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CHARACTERIZING EMERGENT PHENOMENA (2): 
A CONCEPTUAL FRAMEWORI( 

Eric BONABEAU I, lean-Louis DESSALLES 2, Alain GRUMBACH 2 

Abstract 
The lack of a unifying conceptual framework for representing, 
characterizing, and dealing with emergence and emergent phenomena, 
led us to study the building of such a framework, based on the notions 
of levels of organization and of levels of detection. Information theory, 
and concepts related to theories of complexity, will help understand the 
nature of emergent phenomena. 

Resume 
L'absence d 'un cadre de pensee clair et unificateur qui permettrait la 
representation, la caracterisation et Ie traitement de I' emergence et des 
phenomenes emergents, nous a conduit a proposer un cadre d'etude 
englobant, reposant sur les notions de niveaux d'organisation et de 
niveaux de detection. La theorie de l'information, combinee a des 
concepts recents lies aux theories de la complexite, permettent une 
meilleure comprehension de la nature des phenomenes emergents. 

I. INTRODUCTION 

The term "emergence", whose numerous definitions have been explored 
from the existing literature in our previous paper (Bonabeau et oZ. , 1995), 
obviously applies to a wide spectrum of phenomena, with a variety of 
different meanings, strengths, and consequences. We believe it both possible 
and worthwhile, however, to understand all these apparently irreconciliable 
conceptions of emergence within a common conceptual framework, which, to 
the best of our knowledge, is still lacking. Such a tentative framework, built 
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upon levels of organization, levels of detection, and theories of complexity 
which make a unifying integration feasible, is developed in the present paper. 
We first introduce levels of organization (section 2) and levels of detectors 
(section 3), to eventually integrate them into a common view of emergence 
and emergent phenomena (section 4). 

II. LEVELS OF ORGANIZATION 

In this section, we make explicit some characteristic features which are 
common to some of the examples presented in our previous paper (Bonabeau 
et ai., 1995). We introduce the notion of level of organization which is first 
studied from an intuitive point of view, and then from a more formal point 
of view based on category theory. 

11.1. Characteristic features 

Let us consider for instance the following three examples (see Bonabeau 
et al., 1995, figures 1, 2 and 3): the picture of a dog, an ant bridge and 
economic systems. 

These three examples share certain features, corresponding to some 
important characteristics of emergence. In particular, we note the presence of: 

(i) actors: interacting agents with local perception and the ability to act 
locally. 

(ii) spectators : one or several entities sensitive to the emergent phenomenon, 
and possessing global perception. 

(iii) a process including: 

- an initial state, based on an organization level N 

- a sequence of events leading to 

- a final state corresponding to an upper organization level N' 

(iv) a time scale for this evolution; this time scale is compatible with actor 
and spectator time scales. 

To make these aspects clearer, let us consider ants: 

(i) the agents are able to: 

- perceive their local environment 

- act in this environment. 

(ii) the notion of an entity that is sensitive to an emergent phenomenon 
is not easy to define. In effect, the emergent aspect of a phenomenon is 
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related to the point of view of an observer of this phenomenon: it is not 
inttinsic to the phenomenon, but related to the global system (phenomenon 
+ observer). A first kind of observer may just look at the formation of the 
emergent phenomenon (for instance, the man who sees the ant bridge) but 
this observer is neither active in the situation, nor directly concerned by the 
phenomenon. We suggest to introduce a new kind of entity sensitive to the 
phenomenon, for which the absence of the phenomenon is ctitical, which 
we call the "involved being". For instance in the ant bridge example, the 
involved being is the ant colony. Many ant bridges exist in nature, without 
human spectator; but in each of them the ant colony is concerned, the bridge 
increasing the adaptive capacity of the colony. 

Phenomenon Involved 
being 

~\'='t> 
Observer 

Figure 1. 

(iii) The two levels of organization are: 

- the set of ants 

- the bridge 

~ 
Scientist 

(iv) Finally, the time scale is around one minute. 

We can study other examples very similarly. A summary of the 
characteristic features concerning each example is given in the following table 
which includes: levels of organization, time scales, agents and the different 
functions (local perception, local action, global perception). The first three 
lines describe the examples. The last three lines describe counter-examples 
which are different from examples through one feature only (near-misses). 

The dog picture example is not as obvious as it seems: for this example, 
it is not the environment which is dynamical, but the observer's perceptual 
process. As regards the (artificial) bridge counter-example, the time scale 
is too long: the involved being is the walker or the driver, but he could 
not see the building of the bridge since this operation takes several years. 
Lastly the neural network counter-example concerns those networks which 
evolve towards a stable state, such as Hopfield nets. These models take as 
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feature time local local global 
nl level n2 level 

example scale perception action perception 

dalmatian 
dog 

point concept second sensor neuron observer 

ant 
bridge 

ant bridge minute ant ant colony 

economic 
phenom. 

purchase/sale crash hour agent agent agent 

dog point concept lIlillisec. sensor neuron observer 

bridge brick bridge year pontoneer pontoneer traveller 

Il eural formal forma l 
pixel pattern second 

lIetwork neuron neuron 

Figure 2. 

input a noisy pattern and give as output the corresponding prototype (not the 
corresponding synthetic information associated with it [the symbol]) . If they 
are considered as one link of an automatic processing chain, the output will 
not be usable for further processing. Thus this artificial agent lacks global 
perception. 

