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Introduction

 

(This introduction is not part of IEEE Std 1363-2000, IEEE Standard Specifications for Public-Key Cryptography.)

 

The P1363 project started as the “Standard for Rivest-Shamir-Adleman, Diffie-Hellman, and Related
Public-Key Cryptography,” with its first meeting held in January 1994, following a strategic initiative by the
Microprocessor Standards Committee to develop standards for cryptography.

P1363’s scope broadened with the inclusion of elliptic curve cryptosystems as 

 

related

 

 cryptography, and
later the title was changed to the current one to reflect the breadth of the effort. In mid-1996, the working
group decided to include three families of techniques, based on three different hard problems—integer
factorization, discrete logarithms over finite fields, and elliptic curve discrete logarithms. By late 1996, the
set of techniques was fairly stable, with 

 

additional

 

 techniques deferred to the P1363a project.

Most of the next two years saw an increasing intensity of editing, as the Working Group sought to fulfill the
scope that remained. In early 1998, the group set a schedule for completion that would bring the document to
ballot in late 1998, and final sections of the document were prepared.

The process of developing a standard is always a challenging one, particularly when the subject is as
technical as cryptography and the scope is as broad as proposed for P1363. Moreover, as other groups were
developing complementary standards at the same time as P1363, close coordination was an essential aspect.
Security implies a great deal of caution, and the Working Group was careful in its deliberations not to set any
“standards” that might later lead to vulnerabilities (although, as it is pointed out elsewhere, this standard is
much more about a framework for specifying public-key techniques, than it is about security, per se).

In addition to this standard, the P1363 project has provided a number of other contributions to the computer
security industry. First, it has presented a forum where experts can discuss general issues related to
public-key standardization. Second, through its Web page and its call for submissions to P1363a, the project
has given a focal point for the presentation of new developments in public-key technology. Third, it has
helped facilitate the open discussion of intellectual property issues in this area. And, finally, through its
drafts, P1363 has provided reference material to a wide community of cryptographers that otherwise was
relegated to textbooks and research papers. For the duration of its existence, the Working Group intends to
maintain a Web page containing “errata and latest information” as an additional reference to support P1363
documents (see 

 

http://grouper.ieee.org/groups/1363/index.html

 

). 

The P1363 Working Group is grateful to the many experts who have contributed to this standard, and
particularly to those whose development of public-key technology over the past two decades has provided
the foundation for information security in the next century.
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IEEE Standard Specifications for
Public-Key Cryptography

 

1. Overview

 

1.1 Scope

 

This standard covers specifications for common public-key cryptographic techniques, including
mathematical primitives for secret value (key) derivation, public-key encryption and digital signatures, and
cryptographic schemes based on those primitives. Specifications of related cryptographic parameters, public
keys, and private keys are also discussed. Classes of computers and communication systems are not
restricted.

 

NOTE—As of the date of this standard’s publication, another IEEE project, P1363a, is underway to specify additional
techniques. Its intent is to be an amendment to this standard. Its scope is similar to that of this standard, with the addition
of identification schemes. (See the note in 1.2 for a description of the purpose of P1363a.)

 

1.2 Purpose

 

The transition from paper to electronic media brings with it the need for electronic privacy and authenticity.
Public-key cryptography offers fundamental technology addressing this need. Many alternative public-key
techniques have been proposed, each with its own benefits. However, there has been no single,
comprehensive reference defining a full range of common public-key techniques covering key agreement,
public-key encryption, digital signatures, and identification from several families, such as discrete
logarithms, integer factorization, and elliptic curves.

It is not the purpose of this standard to mandate any particular set of public-key techniques, or particular
attributes of public-key techniques, such as key sizes. Rather, its purpose is to provide a reference for
specifications of a variety of techniques from which applications may select. 

 

NOTE—As of the date of this standard’s publication, another IEEE project, P1363a, is underway to specify additional
techniques. Its intent is to be an amendment to this standard. Its purpose is similar to that of this standard; however,
P1363a will focus on newer techniques, while this standard specifies relatively well-established techniques. (See the
note in 1.1 for a decription of the scope of P1363a.)
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1.3 Organization of the document

 

This standard contains two parts: the main document and six annexes.

 

1.3.1 Structure of the main document 

 

— Clause 1 is an overview.

— Clause 2 provides references to other standards.

— Clause 3 defines relevant terms used throughout this standard.

— Clause 4 gives an overview of the types of cryptographic techniques that are described in this
standard.

— Clause 5 describes certain mathematical conventions used in the standard, including notation and
representation of mathematical objects. It also defines formats to be used in communicating the
mathematical objects, as well as primitives for data type conversion.

— Clause 6 through Clause 11 define three families of cryptographic techniques: techniques based on
the discrete logarithm problem (DL), the elliptic curve discrete logarithm problem (EC), and the
integer factorization problem (IF). Clause 6, Clause 7, and Clause 8 define the setting and primitives
used in the DL, EC, and IF families, respectively. Clause 9, Clause 10, and Clause 11 define key
agreement schemes, signature schemes, and encryption schemes, respectively.

— Clause 12 defines message-encoding methods for signature and encryption schemes described in
Clause 10 and Clause 11.

— Clause 13 defines key derivation functions for key agreement schemes described in Clause 9.

— Clause 14 defines certain auxiliary functions supporting the techniques described in Clause 12 and
Clause 13.

 

1.3.2 Structure of the annexes

 

The six annexes provide background and helpful information for the users of this standard, as follows:

— Annex A (informative) Number-theoretic background

— Annex B (normative) Conformance

— Annex C (informative) Rationale

— Annex D (informative) Security considerations

— Annex E (informative) Formats

— Annex F (informative) Bibliography

 

2. References

 

This standard shall be used in conjunction with the following publications. 

FIPS PUB 180-1, Secure Hash Standard, Federal Information Processing Standards Publication 180-1, U.S.
Department of Commerce/National Institute of Standards and Technology, April 1995.

 

1

 

1

 

FIPS publications are available from the National Technical Information Service (NTIS), U. S. Dept. of Commerce, 5285 Port Royal
Rd., Springfield, VA 22161 (http://www.ntis.gov/) and/or from the Federal Information Processing Standards Publications web site at
http://www.itl.nist.gov/fipspubs/.
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ISO/IEC 10118-3:1998, Information Technology—Security techniques—Hash-functions—
Part 3: Dedicated hash-functions.

 

NOTES

1—The above references are required for implementing some, but not all, of the techniques in this standard. 

2—The mention of any standard in this document is for reference only, and does not imply conformance with that
standard. Readers should refer to the relevant standard for full information on conformance with that standard.

3— A bibliography is provided in Annex F. 

 

3. Definitions

 

For the purposes of this standard, the following terms and definitions apply. The IEEE Standard Dictionary
of Electrical and Electronics Terms, Sixth Edition [B71]

 

2

 

 

 

should be referenced for terms not defined in this
clause.

 

3.1 authentication of ownership:

 

 The assurance that a given, identified party intends to be associated with
a given public key. May also include assurance that the party possesses the corresponding private key.

 

NOTE—See D.3.2 for more information.

 

3.2 bit length:

 

 

 

See:

 

 

 

length

 

.

 

3.3 bit string:

 

 An ordered sequence of bits (0’s and 1’s). A bit and a bit string of length 1 are equivalent for
all purposes of this standard.

 

3.4 ciphertext:

 

 The result of applying encryption to a message. 

 

Contrast:

 

 

 

plaintext

 

. 

 

See also:

 

 

 

encryption

 

.

 

3.5 conformance region:

 

 A set of inputs to a primitive or a scheme operation for which an implementation
operates in accordance with the specification of the primitive or scheme operation.

 

NOTE—See B.1 for more information.

 

3.6 cryptographic families:

 

 Three families of techniques, which are presented in this standard, based on the
underlying hard problem: discrete logarithm over finite fields (DL), discrete logarithm over elliptic curve
groups (EC), and integer factorization (IF).

 

3.7 decrypt:

 

 To produce plaintext from ciphertext. 

 

Contrast:

 

 

 

encrypt

 

. 

 

See also:

 

 

 

ciphertext, encryption,
plaintext

 

.

 

3.8 digital signature:

 

 A digital string for providing authentication. Commonly, in public-key cryptography,
it is a digital string that binds a public key to a message in the following way: only the person knowing the
message and the corresponding private key can produce the string, and anyone knowing the message and the
public key can verify that the string was properly produced. A digital signature may or may not contain the
information necessary to recover the message itself. 

 

See also:

 

 

 

digital signature scheme, public key,
public-key cryptography, private key, signature scheme with appendix, signature scheme with
message recovery

 

.

 

3.9 digital signature scheme:

 

 A method for providing authentication. In public-key cryptography, this
method can be used to generate a digital signature on a message with a private key in such a way that anyone
knowing the corresponding public key can verify that the digital signature was properly produced. 

 

See also:

 

2

 

The numbers in brackets correspond to those of the bibliography in Annex F.
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digital signature, public key, public-key cryptography, private key, signature scheme with appendix,
signature scheme with message recovery

 

.

 

3.10 domain parameters:

 

 A set of mathematical objects, such as fields or groups, and other information
defining the context in which public/private key pairs exist. More than one key pair may share the same
domain parameters. Not all cryptographic families have domain parameters. 

 

See also:

 

 

 

public/private key
pair, valid domain parameters

 

.

 

3.11 domain parameter validation:

 

 The process of ensuring or verifying that a set of domain parameters is
valid. 

 

See also

 

: 

 

domain parameters, key validation, valid domain parameters

 

.

