
Implementing XPBD

JEAN-LOUP ARETTE-HOURQUET, Telecom Paris

Extended Position-Based Dynamics (XPBD) is a widely used method for
simulating soft and deformable bodies in real-time. This report begins by
summarizing the core principles of XPBD and its key improvements over
traditional Position-Based Dynamics (PBD), particularly in handling con-
straints with stiffness and time integration. I describe the implementation of
XPBD for specific physical bodies and constraints, along with an analysis
comparing multiple solver iterations and sub-stepping for accuracy and
stability.

Additional Key Words and Phrases: Extended Position-Based Dynamics,
Position-Based Dynamics, real-time simulation, constraints, deformable
bodies, physics-based animation

1 INTRODUCTION
Position-Based Dynamics (PBD) is a technique in real-time simula-
tion, widely used in computer graphics for its simplicity, robustness,
and efficiency. Introduced by [Müller et al. 2007], PBD focuses on
directly manipulating the positions of particles to satisfy constraints,
bypassing the need to solve complex systems of differential equa-
tions. This approach makes it particularly appealing for applications
like cloth simulation, soft bodies, and fluid dynamics, where real-
time performance is crucial. However, while PBD excels in speed
and stability, it lacks physical accuracy and the stiffness of the con-
straints varies with the number of iterations. The last point can be
an issue in video games for example, where the frames per second
varies, so can create unconsistent results.

Extended Position-Based Dynamics (XPBD), introduced by [Mack-
lin et al. 2016], addresses these limitations by modifying the con-
straints definition and the solver loop. This enhancement also allows
infinitely stiff constraints alongside soft constraints while keeping a
fast and stable simulation. Then, the method has been used in more
various situations such as rigid bodies or fluid simulations.

This report explores the implementation of XPBD, detailing the
constraints and physical bodies modeled.

2 THEORITICAL OVERVIEW

2.1 Description of the algorithm
XPBD algorithm relies on the correction of positions by using con-
straints. A constraint is function that takes as an input the positions
of the system and returns a scalar. The goal of XPBD is to satisfy
the constraints, i.e. we can impose it to be equal to or greater than
a constant (often 0). The only condition is that the constraint needs
to be differentiable. So the algorithm is flexible because it allows
various constraints.

Each constraint is associated with a inverse stiffness parameter 𝛼 .
It is defined by𝛼 = 𝛼/𝑑𝑡2. XPBD supports infinite stiffness by setting

This report is submitted as a part of project for Advanced 3D Computer
Graphics (IMA904/IG3DA), Telecom Paris.

The original work is introduced by [Macklin et al. 2016].

ALGORITHM 1: XPBD simulation loop

Predict position 𝑥̃ ← 𝑥𝑛 + Δ𝑡𝑣𝑛 + Δ𝑡2𝑀−1 𝑓ext (𝑥𝑛 )
Initialize the solver variables 𝑥0 ← 𝑥̃

Initialize multipliers 𝜆0 ← 0
for 𝑖 ← 0 to solverIterations do

for each constraint j do

Δ𝜆 ←
−𝐶 𝑗 (𝑥𝑖 ) − 𝛼̃ 𝑗𝜆𝑖 𝑗

∇𝐶 𝑗𝑀
−1∇𝐶𝑇

𝑗
+ 𝛼̃ 𝑗

Δ𝑥 ← 𝑀−1∇𝐶 (𝑥𝑖 )𝑇 Δ𝜆
update 𝜆𝑖+1𝑗 ← 𝜆𝑖 𝑗 + Δ𝜆
update 𝑥𝑖+1 ← 𝑥𝑖 + Δ𝑥

end
end
update positions 𝑥𝑛+1 ← 𝑥𝑖

update velocities 𝑣𝑛+1 ← 1
Δ𝑡

(
𝑥𝑛+1 − 𝑥𝑛

)

𝛼 to 0, which was not possible with the original PBD algorithm.
When it is not 0, 𝛼 usually ranges from 10−10 to 10−2.

Each position is associated with a mass, or rather an inverse mass
𝑤 . So the algorithm supports infinite masses by setting w to 0.