II.2. Distinctive features 

Let us now try to list some distinctive features. One interesting distinctive 
feature is related to the following three functions: local perception, local 
action, global perception. For the dog picture, the three agents performing 
these three functions are all different; in the ant bridge, both local functions 
are achieved by the same agent; as regards the economy, the three functions 
are achieved by the same agent. 

II.3. Levels of organization 

Emergence, as characterized by many, depends on the notion of level of 
organization. Its scope being wider than that of emergence, we study it from 
a more general point of view. 

Examples 

- A paper such as this one, is organized into chapters, sections, sentences, 
phrases, words, characters, pixels, and so on; 

- A human body is organized into molecules, cells, organs, systems; 
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- A processing unit such as an engine, a television set, a computer, even 
a human being; 

- A set, a society, a colony of entities ... 

Let us notice that among these examples, some entities are static (paper), 
others are dynamic (cells, processing unit, society), some are closed, i.e. 
without interactions with the environment (paper), others do interact (cells, 
processing unit, society). 

Characteristic features 

Let us now extract common features which characterize levels of 
organization: 

- multiplicity of levels; 

- a composition law defines upper level entities starting from lower level 
ones; 

- relations between levels (analogy, hierarchy) 

- irreducibility: it is not possible to suppress one level, to connect level 
n-l directly to level n + I ; 

- autonomy of a level: existence of properties, relations, behavioral laws 
concerning entities at a given level , independently from other levels. 

Synthesis 

These characteristic features may be synthetized as illustrated by the 
following schema: 

E 

Figure 3. 
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E is a set containing elements e. C is an external composition law from 
finite sequences of E elements to E' which is the target set. R is a potential , 
relation on En . R' is a potential relation on E'n . 

, 
(E',R') is a level of organization if there exists a R' relation on E'" which 
canllot be deduced from R relations on E" 

For instance, E may be an alphabet, E' the set of all words on that alphabet, 
C letter composition giving words, R' a syntactic or semantic relation between 
words; R' cannot be deduced from relations between letters. This definition 
allows to find most characteristic features which were mentioned above: 

- multiplicity: sets E and E' 

- composition and relation between levels: C composition law 

- autonomy: relations on each level (R and R') . 

... level of organization ... 

Figure 4. 

As a counter-example, let E be the set of integers from 1 to 10, C the 
addition of 10, E' be the set of integers from 11 to 20. If R' is the order 
relation on E'2, R' can be expressed through a R relation on E2: x' R' y' if and 
only if exist x and y in E such that x' = C(x, 10) = x + 10, y' = C(y, 10) = y + 10 
and x R y, R being the order relation on E2. 

Of course, one major problem is to understand " ... R' cannot be deduced 
from R. .. ". Godel's theorem can serve as an analogy, to which we shall return 
in the last part of the paper. The analogy is the following: 

- E set and E'IN integer set 

- R relation/provable theorems on N 

- R' relation/true but not provable theorems. 
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Let us call Nand N' the organization levels (E,R) et (E' ,R'), and e and 
e' the corresponding elements. We are now able to come back to emergence 
and identify the organization levels corresponding to each example: 

- dalmatian dog picture: e: point or patch (location, color), e': dog (concept 
or image) 

- ant bridge: e: ant (location, size), e' : bridge 

- economy: e: transaction (purchase or sale, moment), e': economic 
evolution, aggregate quantity. 

IT.4. Category theory 

Ehresmann and Vanbremeersch (Ehresmann & Vanbremeersch, 1989) 
suggested an interesting formalism based on category theory, which they 
apply to a model of neural network, and can be mapped easily to our problem. 
Let us consider a set of objects with links between them ("morphisms"), and 
let us call it a "pattern". A "global link" of a pattern P to an object 0 
consists of: 

- the set of links from the objects of P to 0 ; 

- each fjj link from OJ of P to OJ of P which is on a path from OJ to 0 , 
i.e. so that there exist links fj and fj satisfying: fj = fij 0 fj. 

o 

Figure 5. 

0' ............ 
-' 

On the previous figure, the global link is the set; {fl ' f2' fd (not f13 
because there is no link between 0 3 and 0). An object 0 is a limit of a 
pattern P, if the links from 0 to any object 0' bijectively correspond to global 
links from P to 0'. Thus, a limit is an object such that each operation on the 
initial pattern can be replaced by an operation on the limit. The limit is an 
object whose elements are the pattern objects, whose internal organization is 
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composed of the pattern links. Besides, it may be given new links, which are 
not mediated by its elements. This latter aspect makes the connection with 
the major idea we mentioned about levels of organization: a relation (link) 
which cannot be expressed through basic element links. On the word-letter 
example, the letters are the elements of a pattern, the word is the limit pattern; 
the word may have links (syntactic or semantic relations) with other words. 