 

3.12 encrypt:

 

 To produce ciphertext from plaintext. 

 

Contrast:

 

 

 

decrypt

 

. 

 

See also:

 

 

 

ciphertext, encryption,
plaintext

 

.

 

3.13 encryption scheme:

 

 A method for providing privacy. In public-key cryptography, this method can be
used to modify a message with the help of a public key to produce what is known as ciphertext, such that
only the holder of the corresponding private key can recover the original message from the ciphertext. 

 

See
also:

 

 

 

ciphertext, plaintext, private key, public key, public-key cryptography

 

. 

 

3.14 family:

 

 

 

See:

 

 

 

cryptographic families

 

.

 

3.15 field:

 

 A setting in which the usual mathematical operations (addition, subtraction, multiplication, and
division by nonzero quantities) are possible and obey the usual rules (such as the commutative, associative,
and distributive laws). A discrete logarithm (DL) or elliptic curve (EC) scheme is always based on
computations in a field. 

 

NOTE—See Koblitz [B95] for a precise mathematical definition.

 

3.16 finite field:

 

 A field in which there are only a finite number of quantities. The discrete logarithm (DL)
and elliptic curve (EC) schemes are always implemented over finite fields.

 

NOTE—See Clause 5 for a description of the particular finite fields used in this standard.

 

3.17 first bit:

 

 The leading bit of a bit string or an octet. For example, the first bit of 0110111 is 0. 

 

Contrast

 

:

 

last bit

 

. 

 

Synonyms: 

 

most significant bit, leftmost bit

 

. 

 

See also:

 

 

 

bit string, octet

 

.

 

3.18 first octet:

 

 The leading octet of an octet string. For example, the first octet of 1c 76 3b e4 is 1c.

 

Contrast

 

: 

 

last octet

 

. 

 

Synonyms:

 

 

 

most significant octet, leftmost octet

 

. 

 

See also:

 

 

 

octet, octet string

 

.

 

3.19 key agreement:

 

 A method by which two entities, using each other's public keys and their own private
keys, agree on a common secret key that only they know. The secret key is then commonly used in some
symmetric cryptography technique. 

 

See also: 

 

private key, public key, secret key, symmetric
cryptography

 

.

 

3.20 key confirmation:

 

 The assurance provided to each party participating in a key agreement protocol that
the other party is capable of computing the agreed-upon key, and that it is the same for both parties. 

 

See also:

 

key agreement

 

. 

NOTE—See D.5.1.3 for more information. 

 

3.21 key derivation:

 

 The process of deriving a secret key from a secret value. 

 

See also:

 

 

 

secret key, secret
value

 

.

 

3.22 key pair:

 

 

 

See:

 

 

 

public/private key pair

 

.
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3.23 key validation:

 

 The process of ensuring or verifying that a key or a key pair is valid. 

 

See also:

 

 

 

domain
parameter validation, public/private key pair, valid key, valid key pair

 

.

 

3.24 last bit:

 

 The trailing bit of a bit string or an octet. For example, the last bit of 0110111 is 1. 

 

Contrast

 

:

 

first bit

 

. 

 

Synonyms:

 

 

 

least significant bit, rightmost bit

 

. 

 

See also:

 

 

 

first bit, octet

 

.

 

3.25 last octet:

 

 The trailing octet of an octet string. For example, the last octet of 1c 76 3b e4 is e4. 

 

Contrast:

 

first octet

 

. 

 

Synonyms: 

 

least significant octet, rightmost octet

 

. 

 

See also:

 

 

 

octet, octet string

 

.

 

3.26 least significant:

 

 

 

See:

 

 

 

last bit, last octet

 

. 

 

3.27 length: (A)

 

 The length of a bit string is the number of bits in the string. 

 

(B)

 

 The length of an octet string
is the number of octets in the string. 

 

(C)

 

 The length in bits of a nonnegative integer 

 

n

 

 is 

 



 

log

 

2

 

 (

 

n

 

 + 1)

 



 

 (i.e.,
the number of bits in the integer’s binary representation). 

 

(D)

 

 The length in octets of a nonnegative integer 

 

n

 

is 

 

log256 (n + 1) (i.e., the number of digits in the integer’s representation base 256). For example, the
length in bits of the integer 500 is 9, whereas its length in octets is 2.

3.28 leftmost bit: See: first bit.

3.29 leftmost octet: See: first octet.

3.30 message recovery: See: signature scheme with message recovery.

3.31 message representative: A mathematical value for use in a cryptographic primitive, computed from a
message that is input to an encryption or a digital signature scheme. See also: encryption scheme, digital
signature scheme.

3.32 most significant: See: first bit, first octet.

3.33 octet: A bit string of length 8. An octet has an integer value between 0 and 255 when interpreted as a
representation of an integer in base 2. An octet can also be represented by a hexadecimal string of length 2,
where the hexadecimal string is the representation of its integer value base 16. For example, the integer value
of the octet 10011101 is 157; its hexadecimal representation is 9d. See also: bit string.

3.34 octet string: An ordered sequence of octets. See also: octet.

3.35 parameters: See: domain parameters.

3.36 plaintext: A message before encryption has been applied to it; the opposite of ciphertext. Contrast:
ciphertext. See also: encryption.

3.37 private key: The private element of the public/private key pair. See also: public/private key pair,
valid key.

3.38 public key: The public element of the public/private key pair. See also: public/private key pair, valid
key. 

3.39 public-key cryptography: Methods that allow parties to communicate securely without having prior
shared secrets, usually through the use of public/private key pairs. Contrast: symmetric cryptography. See
also: public/private key pair. 

3.40 public/private key pair: A pair of cryptographic keys used in public-key cryptography, consisting of a
public key and a private key that correspond to each other by some mathematical relation. The public key is
commonly available to a wide audience and can be used to encrypt messages or verify digital signatures. The
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private key is held by one entity and not revealed to anyone; it is used to decrypt messages encrypted with
the public key and/or produce signatures that can be verified with the public key. A public/private key pair
can also be used in key agreement. In some cases, a public/private key pair can only exist in the context of
domain parameters. See also: digital signature, domain parameters, encryption, key agreement,
public-key cryptography, valid key, valid key pair.

3.41 rightmost bit: See: last bit.

3.42 rightmost octet: See: last octet.

3.43 root (of a polynomial): For a polynomial f(x), a value r such that f(r) = 0.

3.44 secret key: A key used in symmetric cryptography; commonly needs to be known to all parties
involved, but cannot be known to an adversary. Contrast: public/private key pair. See also: key
agreement, shared secret key, symmetric cryptography.

3.45 secret value: A value that can be used to derive a secret key, but typically cannot by itself be used as a
secret key. See also: secret key.

3.46 shared secret key: A secret key shared by two parties, usually derived as a result of a key agreement
scheme. See also: key agreement, secret key.

3.47 shared secret value: A secret value shared by two parties, usually during a key agreement scheme. See
also: key agreement, secret value.

3.48 signature: See: digital signature.

3.49 signature scheme with appendix: A digital signature scheme that requires the signed message as input
to the verification algorithm. Contrast: signature scheme with message recovery. See also: digital
signature, digital signature scheme.

3.50 signature scheme with message recovery: A digital signature scheme that contains enough
information for recovery of the signed message, thus limiting the possible message size while eliminating
the need to transmit the message with the signature and input it to the verification algorithm. Contrast:
signature scheme with appendix. See also: digital signature, digital signature scheme.

3.51 signature verification: The process of verifying a digital signature. See also: digital signature, digital
signature scheme.

3.52 symmetric cryptography: Methods that allow parties to communicate securely only when they
already share some prior secrets, such as the secret key. Contrast: public-key cryptography. See also:
secret key.

3.53 valid domain parameters: A set of domain parameters that satisfies the specific mathematical
definition for the set of domain parameters of its family. While a set of mathematical objects may have the
general structure of a set of domain parameters, it may not actually satisfy the definition (e.g., it may be
internally inconsistent) and thus not be valid. See also: domain parameters, public/private key pair, valid
key, valid key pair, validation.

3.54 valid key: A key (public or private) that satisfies the specific mathematical definition for the keys of its
family, possibly in the context of its set of domain parameters. While some mathematical objects may have
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the general structure of keys, they may not actually lie in the appropriate set (e.g., they may not lie in the
appropriate subgroup of a group, or be out of the bounds allowed by the domain parameters) and thus not be
valid keys. See also: domain parameters, public/private key pair, valid domain parameters, valid key
pair, validation.

3.55 valid key pair: A public/private key pair that satisfies the specific mathematical definition for the key
pairs of its family, possibly in the context of its set of domain parameters. While a pair of mathematical
objects may have the general structure of a key pair, the keys may not actually lie in the appropriate sets
(e.g., they may not lie in the appropriate subgroup of a group, or be out of the bounds allowed by the domain
parameters), or may not correspond to each other; such a pair is thus not a valid key pair. See also: domain
parameters, public/private key pair, valid domain parameters, valid key, validation.

3.56 validation: See: domain parameter validation, key validation.

4. Types of cryptographic techniques

This clause gives an overview of the types of cryptographic techniques that are specified in this standard, as
well as some requirements for conformance with those techniques. See Annex B for more information on
conformance.

4.1 General model

As stated in Clause 1, the purpose of this standard is to provide a reference for specifications of a variety of
common public-key cryptographic techniques from which applications may select. Therefore, it is desirable
to define these techniques in a framework that allows selection of techniques appropriate for particular
applications. Different types of cryptographic techniques can be viewed abstractly according to the
following three-level general model:

— Primitives: Basic mathematical operations. Historically, they were discovered based on
number-theoretic hard problems. Primitives are not meant to achieve security by themselves, but
they serve as building blocks for schemes.

