Nils Holzenberger

September 12, 2025

Outline

- Probabilities in NLP (and speech)
 - Random variables
 - Probabilities in NLP
 - Solving NLP with probabilities
- 2 Language modeling
 - Σ*
 - Modeling p
 - Building a Language Model
- State of the st
 - Statistical tools
 - Technical tools
 - Alignment

Outline

- 1 Probabilities in NLP (and speech)
 - Random variables
 - Probabilities in NLP
 - Solving NLP with probabilities
- 2 Language modeling
 - ∑*
 - Modeling p
 - Building a Language Model
- 3 LMs in practice
 - Statistical tools
 - Technical tools
 - Alignment

Probabilities

• What is a probability?

Probabilities

What is a probability?
 If I toss a coin, what is the probability it lands on tails?
 If I throw two even dice, what is the probability of a double six?

Probabilities

- What is a probability?
 If I toss a coin, what is the probability it lands on tails?
 If I throw two even dice, what is the probability of a double six?
- Frequency of outcome if I toss the same coin 10,000 times?
- Measurement of my belief that the coin will land on tails?
- I'm playing poker and my opponent gets a royal flush three rounds in a row. Is my opponent cheating?

A random variable is a function that maps the outcome of an experiment to a value

Coin-flipping experiment:

 $X=\{$ "the coin lands on heads" $\to X=1,$ "the coin lands on tails" $\to X=0\}$

We can reason about the probability of X = 1, noted p(X = 1)

What is the proportion of outcomes that would result in X=1? What's my belief that X=1 before tossing the coin? How much money would I bet on the result X=1?

A random variable is a function that maps the outcome of an experiment to a value

Poker game:

 $Y = \{$ "my opponent cheated" $\rightarrow Y =$

1, "my opponent did not cheat" $\rightarrow Y = 0$

 $Z = \{$ "my opponent is dealt a royal flush" $\rightarrow Z = 1, ... \}$

- Random variables are not random
- Random variables are not variables

- Random variables are not random
- Random variables are not variables
- Random variables are functions
- Random variables are deterministic

- Random variables are not random
- Random variables are not variables
- Random variables are functions
- Random variables are deterministic
- The randomness comes from the outcome
- A random variable deterministically maps an outcome to a value

One example, spam classification:

 ${\sf Experiment} = {\sf I} \ {\sf receive} \ {\sf an} \ {\sf email}$

X =the email I receive (it's a string)

Y = 1 if the email is spam, 0 otherwise

Properties useful in NLP

- Joint probabilities $p(X = x, Y = y) \stackrel{\text{def}}{=} p(\{X = x\} \cap \{Y = y\})$ X is a question, Y is an answer
- Conditional probabilities $p(Y = y | X = x) \stackrel{\text{def}}{=} \frac{p(X = x, Y = y)}{p(X = x)}$ probability that the answer is y given that the question is x

Nils Holzenberger

Express the quantities of interest as random variables.

e.g. spam classification:

Experiment = I receive an email

X =the email I receive (it's a string)

Y = 1 if the email is spam, 0 otherwise

- X =the email I receive (it's a string)
- Y=1 if the email is spam, 0 otherwise
- p(y|x) "Given that I received email x, is it spam?"
- p(y) "How probable is it that an email I receive should be spam?"
- p(x) "How probable is it that I should receive email x?"
- p(x|1) "How probable is it that I should receive email x, assuming that it's spam?"
- p(x|0) "How probable is it that I should receive email x, assuming that it's not spam?"

X =the email I receive (it's a string)

Y=1 if the email is spam, 0 otherwise

How to compute p(y|x)?

