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Abstract 

Near-miss experiences are one of the main sources of intense 
emotions. Despite people’s consistency when judging near-
miss situations and when communicating about them, there is 
no integrated theoretical account of the phenomenon. In 
particular, individuals’ reaction to near-miss situations is not 
correctly predicted by rationality-based or probability-based 
optimization. The present study suggests that emotional 
intensity in the case of near-miss is in part predicted by 
Simplicity Theory. 
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The Near-Miss Experience 
People are emotionally responsive to situations in which 
some benefit was within reach, but has nevertheless been 
missed. Near-miss (or near-hit) experiences are one of the 
main sources of strong emotion. The 1000001th customer in 
a store may feel frustrated when the person in front of her 
gets his shopping cart reimbursed. Failing an entrance 
examination by only a few points may spoil entire lives. In 
June 1995, Tim O'Brien shot himself in the head in despair, 
after he (mistakenly) believed he had lost out on a £2.7m 
National Lottery jackpot because he had forgotten to renew 
his ticket. The missed opportunity is not always as evident 
as in these examples: individuals sometimes make up an 
alternative situation to compare their actual fate with, e.g. 
when thinking in retrospect (Teigen, 2005). 

In studies about reasoning, feelings generated by near-
misses are considered to introduce irrational bias (Wohl & 
Enzle, 2003; Dillon, Rogers & Tinsley, 2006). If rational 
agents are supposed to rely on objective probability only, 
then human sensitivity to near-misses indeed reveals a gross 
departure from rationality. Though the present study 
confirms the relative irrelevance of probability, we still 
suppose that the near-miss experience obeys definite laws. 

One of the most remarkable characteristics of near-misses 
is the human ability to recognize them and to extract all 
relevant parameters that contribute to making the situation 
emotional. In particular, though the missed situation has 
often no objective character (as it did not occur), its 
closeness to the actual situation is treated as objective by 
people (Kahneman & Varey, 1990). Since they are easily 
recognized, near-miss situations populate spontaneous 
conversations, as individuals systematically urge to share 
such emotional experiences (Rimé, 2005). 

In near-misses, the actual situation is compared to a 
counterfactual one. The counterfactual alternative may be 
preferable or worse. The former case is associated with bad 

luck, while the latter generates feelings of good luck. In the 
present paper, we deal with bad luck situations exclusively. 
The symmetrical case can however be easily derived. 

In a previous study (Dessalles, 2010), the problem has 
been explored qualitatively in relation to Simplicity Theory. 
Participants were proposed short stories and were given the 
possibility to choose some parameter so as to make emotion 
maximum. For instance, Lucas had to lace up his shoes at 
100m/200m/400m from the station, and then missed the 
train by five seconds. In this kind of story, a majority of 
participants choose the shortest distance, as predicted by the 
theory. The present paper offers two significant improve-
ments. First, we concentrate on bare near-miss (i.e. without 
considering possible mutable causes of the failure, as in the 
Lucas story). Experiments are thus made simpler and more 
systematic thanks to a change of modality: we use graphical 
representations of the missing events and then we vary 
probability or distance to the target. The second 
improvement concerns the implementation of the theory, 
which is done more rigorously.  

In the next section, we mention the various factors that 
are known to influence near-miss emotion intensity, though 
they have not been included in a coherent theory yet. Then 
several experiments will be described that explore the role 
of the complexity (or simplicity) of outcomes. Then we give 
a short summary of simplicity theory and evaluate its 
predictions in near-miss situations.  

Determining Factors 
A variety of parameters have been found to control emotion 
intensity in the case of near-miss. The most obvious factor is 
the difference in ‘utility’ v between the actual situation s1 
and the counterfactual s2 (Teigen, 2005). Another 
acknowledged (but ill-defined) factor is the spatial or 
temporal ‘closeness’ D to the counterfactual (Kahneman & 
Varey, 1990; Teigen, 1996; Roese, 1997; Pritchard & Smith, 
2004). Teigen (2005) represents these effects through the 
formula: L = v / D, where L stands for emotion intensity. For 
some authors, the low probability of the actual event is crucial 
(Rescher, 1995). Other factors include controllability (Roese, 
1997) and the mutability (i.e. modifiability) of causes 
(Kahneman & Miller, 1986; Byrne 2002). 