— Schemes: A collection of related operations combining primitives and additional methods (see 4.4).
Schemes can provide complexity-theoretic security, which is enhanced when they are appropriately
applied in protocols.

— Protocols: Sequences of operations to be performed by multiple parties to achieve some security
goal. Protocols can achieve desired security for applications if implemented correctly.

From an implementation viewpoint, primitives can be viewed as low-level implementations (e.g.,
implemented within cryptographic accelerators, or software modules); schemes can be viewed as
medium-level implementations (e.g., implemented within cryptographic service libraries); and protocols can
be viewed as high-level implementations (e.g., implemented within entire sets of applications).

General frameworks for primitives, schemes, and additional methods are provided in 4.2, 4.3, and 4.4, and
specific techniques are defined in Clause 6 through Clause 14. This standard, however, does not define proto-
cols, mainly because they tend to be application-specific and, hence, are outside the scope of the standard.
Nevertheless, the techniques defined in this standard are key components for constructing various
cryptographic protocols. Also, Annex D discusses security considerations related to how the techniques can
be used in protocols to achieve certain security attributes.
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4.2 Primitives

The following types of primitives are defined in this standard:

— Secret value derivation primitives (SVDP): components of key agreement schemes

— Signature primitives (SP) and verification primitives (VP): components of signature schemes

— Encryption primitives (EP) and decryption primitives (DP): components of encryption schemes

Primitives in this standard are presented as mathematical operations, and they are not meant to provide
security by themselves. For example, it may be easy to compute message-signature pairs that a signature
verification primitive would find consistent with a public key. This is no assurance, however, that the
signature was produced on the message by the owner of the corresponding private key. Such assurance can
only be provided by a properly implemented signature scheme, which uses the primitive along with other
operations.

Primitives assume that their inputs satisfy certain assumptions, as listed with the specification of each
primitive. An implementation of a primitive is unconstrained on an input not satisfying the assumptions, as
long as it does not adversely affect future operation of the implementation; the implementation may or may
not return an error condition. For example, an implementation of a signature primitive may return something
that looks like a signature even if its input was not a valid private key. It may also reject the input. It is up to
the user of the primitive to guarantee that the input will satisfy the constraints or to include the relevant
checks. For example, the user may choose to use the relevant key and domain parameter validation
techniques.

The specification of a primitive consists of the following information:

— Input to the primitive

— Assumptions about the input made in the description of the operation performed by the primitive

— Output from the primitive

— Operation performed by the primitive, expressed as a series of steps

— Conformance region recommendations describing the minimum recommended set of inputs for
which an implementation should operate in conformance with the primitive (see Annex B for more
information on conformance)

The specifications are functional specifications, not interface specifications. As such, the format of inputs
and outputs, and the procedure by which an implementation of a primitive is invoked, are outside the scope
of this standard. See Annex E for more information on input and output formats.

4.3 Schemes

The following types of schemes are defined in this standard:

— Key agreement schemes (KAS), in which two parties use their public/private key pairs, and possibly
other information, to agree on a shared secret key. The shared secret key may then be used for
symmetric cryptography. (See Clause 3 for the definition of symmetric cryptography.)

— Signature schemes with appendix (SSA), in which one party signs a message using its private key,
and any other party can verify the signature by examining the message, the signature, and the
signer’s corresponding public key.
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— Encryption schemes (ES), in which any party can encrypt a message using a recipient’s public key,
and only the recipient can decrypt the message by using its corresponding private key. Encryption
schemes may be used for establishing secret keys to be used in symmetric cryptography.

Schemes in this standard are presented in a general form based on certain primitives and additional methods,
such as message-encoding methods. For example, an encryption scheme is based on an encryption primitive,
a decryption primitive, and an appropriate message-encoding method. 

Schemes also include key management operations, such as selecting a private key or obtaining another
party’s public key. For proper security, a party needs to be assured of the true owners of the keys and domain
parameters and of their validity. Generation of domain parameters and keys needs to be performed properly,
and, in some cases, validation also needs to be performed. Proper key management, which is outside the
scope of this standard, is essential for security. It is addressed in more detail in Annex D.

The specification of a scheme consists of the following information:

— Scheme options, such as choices for primitives and additional methods

— One or more operations, depending on the scheme, expressed as a series of steps

— Conformance region recommendations for implementations conforming with the scheme (see
Annex B for more information on conformance)

As for primitives, the specifications are functional specifications, not interface specifications. As such, the
format of inputs and outputs, and the procedure by which an implementation of a scheme is invoked, are
outside the scope of this standard. See Annex E for more information on input and output formats.

4.4 Additional methods

This standard specifies the following additional methods:

— Message-encoding methods, which are components of signature or encryption schemes

1) Encoding methods for signatures with appendix (EMSA)

2) Encoding method for encryption (EME)

— Key derivation functions (KDF), which are components of key agreement schemes

— Auxiliary functions, which are building blocks for other additional methods

1) Mask generation function (MGF), which is used in EME

2) Hash functions, which are used in EMSA, EME, KDF, and MGF

The specified additional methods are strongly recommended for use in the schemes. The use of an
inadequate message-encoding method, key derivation function, or auxiliary function may compromise the
security of the scheme in which it is used. Therefore, any implementation that chooses not to follow the
recommended additional methods for a particular scheme should perform its own thorough security analysis
of the resulting scheme.

4.5 Table summary

Table 1 gives a summary of all the schemes in this standard, together with the primitives and additional
methods that are invoked within a scheme.   
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5. Mathematical conventions

This clause describes certain mathematical conventions used in the standard, including notation and
representation of mathematical objects. It also contains primitives for data type conversion. Note that the
internal representation of mathematical objects is left entirely to the implementation, and may or may not
follow the one described below.

Table 1—Summary of techniques in the standard

Scheme name Primitives Additional methods

Key Agreement Schemes

DLKAS-DH1 DL/ECSVDP-DH or -DHC KDF1 (uses a hash function) 

DL/ECKAS-DH2 DL/ECSVDP-DH and/or -DHC KDF1 (uses a hash function)

DLKAS-MQV DL/ECSVDP-MQV or -MQVC KDF1 (uses a hash function)

Signature Schemes with Appendix

DL/ECSSA DLSP-NR and DLVP-NR
OR 

DLSP-DSA and DLVP- DSA
OR

ECSP-NR and ECVP-NR
OR

ECSP-DSA and ECVP-DSA

EMSA1 (uses a hash function)

IFSSA IFSP-RSA1 and IFVP-RSA1
OR

IFSP-RSA2 and IFVP-RSA2
OR

IFSP-RW and IFVP-RW

EMSA2 (uses a hash function)

Encryption Schemes

IFES IFEP-RSA and IFDP-RSA EME1 (uses a hash function and a 
mask generation function)

NOTE—Acronym definitions are as follows:

Families
DL: discrete logarithm
EC: elliptic curve
IF: integer factorization

Schemes
KAS: key agreement scheme
SSA: signature scheme with appendix
ES: encryption scheme

Additional methods

Primitives

SVDP: secret value derivation primitive
SP: signature primitive
VP: verification primitive
EP: encryption primitive
DP: decryption primitive

KDF: key derivation function
EMSA: encoding method for signatures
               with appendix
EME: encoding method for encryption

Names of techniques
DH: Diffie–Hellman
DHC: Diffie–Hellman with cofactor
            exponentiation/multiplication
MQV: Menezes–Qu–Vanstone
MQVC: Menezes–Qu–Vanstone with
               cofactor exponentiation/multiplication
NR: Nyberg–Rueppel
DSA: Digital signature algorithm
RSA: Rivest–Shamir–Adleman
RW: Rabin–Williams
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5.1 Mathematical notation

 

The following mathematical notation is used throughout this standard:

0 Denotes the integer 0, the bit 0, or the additive identity (the element zero) of a 
finite field. See 5.3 for more on finite fields.

1 Denotes the integer 1, the bit 1, or the multiplicative identity (the element one) of a
finite field. See 5.3 for more on finite fields.

 

a

 

 

 

×

 

 

 

b

 

The product of 

 

a

 

 and 

 

b

 

, where 

 

a

 

 and 

 

b

 

 are either both integers, or both finite field
elements. When it does not cause confusion, 

 

× 

 

is omitted and the notation 

 

ab

 

 is
used. See 5.3 for more on finite fields.

 

a 

 

× 

 

P

 

Scalar multiplication of an elliptic curve point 

 

P

 

 by a non-negative integer 

 

a

 

. When
it does not cause confusion, 

 

×

 

 is omitted and the notation 

 

aP

 

 is used. See 5.4 for
more on elliptic curves.

 



 

x

 



 

The smallest integer greater than or equal to the real number 

 

x

 

. For example,

 



 

5

 



 

 = 5, 

 



 

5.3

 



 

 = 6, 

 



 

–5

 



 

= –5, and 

 



 

–5.3

 

= 

 

–5.

 



 

x

 



 

The largest integer less than or equal to the real number 

 

x

 

. For example,

 



 

5

 



 

 = 5, 

 



 

5.3

 



 

 = 5, 

 



 

–5

 



 

 = –5, and 

 



 

–5.3

 



 

 = –6.

[

 

a

 

, 

 

b

 

] The interval of integers between and including the integers

 

 a

 

 and 

 

b

 

.

