Motivation	Description of the method	Application	Conclusion	References
000	0000000	000	0	

Asymptotic Error in Euler's Method with a Constant Step Size

Jawher Jerray ¹ Adnane Saoud² Laurent Fribourg³

¹ Université Sorbonne Paris Nord, LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France and ²Laboratoire des Signaux et Systèmes, CentraleSupélec, Université Paris Saclay, Gif-sur-Yvette, France. and ³Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, F91190 Gif-sur-Yvette, France

Wednesday 13th July, 2022

European Control Conference 2022 (ECC22)

Motivation	Description of the method	Application	Conclusion	References

Outline

1 Motivation

2 Description of the method

3 Application

4 Conclusion

Motivation	Description of the method	Application	Conclusion	References
000				
Motivation				
Mouvation				

- Dynamical systems:
 - in which a function describes the time dependence of a point in a geometrical space.
 - we only know certain observed or calculated states of its past or present state.
 - dynamical systems have a direct impact on human development.
- \Rightarrow The importance of studying:
 - synchronization
 - behavior
 - stability

Motivation	Description of the method	Application	Conclusion	References
•00				
Motivation				
mouvation				

- Dynamical systems:
 - in which a function describes the time dependence of a point in a geometrical space.
 - we only know certain observed or calculated states of its past or present state.
 - dynamical systems have a direct impact on human development.
- \Rightarrow The importance of studying:
 - synchronization
 - behavior
 - stability

Electronic Stability Control (ESC)

Motivation O●O	Description of the method	Application	Conclusion O	References
Stability				

A dynamical system is stable, if small perturbations to the solution lead to a new solution that stays close to the original solution forever.

A stable system produces a bounded output for a given bounded input.

Motivation ○O●	Description of the method	Application	Conclusion O	References
An invariant				

- The bounded output of some periodic stable system can be considered as an invariant from certain *t*.
- An invariant is an unchanged object after operations applied to it.

Motivation	Description of the method	Application	Conclusion	References
000	0000000	000	0	

Euler's method and error bounds

Let us consider the differential system:

 $\dot{x}(t)=g(x(t)),$

with states $x(t) \in \mathbb{R}^n$ and x_0 a given initial condition.

■ $\tilde{x}(t; x_0)$ denotes Euler's approximate value of x(t) (defined by $\tilde{x}(t; x_0) = x_0 + t g(x_0)$ for $t \in [0, h]$, where *h* is the integration time-step).

Motivati 000	on Description of the method	Application	Conclusion O	References
	Proposition			
	[LCDVCF17] Consider the solution $x(t)$ the approximate Euler solution $\tilde{x}(t; x_0)$ have:	t; y_0) of $\frac{dx}{dt} = g(x)$ v) with initial condition	with initial condition y_0 in x_0 . For all $y_0 \in B(x)$, and $(0,\varepsilon)$, we
	$ x(t; v_0)\rangle$	$-\tilde{x}(t;x_0) \ < \delta_{\varepsilon}(t).$		

[LCDVCF17] A. Le Coënt et al., "Control synthesis of nonlinear sampled switched systems using Euler's method," in SNR, (Apr. 22, 2017), ser. EPTCS, vol. 247, Uppsala, Sweden, 2017, pp. 18–33. DOI:

Jawher Jerray (LIPN)

Asymptotic Error in Euler's Method with a Constant Step Size

Motivation	Description of the method	Application	Conclusion	References
	0000000			

Definition

 $\delta_{\varepsilon}(t)$ is defined as follows for $t \in [0, \tau]$: if $\lambda < 0$:

$$\delta_{\varepsilon}(t) = \left(\varepsilon^{2} e^{\lambda t} + \frac{C^{2}}{\lambda^{2}} \left(t^{2} + \frac{2t}{\lambda} + \frac{2}{\lambda^{2}} \left(1 - e^{\lambda t}\right)\right)\right)^{\frac{1}{2}}$$

if $\lambda = 0$:

$$\delta_{\varepsilon}(t) = \left(\varepsilon^2 e^t + C^2(-t^2 - 2t + 2(e^t - 1))\right)^{\frac{1}{2}}$$

if $\lambda > 0$:

$$\delta_{\varepsilon}(t) = \left(\varepsilon^2 e^{3\lambda t} + \frac{C^2}{3\lambda^2} \left(-t^2 - \frac{2t}{3\lambda} + \frac{2}{9\lambda^2} \left(e^{3\lambda t} - 1\right)\right)\right)^{\frac{1}{2}}$$

where *C* and λ are real constants specific to function *f*, defined as follows:

