that Piaget’s theory predicts that only few forms can be
learned. It never appeals to any reliability of data : all children have to perform
operations in order to learn, but not necessarily exactly the same ones. The learning
mechanisms invoked by Piaget (operational closure and the so-called “abstraction
réfléchissante”) appear to be strictly indifferent. We expect that accessible forms
can be shown to be harmonious. Let us consider the well-known experiment of the
two glasses. When water is poured from the wide glass into the narrow glass,
children under six declare that there is now more water [Piaget 1967:610]. The
young child does not take the section of the glass into account. For her, a correct
situation is a situation which is compatible with what she knows of the effects of
pouring (when pouring from the tap, the more water, the higher the level). This
child would actually be surprised if pouring water into the glass caused lowering of
the water level! The set of «correct» situations can be described as
{(V,h) | V=C-h}, where V is the volume in the glass, 4 the height of water and C a
constant. The set of situations that look correct for the older child, who considers the
effect of the section of the glass, can be ideally described by {(V,h,r) | V=C’-h-"},
where 7 is the radius of the glass. This child would be amazed at any gross departure
from this set. This experiment shows that each child learned a different form, the set
of situations she considers as admissible. What is the harmony of such sets ?

These two sets are invariant for the operations each child is able to observe :
(V,h) = (aV,ah) and (V,hr) — (V,ahr/V @) respectively. These operations
correspond to groups of isometries (translations) in logarithmic coordinates. The
learned forms are thus highly harmonious. Piaget’s interpretation of this experiment
can be understood as the child making an extrapolation to the smallest harmonious
(i.e. invariant for the accessible relevant operations) form.

Other learning mechanisms have been invoked to explain human learning
capabilities. Many of them are by essence statistical and perform regularity
extraction, especially those which are at the core of behaviorism : trials and errors,



associationism, conditioning, etc. Such mechanisms are indifferent (or quasi-
indifferent if they are supervised). When they are used under such situations that
they generalize from a limited sample, what these mechanisms learn is quite
harmonious : for instance the learned sets are invariant for all transformations
affecting components which vary among examples. Otherwise, when such systems
do not generalize, in other words if overfitting occurs, learned forms may vary
considerably. We cannot say anything about the harmony of these forms.
Convergence, if any, must then result from the reliability of data. In the case of
language acquisition, this constraint has often been acknowledged (e.g. [Plunkett &
Marchman 1990]) or presented as problematic by some authors [Piatelli-Palmarini
1988] who mention the “poverty of the stimulus”.

8. Human learning of inharmonious forms

Some aspects of visual perception are claimed to be indifferent. Stratton’s well-
known experiments show that if you see the world upside-down through special
glasses, then after a week without removing the glasses the world no longer looks
weird [Gregory 1966]. This strongly suggests that visual perception, when acquired
by newborns, may be indifferent to 180° rotation. However, we cannot conclude
that our visual system is not a priori sensitive to absolute parameters. Would
children see the world as normal if images presented to them were negative, or
shuffled ? Such transformations are isometries in the visual space, because they do
not change distances between images (e.g. similar images have similar negatives).
Psychologists showed that our perception relies on absolute preferences. For
instance, we are sensitive to figure-ground contrast [Wertheimer 1923].
Psychologists also gave evidence showing children’s preferences for whole objects
when learning word meaning [Markman 1990]. Figure-ground contrast and object
continuity disappear when images are shuffled, and we may predict that children
living with shuffled perception would not be able to recover them. Another
illustration of absolute bias in visual perception is given by the specific processing
devoted to face recognition. A small region of our brain, located in the parieto-
occipito-temporal area, seems necessary for the recognition of familiar faces [Tranel
& Damasio 1985]. Again, we hardly imagine that such a system could operate on
shuffled images and that children could develop normally in a world peopled by
Picasso-like faces.

Some mechanisms that have been suggested to explain convergent human
learning of language depart explicitly from indifference. In the modular theory of
cognition advocated by Fodor [1983], many basic cognitive functions are performed
by dedicated modules with an innate component that puts strong constraints on what
can be learned by the child. Face recognition could be one such module, but the
archetypal example is certainly language processing. N. Chomsky [1968, 1988]
asserts that humans are innately biased to learn a small number of language
structures. The corresponding learning mechanism, the setting of parameters
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[Lightfoot 1991, Crain 1991] is by no means indifferent : it relies on a matching
with preexisting structures. Imagine that in a remote area, natives speak a strange
language : it is like English, except that some words are systematically permuted in
each sentence, for instance the first and the fourth. Correct sentences in this
“language” would be :

dark girl with the hair holds the baby rabbit
cars were many there in the garage
and did Mary what you do on the way home ?