LCM (

 

a

 

, 

 

b

 

) For two positive integers 

 

a

 

 and 

 

b

 

, denotes the 

 

least common multiple

 

 of 

 

a

 

 and 

 

b
(i.e., the least positive integer that is divisible by both a and b). See A.1.1 and
A.2.2 for an algorithm to compute the LCM.

GCD (a, b) For two positive integers a and b, denotes the greatest common divisor of a and b
(i.e., the largest positive integer that divides both a and b). See A.1.1 and A.2.2 for
an algorithm to compute the GCD.

X ⊕ Y Bitwise exclusive-or (XOR) of two bit strings or two octet strings X and Y of the
same length.

X || Y Ordered concatenation of two strings X and Y. X and Y are either both bit strings, or
both octet strings.

log2 x The logarithmic function of a positive number x to the base 2.

log256 x The logarithmic function of a positive number x to the base 256.

a mod n The unique remainder r, 0 ≤ r < n, when the integer a is divided by the positive
integer n. For example, 23 mod 7 = 2. The operator “mod” has the lowest
precedence of all arithmetic operators (e.g., 5 + 8 mod 3 is equal to 13 mod 3, not
5 + 2). See A.1.1 for more details.

a ≡ b (mod n) The integers a and b have the same remainder when divided by the positive integer
n. Pronounced “a is congruent to b modulo n.” This is equivalent to (a mod n) =
(b mod n). See A.1.1 for more details.
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a ≡⁄  b (mod n) The integers a and b have different remainders when divided by the positive
integer n. Pronounced “a is not congruent to b modulo n.” This is equivalent to
(a mod n) ≠ (b mod n).

a–1 mod n A positive integer b < n, if it exists, such that ab mod n = 1. Pronounced “the
(multiplicative) inverse of a modulo n.” Also denoted by 1/a mod n. See A.1.1 and
A.2.2 for a more detailed description and an algorithm for computing it.

a/b mod n An integer a multiplied by the inverse of the integer b modulo n. Equivalent to
ab–1 mod n.

GF (p) The finite field of p elements, represented as the integers modulo p, where p is an
odd prime number. Also known as a prime finite field. See 5.3.1 for more
information.

GF (2m) The finite field containing 2m elements for some integer m > 0. Also known as a
characteristic two finite field. See 5.3.2 for more information.

GF (q) The finite field containing q elements. For this standard, q will be either a prime
number (p) or a power of 2 (2m).

The Jacobi symbol of the integer x with respect to the integer n. See A.1.4 for a
detailed description and A.2.3 for an algorithm to compute the Jacobi symbol.

O The elliptic curve point at infinity. See 5.4 for more information.

exp(a, b) The result of raising a to the power b, where a is an integer or a finite field element,
and b is an integer. Also denoted by ab.

exp(a) The result of raising the number e (where e = 2.718…) to the power a, where a is a
real number.

NOTE—Throughout this main document, integers and field elements are denoted by lowercase letters, and octet strings
and elliptic curve points are denoted by uppercase letters. The one exception is when a public key that can be either a
field element or an elliptic curve point is denoted by a lowercase letter in the DL and EC schemes (see 9.2, 9.3, 9.4, and
10.2).

5.2 Bit strings and octet strings

Bit strings and octet strings are ordered sequences. The terms first and last, leftmost and rightmost, and
leading and trailing are used to distinguish the ends of these sequences (first, leftmost, and leading are
equivalent; last, rightmost, and trailing are equivalent; other publications sometimes use most significant,
which is synonymous with leading, and least significant, which is synonymous with trailing). 

Note that when a string is represented as a sequence, it may be indexed from right to left or from left to right,
starting with any index. This does not change the meaning of the terms above. For example, consider the
octet string of 4 octets: 1c 76 3b e4. One can represent it as a string a0 a1 a2 a3, with a0 = 1c, a1 = 76,
a2 = 3b, and a3 = e4. In this case, a0 represents the first octet, and a3 represents the last octet. Alternatively,
one can represent it as a string a1 a2 a3 a4, with a1 = 1c, a2 = 76, a3 = 3b, and a4 = e4. In this case, a1
represents the first octet, and a4 represents the last octet. Yet another possibility would be to represent it as a3
a2 a1 a0, with a3 = 1c, a2 = 76, a1 = 3b, and a0 = e4. In this case, a3 represents the first octet and a0
represents the last octet. No matter how this string is represented, the value of the first octet is always 1c and
the value of the last octet is always e4.

x
n
--- 
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5.3 Finite fields

This subclause describes the kinds of underlying finite fields GF (q) that shall be used, and how they are to
be represented for purposes of conversion with the primitives in 5.5. As noted above, the internal
representation of objects is left to the implementation, and may be different. If the internal representation is
different, conversion to the representation defined here may be needed at certain points in cryptographic
operations.

5.3.1 Prime finite fields

A prime finite field is a field containing a prime number of elements. If p is an odd prime number, then there
is a unique field GF (p) with p elements. For purposes of conversion, the elements of GF (p) shall be
represented by the integers 0, 1, 2 ,..., p – 1.

A description of the arithmetic of GF (p) is given in A.1 and A.2.

5.3.2 Characteristic two finite fields

A characteristic two finite field (also known as a binary finite field) is a finite field whose number of
elements is a power of 2. If m ≥ 1, then there is a unique field GF (2m) with 2m elements. For purposes of
conversion, the elements of GF (2m) should be represented by bit strings of length m. 

There are several ways of performing arithmetic in GF (2m). The specific rules depend on how the bit strings
are interpreted. For purposes of conversion, this interpretation should be made in terms of one of the
following basis representations.

NOTE—As opposed to the representation method for prime finite fields, which is required, the representation methods
for binary finite fields are recommendations. The choice of a particular representation for binary fields affects the
primitives and schemes in which conversion from field elements to other objects is used. See D.4.1.3 and D.4.2.3 (and
related notes in D.4.1.4 and D.4.2.4) for related security considerations.

5.3.2.1 Polynomial basis over GF (2)

This representation is determined by choosing an irreducible binary polynomial p(t) of degree m. (See A.3
and A.4 for definitions of the above terms and for a description of the arithmetic of a field using this
representation.) If the polynomial basis representation over GF (2) is used, then, for purposes of conversion,
the bit string 

 (am–1 … a2 a1 a0)

shall be taken to represent the polynomial

 am–1tm–1 + … + a2t2 + a1t + a0

where the coefficients ai are elements of GF (2).

In particular, for purposes of conversion, the additive identity (zero) element of the field is represented by a
string of all zero bits, and the multiplicative identity (one) element of the field is represented by a string
where all bits but the last are zero, and the last bit is one. (Note, however, that in mathematical expressions in
this standard, for typographic convenience, the numeral 0 is used to represent the element zero of a field, and
the numeral 1 is used to represent the element one of the field.)

NOTE—In keeping with traditional mathematical notation, the bits in this representation are indexed from right to left,
as opposed to the bits in the normal basis representation (see 5.3.2.2), which are indexed from left to right (see also 5.2).
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5.3.2.2 Normal basis over GF (2)

This representation is determined by choosing a normal polynomial p(t) of degree m. (See A.3 and A.4 for 
the definitions of the above terms and for a description of the arithmetic of a field using this representation.) 
If the normal basis representation over GF (2) is used, then, for purposes of conversion, the bit string 

 (a0 a1 … am–1)

shall be taken to represent the element 

where θ is a root of p(t) in GF (2m). 

In particular, for purposes of conversion, the additive identity (zero) element of the field is represented by a
string of all zero bits, and the multiplicative identity (one) element of the field is represented by a string of
one bits. (Note, however, that in mathematical expressions in this standard, for typographic convenience, the
numeral 0 is used to represent the element zero of a field, and the numeral 1 is used to represent the element
one of the field.)

NOTE—In keeping with traditional mathematical notation, the bits in this representation are indexed from left to right,
as opposed to the bits in the polynomial basis representation (see 5.3.2.1), which are indexed from right to left. (See also
5.2.)

5.4 Elliptic curves and points

An elliptic curve E defined over GF (q) is a set of points P = (xP , yP), where xP and yP are elements of
GF (q) that satisfy a certain equation, together with the point at infinity denoted by O. For purposes of this
standard, it is specified by two field elements, a ∈ GF (q) and b ∈ GF (q), called the coefficients of E. The
field elements xP and yP are called the x-coordinate of P and the y-coordinate of P, respectively.

If q is an odd prime, then a and b shall satisfy 4 a3 + 27 b2 ≠ 0 in GF (q), and every point P = (xP , yP) on E
(other than the point O) shall satisfy the following equation in GF (q):

If q is a power of 2, then b shall be nonzero in GF (q), and every point P = (xP , yP) on E (other than the point
O) shall satisfy the following equation in GF (q):

See A.9 and A.10 for more on elliptic curves and elliptic curve arithmetic.

5.5 Data type conversion

This subclause describes the primitives that shall be used to convert between different types of objects and
strings when such conversion is required in primitives, schemes, or encoding techniques. Representation of
mathematical and cryptographic objects as octet strings is not specifically addressed here; rather, it is
discussed in Annex E. Figure 1 shows the primitives presented in this subclause.

a0θ a1θ
2 a2θ

22

 +...+ am 1– θ2m 1–

+ +

yP
2 xP

3 axP b+ +=

yP
2 xPyP xP

3 axP
2 b+ +=+
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5.5.1 Converting between integers and bit strings (I2BSP and BS2IP)

In performing cryptographic operations, bit strings sometimes need to be converted to non-negative integers
and vice versa.