Computing p(y|x)

We have examples of emails that are or are not spam:

X	Y
Alzheimer : Ces petits signes qui DOIVENT vous alerter ! Dès 50	1
ans, votre cerveau perd chaque jour un peu plus de son potentiel	
Vendre sa voiture rapidement et au meilleur prix! La vente de votre	1
voiture : étape par étape	
Hi all, sorry for duplicate sending but there will be this seminar today	0
by Petr Kuznetsov	

Computing p(y|x)

We have examples of emails that are or are not spam:

X	Y
Alzheimer : Ces petits signes qui DOIVENT vous alerter ! Dès 50	1
ans, votre cerveau perd chaque jour un peu plus de son potentiel	
Vendre sa voiture rapidement et au meilleur prix! La vente de votre	1
voiture : étape par étape	
Hi all, sorry for duplicate sending but there will be this seminar today	0
by Petr Kuznetsov	

Typically, approximate p(y|x) with $f_{\theta}(x,y)$ where θ are parameters, estimated from data.

Computing p(y|x)

We have examples of emails that are or are not spam:

X	Y
Alzheimer : Ces petits signes qui DOIVENT vous alerter ! Dès 50	1
ans, votre cerveau perd chaque jour un peu plus de son potentiel	
Vendre sa voiture rapidement et au meilleur prix! La vente de votre	1
voiture : étape par étape	
Hi all, sorry for duplicate sending but there will be this seminar today	0
by Petr Kuznetsov	

Typically, approximate p(y|x) with $f_{\theta}(x,y)$ where θ are parameters, estimated from data.

- What form does f have? Transformer, n-gram, ...
- What data is used? Difficulty to collect and annotate, quantity, quality, distribution shifts, statistical artefacts, ...
- How is the estimation done? Random search, gradient descent, ...

Nils Holzenberger Language modeling September 12, 2025

13 / 43

p(y|x) as p(x)

Outcome space = strings of *acceptable* characters

Random variable: X = the string that came out

All language tasks can be treated as the above problem

 $p(\text{``Where is Télécom Paris located? In Palaiseau''}) \approx 1$

 $p(\text{``Where is T\'el\'ecom Paris located? In Paris''}) \approx 0$

Or at least:

p("Where is Télécom Paris located? In Palaiseau") > p("Where is Télécom Paris located? In Paris")

 \rightarrow model p(x) where x is a string

- NLP tasks can be done entirely without probabilities
- The meaning of the probability of a sentence or string was controversial for a long time
- Remember that this is just a tool¹

Nils Holzenberger Language modeling September 12, 2025 15 / 43

¹ All models are wrong, but some are useful (https://en.wikipedia.org/wiki/All_models_are_wrong)

Outline

- 1 Probabilities in NLP (and speech)
 - Random variables
 - Probabilities in NLP
 - Solving NLP with probabilities
- Language modeling
 - Σ*
 - Modeling p
 - Building a Language Model
- 3 LMs in practice
 - Statistical tools
 - Technical tools
 - Alignment

ullet Let Σ be the set for all words in the language

- ullet Let Σ be the set for all words in the language
 - $\Sigma = \{A, B, C, ...\}$
 - $\Sigma = \{\text{acrobate}, \text{arrêt}, \text{arrière}, \text{barre}, ...\}$
 - $\Sigma = \{0, 1\}$
- Kleene closure of any combination of elements of Σ :

$$\Sigma^* = \{ v \circ w | v \in \Sigma^*, w \in \Sigma \} \cup \{ \epsilon \}$$

(\circ string concatenation, ϵ the empty string)


```
\Sigma = \{\text{Borislay}, \text{Frederica}, \text{in}, \text{lab}, \text{programs}, \text{the}, \text{with}\}
\Sigma^* = \{
                Borislav lab programs,
                Borislav programs in the lab,
                Frederica programs in the lab with Borislav,
                Borislav Borislav,
```

When Σ is the set of all alphanumeric characters, Σ^* contains the proof of the Poincaré conjecture, the correct answers to the final exam of APM_0EL07_TP, wrong answers to the final exam of APM_0EL07_TP, the results of the next election, all of the Internet...

