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Motivation

Dynamical systems:
in which a function describes the time dependence of a point in a geometrical space.
we only know certain observed or calculated states of its past or present state.
dynamical systems have a direct impact on human development.

⇒ The importance of studying:
synchronization
behavior
stability

Electronic Stability Control (ESC)

Solar System
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Stability

A dynamical system is stable, if small perturbations to the solution lead to a new
solution that stays close to the original solution forever.
A stable system produces a bounded output for a given bounded input.

Stability
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An invariant

The bounded output of some periodic stable system can be considered as an
invariant from certain t .

An invariant is an unchanged object after operations applied to it.

Invariant
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Euler’s method and error bounds

Let us consider the differential system:

ẋ(t) = g(x(t)),

with states x(t) ∈ Rn and x0 a given initial condition.

x̃(t ; x0) denotes Euler’s approximate value of x(t) (defined by
x̃(t ; x0) = x0 + t g(x0) for t ∈ [0, h], where h is the integration time-step).

Jawher Jerray (LIPN) Asymptotic Error in Euler’s Method with a Constant Step Size 6 / 17



Motivation Description of the method Application Conclusion References

Proposition

[LCDVCF17] Consider the solution x(t ; y0) of dx
dt = g(x) with initial condition y0 and

the approximate Euler solution x̃(t ; x0) with initial condition x0. For all y0 ∈ B(x0, ε), we
have:

∥x(t ; y0)− x̃(t ; x0)∥ ≤ δε(t).

[LCDVCF17] A. Le Coënt et al., “Control synthesis of nonlinear sampled switched systems using Euler’s
method,” in SNR, (Apr. 22, 2017), ser. EPTCS, vol. 247, Uppsala, Sweden, 2017, pp. 18–33. DOI:
10.4204/EPTCS.247.2.Jawher Jerray (LIPN) Asymptotic Error in Euler’s Method with a Constant Step Size 7 / 17
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Definition
δε(t) is defined as follows for t ∈ [0, τ ]:
if λ < 0 :

δε(t) =

(
ε2eλt +

C2

λ2

(
t2 +

2t
λ

+
2
λ2

(
1 − eλt

))) 1
2

if λ = 0 :

δε(t) =
(
ε2et + C2(−t2 − 2t + 2(et − 1))

) 1
2

if λ > 0 :

δε(t) =

(
ε2e3λt +

C2

3λ2

(
−t2 −

2t
3λ

+
2

9λ2

(
e3λt − 1

))) 1
2

where C and λ are real constants specific to function f , defined as follows:

C = sup
y∈S

L∥g(y)∥,
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Definition
L denotes the Lipschitz constant for g, and λ is the “one-sided Lipschitz constant” (or
“logarithmic Lipschitz constant” [AS14]) associated to g, i. e., the minimal constant
such that, for all y1, y2 ∈ S:

⟨g(y1)− g(y2), y1 − y2⟩ ≤ λ∥y1 − y2∥2, (H0)

where ⟨·, ·⟩ denotes the scalar product of two vectors of S.

The constant λ can be computed using a nonlinear optimization solver (e. g.,
CPLEX [Cpl09]) or using the Jacobian matrix of g.

[AS14] Z. Aminzare and E. D. Sontag, “Contraction methods for nonlinear systems: A brief introduction and
some open problems,” in 53rd IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA, USA,
December 15-17, 2014, 2014, pp. 3835–3847.

[Cpl09] I. I. Cplex, “V12. 1: User’s manual for cplex,” International Business Machines Corporation, vol. 46,
no. 53, p. 157, 2009.
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Function strongly monotone and co-coercive

Definition

A function g : Rn → Rn is strongly monotone if there exists m > 0 such that, for all
x , y ∈ Rn:

(g(x)− g(y))T (x − y) ≥ m∥x − y∥2

A function g : Rn → Rn is co-coercive if there exists a positive constant a such
that for all x , y ∈ Rn:

(g(y)− g(x))T (y − x) ≥ a∥g(y)− g(x)∥2
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Gradient descent algorithm

Consider a function f : Rn → R, the gradient descent algorithm generates a sequence
{xk}k∈N described as:

xk+1 = xk − h∇f (xk )

where h > 0 is a constant step size. This algorithm is generally used to resolve
optimization problems of the form minx∈Rn f (x) for a function f .
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Error bound in Euler’s method

Let us consider the sequence {µk}k≥0 where µk is defined recursively, for k ≥ 1 as:

µk = δµk−1 (h)

Also, for all k ≥ 0 and t ∈ [0, h]:

δµ0 (kh + t) = δµk (t)

Theorem
Consider the system ẋ(t) = g(x(t)), with g : Rn → Rn. Let x(t) the solution of this
system at time t , (yk ) the (explicit) Euler discretization of ẋ(t) and µ0 := ∥y0 − x0∥.
Then, for all t = kh:

∥yk − x(t)∥ ≤ δµ0(t)
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Co-coercivity

Theorem
Consider the system ẋ(t) = g(x(t)), with g : Rn → Rn L-Lipschitz continuous. Let x(t)
the solution of this system at time t and (yk ) the Euler discretization of ẋ(t). Suppose:

1 h < 2/L,

2 −g co-coercive with constant 1/L,

3 g of OSL constant λ < 0 (i.e., −g strongly monotone),

4 g(x∗) = 0 for some x∗ ∈ Rn (existence of a stationary point).

Then we have:

x∗ is the unique stationary point of Rn,

yk → x∗ and x(kh) → x∗ as k → ∞ with rate O(1/k) for the averaged iterates.
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Example

Consider the differential equation ẋ = g(x) with g(x) = −4x3 + 6x2, and its Euler
discretization with y0 = 0.25 and h = 0.12.
Using ORBITADOR[Jer21], we calculate L ≤ 12, where L is the Lipschitz constant of g.

Evolution of yk (which converges to x∗ = 1.5) Evolution of C = L∥g(y)∥

[Jer21] J. Jerray, “Orbitador: A tool to analyze the stability of periodical dynamical systems,” in ARCH, (Jul. 9,
2021), G. Frehse and M. Althoff, Eds., ser. EPiC Series in Computing, vol. 80, Brussels, Belgium: EasyChair, 2021,
pp. 176–183. DOI: 10.29007/k6xm.
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Let D = [1.25, 1.75]. For µ0 = 0.1 and h = 0.12 < 2/L, ORBITADOR shows that:

λ < 0 on D ,

B(yk , δµ0 (kh)) ⊆ D for all k ≥ 12, and

−g co-coercive of constant 1/L on D.

Evolution of λ Evolution of δµ0 (which converges to 0)
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Besides, x∗ = 1.5 ∈ D is a stationary point (g(y∗) = 0), we check that:
δµ0 (kh) → 0.
x∗ is the unique stationary point of D, yk ∈ x∗ and x(kh) → x∗ as k → ∞.
C = L∥g(yk )∥ → 0.

Graph (yk , f (yk ))

Note that x∗ is the minimizer of the non-convex function f (x) = x4 − 2x3 + 2 (with
−∇f (x) = g(x)).
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Conclusion

Conclusion

We have shown that under certain properties of g called “strong monotonicity” and
“co-coercivity”, the discretization error converges to 0.

This contribution can highlights the relationship between the convergence of
continuous differential equations and their discretization.
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Thank you for your attention!
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