 $C = \sup_{y \in S} L \|g(y)\|,$

Motivation	Description of the method	Application	Conclusion	References
	0000000			

Definition

L denotes the Lipschitz constant for *g*, and λ is the "one-sided Lipschitz constant" (or "logarithmic Lipschitz constant" [AS14]) associated to *g*, i. e., the minimal constant such that, for all $y_1, y_2 \in S$:

$$\langle g(y_1) - g(y_2), y_1 - y_2 \rangle \le \lambda \|y_1 - y_2\|^2,$$
 (H0)

where $\langle\cdot,\cdot\rangle$ denotes the scalar product of two vectors of $\mathcal{S}.$

The constant λ can be computed using a nonlinear optimization solver (e.g., CPLEX [Cpl09]) or using the Jacobian matrix of *g*.

[[]AS14] Z. Aminzare and E. D. Sontag, "Contraction methods for nonlinear systems: A brief introduction and some open problems," in 53rd IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA, USA, December 15-17, 2014, 2014, pp. 3835–3847.

[[]Cpl09] I. I. Cplex, "V12. 1: User's manual for cplex," International Business Machines Corporation, vol. 46, no. 53, p. 157, 2009.

Motivation	Description of the method	Application	Conclusion	References
000	00000000	000	0	

Function strongly monotone and co-coercive

Definition

A function $g : \mathbb{R}^n \to \mathbb{R}^n$ is strongly monotone if there exists m > 0 such that, for all $x, y \in \mathbb{R}^n$:

$$(g(x) - g(y))^T (x - y) \ge m ||x - y||^2$$

A function $g : \mathbb{R}^n \to \mathbb{R}^n$ is co-coercive if there exists a positive constant *a* such that for all $x, y \in \mathbb{R}^n$:

$$(g(y) - g(x))^T(y - x) \ge a \|g(y) - g(x)\|^2$$

Motivation 000	Description of the method ○○○○○●○○	Application	Conclusion O	References
Gradient	descent algorithm			

Consider a function $f : \mathbb{R}^n \to \mathbb{R}$, the gradient descent algorithm generates a sequence $\{x_k\}_{k \in \mathbb{N}}$ described as:

$$x_{k+1} = x_k - h\nabla f(x_k)$$

where h > 0 is a constant step size. This algorithm is generally used to resolve optimization problems of the form $\min_{x \in \mathbb{R}^n} f(x)$ for a function *f*.

Motivation 000	Description of the method	Application	Conclusion O	References
Error boun	d in Euler's method			

Let us consider the sequence $\{\mu_k\}_{k>0}$ where μ_k is defined recursively, for $k \ge 1$ as:

$$\mu_k = \delta_{\mu_{k-1}}(h)$$

Also, for all $k \ge 0$ and $t \in [0, h]$:

$$\delta_{\mu_0}(kh+t) = \delta_{\mu_k}(t)$$

Theorem

Consider the system $\dot{x}(t) = g(x(t))$, with $g : \mathbb{R}^n \to \mathbb{R}^n$. Let x(t) the solution of this system at time t, (y_k) the (explicit) Euler discretization of $\dot{x}(t)$ and $\mu_0 := ||y_0 - x_0||$. Then, for all t = kh:

 $\|y_k - x(t)\| \leq \delta \mu_0(t)$

Motivation	Description of the method	Application	Conclusion	References
	0000000			

Co-coercivity

Theorem

Consider the system $\dot{x}(t) = g(x(t))$, with $g : \mathbb{R}^n \to \mathbb{R}^n$ L-Lipschitz continuous. Let x(t) the solution of this system at time t and (y_k) the Euler discretization of $\dot{x}(t)$. Suppose:

- 1 h < 2/L,
- 2 -g co-coercive with constant 1/L,
- **3** *g* of OSL constant $\lambda < 0$ (i.e., -g strongly monotone),
- 4 $g(x^*) = 0$ for some $x^* \in \mathbb{R}^n$ (existence of a stationary point).