Adapted from Ryan Cotterell's Introduction to NLP

September 12, 2025

18 / 43

Nils Holzenberger Language modeling

A language model over the language Σ is a probability distribution p over elements of Σ^*

 Experiment = drawing an element from G, a set of acceptable/valid/desirable sentences

A language model over the language Σ is a probability distribution p over elements of Σ^*

- Experiment = drawing an element from G, a set of acceptable/valid/desirable sentences
- Random variable X = the string drawn from GClearly $G \subset \Sigma^*$ so X takes values in Σ^*

A language model over the language Σ is a probability distribution p over elements of Σ^*

- Experiment = drawing an element from G, a set of acceptable/valid/desirable sentences
- Random variable X= the string drawn from G Clearly $G\subset \Sigma^*$ so X takes values in Σ^*
- Consequently, for a string $x \in \Sigma^*$:
 - If $x \in G$, p(X = x) > 0
 - If $x \notin G$, p(X = x) =

A language model over the language Σ is a probability distribution p over elements of Σ^*

- Experiment = drawing an element from G, a set of acceptable/valid/desirable sentences
- Random variable X= the string drawn from GClearly $G\subset \Sigma^*$ so X takes values in Σ^*
- Consequently, for a string $x \in \Sigma^*$:
 - If $x \in G$, p(X = x) > 0
 - If $x \notin G$, p(X = x) = 0

In practice, Σ is a set of *subword units*: groups of frequent character sequences like *th* or *ing*, which may sometimes be entire words.

Prefix tree

 Σ^* can be viewed as a prefix tree:

Adapted from Ryan Cotterell's Introduction to NLP

Prefix tree

A language model is a weighting of the prefix tree:

Adapted from Ryan Cotterell's Introduction to NLP

Prefix tree

$$\forall x \in \Sigma^*$$
: $x = x_1 \circ x_2 \circ ... \circ x_n$ where $\forall i, x_i \in \Sigma$

$$p(x) = p(x_1 \circ x_2 \circ \dots \circ x_n) = \frac{1}{Z} \prod_{t=1}^{|x|} \theta_{x_{1:t}}$$

$$Z = \sum_{x \in \Sigma^*} \prod_{t=1}^{|x|} \theta_{x_{1:t}}$$

Adapted from Ryan Cotterell's Introduction to NLP

Nils Holzenberger

Computing Z

$$Z = \sum_{x \in \Sigma^*} \prod_{t=1}^{|x|} \theta_{x_{1:t}}$$

- Global Normalization
 - No general-purpose method for global normalization
 - Take into account the structure of the probability model (lattice, probabilistic context-free grammar...)
- Local Normalization Choose the weights such that Z=1

Chain rule

Read it off the tree (it's a graphical model)

$$p(BOS | EOS) = p(EOS|BOS | a)p(a|BOS)p(BOS)$$

 $\forall x \in \Sigma^*$:

$$p(x) = p(x_1 \circ x_2 \circ ... \circ x_n) = p(x_1)p(x_2|x_1)p(x_3|x_1 \circ x_2)...p(x_n|x_1 \circ x_2 \circ ... \circ x_{n-1})$$

4□▶ 4□▶ 4□▶ 4□▶ □ 900

- This is the basic framework of language modeling
- Everything that follows makes some sort of simplifying assumption
 - N-grams
 - Recurrent Neural Networks
- What assumptions is GPT-n making? Is GPT-n a language model? (n = 1, 2, 3)

n-gram language modeling

$$p(x_t|x_{< t}) \stackrel{\text{assumption}}{=} p(x_t|x_{t-n+1}, x_{t-n+2}, ..., x_{t-1})$$

e.g. $p(\text{lab}|\text{Frederica programs in the}) = p(\text{lab}|\text{in the}) (n =$

n-gram language modeling

$$p(x_t|x_{< t}) \stackrel{\text{assumption}}{=} p(x_t|x_{t-n+1}, x_{t-n+2}, ..., x_{t-1})$$

e.g. $p(\text{lab}|\text{Frederica programs in the}) = p(\text{lab}|\text{in the}) \ (n=3)$