Ehresmann and Vanbremeersch use this formalism to model neural 
networks. Objects are neurons; links are synaptic connections. A pattern 
is the set of neurons which are activated by a stimulus. A limit is associated 
with the pattern, through the following property: each (downstream) neuron 
will receive the same action potential from the limit as from the neurons of 
the pattern. Hofstadter (Hofstadter, 1979) also suggests an illustration of the 
notion of limit, in the algorithmic domain. He introduces a chunking process 
which consists in replacing part of a graph (the pattern) by a node (the limit) 
so that links with other elements of the graph are kept. 

2 3 4 
after [Hofstadter 80] 

Figure 6. 

On that example, graph 1 contains 9 nodes ; a first chunking replaces a 
pattern of 4 nodes by one new node, while keeping relations with other 
nodes. And so on. 

11.5. Section's conclusion 

This study could be extended by including aspects such as intentionality: 
on the local level, agents act following personal goals. On the global level 
however, it is not easy to introduce intentionality, ... except from an ecological 
or teleological point of view. 
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feature time local local global 
nl level n2 level 

examples scale perception action perception 

ant 
bridge minute colony bridge ant ant ant 

? 
human 

? ? 
human human 

? being being being 

Figure 7. 

Finally, we have seen that a level of organization is defined by a set 
of elements and relations R between them (note that the composition law, 
that allow to generate higher-level elements, is at least compatible with, 
if not defined by R): these relations R depend on the observer's abilities 
to dectect them. Therefore, we have to understand how such relations (or 
almost equivalently higher-level objects) are detected. This is the topic of 
the next section. 

III. DETECTING EMERGENCE 

We have already emphasized the importance of the observer. In this section 
we propose a model of some cognitive processes that certainly take place in 
the observer's mind when she "feels" that something is emerging. 

111.1. Changing levels of description 

A comparison between some of the examples given in (Bonabeau et al., 
1995) shows that the emerging object is qualitatively different from its 
components, expressed in section 2 by the idea that R' is not deducible or 
derivable from R. Indeed we need to make a fundamental distinction between 

example emerging object component new property 

spiral 4 arms spiral straight segments rounded curve 

traffic jam vehicle gathering car backward motion 

temperature group of molecules molecule heat 

H2S molecule atom smell 

particle quantum particle plane wave localization 

word English word phonem reference 

run for 20 complex rule elementary rule generality 

Figure 8. Parallel betweell examples of eme/gellce givell ill text. Last columll 

gives a propert)' of the emergillg object that is 1I0t presellt at the componellt level. 



356 E. BONABEAU, J.-L. DESSALLES, A. GRUMBACH 

two levels of description, since properties or operations that are defined at the 
constituent level cannot be applied as such to sets of constituents. Emergence 
corresponds to an activation of the higher level of description . 

Levels of description appear as "situated": they depend on the observer, 
what she is currently looking at, and her current point of view. Emergence 
is also "situated". But let us first describe more precisely what a description 
level is. 

Biological 
point of view 

level of descriptioll exalllple 

species 

individual 

organ 

cell 

macromolecules 

simple molecules 

atoms 

Pan troglodytes 

a given chimpanzee 

the li ver 

a liver cell 

hemoglobin 

a given aminoacid 

carbon 

Sociological 
point of view 

level of descriptioll exalllple 

ecosystem 

society 

group 

bound 

individuals 
individual 

the arboricultural 
system 

groups of chimps 
frequently meeting 

a given group 

a mother with some 

of her offsprings 
a given chimpanzee 

Figure 9. TIvo differellt descriptioll hierarchies to describe the sallie reality 

(Iivillg beillgs), but fro lll two differellt poillts of view: biological alld sociological. 

MallY other hierarchies could be used (e.g. for a gelleticiclII , the "good" 
hierarchy would be base-pailicodOlllgelle/illdivid,/{/llkilllpoplllatiolllspecies). 

111.2. Description levels as membership hierarchies 

Description levels (not to be confused with organization levels discussed in 
the previous section) are modeled here as levels of a membership hierarchy: 
one element of level n + 1 is a set of elements of level n. For instance in 
figure 9, an individual is a set of organs from the biological point of view. 
Elements of a chimpanzee group, from the sociological point of view, are 
for instance a mother-offsprings clan, a group of cooperating males. Let us 
stress two points: 

(i) Description levels are used when describing perceived reality. Describing 
english written words (in general) as made of 26 characters makes use of 
organization levels: a lower level with 26 elements, an upper level with 
100000 elements. A word like "rational" appears as a combination of seven 
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different characters. But when reading the word "rational", the observer sees 
it at the word description level as a set of eight different actual characters. 
The two "a" are indeed two independenly perceived objects. 

(ii) Membership is not transitive. In the above examples, a biologist would 
not consider a given species as a set of many organs; a sociologist would 
refuse to see a given group of chimpanzees as a mere set of individuals; for 
a linguist it would be a nonsense to consider a given sentence as a set of 
characters or a set of phonems. 