To convert a non-negative integer x to a bit string of length l (l has to be such that 2l > x), the integer shall be
written in its unique l-digit representation base 2

 x = xl–1 2l–1 + xl–2 2l–2 + … + x1 2 + x0

where xi is either 0 or 1 (note that one or more leading digits will be zero if x < 2l–1). Then let the bit bi have
the value xl–i for 1 ≤ i ≤ l. The bit string shall be b1 b2 … bl.

For example, the integer 10945 is represented by a bit string of length 19 as 000 0010 1010 1100 0001.

The primitive that converts integers to bit strings is called the Integer to Bit String Conversion Primitive, or
I2BSP. It takes an integer x and the desired length l as input, and outputs the bit string if 2l > x. It shall output
“error” otherwise.

The primitive that converts bit strings to integers is called the Bit String to Integer Conversion Primitive, or
BS2IP. It takes a bit string as input and outputs the corresponding integer.   Note that the bit string of length
zero (the empty bit string) is converted to the integer 0.

5.5.2 Converting between bit strings and octet strings (BS2OSP and OS2BSP)

To represent a bit string as an octet string, one simply pads enough zeroes on the left to make the number of
bits a multiple of eight, and then breaks it up into octets. More precisely, a bit string bl–1 bl–2 … b0 of length
l shall be converted to an octet string Md–1 Md–2 … M0 of length d = l/8 as follows: for 0 ≤ i < d – 1, let the
octet Mi = b8i+7 b8i+6 ... b8i. The leftmost octet Md–1 shall have its leftmost 8d – l bits set to zero; its
rightmost  8 – (8d – l) bits shall be bl–1 bl–2 … b8d–8.

The primitive that converts bit strings to octet strings is called the Bit String to Octet String Conversion
Primitive, or BS2OSP. It takes the bit string as input and outputs the octet string.

The primitive that converts octet strings to bit strings is called the Octet String to Bit String Conversion
Primitive, or OS2BSP. It takes an octet string of length d and the desired length l of the bit string as input.
OS2BSP shall output the bit string if d = l/8 and if the leftmost 8d – l bits of the leftmost octet are zero; it
shall output “error” otherwise.

BS2OSPI2OSP

Octet String (OS)Field Element (FE)
OS2FEP

FE2OSP

Integer (I)

FE2IP

Bit String (BS)

OS2BSP

BS2IP

I2BSP

OS2IP

Figure 1—Summary of data type conversion primitives
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5.5.3 Converting between integers and octet strings (I2OSP and OS2IP)

To represent a non-negative integer x as an octet string of length l (l has to be such that 256l > x), the integer
shall be written in its unique l-digit representation base 256

 x = xl–1 256l–1 + xl–2 256l–2 + … + x1 256 + x0

where 0 ≤ xi < 256 (note that one or more leading digits will be zero if x < 256l–1). Then let the octet Mi have
the value xi for 0 ≤ i ≤ l-1. The octet string shall be Ml-1 Ml-2 … M0.

For example, the integer 10945 is represented by an octet string of length 3 as 00 2A C1.

The primitive that converts integers to octet strings is called the Integer to Octet String Conversion Primitive,
or I2OSP. It takes an integer x and the desired length l as input, and outputs the octet string if 256l > x. It shall
output “error” otherwise.

The primitive that converts octet strings to integers is called the Octet String to Integer Conversion Primitive,
or OS2IP. It takes an octet string as input and outputs the corresponding integer. Note that the octet string of
length zero (the empty octet string) is converted to the integer 0.

5.5.4 Converting between finite field elements and octet strings (FE2OSP and OS2FEP)

An element x of a finite field GF (q), for purposes of this standard, is represented by an integer if q is an odd
prime (see 5.3.1) or by a bit string if q is a power of two (see 5.3.2). If q is an odd prime, then to represent x
as an octet string, I2OSP shall be used with the integer value of x and the length log256 q as inputs. If q is a
power of two, then to represent x as an octet string, BS2OSP shall be applied to the bit string representing x.

The primitive that converts finite field elements to octet strings is called the Field Element to Octet String
Conversion Primitive, or FE2OSP. It takes a field element x and the field size q as inputs, and outputs the
corresponding octet string.

To convert an octet string back to a field element, if q is an odd prime, then OS2IP shall be used with the
octet string as the input. If q is a power of two, then OS2BSP shall be used with the octet string and the
length log2 q as inputs.

The primitive that converts octet strings to finite field elements is called the Octet String to Field Element
Conversion Primitive, or OS2FEP. It takes the octet string and the field size q as inputs and outputs the
corresponding field element. It shall output “error” if OS2BSP or OS2IP outputs “error.”

5.5.5 Converting finite field elements to integers (FE2IP)

In performing cryptographic operations, finite field elements sometimes need to be converted to
non-negative integers. The primitive that performs this is called the Field Element to Integer Conversion
Primitive, or FE2IP. 

An element j of a finite field GF (q) shall be converted to a non-negative integer i by the following, or an
equivalent, procedure:

1. Convert the element j to an octet string using FE2OSP.

2. Convert the resulting octet string to an integer i using OS2IP.

3. Output i.
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Note that if q is an odd prime, j is already represented as an integer and FE2IP merely outputs that
representation. If q is a power of two, then FE2IP outputs an integer whose binary representation is the same
as the bit string representing j.

6. Primitives based on the discrete logarithm problem

This clause specifies the family of cryptographic primitives based on the discrete logarithm problem over
finite fields, also known as the DL family. For background information on this family, see A.1.2, A.3.9, and
Diffie and Hellman [B47].

6.1 The DL setting

6.1.1 Notation

The list below introduces the notation used in Clause 6, Clause 9, and Clause 10. It is meant for reference
only; for complete definitions of the terms listed, refer to the appropriate text. Some other symbols are also
used occasionally and are introduced in the text where appropriate.

q The size of the field used (part of the DL domain parameters)

r The prime divisor of q – 1 and the order of g (part of the DL domain parameters)

g An element of the field GF (q) generating a multiplicative subgroup of order r (part of the
DL domain parameters)

k (q – 1) / r, the cofactor

s, u, s′, u′ DL private keys, integers, corresponding to public keys w, v, w′, and v′, respectively

w, v, w′, v′ DL public keys, elements of GF (q), corresponding to private keys s, u, s′, and u′,
respectively

(s, w), (u, v) DL key pairs, where s and u are private keys, and w and v are the corresponding public keys

z, z1, z2 Shared secret values, elements of GF (q), derived by secret value derivation primitives

K Shared secret key agreed upon by a key agreement scheme

(c, d) Signature, a pair of integers, computed by a signature primitive

f Message representative, an integer, computed by a message-encoding operation

M The message, an octet string, whose signature is computed by a signature scheme

NOTES

1—When keys from two parties are involved in a primitive or scheme, the symbols s, u, w, and v are used to denote the
party’s own keys, and the symbols s′, u′, w′, and v′ are used to denote the other party’s keys.

2—Multiplication of field elements, as well as multiplication of integers, is denoted by ×, although this symbol may be
omitted when such omission does not cause ambiguity. The notation such as exp(w, c), where w is a field element and c
is an integer, will be used to denote raising w to the power c. The more traditional notation wc will be used if w is an
integer.

3—Throughout this clause, operations on finite field elements and integers are used. Care needs to be exercised to
distinguish integers from field elements, as operations on integers and field elements are denoted by the same symbols.
(See 5.3 for more information on finite fields.)
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6.1.2 DL domain parameters

DL domain parameters are used in every DL primitive and scheme and are an implicit component of every
DL key. A set of DL domain parameters specifies a field GF (q), where q is a positive odd prime integer p or
2m for some positive integer m; a positive prime integer r dividing q – 1; and a field element g of
multiplicative order r (g is called the generator of the subgroup of order r). If q = 2m, it also specifies a
representation for the elements of GF (q) to be used by the conversion primitives (see 5.3 and 5.5).
Implicitly, it also specifies the cofactor k = (q – 1) / r. If the DLSVDP-DHC or DLSVDP-MQVC primitive is
to be applied, then it shall also be the case that GCD (k, r) = 1 (i.e., r does not divide k; see A.1.1).

Depending on the scheme and protocol used, a party may need to generate its own set of domain parameters
or use domain parameters provided by another party. If parameters are provided by another party, their
authenticity may need to be determined (as discussed in D.3.2), and they may need to be validated (see
below). The security issues related to domain parameter generation are discussed in D.3.1 and D.4.1.
Suggested methods for generating DL domain parameters are discussed in A.16.1 and A.16.3.

Parties establish DL domain parameters as part of key management for a scheme. Depending on the key
management technique, it is possible that the established domain parameters do not satisfy the intended
definition, even though they have the same general form (i.e., components q, r, g, and optionally k). To
accommodate this possibility, the term DL domain parameters shall be understood in this standard as
referring to instances of the general form for DL domain parameters. The term valid DL domain parameters
shall be reserved for DL domain parameters satisfying the definition.

Domain parameter validation is the process of determining whether a set of DL domain parameters is valid.
Further discussion of domain parameter validation is contained in D.3.3. Suggested algorithms for DL
domain parameter validation are contained in A.16.2 and A.16.4.

There may be more than one set of domain parameters used in a primitive or scheme. The sets of DL domain
parameters may be different for different keys, or they may be the same, depending on the requirements of a
primitive or scheme. Unlike keys, which are not meant to be shared among users, a set of domain parameters
can, and sometimes needs to be, shared. DL domain parameters are often public; the security of the schemes
in this standard does not rely on these domain parameters being secret.