- ullet I only need to look at the n-1 previous tokens to decide what the next token is
- 2 assumptions in one:
 - Length of history
 - Absolute position of tokens is irrelevant

n-gram language modeling

$$p(x_t|x_{< t}) \overset{\text{assumption}}{=} p(x_t|x_{t-n+1}, x_{t-n+2}, ..., x_{t-1})$$

• The number of strings to consider is

Nils Holzenberger

n-gram language modeling

$$p(x_t|x_{< t}) \stackrel{\text{assumption}}{=} p(x_t|x_{t-n+1}, x_{t-n+2}, ..., x_{t-1})$$

- The number of strings to consider is $|\Sigma|^n$
- Assuming 10k tokens in the vocabulary and n=10, that's $10000^{10}-10000^9\approx 10^{40}$ free parameters
- Solution: dense representations. Hope that there are inherent constraints in language that make it possible to use fewer free parameters

Density assumption

$$p(x_t|x_{t-n+1},x_{t-n+2},...,x_{t-1}) \stackrel{\text{def}}{=} \frac{\exp(w_{x_t} \cdot h_t)}{\sum_{z \in \Sigma} \exp(w_z \cdot h_t)}$$

- $w_x \in \mathbb{R}^d$: embedding of token x
- $h_t \in \mathbb{R}^d$: embedding of history

For example:

- d = 300
- $w_{\rm x} \in \mathbb{R}^{300}$
- $\bullet \ h_t \stackrel{\mathrm{def}}{=} \sum_{k=1}^{10} M_k w_{x_{t-k}}$
- $M_k \in \mathbb{R}^{300 \times 300}$

Number of free parameters:

Density assumption

$$p(x_t|x_{t-n+1},x_{t-n+2},...,x_{t-1}) \stackrel{\text{def}}{=} \frac{\exp(w_{x_t} \cdot h_t)}{\sum_{z \in \Sigma} \exp(w_z \cdot h_t)}$$

- $w_x \in \mathbb{R}^d$: embedding of token x
- $h_t \in \mathbb{R}^d$: embedding of history

For example:

- d = 300
- $w_x \in \mathbb{R}^{300}$
- $\bullet h_t \stackrel{\mathrm{def}}{=} \sum_{k=1}^{10} M_k w_{x_{t-k}}$
- $M_k \in \mathbb{R}^{300 \times 300}$

Number of free parameters:

$$10000 \cdot 300 + 10 \cdot 300^2 = 3 \cdot 10^6 + 9 \cdot 10^5 << 10^{40}$$

RNN language modeling

- Is the n-gram assumption a major limitation?
- Recurrent Neural Networks can get rid of it
- Keep the density assumption

Two views of RNNs

An RNN is a very deep neural network with shared parameters between layers

Nils Holzenberger

Language modeling

Do RNNs and n-grams work? See lab session

Building a language model

- We don't know the distribution p over G
- We can't describe G other than with a representative sample of G. In practice, G = a selected subset of the Internet
- How to build a language model:
 - ullet collect elements from G and put them in a set D
 - ullet model p with a parametric function $f_{ heta}$ (usually denoted $p_{ heta}$)
 - modify parameters θ to maximize $\sum_{x \in D} \log(p_{\theta}(X = x))$

Using a language model for any NLP task

- So far we have a probability distribution over Σ^* that places most weight on acceptable/valid/desirable elements of Σ^*
- For $x, y \in \Sigma^*$, if p(x) > p(y) then x is better than y
- We can use p to answer questions (inter alia):
 argmax p("Where is Télécom Paris located?" ∘ answer)
- Using the chain rule we can complete sequences
- By treating any NLP task as a text completion task, anything can be solved using p

Using a language model for any NLP task

- So far we have a probability distribution over Σ^* that places most weight on acceptable/valid/desirable elements of Σ^*
- For $x, y \in \Sigma^*$, if p(x) > p(y) then x is better than y
- We can use p to answer questions (inter alia): $\underset{\text{answer}}{\operatorname{argmax}} \quad p(\text{"Where is Télécom Paris located?"} \circ \text{answer})$
- Using the chain rule we can complete sequences
- By treating any NLP task as a text completion task, anything can be solved using p
- Why does this work better than everything else we've had before?

