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Motivation

Dynamical systems:
in which a function describes the time dependence of a point in a geometrical space.
we only know certain observed or calculated states of its past or present state.
dynamical systems have a direct impact on human development.

⇒ The importance of studying:
synchronization
behavior
stability

Electronic Stability Control (ESC)

Solar System
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Stability

A dynamical system is stable, if small perturbations to the solution lead to a new
solution that stays close to the original solution forever.
A stable system produces a bounded output for a given bounded input.

Stability
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An invariant

The bounded output of some periodic stable system can be considered as an
invariant from certain t .

An invariant is an unchanged object after operations applied to it.

Invariant
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Problematic

Parametric system
(with unfixed parameters)

Invariant

Stablity analysis

Generate

Compute

Initial condition

Jawher Jerray (LIPN) Determination of limit cycles using stroboscopic set-valued maps 6 / 18



Motivation Problematic and description of the method Euler’s method and error bounds Systems with bounded uncertainty Van der Pol example Conclusion and Perspectives References

Description of the method

Given a differential system Σ : dx/dt = f (x) of dimension n, an initial point
x0 ∈ Rn, a real ε > 0, and a ball B0 = B(x0, ε)

1

The center of each ball at time t is the Euler approximate solution x̃(t) of the
system starting at x0, and the radius is a function δε(t) bounding the distance
between x̃(t) and an exact solution x(t) starting at B0.
.
.

1B(x0, ε) is the set {z ∈ Rn | ∥z − x0∥ ≤ ε} where ∥ · ∥ denotes the Euclidean distance.
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Description of the method

Given a differential system Σ : dx/dt = f (x) of dimension n, an initial point
x0 ∈ Rn, a real ε > 0, and a ball B0 = B(x0, ε)

1

The tube can be described as
⋃

t≥0 B(t) where B(t) ≡ B(x̃(t), δε(t)).
.
.
.
.

1B(x0, ε) is the set {z ∈ Rn | ∥z − x0∥ ≤ ε} where ∥ · ∥ denotes the Euclidean distance.
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Description of the method

Given a differential system Σ : dx/dt = f (x) of dimension n, an initial point
x0 ∈ Rn, a real ε > 0, and a ball B0 = B(x0, ε)

1

To find a bounded invariant, we look for a positive real T such that
B((i + 1)T ) ⊆ B(iT ) for some i ∈ N. In case of success, the ball B(iT ) is
guaranteed to contain the “stroboscopic” sequence {B(jT )}j=i,i+1,... of sets B(t)
at time t = iT , (i + 1)T , . . . . and thus constitutes the sought bounded invariant
set.

1B(x0, ε) is the set {z ∈ Rn | ∥z − x0∥ ≤ ε} where ∥ · ∥ denotes the Euclidean distance.
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Euler’s method and error bounds

Let us consider the differential system:

dx(t)
dt

= f (x(t)),

with states x(t) ∈ Rn and x0 a given initial condition.

x̃(t ; x0) denotes Euler’s approximate value of x(t) (defined by
x̃(t ; x0) = x0 + t × f (x0) for t ∈ [0, τ ], where τ is the integration time-step).
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Proposition

[LCDVCF17] Consider the solution x(t ; y0) of dx
dt = f (x) with initial condition y0 and the

approximate Euler solution x̃(t ; x0) with initial condition x0. For all y0 ∈ B(x0, ε), we
have:

∥x(t ; y0)− x̃(t ; x0)∥ ≤ δε(t).