6.1.3 DL key pairs

For a given set of DL domain parameters, a DL key pair consists of a DL private key s, which is an integer in
the range [1, r – 1] and a DL public key w, which is an element of GF (q), where w = exp(g, s). For security,
DL private keys need to be generated so that they are unpredictable and stored so that they are inaccessible
to an adversary. DL private keys may be stored in any form convenient to the application.

DL key pairs are closely associated with their domain parameters, and can only be used in the context of the
domain parameters. A key pair shall not be used with a set of domain parameters that is different from the
one for which it was generated. A set of domain parameters may be shared by a number of key pairs (see
D.4.1.2 and D.4.1.4, Note 1).

A DL key pair may or may not be generated by the party using it, depending on the trust model. This and
other security issues related to DL key pair generation are discussed in D.3.1 and D.4.1. A suggested method
for generating DL key pairs is contained in A.16.5.

As is also the case for DL domain parameters, parties establish DL keys as part of key management for a
scheme and, depending on the key management technique, it is possible that an established key does not
satisfy the intended definition for the key, even though it has the same general form. Accordingly, the terms
“DL public key” and “DL private key” shall be understood in this standard as referring to instances of the
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general form for the key, and the terms valid DL public key, valid DL private key, and valid DL key pair shall
be reserved for keys satisfying the definition.

Key validation is the process of determining whether a key is valid. Further discussion of key validation is
contained in D.3.3. A suggested algorithm for DL public-key validation is contained in A.16.6. In some
cases (when the DLSVDP-DHC or DLSVDP-MQVC primitive is applied), it may be necessary to verify
only that the public key is a member of GF (q) (rather than a stronger condition that it is a power of g other
than one). The algorithm to verify this weaker condition is also contained in A.16.6. No algorithm is given
for DL private-key validation, because, generally, a party controls its own private key and need not validate
it. However, private-key validation may be performed if desired.

6.2 Primitives

This subclause describes primitives used in the DL family. Before proceeding with this subclause, the reader
should be familiar with the material in Clause 4.

As detailed in Clause 4 and Annex B, an implementation of a primitive may make certain assumptions about
its inputs, as listed with the specification of the primitive. For example, if DL domain parameters q, r, and g
and a public key w are inputs to a primitive, an implementation may generally assume that the domain and
the public key parameters are valid (i.e., that g has order r in GF (q) and w = exp(g, s) for some integer s in
the interval [1, r – 1]). The behavior of an implementation is not specified if w is not a power of g and, in
such a case, the implementation may or may not output an error condition. It is up to the properly
implemented scheme to ensure that only appropriate inputs are passed to a primitive, or to accept the risks of
passing inappropriate inputs. See Annex B for more on conforming with a primitive.

6.2.1 DLSVDP-DH

DLSVDP-DH is the Discrete Logarithm Secret Value Derivation Primitive, Diffie-Hellman version. It is
based on the work in Diffie and Hellman [B47]. This primitive derives a shared secret value from one party’s
public key and another party’s private key, where the keys have the same set of DL domain parameters. If
two parties correctly execute this primitive with corresponding keys as inputs, they will produce the same
output. This primitive can be invoked by a scheme to derive a shared secret key; specifically, it may be used
with the schemes DLKAS-DH1 and DL/ECKAS-DH2. It assumes that the input keys are valid (see also
6.2.2).

Input:

— The DL domain parameters q, r, and g associated with the keys s and w′ (the domain parameters shall
be the same for both s and w′).

— The party’s own private key s.

— The other party’s public key w′.

Assumptions: Private key s, DL domain parameters q, r, and g, and public key w′ are valid; both keys are
associated with the domain parameters.

Output: The derived shared secret value, which is a nonzero field element z ∈ GF (q)

Operation: The shared secret value z shall be computed by the following or an equivalent sequence of steps:

1. Compute a field element z = exp(w′, s).

2. Output z as the shared secret value.
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Conformance region recommendation: A conformance region should include the following:

— At least one valid set of DL domain parameters q, r, and g

— At least one valid private key s for each set of domain parameters

— All valid public keys w′ associated with the same set of domain parameters as s

NOTES

1—This primitive does not address small subgroup attacks (see D.5.1.6), which may occur valid. To prevent them, a key
agreement scheme should validate the public key w′ before executing this primitive (see also 6.2.2). 

2—When the public key w′ and the private key s are valid, w′ has order r and s is in the interval [1, r–1]. Thus, the
output z in this case is neither the element zero nor the element one.

6.2.2 DLSVDP-DHC

DLSVDP-DHC is the Discrete Logarithm Secret Value Derivation Primitive, Diffie-Hellman version with
cofactor exponentiation. It is based on the work in Diffie and Hellman [B47], Kaliski [B88], and
Law et. al. [B98]. This primitive derives a shared secret value from one party’s public key and another
party’s private key, where the keys have the same set of DL domain parameters. If two parties correctly
execute this primitive with corresponding keys as inputs, they will produce the same output. This primitive
can be invoked by a scheme to derive a shared secret key; specifically, it may be used with the schemes
DLKAS-DH1 and DL/ECKAS-DH2. It does not assume the validity of the input public key, but does
assume that the public key is an element of GF(q) (see also 6.2.1).

Input:

— The DL domain parameters q, r, g, and the cofactor k associated with the keys s and w′ (the domain
parameters shall be the same for both s and w′)

— The party’s own private key s

— The other party’s public key w′

— An indication as to whether compatibility with DLSVDP-DH is desired

Assumptions: Private key s and DL domain parameters q, r, g, and k are valid; the private key is associated
with the domain parameters; w′ is in GF (q); GCD (k, r) = 1

Output: The derived shared secret value, which is a nonzero field element z ∈ GF (q); or “invalid public
key”

Operation: The shared secret value z shall be computed by the following or an equivalent sequence of steps:

1. If compatibility with DLSVDP-DH is desired, then compute an integer t = k–1s mod r;
otherwise, set t = s.

2. Compute a field element z = exp(w′, kt).

3. If z = 0 or z = 1, output “invalid public key”; else, output z as the shared secret value.

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of DL domain parameters q, r, g, and k

— At least one valid private key s for each set of domain parameters

— All elements w′ in GF (q), where q is from the domain parameters of s
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— Compatibility with DLSVDP-DH may be preset by the implementation, or given as an input flag

NOTES

1—This primitive addresses small subgroup attacks, which may occur when the public key w′ is not valid (see D.5.1.6).
A key agreement scheme only needs to validate that w′ is in GF (q) before executing this primitive (see also 6.2.1).

2—The cofactor k depends only on the DL domain parameters and is equal to (q – 1) / r. Hence, it can be computed once
for a given set of domain parameters and stored as part of the domain parameters. Similarly, in the compatibility case,
the value k–1 can be computed once and stored with the domain parameters, and the integer t can be computed once for a
given private key s.

3—When the public key w′ and the private key s are valid, the output z will be an element of a subset of GF (q) that
consists of all the powers of g (except for the element one). As a consequence, z cannot be the element zero or the ele-
ment one in this case. When the public key is invalid, the output will be either “invalid public key” or an element of order
r in GF (q); in particular, it will not be in a small subgroup.

4—In the compatibility case, DLSVDP-DHC computes the same output for valid keys as DLSVDP-DH, so an
implementation that conforms with DLSVDP-DHC in the compatibility case also conforms with DLSVDP-DH. 

6.2.3 DLSVDP-MQV

DLSVDP-MQV is the Discrete Logarithm Secret Value Derivation Primitive, Menezes-Qu-Vanstone
version. It is based on the work of Law et al. [B98]. This primitive derives a shared secret value from one
party’s two key pairs and another party’s two public keys, where all the keys have the same set of DL domain
parameters. If two parties execute this primitive with corresponding keys as inputs, they will produce the
same output. This primitive can be invoked by a scheme to derive a shared secret key; specifically, it may be
used with the scheme DLKAS-MQV. It assumes that the input keys are valid (see also 6.2.4).

In this primitive, let h =  (log2 r) / 2. Note that h depends only on the DL domain parameters and, hence,
can be computed once for a given set of domain parameters.

Input:

— The DL domain parameters q, r, and g associated with the keys s, (u, v), w′, and v′ (the domain
parameters shall be the same for these keys)

— The party’s own first private key s

— The party’s own second key pair (u, v)

— The other party’s public key w′

— The other party’s second public key v′

Assumptions: Private key s, key pair (u, v), public keys w′, v′, and DL domain parameters q, r, and g are
valid; all the keys are associated with the domain parameters

Output: The derived shared secret value, which is a nonzero field element z ∈ GF (q); or “error”

Operation: The shared secret value z shall be computed by the following or an equivalent sequence of steps:

1. Convert v into an integer i using FE2IP. 

2. Compute an integer t = i mod 2h. Let t = t + 2h.

3. Convert v′ into an integer i′ using FE2IP. 

4. Compute an integer t′ = i′ mod 2h. Let t′ = t′ + 2h.

5. Compute an integer e = ts + u mod r.
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6. Compute a field element z = exp(v′ × exp(w′, t′), e).

7. If z = 1, output “error” and stop.

8. Output z as the shared secret value.

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of DL domain parameters q, r, and g

— At least one valid private key s for each set of domain parameters

— All valid key pairs (u, v) associated with the same set of domain parameters as s

— All valid public keys w′ and v′ associated with the same set of domain parameters as s

NOTES

1—This primitive does not address small subgroup attacks (see D.5.1.6), which may occur when the public keys w′ and
v′ are not valid. To prevent them, a key agreement scheme should validate the public keys w′ and v′ before executing this
primitive (see also 6.2.4). 