We designed a first test to confirm that the “rational” 
approach, based exclusively on utility and probability, is 
unable to predict emotional judgment. Participants were 
asked to rank emotion in three similar situations where a 
young man broke his leg while on a one-week skiing 
holiday. A’s accident occurred the first day, on the very first 
run; in case of B, it occurred the third day, at 14h30; for C, 



 

it occurred the last day of the week, on the very last run. We 
may consider that the probability of each accident was 
equal. Utility, however, is different: v(A) < v(B) < v(C), 
since C and, to lesser extent, B, could still enjoy their 
holiday. If utility was the sole factor, B should be thought to 
be significantly more disappointed than C. Figure 1 shows 
average reversed emotion rankings (from 3: most 
maddening, to 1: least maddening) attributed to A, B and C. 
We can see that the results contradict the prediction based 
on pure utility. C’s situation is judged as emotional as B’s 
(54% judged it less maddening, but 46% found it more 
maddening). For nearly half of the participants, the 
singularity of the temporal location of C’s accident (the very 
last run) as opposed to B’s (one run among many) more 
than compensates for the difference in utility. 
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Figure 1: The ski story (102 participants; bars indicate 
standard deviation). 

This result is consistent with Teigen’s formula L = v / D, 
as the ‘distance’ to the counterfactual (if only C had stopped 
skiing one run earlier) is minimal for C. Our experiments 
will show, however, that v and D are often not the only 
parameters involved. 

We tested various lottery situations in which an individual 
is supposed to have missed the opportunity of winning 
1000 €. The near-miss situations we tested are depicted on 
figures 2-4. Red areas are winning regions (note that figures 
2-e, 3-d and 4-b are not really near-misses). In each case, 
the “objective” probability of the outcome is evenly 
distributed over the whole line or plane. 
v is fixed (players were supposed to win 1000 € if the 

dot had landed in a red region). The way emotion varies is 
not controlled by the ‘objective’ winning probability, at 
least in figures 2 and 4 where that probability is kept 
constant. It is not entirely controlled by D either, contrary to 
Teigen’s claim, as evidenced by the fact that emotion may 
significantly vary between figures 2-c and 2-d. 

Experimental Results 
Participants (number = 89) were asked to rank the 
disappointment of losers in various uniform lottery 
situations. They were shown slides corresponding to 
figures 2-4 during approximately 1.5 min. In these tests, the 
dot moved continuously before stopping at its landing site. 
Each participant was asked to write down different ranks for 

each test, from 1 (mostly infuriating) to 5 or 6 (least 
disappointment). 

 

Figure 2: One-dimensional lottery. 

 

 

Figure 3: One-dimensional lottery, variable probabilities. 

 

 

Figure 4: Two-dimensional lottery. 

Figures 5, 6, 7 show experimental results for the 
situations illustrated in figures 2, 3 and 4 respectively. Bars 
show inverted emotional ranks, ordered from most 
emotional to least emotional. Segments in grey indicate 
standard deviation. 
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Figure 5: Experiment of figure 2 (89 participants). 
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Figure 6: Experiment of figure 3 (89 participants). 
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Figure 7: Experiment of figure 4 (89 participants). 

These experiments show that probability alone cannot 
explain emotion ranking, as the winning probability is kept 
constant in figures 2 and 4, or would make wrong predictions 
(e.g. in figures 3-c and 3-e where emotion is high despite 
opposite probabilities). More generally, most judgments 
about (un)lucky situations are not explained by variations of 
probability (even perceived probability) (Teigen, 1996). The 
experimental results show that distance to target is not fully 
relevant either, as judgments for figures 2-c and 4-c show. 

We consider now what simplicity theory can possibly 
bring to the analysis of the problem.  

Simplicity and Probability 
Simplicity is a fundamental cognitive principle (Chater, 
1999). For instance, it explains how human brains 
reconstruct hidden shapes (figure 8). 

The description complexity C(s) of a situation s (or 
Komogorov complexity) is defined as the size of its 
(current) best summary. The partially hidden square in 
figure 8 is simply defined as an invariant of a rotation 

group, a description that no alternative shape can beat (out 
of any specific context). 

 

Figure 8: Hidden shapes are the least complex ones. 

Complexity theory (Solomonoff, 1978) states that 
probability is given by: 

 pa(s) = 2–Cw(s)  (1) 

Cw(s) is the generation complexity of s, i.e. the minimal 
amount of information that the ‘world’ requires to generate 
s. This definition presupposes that s is designated in 
advance. In most real life situations, this is not the case. 
Individuals determine probability after the fact. Simplicity 
theory (Dessalles, 2008) takes the ex post determination of s 
into account by comparing Cw(s) to the complexity C(s) of 
describing s. Unexpectedness U, for any situation s, is the 
difference between its generation complexity Cw and the 
complexity C of its description. 