The membership relation which links two adjacent description levels is 
fundamental, since it is a distinctive feature of a description hierarchy, as 
opposed to inclusion hierarchies (like those given by iterative clustering 
techniques), inheritance hierarchies (as in an object-oriented computer 
program), functional hierarchies (x is eaten by y which is eaten by zOo ')' 
etc. The model presented here claims that emergence is a phenomenon 
which takes place between two description levels, i.e. two levels linked by 
a membership relation . 

Figure 10. Descriptioll levels (IS defillill g (I membership hierarchy. 

We will consider that emergence occurs when an object is suddently 
perceived at the n + I level when only objects of level n were perceived 
just before. But we must first explain how some of the n-objects perceived 
are grouped together to form a perceived (n + I)-object. Even if we restrict 
ourselves to partitions (in most examples, emerging objects are disjoint sets 
of lower level objects), we must explain how a given partition is chosen to 
form a perceived (n + I)-object among the Bk possible partitions, where Bk 
is Bell's number (see Favaron, 1990) given by: 
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This number rapidly reaches large values (there are 1.4 billion ways to 
partition 15 objects). Of course when a similarity relation is available at 
level n, then clustering techniques (similarity based categorization, cf. [de 
Amorim, 1990]) allow to find a partition which maximizes the sum of 
similarities of pairs of objects belonging to the same cluster (finding this 
partition is NP-hard). 

Unfortunately, if there are N levels, a clustering technique requires 
N -1 similarity relations. Merely estimating similarities at level n + 1 using 
similarities at level n (e.g. average similarity between sets) yields indeed 
inclusion hierarchies, not membership hierarchies. Moreover, it is not obvious 
that (n+ I)-objects are perceived as similar because their constituents are 
similar, for any conceivable similarity relation, at level n. 

111.3. Emergence and detection 

We propose here that the structuration of a given perception into description 
levels is a direct consequence of the existence of a detection hierarchy. The 
observer must have accordingly many detectors organized into a detection 
hierarchy in order to be able to perceive reality in a hierarchical way. A 
detector of level n reports the occurrence of a n-object, so that 

the sudden activity of a (n + i)-detector triggered by a set of activated 
n-detectors 

object levels detection levels 

observer 

Figl/re 11. Descriplioll hierarchy as a collse'll/ellce oIlhe hierarchical slrucll/ralioll of deleclol'S. 

The concept of detector is used here with the meaning it has 
in communication theory. The presence of a detector is what makes 
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the difference between analog and digital communications. In analog 
communication, the important thing is to make sure that the receiver gets a 
very accurate copy of the message sent by the source. Digital communication 
works on totally different grounds. The emitter and the receiver must first 
agree on a set of possible symbols and their physical representation (e.g. 
electric pulse), and any message then consists of a sequence of such symbols. 
Under certain hypotheses, the optimal detector computes correlations between 
the received physical pulses and an exemplar of each expected pulse, and 
then takes a decision (threshold comparison). 

m.4. Examples 

Neuronal detection hierarchy 

The first example of detection hierarchy comes from situations where 
detectors are "hard-wired". One can imagine that a n-detector detects the 
presence or absence of the object to which it is tuned in the input space, each 
input being the output of a (n -I)-detector. 

L7 

L7 

L7 L7 
L7 

L7 

Figure 12. Haiti- wired detector hierarchy: each detector receives inputs from 
the outputs of detectors belonging to the level just below. One can imagine that 

detectors are "AND" gates, or artijicialneurons, or groups of such neurons. 

The type of object On detected by an-detector Dn can be characterized 
according to objects {On-d which are detected in the current environment 
by the detectors {Dn-d which send outputs towards Dn. Dn detects On 
if and only if some of the On-1 are also detected by (n - 1)-detectors. 
One can thus associate On to a subset of the present (i.e. detected) {On- d . 
The hierarchy among objects perceived in the current environment is, as 
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expected, a membership hierarchy. For instance if one thinks of neurons, 
thresholded weighted sums are not associative, and the link {On- d ----) On+! 
that one could consider according to the network topology is meaningless 
(as expected with a membership hierarchy, and contrary to the transitivity 
in inclusion hierarchies where one level can be omitted without destroying 
the hierarchy). 0" is an object since it is detected (as soon as D n is active), 
and it appears as composed of other objects which are present (= detected) 
in the CUlTent environment. 

First levels of the visual system are perhaps organized according to a 
hard-wired detection hierarchy (detectors in this case are groups of neurons): 
pixel-detectors/on-off region detector/line detectoL .. Admittedly higher levels 
of detection in the visual system are unlikely to be hard-wired this way. Gestalt 
theory taught us that we have "good shape detectors" , e.g. those which are 
able to detect a traffic jam on an aerial photography or the logo spiral (cf. 
examples given above). But we can imagine that such shape-detectors are 
also connected to lower level hard-wired detectors in the way illustrated in 
the previous figure, even if these connections are not materialized in some 
simple axonal circuitry. 