 2—When the public keys w′ and v′ are valid, the output z will be an element of a subset of GF (q) that consists of all the
powers of g. It is possible (although very unlikely) that even though all the keys and parameters are valid, z will be the
element one. In this case, the primitive will output “error,” and will need to be rerun with a different input. Except for
this rare case, z will always be defined and will not be the element zero or the element one, as long as the input keys and
parameters are valid.

6.2.4 DLSVDP-MQVC

DLSVDP-MQVC is the Discrete Logarithm Secret Value Derivation Primitive, Menezes-Qu-Vanstone
version with cofactor exponentiation. It is based on the work in Kaliski [B88] and Law et al. [B98]. This
primitive derives a shared secret value from one party’s two key pairs and another party’s two public keys,
where all the keys have the same set of DL domain parameters. If two parties execute this primitive with
corresponding keys as inputs, they will produce the same output. This primitive can be invoked by a scheme
to derive a shared secret key; specifically, it may be used with the scheme DLKAS-MQV. It does not assume
the validity of the input public keys, but does assume that the public key is an element of GF(q) (see also
6.2.3).

In this primitive, let h =  (log2 r) / 2. Note that h depends only on the DL domain parameters and, hence,
can be computed once for a given set of domain parameters.

Input:

— The DL domain parameters q, r, g, and the cofactor k associated with the keys s, (u, v), w′, and v′ (the
domain parameters shall be the same for these keys)

— The party’s own first private key s

— The party’s own second key pair (u, v)

— The other party’s public key w′

— The other party’s second public key v′

— An indication as to whether compatibility with DLSVDP-MQV is desired

Assumptions: Private key s, key pair (u, v), and DL domain parameters q, r, g, and k are valid; private key s
and key pair (u, v) are associated with the domain parameters; w′ and v′ are in GF (q); GCD (k, r) = 1.
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Output: The derived shared secret value, which is a nonzero field element z ∈ GF (q); or “invalid public
key”

Operation: The shared secret value z shall be computed by the following or an equivalent sequence of steps:

1. Convert v into an integer i using FE2IP. 

2. Compute an integer t = i mod 2h. Let t = t + 2h.

3. Convert v′ into an integer i′ using FE2IP. 

4. Compute an integer t′ = i′ mod 2h. Let t′ = t′ + 2h.

5. If compatibility with DLSVDP-MQV is desired, then compute an integer e = k–1(ts + u) mod r;
otherwise, compute an integer e = ts + u mod r.

6. Compute a field element z = exp(v′ × exp(w′, t′), ke).

7. If z = 0 or z = 1, output “invalid public key”; else, output z as the shared secret value.

Conformance region recommendation: A conformance region should include:

— At least one valid set of DL domain parameters q, r, g, and k

— At least one valid private key s for each set of domain parameters

— All valid key pairs (u, v) associated with the same set of domain parameters as s

— All elements w′ and v′ in GF (q), where q is from the domain parameters of s

— Compatibility with DLSVDP-MQV may be preset by the implementation, or given as an input flag

NOTES

1—This primitive addresses small subgroup attacks, which may occur when the public keys w′ and v′ are not valid (see
D.5.1.6). A key agreement scheme only needs to validate that w′ and v′ are in GF (q) before executing this primitive (see
also 6.2.3).

2—The cofactor k depends only on the DL domain parameters and is equal to (q – 1) / r. Hence, it can be computed once
for a given set of domain parameters and stored as part of the domain parameters. Similarly, in the compatibility case,
the value k–1 can be computed once and stored with the domain parameters. An equivalent way to compute the integer e
in this case is as (tk–1s + k–1u) mod r, where k–1s mod r and k–1u mod r can be computed once for each given private key
s and u.

3—When the public keys w′ and v′ are valid, the output z will be an element of a subset of GF (q) that consists of all the
powers of g. It is possible (although very unlikely) that even though all the keys and parameters are valid, z will be the
element one, and the primitive will output “invalid public key.” In this case, the primitive will need to be rerun with a
different input. Except for this rare case, z will always be defined and will not be the element zero or the element one, as
long as the input keys and parameters are valid. When one of the public keys is invalid, the output will be either “invalid
public key” or an element of order r in GF (q); in particular, it will not be in a small subgroup.

4—In the compatibility case, DLSVDP-MQVC computes the same output for valid keys as DLSVDP-MQV, so an
implementation that conforms with DLSVDP-MQVC in the compatibility case also conforms with DLSVDP-MQV.

6.2.5 DLSP-NR

DLSP-NR is the Discrete Logarithm Signature Primitive, Nyberg-Rueppel version. It is based on the work
of Nyberg and Rueppel [B120]. It can be invoked in a scheme to compute a signature on a message
representative with the private key of the signer, in such a way that the message representative can be
recovered from the signature using the public key of the signer by the DLVP-NR primitive. Note, however,
that no DL signature schemes with message recovery are defined in this standard (see C.3.4). DLSP-NR may
also be used in a signature scheme with appendix and can be invoked in the scheme DLSSA as part of
signature generation.
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Input:

— The DL domain parameters q, r, and g associated with the key s

— The signer’s private key s

— The message representative, which is an integer f such that 0 ≤ f < r

Assumptions: Private key s and DL domain parameters q, r, and g are valid and associated with each other;
0 ≤ f < r.

Output: The signature, which is a pair of integers (c, d), where 1 ≤ c < r and 0 ≤ d < r

Operation: The signature (c, d) shall be computed by the following or an equivalent sequence of steps:

1. Generate a key pair (u, v) with the same set of domain parameters as the private key s (see the
note below).

2. Convert v into an integer i with primitive FE2IP [recall that v is an element of GF (q)].

3. Compute an integer c = i + f mod r. If c = 0, then go to step 1.

4. Compute an integer d = u – sc mod r.

5. Output the pair (c, d) as the signature.

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of DL domain parameters q, r, and g

— At least one valid private key s for each set of domain parameters

— All message representatives f in the range [0, r – 1], where r is from the domain parameters of s

NOTE—The key pair in step 1 should be a one-time key pair, which is generated and stored by the signer following the
security recommendations of D.3.1, D.4.1.2, D.6, and D.7. A new key pair should be generated for every signature. The
one-time private key u should be discarded after step 4, as its recovery by an opponent can lead to the recovery of the
private key s.

6.2.6 DLVP-NR

DLVP-NR is the Discrete Logarithm Verification Primitive, Nyberg-Rueppel version. It is based on the work
of Nyberg and Rueppel [B120]. This primitive recovers the message representative that was signed with
DLSP-NR, given only the signature and public key of the signer. It can be invoked in a scheme as part of
signature verification and, possibly, message recovery. Note, however, that no DL signature schemes with
message recovery are defined in this standard (see C.3.4). DLVP-NR may also be used in a signature scheme
with appendix and can be invoked in the scheme DLSSA as part of signature verification.

Input:

— The DL domain parameters q, r, and g associated with the key w

— The signer’s public key w

— The signature to be verified, which is a pair of integers (c, d)

Assumptions: Public key w and DL domain parameters q, r, and g are valid and associated with each other.

Output: The message representative, which is an integer f such that 0 ≤ f < r; or “invalid”
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Operation: The message representative f shall be computed by the following or an equivalent sequence of
steps:

1. If c is not in [1, r – 1] or d is not in [0, r – 1], output “invalid” and stop.

2. Compute a field element j = exp(g, d) × exp(w, c).

3. Convert the field element j to an integer i with primitive FE2IP.

4. Compute an integer f = c – i mod r.

5. Output f as the message representative. 

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of DL domain parameters q, r, and g.

— At least one valid public key w for each set of domain parameters.

— All purported signatures (c, d) that can be input to the implementation; this should include at least all
(c, d) such that c and d are in the range [0, r – 1], where r is from the domain parameters of w.

6.2.7 DLSP-DSA

DLSP-DSA is the Discrete Logarithm Signature Primitive, DSA version. It is based on the work in
Kravitz [B97]. It can be invoked in a scheme to compute a signature on a message representative with the
private key of the signer. The message representative cannot be recovered from the signature, but
DLVP-DSA can be used in the scheme DLSSA to verify the signature.

Input:

— The DL domain parameters q, r, and g associated with the key s

— The signer’s private key s

— The message representative, which is an integer f ≥ 0

Assumptions: Private key s and DL domain parameters q, r, and g are valid and associated with each other;
f ≥ 0.

Output: The signature, which is a pair of integers (c, d), where 1 ≤ c < r and 1 ≤ d < r

Operation: The signature (c, d) shall be computed by the following or an equivalent sequence of steps:

1. Generate a key pair (u, v) with the same set of domain parameters as the private key s (see the
note below).

2. Convert v into an integer i with primitive FE2IP [recall that v is an element of GF (q)].

3. Compute an integer c = i mod r. If c = 0, then go to step 1.

4. Compute an integer d = u–1(f + sc) mod r. If d = 0, then go to step 1.

5. Output the pair (c, d) as the signature.

Conformance region recommendation: A conformance region should include:

— At least one valid set of DL domain parameters q, r, and g

— At least one valid private key s for each set of domain parameters
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— A range of message representatives f; this should include at least all f ≥ 0 with bit length no greater
than that of r, where r is from the domain parameters of s

NOTE—The key pair in step 1 should be a one-time key pair, which is generated and stored by the signer following the
security recommendations of D.3.1, D.4.1.2, D.6, and D.7. A new key pair should be generated for every signature. The
one-time private key u should be discarded after step 4, as its recovery by an opponent can lead to the recovery of the
private key s.