Then we have:

- x^* is the unique stationary point of \mathbb{R}^n ,
- $y_k \rightarrow x^*$ and $x(kh) \rightarrow x^*$ as $k \rightarrow \infty$ with rate O(1/k) for the averaged iterates.

Motivation	Description of the method	Application ●OO	Conclusion O	References
Example				

Consider the differential equation $\dot{x} = g(x)$ with $g(x) = -4x^3 + 6x^2$, and its Euler discretization with $y_0 = 0.25$ and h = 0.12. Using ORBITADOR[Jer21], we calculate $L \le 12$, where *L* is the Lipschitz constant of *g*.

[Jer21] J. Jerray, "Orbitador: A tool to analyze the stability of periodical dynamical systems," in ARCH, (Jul. 9, 2021), G. Frehse and M. Althoff, Eds., ser. EPIC Series in Computing, vol. 80, Brussels, Belgium: EasyChair, 2021, pp. 176–183. DOI: 10.29007/kSm.

Motivation	Description of the method	Application	Conclusion	References
		000		

Let $\mathbb{D} = [1.25, 1.75]$. For $\mu_0 = 0.1$ and h = 0.12 < 2/L, ORBITADOR shows that:

 $\blacksquare \ \lambda < {\sf 0} \ {\sf on} \ {\mathbb D}$,

■
$$B(y_k, \delta_{\mu_0}(kh)) \subseteq \mathbb{D}$$
 for all $k \ge 12$, and

■ -g co-coercive of constant 1/L on \mathbb{D} .

Evolution of λ

Evolution of δ_{μ_0} (which converges to 0)

Motivation	Description of the method	Application	Conclusion	References
		000		

Besides, $x^* = 1.5 \in \mathbb{D}$ is a stationary point $(g(y^*) = 0)$, we check that:

- $\bullet \delta_{\mu_0}(kh) \to 0.$
- x^* is the unique stationary point of \mathbb{D} , $y_k \in x^*$ and $x(kh) \to x^*$ as $k \to \infty$.

$$\bullet C = L \|g(y_k)\| \to 0.$$

Graph $(y_k, f(y_k))$

Motivation	Description of the method	Application	Conclusion	References
			•	

Conclusion

Conclusion

- We have shown that under certain properties of *g* called "strong monotonicity" and "co-coercivity", the discretization error converges to 0.
- This contribution can highlights the relationship between the convergence of continuous differential equations and their discretization.

Motivation 000	Description of the method	Application 000	Conclusion O	References
Bibliography				
[AS14]	Z. Aminzare and E. D. Sonta systems: A brief introduction Conference on Decision at USA, December 15-17, 201	ag, "Contraction meth and some open prol nd Control, CDC 20 4, 2014, pp. 3835–3	nods for nonlinear blems," in 53rd IEEE 14, Los Angeles, C/ 847.	۹,
[Cpl09]	I. I. Cplex, "V12. 1: User's m Machines Corporation, vol.	anual for cplex," Inter . 46, no. 53, p. 157, 2	rnational Business 2009.	
[Jer21]	J. Jerray, "Orbitador: A tool t dynamical systems," in ARC Eds., ser. EPiC Series in Co EasyChair, 2021, pp. 176–1	o analyze the stabilit H, (Jul. 9, 2021), G. I mputing, vol. 80, Bru 83. DOI: 10.29007/k	y of periodical Frehse and M. Althof Issels, Belgium: 6xm.	Ť,
[LCDVCF17]	A. Le Coënt, F. De Vuyst, L. synthesis of nonlinear samp method," in SNR , (Apr. 22, 2 Sweden, 2017, pp. 18–33. D	Chamoin, and L. Fribled switched systems 017), ser. EPTCS, vc 01: 10.4204/EPTCS.	oourg, "Control s using Euler's bl. 247, Uppsala, 247,2.	

Thank you for your attention!