No linguist would accept such word strings as examples of any possible human
language, even if their meaning may be somehow recovered. They violate a basic
principle that prevents syntactic constituents from partially overlapping. In the first
example, the prepositional “phrase” [dark _ with _ air] and the noun “phrase” [gir/
_ the] overlap. Such a transformation that preserves surface similarity between word
strings would dramatically affect children’s ability to learn their mother language.
This learning process is not indifferent. As a consequence, we do not expect the set
of grammatical sentences to show symmetry, i.e. invariance through surface
transformations. Surface similarity is of little help to determine which sentences are
syntactically correct [Piatelli-Palmarini 1988]. The same is true for meaningful
sentences, at the semantic level [Jackendoff 1983] or, at the pragmatic level, for
relevant utterances in a given situation [Dessalles 1993]. To account for language
acquisition by an indifferent mechanism, one has to invoke reliable data. This
solution has been resolutely criticized by Chomskyans who insist on “the poverty of
the stimulus”, i.e. the lack of reliability of the input children are exposed to [Piatelli-
Palmarini 1988, Pinker 1994]. The learning mechanism put forward by Chomsky
(matching with innate structures and parameter setting), being highly anisotropic,
does not require human languages to be harmonious, despite the alleged relative
small number of target structures.

9. Conclusion

We have proposed here an original way of characterizing learning mechanisms,
based on geometrical considerations. We defined the property of indifference, which
captures a common feature of many usual learning models that are both isotropic
and relative. A consequence of this definition is the anisotropy-harmony dilemma :
when input is not rigidly invariable, isotropic or indifferent systems learn only
harmonious forms reliably.

The consequences of this dilemma can be observed in cognitive modeling.
Indifferent models of learning, like connectionism, behaviorism, Piaget’s theory,
Gestalt theory, etc. predict harmonious results. According to such models, learning
proceeds through a generalization towards the closest harmonious form compatible
with input data. Such models may be an accurate account of many human learning
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abilities. However, they are not good candidates to explain reliable learning of
inharmonious forms, or when the learning ability to be modeled is suspected to be
non-isotropic. Aspects of visual pattern recognition (e.g. figure-ground contrast,
whole object assumption, face recognition) and language are good examples of
cognitive abilities that cannot be explained by indifferent mechanisms : the learning
process is sensitive to many isometric transformations of input, and the target forms
are not harmonious.

By acknowledging the importance of the property of indifference, one can think
of a new approach to cognitive modeling : by systematically checking all the
transformations leaving the learning process indifferent, one will get constraints on
what the learning mechanism can or cannot be. If a model (e.g. connectionism)
allows for greater indifference than observed, then it must be modified or ruled out,
even if it reproduces the learner’s performance accurately.

Isotropic and relative bias is generally preferred to avoid unnecessary specificity.
However, indifferent learning mechanisms are specialized in some way : when data
are not strictly reliable, these systems are bound to learn harmonious forms. The
property of indifference appears to be a significant parameter that should be
systematically taken into account in cognitive modeling.

Acknowledgments : 1 thank Eric Bonabeau, Gérard Cohen, Olivier Hudry and
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Limites des modeles isotropes de
I’apprentissage naturel et artificiel

Jean-Louis Dessalles !

Tous les systémes d’apprentissage présentent un biais. Le systéme parfait et
universel qui éviterait toute prédétermination « innée » n’existe pas. Pour autant,
tous les biais ne sont pas équivalents. On préfére, en général, éviter les biais
anisotropes lorsque 1’on congoit un mécanisme d’apprentissage, surtout lorsqu’il est
suppos¢ modéliser une compétence cognitive humaine ou animale. Un biais
anisotrope suppose nécessairement quelque connaissance ad hoc qui serait possédée
a priori , ce qui limite la généralité du systéme apprenant.

Nous voulons suggérer toutefois que les modéles d’apprentissage isotropes,
malgré leur apparente généralité, peuvent se révéler trop limités. Dans de nombreux
cas, les individus d’une méme espéce vivante apprennent des formes identiques
dans des circonstances variées. Nous montrons que ces situations d’apprentissage,
dites convergentes, ne peuvent pas étre expliquées par des modeles isotropes, a
moins que les formes apprises soient harmonieuses, c’est-a-dire qu’elles aient de
fortes propriétés de symétrie. Ce dilemme anisotropie-harmonie dérive d’une
caractérisation formelle du biais, basée sur des propriétés géométriques simples. En
montrant comment ce dilemme affecte les théories classiques de 1’apprentissage,
nous tentons de clarifier le débat classique entre 1’inné et 1’acquis dans le cas de
I’apprentissage convergent.

mots clés : Apprentissage, isotropie, biais, symétrie, inné.
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