 U(s) = Cw(s) – C(s) (2) 

To be unexpected, situations must be out of the ordinary, 
i.e. they must be abnormally simple (C smaller than Cw). For 
instance, a lottery draw such as 1-2-3-4-5-6 would be highly 
unexpected whereas a typical draw would not (what 
Solomonoff’s formula does not predict).  

The main claim of Simplicity Theory (ST) is that 
unexpectedness translates into subjective probability 
through the following expression. 

 p(s) = 2–U(s) (3) 

The difference (in bits) between generation complexity 
and description complexity, if regarded as successive flips 
of coin, measures probability. Improbable situations are 
situations that seem “too” simple, i.e. easy to describe and 
hard to generate. Equations (1) and (3) coincide only when s 
is fully determined (C(s) = 0) before considering its 
probability (e.g. when one’s own combination is drawn in a 
lottery). Note that ST’s definition of probability only 
considers singular events and never sets of alternatives 
(contrary to standard probability theory). 

The notion of unexpectedness explains a variety of 
phenomena (Dessalles, 2008a; www.simplicitytheory.org). 
Let’s mention a few. 

- Rarity: rare situations are felt improbable, but only if the 
feature that makes them rare is simple enough (a 
phenomenon that standard probability theory ignores). 

- Closeness: events locations, if drawn uniformly, are felt 
improbable when the location happens to be simple 
(egocentrically close or close to a simple landmark). 



 

- Exceptions: exceptional situations are considered 
improbable, but only if the feature that makes them 
exceptional is simple enough. 

- Coincidences: The unexpected character of coincidences 
is also due to simplicity (Dessalles, 2008b). If s1 and s2 are 
the two coinciding events, then the complexity of the joint 
event can be assessed: C(s1&s2) < C(s1) + C(s2|s1). 
Consequently, U(s1&s2) > Cw(s1) + Cw(s2) – C(s1) – C(s2|s1). 
If both events are not unexpected separately and have 
similar generation complexity, we get: U(s1&s2) > Cw(s1) – 
C(s2|s1). Unexpectedness may be large if the analogy 
between s1 and s2 is strong (which means that the 
knowledge of s1 allows to spare in the description of s2). 

ST’s definition of probability can be used to describe 
aspects of the near-miss subjective experience.  

Simplicity and Near Miss 
Let’s consider the near-miss situation of figure 9, where the 
colored zone is the winning one. The actual outcome is s1. It 
might be compared with a standard (i.e. mostly complex) 
loosing situation s1s, or with a standard winning situation s2s 
or with the closest winning situation s2. 

 

Figure 9: One dimensional near-miss. 

The probability of loosing in the lottery is assessed by:  

 U(s1s) = Cw(s1s) – C(s1s)  (4) 

The generation complexity of any landing site s is: 

 Cw(s) = log(L/a)  (5) 

Logarithms are in base 2 (see appendix for indications 
about how complexity is computed). This formula reflects 
the fact that the draw is uniform over the whole strip. On a 
discrete lottery strip, a is the size of a unitary cell; on a 
continuous line, it would be the length of the minimal 
distinguishable landing site. In complexity terms, Cw(s) is 
the amount of information (in bits) that the ‘world machine’ 
needs to produce the event (see www.simplicitytheory.org). 

Complexity C(s) is the minimal amount of information 
needed to designate s unambiguously. Since s1s is a typical 
position in the losing range, its complexity (see appendix) 
is: C(s1s) = log(l1/a). We get: 

 U1s = U(s1s) = log (L/l1) (6) 

This value is equal, on a logarithmic scale, to the standard 
ratio of extensional probabilities, though it has been establi-
shed by considering the complexity of one individual event 
only. Similarly, we have for a standard winning location: 

 U2s = U(s2s) = log (L/l2) (7) 

Simplicity theory allows different computations for U(s1). 
One computation is the straightforward one, given by (6). 
U(s1) can be also evaluated by comparison with a 
counterfactual winning situation s2: 

 Cw(s2) = Cw(s1) + Cw(s2|s1) 

 C(s2) < C(s1) + C(s2|s1)  

This writing presupposes that s2 is (fictitiously) generated 
in two steps, through s1. The inequality comes from the fact 
that any constraint in the computation of complexity may 
give a suboptimal result. The minimal value of C(s2) is 
obtained when s2 is the closest winning position, in which 
case C(s2|s1) = 0 (s2 can be determined unambiguously from 
s1). We get: 