Language detection hierarchy 

The linguistic capabilities of human beings, as they are modeled by several 
linguistic theories, offer another example of hierarchical detection. If we look 
at the so-called "double articulation" (Martinet, 1967): phonem/word and 
word/sentence, we come again to three levels: phonems, words, sentences. 
Each competent speaker has a set of word-detectors for the words of his/her 
language. One may think that some (phonemic or whatever) rules help him/her 
build these word-detectors , in real-time or during learning. The competent 
speaker has also grammar rules that help him/her elaborate sentence-detectors 
that detect well-formed sentences. A rare word may thus suddenly emerge 
from its detected phonemic constituents, or a complicated sentence may 
sometimes emerge from its detected words. 

One may imagine that word-detectors are memorized and exist before a 
linguistic message is heard, and that they are "fed" by phonem-detectors. Our 
competence allows us also to detect some unusual or even unknown words, 
and to associate a syntactical category (e.g. "gromic" can be heard as an 
adjective, while "frogrorlo" will be refused as an English word). 

Sentence detectors, on the other hand, seem to be built up in real time. In 
the generative grammar model, such a detector is instantiated by application 
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of transformational rules which are compatible with present (i.e. detected 
by word-detectors) words. Word-detectors create a partition among detected 
phonems, and sentence-detectors create a partition among detected words . 
One can imagine that this membership hierarchy includes further levels, for 
instance the argumentation level where each argument can be recognized 
by an argument-detector which works on detected constituents (that we can 
represent using logical propositions) (Dessalles, 1990). 

Conceptual hierarchies 

Conceptual emergence may occur because concepts are organized locally in 
hierarchies. Let us give first an example. In the game "run for 20", each player 
can add I or 2 to the number obtained by the opponent. The winner reaches 20 
first. A beginner soon discovers that reaching 18 is very bad, or that reaching 
17 is a very good thing (whatever the opponent plays (adding 1 or 2), it is 
always possible to reach 20). Then (s)he will notice that reaching 14 is the 
best way to be sure to obtain 17. From such elementary rules a complex and 
powelful rule may suddenly emerge: "if I can reach a multiple of 3 minus 1, 
I'm able to win". Such a rule replaces a whole set of elementary rules. In a 
problem-solving situation like "run for 20", a conceptual object is relevant 
if it can be used as constituent in a solution. During an argumentation, a 
conceptual object is relevant if it can be included in an argument. Conceptual 
emergence occurs when a conceptual object of higher generality is suddenly 
recognized as relevant. Concepts can be locally organized according to their 
generality. Figure 13 shows how detected objets are accordingly layered in a 
membership hierarchy. In this schema, {Yj} should not be confused with the 
extension of the concept Xl. This extension would be a set of "basic" objects 
that are supposed to be given by perception. This point of view is often 
adopted in psychological theories of concept formation and typicality (Rosch, 
1978). But generalization creates an inclusion hierarchy among extensions, 
not a membership hierarchy. 

To explain conceptual emergence, we have to notice that conceptual objects 
may be locally organized into a membership hierarchy. Here the condition "By 
reaching 14" belongs to the condition "By reaching a multiple of 3 minus 1", 
in the sense given in figure 4. Emergence results from a jump towards the 
next higher level where the relevance of a more general conceptual object 
is suddenly perceived. 
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detected objects concep ts 

Figure 13. COllcepts as detectors hierarchically orgallized accordillg to their gellerality. 

Objects are defilled by the cOllcepts which detect them. The object Yi• detected by qi. 

belollgs to the object XI detected par PI . if qi is equivalellt to PI & ei. where ei is all 

"elemelltary" cOllcept. i. e. ei call1lot be split by COlljOIlCtioli ill the currellt COli text. 

IV. A FRAMEWORK FOR CHARACTERIZING EMERGENT 
PHENOMENA 

IV.l. Introduction 

In this section we propose to build a tentative framework for descIibing 
emergent phenomena. The central notion is that emergence is a dynamic 
process through which some quantity [complexity] is rapidly/dramatically 
varying with respect to the time constant/the spatial granularity, or more 
generally to the model or the level of description used by the observer. All 
definitions have to be conditional, relative to some set of tools available. These 
tools are mostly detectors, that enable the observer to detect "regularities", 
or special shapes we shall call pregnant. Emergence can then be defined 
relative to an equivalence class of observers having certain detecting abilities 
in common. The generic propelties characterizing the equivalence class of 
observers may either be well formalized (symmetry groups, universal Turing 
machines, languages from Chomsky's hierarchy, ... ) or less well-defined 
(perceptual and cognitive capacities). 