The algorithm is described in 1. It is composed of three steps:
(1) Predict: Apply velocity and external forces to the system
(2) Correct the constraints
(3) Update velocity

The most important part of the algorithm is solving the con-
straints. We define local constraints and we try to solve them it-
eratively. At one point, they will be satisfied. To do this, we first
compute a Lagrangian coefficient and then modify the positions of
the system.

The strenght of XPBD is that the solver converges; the simulation
will have the same behavior as long as there is enough iterations. It
was not the case with the original PBD algorithm, as the stiffness of
the constraints increased as we increased the number of iterations.

2.2 Substeps
Recentworks ([Macklin et al. 2019]) have shown that we can simplify
the algorithm by using substeps instead of iterating multiple times
to solve the constraints. The new algorithm is described in algorithm
2. As we can see, we no longer have to keep track of 𝜆.

However implementing directly this algorithm makes the solver
explode. This is because substepping brings numerical errors. To fix
this, we must include damping in the solver loop, by modifying the
Δ𝜆 calculation.

Δ𝜆 =
−𝐶 𝑗 (𝑥𝑖 ) − 𝛾𝑖∇𝐶 𝑗 · (𝑥 − 𝑥𝑛)
(1 + 𝛾𝑖 )∇𝐶 𝑗𝑀

−1∇𝐶𝑇
𝑗
+ 𝛼 𝑗

(1)

Here we define 𝛾𝑖 a damping constant, by 𝛾𝑖 =
𝛼̃𝑖𝛽𝑖
Δ𝑡𝑠

with 𝛽𝑖 =

Δ𝑡2𝛽 . A value of 3 · 10−8 for 𝛽 worked well in the implementation.



2 • J. Arette-Hourquet

ALGORITHM 2: XPBD simulation loop with substeps
Δ𝑡𝑠 ← Δ𝑡/solverIterations
for 𝑖 ← 0 to solverIterations do

Predict position 𝑥̃ ← 𝑥𝑛 + Δ𝑡𝑠 𝑣𝑛 + Δ𝑡2𝑠𝑀−1 𝑓ext (𝑥𝑛 )
for each constraint j do

Δ𝜆 ←
−𝐶 𝑗 (𝑥𝑖 )

∇𝐶 𝑗𝑀
−1∇𝐶𝑇

𝑗
+ 𝛼̃ 𝑗

Δ𝑥 ← 𝑤∇𝐶 (𝑥𝑖 )𝑇 Δ𝜆
update 𝑥𝑖+1 ← 𝑥𝑖 + Δ𝑥

end
update positions 𝑥𝑖+1 ← 𝑥𝑖

update velocities 𝑣𝑖+1 ←
1
Δ𝑡𝑠

(
𝑥𝑛+1 − 𝑥𝑛

)
end

3 IMPLEMENTATION

3.1 Cord
The simplest constraint is a distance constraint, i.e. two positions
must have a constant distance. With this we can create a cord by
using successive distance constraint. We can fix one particle by
setting its inverse mass to 0.

Having only 3 particles allows to see the difference between the
original implementation and substepping. In figure 1, the position
of the particles over time is represented in the plane. The cord has
been released from an almost vertical position. We see that the
energy is quickly lost with the iterations, and the cord goes to a
rest pose. Here, no damping has been added, so that means the loss
is unevitable. However with the substeps, we see a more chaotic
behavior, that is closer to a real double pendulum. We couldn’t
achieve this result before, even by increasing the stiffness of the
constraints. The simulation also runs for much longer. Both methods
used 20 iterations or substeps per frame.

(a) Iterations (b) Substeps

Fig. 1. Position of a 2-segments cord over time

So if we want a more elastic simulation, we can use multiple
iterations, and if we want to keep the energy we can use substeps.
But we can go further andmix the twomethods to have intermediate
results. Figure 2 showswhat happenswith 4 substeps and 5 iterations
per frame, so again with 20 steps per frame in total. We still have the
chaos and energy of a double pendulum, but the energy is dissipated
quicker.

Fig. 2. Hybrid method with iterations and substeps

3.2 Cloth
To represent a cloth, we can create a rectangular mesh with many
subdivisions, and add a distance constraint on each segment of
the mesh. However this gives the impression of a very thin cloth,
because there are many small wrinkles. The effect is much more
visible at the bottom of the cloth. To fix this, we can add a bending
constraint. The comparison can observed in figure 4.