 U(s1) > U(s2) – Cw(s2|s1) (8) 

Cw(s2|s1) measures the smallest amount of information 
that should be given to the ‘world’ (here, the lottery 
machine) for it to produce s2 instead of s1. Normally, 
Cw(s2|s1) = Cw(s2), as the lottery has no memory. In the case 
of the near-miss experience, individuals allow themselves to 
‘cheat’ with the world (as the normal world does not allow 
giving such a bit of a boost), as if they could alter the course 
of events in retrospect. The value of Cw(s2|s1) measures the 
amplitude of “almost” in the expression “I almost won”. It 
implements the ‘distance’ D postulated by Teigen (2005). 
Our definition, however, is more abstract than mere physical 
distance (sitting next to a lottery winner doesn’t necessarily 
provide a feeling of near-miss!). In the situation depicted in 
figure 9, we have: 

 Cw(s2|s1) = 1 + log(/a) 

In that ‘cheating’ mode, we need 1 bit to ‘tell’ the world 
to move the landing site to the right instead of to the left and 
log(/a) to designate the amplitude of the move. On the 
other hand, the complexity of s2 is negligible, as it is a 
remarkable location. We may consider C(s2) = 0 (see 
appendix). Finally: 

 U2 = U(s1) > log (L/) – 1 (9) 

We examine now whether the three expressions Us1, Us2, 
U2 are of any help to account for the specific cases of 
figures 2-4. 

Simplicity Effects 
The main difficulty in applying ST to near-miss situations 
comes from the fact that we ignore how probability controls 
emotion. We may assume that emotional intensity is an 
increasing function of unexpectedness.  

A first result is the ability of ST to explain the emotional 
value of situations depicted in figures 2-d and 4-d. 
Formula (9) gives a high value for U(s1), as the missed 
position is both close to the actual outcome and remarkably 
simple. In the five situations of figure 2, a=1, L=48, l1=32, 
l2=16 and   l2/2. If we apply (9) to situation 2-b, we get 

L 
 

s1  s2 

l1 l2 
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 
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U2 = log (48) – 1 = 4.6. In situation 2-d, the landing site is 
blocked at one end of the strip, so we spare the direction bit 
in the instruction given to the world, and U2 = 5.6. In terms 
of probabilities, loosing that way is equivalent to hitting a 
target location designated in advance. 

In the two-dimensional situation of figure 4-a, the 
generation complexity of a draw is Cw(s) = log (S/a2), where 
S is the area of the rectangle. We also have for a standard 
winning location: C(s2s) = log (l2

2/a2), where l2 is the size of 
the winning square. For the counterfactual winning position 
s2, we have: C(s2) = log (4l2/a), as s2 must be located along 
the perimeter of the winning zone. The complexity of 
cheating is now: Cw(s2|s1) = 2 + log (/a) (the two additional 
bits are used to select the ‘cheating’ direction from four 
possibilities). Finally: 

 U2 > log (S/(4l2)) – 2 – log  (10) 

In the experiments of figure 4, S = 10×8,  = 0.25 (or 
more) and l2 = 4 or 2. We get U2 = 2.3 for situation 4-a and 
U2  7.3 for situation 4-d. The difference comes from the 
fact that s2 is a remarkable point (see appendix) that does 
not require to be located on the perimeter of the winning 
zone. Moreover, the world has only two directions available 
for correcting its ‘mistake’, instead of four. 

Formula (9) also explains the influence of the distance to 
the target, and thus the systematic preference of 2-b over 2-a 
over 2-e, and of 4-a over 4-f over 4-b. The formula does 
more: it accounts for the fact that the counterfactual location 
s2 is closest to s1, a fact that most models merely take as 
granted. 

Finally, formula (9) explains why situation 2-b dominates 
2-c and why situation 4-a dominates 4-c. When the winning 
region is split, the complexity of the counterfactual s2 
increases, by two bits in 2-c and by one bit in 4-c. 
Unexpectedness is thus diminished in both cases, and 
emotion is less intense. This is a situation in which 
subjective probability (as predicted by (3)) changes, while 
extensional probability does not. 