IV.2. Complexity and organization 

The notion of complexity is essential III the process of characterizing 
emergence, because emergence can be considered as an increase in the 
complexity of a system (in fact, whether it corresponds to an increase or to 
a decrease somewhat depends on the point of view adopted). 
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IV.2.I. Intuitions of complexity 

The first idea that comes to mind when speaking of complexity is that 
of interrelatedness: many interacting elements give rise to unpredictable but 
structured behavioral patterns. In that sense complexity has something to do 
with organization. But this is not necessarily the only idea. Purely random 
processes may also look very complex if one tries to describe them with 
a great degree of "deterministic" precision, while they turn out to be quite 
simple in probabilistic terms. One important conclusion to draw from these 
simple considerations is that complexity is a relative concept: it is to be 
defined with respect to a set of tools (feature detecting tools and modeling 
tools). Some tools are not always appropriate: for example, probabilities are 
of interest when it is harmless to smooth individual features , while they are 
not adequate when one wants to account for strong individual deviations 
(such deviations from statistical laws can be crucial for the understanding 
of the phenomena under observation) (Kampis, 1991). If one accepts the 
fact that (seemingly) purely random processes are easily modeled (as easily 
as completely ordered processes), then the classical concept of complexity 
holds: complexity lies somewhere in the middle of the entropic scale. 

IV.2.2. Formal measures of complexity 

Here we review very briefly some formal measures of complexity (Bennett, 
1990; Chaitin, 1979; Crutchfield & Young, 1990; Grassberger, 1989; Kampis, 
1991 ; Langton, 1990). One candidate is Gibbs-Boltzmann-Shannon (GBS) 
entropy, which measures the lack of information of an observer about a 
system. It more or less measures the disorder associated with the system 
(or rather with a model of it). In Kolmogorov-Chaitin-Solomonoff (KCS) 
information theory, the complexity K(D) of a string D of symbols (or 
of some pattern) is defined as the size of its minimal Universal Turing 
Machine (UTM) representation. Thus, a (purely random) string which is 
its own best representation is of maximal K(D), while a highly structured 
string (111111111 for instance) has minimal K(D). KCS Complexity can be 
expressed in a more general form: CCD)=INF(s) CCD/S) , S is a symmetry, 
and CCD/S) designates the conditional complexity of D, which is the amount 
of information in equivalence classes induced by the symmetry S in D, plus 
the amount of data that is unexplained by S (Crutchfield, 1990). Using this 
notation, Kolmogorov complexity is defined by K(D)=CCD/{UTM}), where 
{UTM} denotes the set of all symmetries computable by a UTM. One can 
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as well define C(D)=C(D/{BTM}), where {BTM} designates the set of all 
symmetries computable by a BTM (a Bernouilli Turing Machine, which is a 
Turing machine with a random register, so that both purely random and fully 

. predictable processes are easily described) (Crutchfield & Young, 1990). 

Mutual information quantifies the information processes going on between 
two elements A and B: intuitively, there is mutual information between A and 
B if A and B are able to affect one another's behavior. Mutual information 
is defined as MI(A,B) = R(A) + R(B) - R(A,B), where R(A) is the entropy of 
A, and R(A,B) is the entropy of the joint process (A,B). Mutual information 
can be measured between two elements, two sets of elements, or on a given 
element at different time steps. 

We could continue forever this review of complexity. All definitions share 
common features and some differences, but what we must remember is that 
complexity is obviously a relative concept, which depends both on the task at 
hand, and on the tools available to achieve this task. Conditional complexity 
is a powerful tool for defining a general notion, that of relative complexity: 
C(D/S) can be interpreted as "the difficulty of decomposing D when S is 
used as a structuring element (¢:} what is explainable by S) + what is not 
decomposable under this structuring element (¢:} what is not explainable by 
S and remains to be explained otherwise)". Given a set of tools considered 
as structuring elements, there are some aspects of the object that can be 
explained (or compressed) through these tools, and there are some aspects of 
the object that cannot be understood using these tools. In order to explain the 
latter aspects, other tools may be required. We will call these tools detectors. 
For instance, a UTM represents an enormous set of detectors: the set of all 
detectors that are capable of recognizing a computable symmetry. In this 
context, we can see that the complexity of an object is roughly the number 
of classes of features it contains (given a set of observables). 

IV.2.3. Levels of organization 

Mutual algorithmic complexity, or mutual complexity in a more general 
form, constitutes a good means of defining levels of organization. This 
is largely based on a work by Chaitin (Chaitin, 1979), who proposed a 
characterization of organized systems by introducing .K!-complexity. 

Kd(S) = MinJ3 [KCS(JJ.) + ~j:Sn(J3) KCS(Sj)] 

where 13 is a partition of the system S into parts S J, ... , Sn(J3) so that 
for any i, D(Si):Sd, D(X) being the diameter of X. JJ. is a procedure of 
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reconstruction of the systems out of its parts, and KCS(f,L) is the algorithmic 
cost of that reconstruction: K(f,L)=K(S 1 rrS j )+K[n([3)], if one assumes that 
1 f,L 1 = min {I pi: U(p[So * ... *Sn([3)D = S}. 

What does kd-complexity represent? For d2:D(S), one obviously has 
Kd(S) = KCS(S): in effect, the best partition - the one that minimizes the 
~ K(Si) part of Kd-complexity - consists in taking only one part, the whole 
system. It comes directly from the fact that H( (X,Y) ):SH(X) + H(Y) + 0(1). 
Thus {S} is the optimal partition. When the diameter of "observation" d is 
decreased, Kd(S) may increase dramatically if S is structured. Each time one 
encounters a new "critical diameter" under which it is no longer possible to 
find a "good partition" because some partitions are no longer accepted, this 
corresponds to the appearance of a structure. When the diameter is decreased, 
one thus needs to "break" some structures into several parts sharing a lot of 
mutual information. Of course, critical diameters need not be localized, since 
a given structure can cover a certain spectrum of diameters. 