Outline

- 1 Probabilities in NLP (and speech)
 - Random variables
 - Probabilities in NLP
 - Solving NLP with probabilities
- 2 Language modeling
 - Σ*
 - Modeling p
 - Building a Language Model
- State of the st
 - Statistical tools
 - Technical tools
 - Alignment

Machine learning

- Very active AI research area
- Research in NLP is almost inseparable from research in ML
 - ML methods frequently tested on NLP
 - NLP problems led to development of new ML methods

ML cookbook

- Language modeling relies on a few simple ideas:
 - A sentence is a random variable
 - A probability density function can be represented by a parametric function (+ density assumption)
 - The real p.d.f. can be approximated by estimating the parameters thanks to the tools of ML
- Many tricks are needed for this to work:
 - The Transformer architecture to model p
 - Language data for G
 - Gradient descent
 - Stability of numerical calculation
 - Hyperparameter search
 - Federated learning, parallel computing
 - Hardware
 - ...

The combustion engine

- The combustion engine relies on basic thermodynamics
 - Carnot cycle
 - Gas physics
 - Thermal reservoirs
- The practice is more complex
 - Materials to build the engine
 - Rotary shaft seals
 - Air-fuel mixture
 - Thermal expansion of the cylinders
 - Lubrication
 - Cooling
 - ...

Internet

- There has never been so much textual data available
- GPT-3 has been trained on around 45TB of text data

DOMO, Data never sleeps, https://www.domo.com/learn/ infographic/ data-never-sleeps-9, visité le 2024-03-22-1734

Computing power

- Transformer models only work if trained on large quantities of data
- Transformer models scale well (bigger models work even better, as long as there is enough data to train them)
- This is only practical if computation is fast
- This was made possible by increasingly better GPU cards

One last thing...

- The Internet contains text that is generally syntactically valid
- The Internet contains text of variable semantic quality Wikipedia, government websites, Reddit...
- G is curated with heuristics but some stuff always comes through
- LLMs need an alignment phase: Alignment is the process of encoding human values and goals into large language models to make them as helpful, safe, and reliable as possible.²
- In practice
 - let the unaligned LLM interact with humans
 - ask them to flag inappropriate content
 - use the feedback to modify p
 - do this at a massive scale

40 / 43

Nils Holzenberger Language modeling September 12, 2025

Human workforce

- In practice
 - let the unaligned LLM interact with humans
 - ask them to flag inappropriate content
 - use the feedback to modify p
 - do this at a massive scale
- Alignment uses Reinforcement Learning with Human Feedback, a recent theoretical tool
- How much and what kind of human labor is involved is proprietary³
- This part is crucial

Nils Holzenberger Language modeling September 12, 2025 41 / 43

³Clément Le Ludec, Maxime Cornet, Antonio A. Casilli, *The problem with annotation. Human labour and outsourcing between France and Madagascar*, Big Data & Society, 2023; Paola Tubaro, *Learners in the loop: hidden human skills in machine intelligence*, Sociologia del Lavoro, 2022; Antonio A. Casilli, *Waiting for Robots. The Hired Hands of Automation*, 2025

Another view of LLMs

- Newton's laws explain Tycho Brahe's observations
- LLMs explain the data observed on the Internet
- The motion of planets requires a couple of equations, a handful of constants and calculus
- The language on the internet requires a couple of equations and 175B constants for GPT-3

ANNALS OF TECHNOLOGY

CHATGPT IS A BLURRY JPEG OF THE WEB

OpenAI's chatbot offers paraphrases, whereas Google offers quotes. Which do we prefer?

By Ted Chiang February 9, 2023

Lab session

- The lab contains questions. The questions are repeated in QUESTIONS.txt.
- You will need to write code to answer the questions.
- Fill in the lab session questions via a form on moodle.
- This will be graded.