There are two approaches for the bending constraint. We can first
impose two adjacent faces to have a fixed angle, and the other is to
add a distance constraint on the opposing vertices of adjacent faces.
This is illustrated in figure 3.

Fig. 3. Bending constraint: angle based (left) vs distance based (right)

The distance based method is one used because it is simpler and
faster to compute. However it allows the faces to flip, so keeping
two faces almost in a plane is difficult. But for a cloth it works well.

(a) No bending constraint (b) With bending constraint

Fig. 4. Adding a bending constraint

We can also add self collision, but we have to take some precau-
tions. To do this, we followed the recommendations of [Physics
2022].
To accelerate collision detection, we can use a spatial hash to

make a broad detection. It is enough to do it once per frame. In the



Implementing XPBD • 3

code, the hash is in src/utils/SpatialGrid.hpp. To use it, we can add
particles to the grid and they will be added to a cell of the dimension
of collision distance. Then we can get the neighbors of a particle by
looking at those who are in the neighboring cells. We can finally
add a constraint that keeps neighbors at a minimal distance. Thoses
constraints must be reset at every frame.
However this is not enough, as particles may go through the

cloth be stuck. To prevent this, we can use substepping and add a
maximum velocity to avoid particles to go too far away at each step.
This avoids us to use a continuous collsion detection.

The result can be observed in figure 5. The cloth was dropped in
a vertical position and the image was taken after it fell completely
on the floor. Without self collision constraint, we can see that the
cloth is not flat because of the bending constraints.

(a) No collision constraint (b) With collision constraint

Fig. 5. Adding a collision constraint

Finally, using substeps also increases the stiffness of the con-
straints, as we can see in figure 6. Here, the top line becomes almost
straight.

(a) Iterations (b) Substeps

Fig. 6. Coth: iterations vs substeps

3.3 Soft body
A soft body is a deformable solid. Distance and bending constraints
are not enough to simulate a soft body, because nothing prevents
it from collapsing. There are no internal forces. To fix this, we can
add a volume constraint.

To keep the internal structure, we need to use amesh that includes
tetrahedrons, similar to the type used in Finite Element Method
(FEM) simulations. We can add a distance constraint on the edges
of the tetrahedrons and a volume constraint on each tetrahedron.
The mesh and the tetrahedrons used were found here.

The small features of the soft body are conserved, such as ears
as we can see in figure 7. But we can play with constraints to have
a softer body. The most important constraints here is the distance
constraint, as it’s what keeps the structure. If we decrease the stiff-
ness, the edges can stretch and the body be more deformed, as seen
in figure 8.

Fig. 7. Soft body

(a) Low stiffness (b) High stiffness

Fig. 8. Soft body after a drop

Some features such as the ears a quite mobile, even if we increase
the distance stiffness. They keep their shape but because are attached
to the body with a thin base, the constraints are not strong enough
from preventing from moving. But that is a natural behaviour we
can expect from a soft body. If we want the ears to be fixed, we can
add bending constraints. Also, using substeps allows them to be
fixed. So we can choose the mode depending on the behaviour we
want.

3.4 Balloon
Instead of having a local constraint for the volume, we can try to
have a global constraint, by keeping the volume of the whole closed
shape to be constant. This can be used to simulate an inflatable

https://github.com/matthias-research/pages/blob/master/tenMinutePhysics/10-softBodies.html


4 • J. Arette-Hourquet

balloon. We have to add a distance constraint on each segment of
the mesh to keep the balloon shape. Also, we can play with the
deformation of the balloon if we modify the stiffness parameter. The
result is seen in figure 9.

(a) Decreasing distance constraint
stiffness

(b) Bunny mesh

Fig. 9. Balloon

As we can see, small features are not as well preserved as previ-
ously. The face of the bunny and the paws are flattened. But this is
normal, as there is no bending constraint that maintain them. How-
ever this constraint is interesting because it is unique, and don’t
require an internal structure, so it is faster to compute.