[LCDVCF17] A. Le Coënt et al., “Control synthesis of nonlinear sampled switched systems using Euler’s
method,” in SNR, (Apr. 22, 2017), ser. EPTCS, vol. 247, Uppsala, Sweden, 2017, pp. 18–33. DOI:
10.4204/EPTCS.247.2.Jawher Jerray (LIPN) Determination of limit cycles using stroboscopic set-valued maps 9 / 18
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Definition
δε(t) is defined as follows for t ∈ [0, τ ]:
if λ < 0 :

δε(t) =

(
ε2eλt +

C2

λ2

(
t2 +

2t
λ

+
2
λ2

(
1 − eλt

))) 1
2

if λ = 0 :

δε(t) =
(
ε2et + C2(−t2 − 2t + 2(et − 1))

) 1
2

if λ > 0 :

δε(t) =

(
ε2e3λt +

C2

3λ2

(
−t2 −

2t
3λ

+
2

9λ2

(
e3λt − 1

))) 1
2

where C and λ are real constants specific to function f , defined as follows:

C = sup
y∈S

L∥f (y)∥,
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Definition
L denotes the Lipschitz constant for f , and λ is the “one-sided Lipschitz constant” (or
“logarithmic Lipschitz constant” [AS14]) associated to f , i. e., the minimal constant such
that, for all y1, y2 ∈ S:

⟨f (y1)− f (y2), y1 − y2⟩ ≤ λ∥y1 − y2∥2, (H0)

where ⟨·, ·⟩ denotes the scalar product of two vectors of S.

The constant λ can be computed using a nonlinear optimization solver (e. g.,
CPLEX [Cpl09]) or using the Jacobian matrix of f .

[AS14] Z. Aminzare and E. D. Sontag, “Contraction methods for nonlinear systems: A brief introduction and
some open problems,” in 53rd IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA, USA,
December 15-17, 2014, 2014, pp. 3835–3847.

[Cpl09] I. I. Cplex, “V12. 1: User’s manual for cplex,” International Business Machines Corporation, vol. 46,
no. 53, p. 157, 2009.
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Systems with bounded uncertainty

A differential system with bounded uncertainty is of the form

dx(t)
dt

= f (x(t),w(t)),

with t ∈ Rn
≥0, states x(t) ∈ Rn, and uncertainty w(t) ∈ W ⊂ Rn (W is compact, i. e.,

closed and bounded).

We suppose (see [LCADSC+17]) that there exist constants λ ∈ R and γ ∈ R≥0
such that, for all y1, y2 ∈ S and w1,w2 ∈ W:

⟨f (y1,w1)− f (y2,w2), y1 − y2⟩ ≤ λ∥y1 − y2∥2 + γ∥y1 − y2∥∥w1 − w2∥ (H1).

Instead of computing λ and γ globally for S, it is advantageous to compute them
locally depending on the subregion of S occupied by the system state during a
considered interval of time.

[LCADSC+17] A. Le Coënt et al., “Distributed control synthesis using Euler’s method,” in Proc. of International
Workshop on Reachability Problems (RP’17), ser. Lecture Notes in Computer Science, vol. 247, Springer, 2017,
pp. 118–131.
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Proposition

δε(t) is defined as follows for t ∈ [0, τ ]:

if λ < 0 : δε,W (t) =

(
C2

−λ4

(
−λ2t2 − 2λt + 2eλt − 2

)

+
1
λ2

(
Cγ|W|
−λ

(
−λt + eλt − 1

)
+ λ

(
γ2(|W|/2)2

−λ
(eλt − 1) + λε2eλt

)))1/2

(1)

if λ > 0 : δε,W (t) =
1

(3λ)3/2

(
C2

λ

(
−9λ2t2 − 6λt + 2e3λt − 2

)

+3λ
(

Cγ|W|
λ

(
−3λt + e3λt − 1

)
+ 3λ

(
γ2(|W|/2)2

λ
(e3λt − 1) + 3λε2e3λt

)))1/2

(2)

if λ = 0 : δε,W (t) =
(

C2
(
−t2 − 2t + 2et − 2

)
+
(

Cγ|W|
(
−t + et − 1

)
+
(
γ2(|W|/2)2(et − 1) + ε2et

)))1/2
(3)
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Van der Pol System