Kd(S) - KCS(S) 

~--+=~+----+--~--------+---------~ o 
dJ d4 mi imnl 

diameter of 
obr;ervation 

Figure 14. III this picture, d1 , (h d3 and d4 are critical diameters, but they are vel)' 

close - olle call imagille that this correspollds to a loosely localized type of structure 

-, while d5 is a highly critical diameter, clearly definillg olle type of structure. 

It has been shown by Chaitin that the degree of algorithmic independence 
between n variables XI, ... , Xn, was well estimated by ~K(Xi)-K((rrXi)), 
that is, if one neglects the cost of the procedure of reconstruction f,L, Kd(S) 
represents the mutual information between SJ, ... , Sn: the optimal partition is 
the one that allows for minimal mutual information between its parts. One can 
also modify Kd-complexity so as to make it iterable, that is all partitions for 
a diameter d are chosen among the under-partitions of the optimal (d+Lld)
partition. It is interesting to remark that the fact that Kd(S) diminishes when 
the diameter is increased does not mean that the average mutual complexity 
per partition Kct(S)/1 [31 also diminishes. 
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IV.3. Emergence 

IV.3.1. Emergence and phase space reduction 

An emergent phenomenon implies that a given indistinguishable set of 
microstates transforms into several distinguishable macrostates: macroscopic 
entropy increases, while microscopic entropy decreases, since microstates that 
were previously associated with the same microstate are now distinguished. 
There has also been a reduction of the space of possible microstates associated 
with macrostates, that is not all microstates are permitted for one particular 
macrostate. This reduction is detected by the observer for whom there has 
been a broken ergodicity. Broken ergodicity is more general than broken 
symmetry, where a system fails to show the symmetry of its underlying 
hamiltonian (Palmer, 1989). It occurs when a system undergoes a transition 
which prevents it from exploring all the states of its phase space (Reichl, 
1980; Palmer, 1989). In an emergent phenomenon, the observer changes some 
parameter of observation, such as the time scale or the spatial granularity, 
and becomes aware of more and more details of the structures of the system. 
That is, there is an apparent broken ergodicity, leading to the appearance 
of components which were not observed at another scale. This is so if the 
scale is finer and finer. 

a 

'tohs orT .. 
A hierarchy of components developing as 
temperature or observation time is lowered 

Figure 15. 

Let us for instance consider a traffic-jam: the emergent structure comes from 
the fact that cars cannot drive freely wherever they want due to constraints 
imposed by other cars and by the environment (roads). There is in this case an 
"observational broken ergodicity": all behaviors are possible a priori, while 
observed behaviors are much more specific. 
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IV.3.2. Detectors 

From the previous paragraphs, we understand that elements of a system can 
be grouped so as to facilitate the explanation of the system's behavior at the 
higher level. This also corresponds to a decrease in the relative complexity 
C(Syst/{Det}) where {Det} is the set of available detectors. At time t 

Ct(S/DI, ... , Dn)=Ct(S/DJ, ... , Dn- I) 

and Dn is activated at time t + ~t 

The transition occurs within ~t because detectors are usually "treshold 
devices". For instance, if an object contains long range symmetries, it might 
take a long time to detect these symmetries, but once a symmetry is about 
to be detected, the transition is sharp. 

Detectors are sensitive to certain relationships present between elements 
of the system under observation. The passage from level N to level N + 1 
corresponds to a reduction of the space of possible behaviors due to mutual 
constraints between the elements: it is these remaining behaviors (or the 
associated constraints) that are detected, and thus they are "physically 
pregnant" in Thorn's terminology (Thorn, 1980). They become biologically 
pregnant when they evoke shapes which are especially important for the 
survival of the (biological) system: "Mind and world in short have evolved 
together, and in consequence are something of a mutual fit. ( ... ) That is to 
say that our various ways of feeling and thinking have grown to be what 
they are because of their utility in shaping our reactions on the outer world" 
(James, 1879). 

C ) G ) 0
0mCbahViUr.;) 

emergence ~ ~ as~ sp~ce .... become much ........ 
lIell: ue to more probable-> 

i~;our~ation physical 
pregnBce 

Figure 16. 

IV.3.3. "Non-derivable" properties 

pregnant ) 
behaviors -> 
biological 
prl!gnonce 

It is worth returning to the notion of "derivation" mentioned in the first 
part of this paper: what does it mean that one cannot "derive" the properties 
of a system at a particular level given a model of how a lower level behaves? 
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There are several possible (and not incompatible) answers to this question. 
For the sake of simplicity, we describe these answers in a formal setting: 
all processes we are talking about are computational. We shall see that the 
concept of detector is of importance. 