We can also add more pressure inside the balloon by forcing the
constraint to keep a bigger value. Then it will fight even more with
the distance constraints to keep the shape of the object.

4 TECHNICAL DETAILS
The implementation has been done in C++ and rendered with
OpenGL. Shadows have been created with a shadow map. The
checker pattern on the floor is done in a shader.
The code had the objective to be modular and well structured.

Each scene and each constraint is a children of a virtual class, that
allows the solver to be very generic, and the program to be flexible.
Each scene has its own setup and render function. It also allows
to change parameters the parameters of the scene with a UI made
with ImGui. All constraints have a function to compute them or to
compute the gradient. They also store the particles they affect.

The scenes are located in the src/scenes/ folder. The src/simulation/
folder contains the solver and a scene manager that allows to reset
and change scenes, as well as updating them.

The simulation runs and is capped at 60 fps, but can be slowerwith
a lot of constraints or with cloth self-collision. But the robustness
of PBD handles it well.

5 DIFFICULTIES ENCOUNTERED
I struggled at first to implement substeps, as I did not know that a
damping was needed to make it work.
The angle-based bending constraint was also difficult to imple-

ment, as the formula was a bit complicated and also introduced
some approximation error.

The soft body and the balloon starts to rotate when on the ground,
I don’t know the cause. I tried to shuffle the constraints but it does
not work.
I tried to implement rigid bodies and a fluid simulation, but

couldn’t make it work on time. For the rigid bodies, I wanted to use
a shape matching algorithm, that tries to find the best rotation and
translation to match the deformed shape. However those situations
may require to write a dedicated solver, as they need some tweaks
to work correctly.

6 FUTURE WORK
Position based dynamics is wide simulation tool, so we can imagine
infinitely many situations. The algorithm can be extended to rigid
bodies, fluids, but it can also simulate sand or muscles for example.

Also, we could try to break some constraints if they are too much
violated. Or we could at least modify them to have a plastic be-
haviour.

Finally, we could add some friction between the objects.

7 CONCLUSION
This project made me discover an all-purpose simulation tool that is
easy to understand yet very powerfull. I explored many situations
and constraints, and also compared iterating and substepping in the
solver loop.

8 SUPPLEMENTARY MATERIALS
The code of the project is available here.

ACKNOWLEDGMENTS
The author would like to thank Professor Kiwon Um from Telecom
Paris for for his guidance and support throughout his course and
this project.

REFERENCES
Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-based

simulation of compliant constrained dynamics. In Proceedings of the 9th International
Conference on Motion in Games (MIG ’16). Association for Computing Machinery,
New York, NY, USA, 49–54. DOI:https://doi.org/10.1145/2994258.2994272

Miles Macklin, Kier Storey, Michelle Lu, Pierre Terdiman, Nuttapong Chentanez, Stefan
Jeschke, and Matthias Müller. 2019. Small steps in physics simulation. In Proceedings
of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA ’19). Association for Computing Machinery, New York, NY, USA, Article 2,
7 pages. DOI:https://doi.org/10.1145/3309486.3340247

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
based dynamics. J. Vis. Comun. Image Represent. 18, 2 (April 2007), 109–118. DOI:
https://doi.org/10.1016/j.jvcir.2007.01.005

TenMinutes Physics. 2022. 15 - Self-collisions, solving the hardest problem in animation.
(2022). https://www.youtube.com/watch?v=XY3dLpgOk4Q See also the related PDF:
https://matthias-research.github.io/pages/tenMinutePhysics/15-selfCollision.pdf.

https://github.com/JeanLoupp
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/3309486.3340247
https://doi.org/10.1016/j.jvcir.2007.01.005
https://www.youtube.com/watch?v=XY3dLpgOk4Q
https://matthias-research.github.io/pages/tenMinutePhysics/15-selfCollision.pdf

	Abstract
	1 Introduction
	2 Theoritical overview
	2.1 Description of the algorithm
	2.2 Substeps

	3 Implementation
	3.1 Cord
	3.2 Cloth
	3.3 Soft body
	3.4 Balloon

	4 Technical details
	5 Difficulties encountered
	6 Future work
	7 Conclusion
	8 Supplementary materials
	Acknowledgments
	References