Consider the Van der Pol (VdP) system Σp of dimension n = 2 with parameter p ∈ R,
and initial condition in B0 = B(x0, ε) for some x0 ∈ R2 and ε > 0 (see [BQ20]):

du1

dt
= u2

du2

dt
= pu2 − pu2

1u2 − u1

(4)

[BQ20] J. B. van den Berg and E. Queirolo, “A general framework for validated continuation of periodic orbits in
systems of polynomial ODEs,” Journal of Computational Dynamics, vol. 0, no. 2158-2491-2019-0-10, 2020, ISSN:
2158-2491. DOI: 10.3934/jcd.2021004.
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Van der Pol System with uncertainty

Consider now the system Σ′ with uncertainty w(·) ∈ W0 = [−0.02, 0.02] and initial
condition x0: 

du1

dt
= u2

du2

dt
= (p0 + w)u2 − (p0 + w)u2

1u2 − u1

(5)

with p0 = 1.1. It is easy to see that each solution of Σp with
p ∈ [p0 − 0.02, p0 + 0.02] = [1.08, 1.12] is a particular solution of system Σ′.
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Van der Pol System with uncertainty

VdP system with parameter p0 = 1.1, uncertainty |W0| = 0.04, initial radius ε0 = 0.1, initial point x0 =

(1.7018,−0.1284), period T0 = 6.746, time-step τ = 10−3.

We have: B((i0 + 1)T0) ⊂ B(i0T0) for i0 = 3.

Whatever the value of p ∈ [p0 − |W0|, p0 + |W0|] = [1.08, 1.12], the solution of
Σp never converges to a point of Rn.

Since the size of the system is n = 2, it follows by Poincaré-Bendixson’s theorem
that the solution of Σp converges always towards a limit circle
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Consider now the system Σ′ with uncertainty w(·) ∈ W1 = [−0.01, 0.01] and initial
condition x0: 

du1

dt
= u2

du2

dt
= (p1 + w)u2 − (p1 + w)u2

1u2 − u1

(5)

with p1 = 0.4. It is easy to see that each solution of Σp with
p ∈ [p1 − 0.01, p1 + 0.01] = [0.39, 0.41] is a particular solution of system Σ′.
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VdP system with parameter p1 = 0.4, uncertainty |W1| = 0.02, initial radius ε1 = 0.2, initial point x0 =

(1.7018,−0.1284), period T1 = 6.347, time-step τ = 10−3.

We have: B((i1 + 1)T1) ⊂ B(i1T1) for i1 = 1.

It follows by Poincaré-Bendixson’s theorem that the solution of Σp converges
always towards a limit circle for any p ∈ [0.39, 0.41] and initial condition in
B(x0, ε1).
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Consider now the system Σ′ with uncertainty w(·) ∈ W2 = [−0.025, 0.025] and initial
condition x0: 

du1

dt
= u2

du2

dt
= (p2 + w)u2 − (p2 + w)u2

1u2 − u1

(5)

with p2 = 1.9. It is easy to see that each solution of Σp with
p ∈ [p2 − 0.025, p2 + 0.025] = [1.875, 1.925] is a particular solution of system Σ′.
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VdP system with parameter p2 = 1.9, uncertainty |W2| = 0.05, initial radius ε2 = 0.1, initial point x0 =

(1.7018,−0.1284), period T2 = 7.531, time-step τ = 10−3.

We have: B((i2 + 1)T2) ⊂ B(i2T2) for i2 = 4.

It follows by Poincaré-Bendixson’s theorem that the solution of Σp converges
always towards a limit circle for any p ∈ [1.875, 1.925] and initial condition in
B(x0, ε2).
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Conclusion and Perspectives

Conclusion

We presented a simple method to generate a bounded invariant for a differential
system.

The method uses a very general criterion of inclusion of one set in another.

Perspectives

Adapt the method to solve the convergence to a limit cycle for complex systems.

Extend our method in order to account for such an analysis.
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