- We can understand the notion of derivation in the context of Godel's 
theorem. In this case, derivation is something very formal, it designates a 
way of proving new theorems from a set of axioms . Not being able to derive 
observed higher-level properties from the set of lower-level properties means 
not being able to prove theorems about higher-level entities while we know 
that these theorems are true. We know since Godel that such a situation is 
possible. The only way of knowing the properties of the higher-level entities 
is to detect them, to be sensitive to them, since it is impossible, even "in 
principle" to deduce them. 

- Another cause for the impossibility to derive the higher-level properties 
from lower-level considerations is the time - and possibly the "memory" 
space - it would take to examine all the possible properties of the higher
level and determine those that are of interest. Time compression is allowed by 
computers, and in that sense we may speak of computational emergence since 
computers enable us to observe higher-level properties, indeed contained in 
the specification of the system from the beginning, but which are out of reach 
for a human being, because the space of possible properties is too huge. 
Computers might even not be sufficient, if the number of dimensions of the 
space of possibilities is "immense" in Elsasser's sense (Elsasser, 1981), i.e. 
a number that is "not tractable and cannot be acted upon with present-day 
computers" (Kampis, 1991). These properties may be logically deep: it might 
take a very, very long time even with the best program ever - not to speak 
of the difficulty of finding this program - to compute these properties. In this 
case, the only way of discovering a new "deep" property is to have a detector 
which is at least as deep as the property, and having a high value of mutual 
information with that property due to a common history. 

- Putnam made a distinction between "to deduce" and "to explain" (Putnam, 
1973). Being able to deduce the properties of a phenomenon from a set of 
causes is not equivalent to explaining this phenomenon, because only a 
few among the many possible causes may be relevant, "certain systems can 
have behaviors to which their microstructure is largely irrelevant" (Putnam, 
1973). Explaining the phenomenon amounts to determining what the relevant 
causes are. Second, explanation is, according to him, not transitive, because 
explanations at one level are not of the same nature as explanations at another 
level. But worse, it may simply be impossible to deduce the properties of a 



CHARACTERIZING EMERGENT PHENOMENA 369 

phenomenon from a set of causes originating from one single discipline: this 
is so because "the laws of the higher-level discipline are deducible from the 
laws of the lower-level discipline together 1-vith "auxilimy hypotheses" which 
are accidental from the point of view of the lower-level discipline" (Putnam, 
1973). The laws of the higher-level discipline therefore depend on both 
the laws of the lower-level discipline and "boundary conditions" which are 
"accidental from the point of view of physics but essential to the description 
of the higher level". It is through the huge space of possibilities allowed by 
physics that higher-level phenomena are somewhat autonomous relative to 
the laws of physics. What is essential is that explaining a phenomenon is not 
always possible, and the only way of having an idea about this phenomenon 
is not by explanation but by detection. 

IV.3.4. Emergence relative to a model 

It is now perfectly possible to understand "emergence relative to a model" 
(ERM) within the present framework. ERM corresponds to a shift in point 
of view. At a given level of description, ERM is associated with an increase 
of C(Systl {Tools}), where Syst is the system under observation and {Tools} 
a set of tools available to the observer. The system apparently increases 
the dimension of its phase space and its behavior apparently becomes 
"random": less of the behavior of the system is understood, more of it 
becomes unexplained. The meaning of {Tools} can be twofold: 

• it can represent a set of detectors, in which case ERM <=> (increase of 
C(Systl {Delt}), 

• or it can represent a model of the system, and then ERM <=> (increase of 
C(Syst/[P/{Det}])) , where P/{Det} is a minimal program generating D with a 
particular input, using only allowed symmetries (detectable with {Det}). More 
clearly, in this case, P is the program that explains the system's behavior, and 
therefore if ERM occurs one will have to change the input for a longer one, 
and it might be sufficient to modify [P/{Det}] -7 [P'/{Det}] in order to lower 
C(Syst/[P/{Det}]); changing the model without changing the set of detectors 
(and thus the set of observables) is sufficient. This is similar to Cariani's 
syntactic emergence. If {Tools} = {Det}, then the initial level of complexity 
will never be reached again if no detector is added: ERM reflects the need 
for a new detector to be used in order to build more efficient models. 

From these considerations, it is easy to understand how ERM is different 
from other conceptions of emergence, and why it corresponds to a shift in 
point of view: in effect, ERM sees emergence in cases where it becomes more 
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difficult to model the system, while most other conceptions of emergence state 
that emergence leads on the contrary to a reduction in the modeling difficulty. 
To understand the difference it may help to see that such conceptions simply 
apply to the observer (assuming the system does not modify its behavior), 
while ERM applies to the system (whose behavior's modification requires 
a new model). 

V. CONCLUSION 

In conclusion, we have presented a framework, based on levels of 
organization, levels of detection and theOlies of complexity, to integrate 
most conceptions of emergence. We have emphasized the importance of 
the observer, and shown how, depending on the point of view, emergence 
conesponds to an increase or a decrease of complexity in a system's model. 
This framework is far from sufficient, since it is mostly descriptive, and gives 
only few prescriptions to achieve emergence: but we believe it constitutes 
a first step towards this goal. 
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