Unfortunately, formula (9) is silent about preferences in 
figure 3 and it makes two wrong predictions. It wrongly 
predicts that 2-a should be more emotional than 2-c and that 
4-e should be more emotional than 4-c (note that the 
experimental difference between 4-e and 4-c is not 
statistically significant). The subjective feeling given 
informally by some participants is that in 2-c and 4-c, it was 
“harder” to avoid the winning regions and thus that they are 
more disappointed. Formulas (6) and (7) may explain these 
phenomena by providing an estimate of prior probabilities. 
When the winning region is broken down into four pieces, 
the complexity of a standard winning region s2s is increased: 
we need to designate a way of distinguishing the pieces (see 
appendix). Note that the two additional bits necessary to 
find the relevant piece are spared when searching into it, as 
it is four times smaller. But C(s2s) gets globally increased 
and, according to formula (7), winning seems less 
unexpected and losing appears less probable. Conversely, in 
a situation like 4-e, the loosing region becomes simpler, 

making the standard loosing position more complex (s1s can 
be almost anywhere) and thus making U(s1s) smaller than in 
4-c. This may explain why the emotion attached to 4-e is 
relatively downgraded. 

Discussion 
This study investigates a phenomenon which, despite its 
importance in the generation of intense emotions in daily 
life, resists adequate modeling. In particular, probabilistic 
models (including Bayesian models) do not provide 
acceptable explanations.  

Simplicity theory does not account for all observed 
phenomena, but explains for some of them. The principal 
missing ingredient is the link between probability, as 
defined by unexpectedness through (3) and emotional 
intensity. We merely assumed that emotional intensity is an 
increasing value of unexpectedness. However, we do not 
know how to integrate prior probabilities, given by (6) and 
(7), with the amplitude of near-miss given by (9). 

The role of prior probabilities is manifest in the situations 
of figure 3. It is correlated with the fact that extreme values 
of priors in 3-c and 3-e are felt mostly emotional. However, 
as evidenced by the large standard deviation in figure 6-e, 
some participants consider situation 3-e as poorly 
emotional, as the prior winning probability is very low. We 
tried to manipulate experimental settings to favor prior 
probability vs. counterfactual thinking. We proposed a 
version of the experiment in which dots dynamically 
appeared at random locations before stopping at the near-
miss position, instead of moving continuously as in the 
preceding experiments. The hope was to make people more 
aware of U1s and U2s, as both situations of failures and of 
success could be observed just before the test began. A 
comparison of figure 7 and figure 10 shows the consistency 
of participants’ behavior, but fails to show any effect of the 
prompting. 
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Figure 10: Experiment of figure 4 with random prompting 
(89 participants). 

For some aspects of the near-miss experience, we must 
perhaps make additional assumptions. In the case of 
figures 3-c and 3-e, we see that individuals declare equally 
strong emotions (figure 6) with some indication that 3-c 
would be even more emotional. Unexpectedness is, 
however, stronger in 3-e. A possible explanation is that 
losses provoke more intense emotions than gains 
(Kahneman & Tversky, 1979). 



 

We are still confident that the near-miss experience obeys 
definite laws that are in part to be discovered. The aim was 
to show that simplicity, rather than extensional probability, 
is the main aspect through which our minds compute 
emotional intensity. What is at stake is not only the 
elucidation of an important phenomenon that controls many 
of our daily emotions. It is also to connect it to a general 
theoretical framework, Simplicity Theory, which has been 
developed independently and makes strong predictions in 
various other domains. One expected outcome of these 
studies will be to show that emotional judgment is not 
blurred by a variety of independent biases, but obeys 
general laws in which simplicity play a central role. 
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Appendix  
Complexity is still regarded as unknowable by many 
scholars, as it cannot be computed in an “objective” way. 
This prejudice is not justified in cognitive science (Chater, 
1999). Simple codes can approach minimal description. For 
a list, we can use a positional code. 

 -  0  1  00  01  10  11  000  001  010 … 

Note that the first element requires no additional 
information (once the list is designated). Such codes are not 
self-delimited. Self-delimitation is irrelevant here, as we are 
concerned with the minimal description of individual 
objects. The preceding code can be easily extended to sets 
of lists (as below) or trees, by using positional code on a 
branch and switching bits at nodes. 

 
  1  11  111 
0  10  110  1110 
00  100  1100  1111 
01  101  1101  11100 
000  1000  11000  11101 
001  1001  11001  11110 
010  1010  11010  11111 
011  1011  11011  111000 
0000  10000  110000  111001 

 
The lists may contain structures, operations or even 

represent short-term memory.  
The preceding code can be adapted to assign simple 

representations to remarkable points. For instance, on a 
bounded list, endpoints are simpler than middle points. 

 -  0  00  01  000  001  010  110  101  100  10  1 

This explains why remarkable points such as frontiers are 
less complex than ‘normal’ points. 

With this code, elements of a list of size N are coded with 
log2 N bits on average. 

 
 