6.2.8 DLVP-DSA

DLVP-DSA is the Discrete Logarithm Verification Primitive, DSA version. It is based on the work in
Kravitz [B97]. This primitive verifies whether the message representative and the signature are consistent,
given the key and the domain parameters. It can be invoked in the scheme DLSSA as part of signature
verification.

Input:

— The DL domain parameters q, r, and g associated with the key w

— The signer’s public key w

— The message representative, which is an integer f ≥ 0

— The signature to be verified, which is a pair of integers (c, d)

Assumptions: Public key w and DL domain parameters q, r, and g are valid and associated with each other;
f ≥ 0.

Output: “Valid” if f and (c, d) are consistent given the key and the domain parameters; “invalid” otherwise

Operation: The output shall be computed by the following or an equivalent sequence of steps:

1. If c is not in [1, r – 1] or d is not in [1, r – 1], output “invalid” and stop.

2. Compute integers h = d–1 mod r; h1 = f h mod r; h2 = c h mod r.

3. Compute a field element j = exp(g, h1) × exp(w, h2).

4. Convert the field element j to an integer i with primitive FE2IP.

5. Compute an integer c′ = i mod r.

6. If c′ = c, then output “valid”; else, output “invalid.”

Conformance region recommendation: A conformance region should include:

— At least one valid set of DL domain parameters q, r, and g.

— At least one valid public key w for each set of domain parameters.

— All message representatives f ≥ 0 that can be input to the implementation; this should include at least
all f with bit length no greater than that of r, where r is from the domain parameters of w.

— All purported signatures (c, d) that can be input to the implementation; this should include at least all
(c, d), such that c and d are in the range [1, r – 1], where r is from the domain parameters of w.



IEEE
PUBLIC-KEY CRYPTOGRAPHY Std 1363-2000

Copyright © 2000 IEEE. All rights reserved. 27

7. Primitives based on the elliptic curve discrete logarithm problem

This clause specifies the family of cryptographic primitives based on the discrete logarithm problem over
elliptic curve groups, also known as the EC family. For background information on this family, see A.9.3,
A.9.4, Koblitz [B94], and Miller [B117].

7.1 The EC setting

7.1.1 Notation

The list below introduces the notation used in Clause 7, Clause 9, and Clause 10. It is meant as a reference
guide only; for complete definitions of the terms listed, refer to the appropriate text. Some other symbols are
also used occasionally and are introduced in the text where appropriate.

q The size of the underlying field used (part of the EC domain parameters)

a, b The coefficients defining the elliptic curve E, elements of GF (q) (part of the EC domain
parameters)

E The elliptic curve over the field GF (q) defined by a and b

#E The number of points on the elliptic curve E 

r The prime divisor of #E and the order of G (part of the EC domain parameters)

G A curve point generating a subgroup of order r (part of the EC domain parameters)

k #E/r, the cofactor

s, u, s′, u′ EC private keys, integers, corresponding to public keys W, V, W′, V′, respectively

W, V, W′, V′ EC public keys, points on the curve, corresponding to private keys s, u, s′, u′, respectively

(s, W), (u, V) EC key pairs, where s and u are the private keys, and W and V are the corresponding public
keys

z, z1, z2 Shared secret values, elements of GF (q), derived by secret value derivation primitives

K Shared secret key agreed upon by a key agreement scheme

(c, d) Signature, a pair of integers, computed by a signature primitive

f Message representative, an integer, computed by a message-encoding operation

M The message, an octet string, whose signature is computed by a signature scheme

NOTES

1—When keys from two parties are involved in a primitive or scheme, the symbols s, u, W, V are used to denote the
party’s own keys, and the symbols s′, u′, W′, V′ are used to denote the other party’s keys.

2—Multiplication of field elements, multiplication of integers, and scalar multiplication of elliptic curve points by inte-
gers are denoted by ×, although this symbol may be omitted when such omission does not cause ambiguity. Addition of
field elements, addition of integers, and addition of elliptic curve points are denoted by +. Elliptic curve points are
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generally denoted by capital letters; for an elliptic curve point P ≠ O, its x-coordinate and y-coordinate are denoted by xP
and yP, respectively: P = (xP, yP).

3—Throughout this clause, operations on finite field elements, integers, and elliptic curve points are used. Care needs to
be exercised to distinguish among these, as operations are denoted by the same symbols regardless of operands. (See 5.3
for more information on finite fields, and 5.4 for more information on elliptic curves.)

7.1.2 EC domain parameters

EC domain parameters are used in every EC primitive and scheme and are an implicit component of every
EC key. A set of EC domain parameters specifies a field GF (q), where q is a positive odd prime integer p or
2m for some positive integer m; two elliptic curve coefficients a and b, elements of GF (q), that define an
elliptic curve E; a positive prime integer r dividing the number of points on E; and a curve point G of order r.
(G is called the generator of a subgroup of order r.) If q = 2m, it also specifies a representation for the
elements of GF (q) to be used by the conversion primitives (see 5.3 and 5.5). Implicitly, it also specifies the
cofactor k = #E/r (where #E is the number of points on E). If key validation is to be performed, or if the
ECSVDP-DHC or ECSVDP-MQVC primitive is to be applied, then it shall also be the case that GCD
(k, r) = 1 (i.e., r does not divide k; see A.1.1).

Depending on the scheme and protocol used, a party may need to generate its own set of domain parameters
or use domain parameters provided by another party. If parameters are provided by another party, their
authenticity may need to be determined (as discussed in D.3.2), and they may need to be validated (see
below). The security issues related to domain parameter generation are discussed in D.3.1 and D.4.2. A
suggested method for generating EC domain parameters is contained in A.16.7 (see also A.9.5).

Parties establish EC domain parameters as part of key management for a scheme. Depending on the key
management technique, it is possible that the established domain parameters do not satisfy the intended
definition, even though they have the same general form (i.e., components q, r, G, and optionally k). To
accommodate this possibility, the term “EC domain parameters” shall be understood in this standard as
referring to instances of the general form for EC domain parameters. The term valid EC domain parameters
shall be reserved for EC domain parameters satisfying the definition.

Domain parameter validation is the process of determining whether a set of EC domain parameters is valid.
Further discussion of domain parameter validation is contained in D.3.3. A suggested algorithm for EC
domain parameter validation is contained in A.16.8.

There may be more than one set of domain parameters used in a primitive or scheme; the sets of EC domain
parameters may be different for different keys, or they may be the same, depending on the requirements of a
primitive or scheme. Unlike keys, which are not meant to be shared among users, a set of domain parameters
can, and sometimes needs to be, shared. EC domain parameters are often public; the security of the schemes
in this standard does not rely on these domain parameters being secret.

7.1.3 EC key pairs

For a given set of EC domain parameters, an EC key pair consists of an EC private key s, which is an integer
in the range [1, r – 1] and an EC public key W, which is a point on E, where W = s G. (Note that W ≠ O, since
G has order r and 0 < s < r.) For security, EC private keys need to be generated so that they are unpredictable,
and stored so that they are inaccessible to an adversary. EC private keys may be stored in any form
convenient to the application.

EC key pairs are closely associated with their domain parameters, and can only be used in the context of the
domain parameters. A key pair shall not be used with a set of domain parameters that is different from the
one for which it was generated. A set of domain parameters may be shared by a number of key pairs (see
D.4.2.2 and D.4.2.4, Note 1).
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An EC key pair may or may not be generated by the party using it, depending on the trust model. This and
other security issues related to EC key pair generation are discussed in D.3.1 and D.4.2. A suggested method
for generating EC key pairs is contained in A.16.9.

As is the case for EC domain parameters, parties establish EC keys as part of key management for a scheme;
and, depending on the key management technique, it is possible that an established key does not satisfy the
intended definition for the key, even though it has the same general form. Accordingly, the terms “EC public
key” and “EC private key” shall be understood in this standard as referring to instances of the general form
for the key, and the terms valid EC public key, valid EC private key, and valid EC key pair shall be reserved
for keys satisfying the definition.

Key validation is the process of determining whether a key is valid. Further discussion of key validation is
contained in D.3.3. A suggested algorithm for EC public-key validation is contained in A.16.10. In some
cases (when the ECSVDP-DHC or ECSVDP-MQVC primitive is applied), it may be necessary to verify
only that the public key is a point on the curve (rather than a stronger condition that it is a non-zero multiple
of G). The algorithm to verify that is also contained in A.16.10. No algorithm is given for EC private-key
validation, because, generally, a party controls its own private key and need not validate it. However,
private-key validation may be performed if desired.

7.2 Primitives

This subclause describes primitives used in the EC family. Before proceeding with this subclause, the reader
should be familiar with the material of Clause 4.

As detailed in Clause 4 and Annex B, an implementation of a primitive may make certain assumptions about
its inputs, as listed with the specification for each primitive. For example, if EC domain parameters q, a, b, r,
and G and a public key W are inputs to a primitive, the implementation may generally assume that the
domain parameters are valid (i.e., that G has order r on the elliptic curve defined by a and b, and W = s G for
some integer s in the interval [1, r – 1]). The behavior of an implementation is unconstrained in the case that
W is not a multiple of G and, in such a case, the implementation may or may not output an error condition. It
is up to the properly implemented scheme to ensure that only appropriate inputs are passed to a primitive, or
to accept the risks of passing inappropriate inputs. For more on conforming with a primitive, see Annex B.

7.2.1 ECSVDP-DH

ECSVDP-DH is the Elliptic Curve Secret Value Derivation Primitive, Diffie-Hellman version. It is based on
the work in Diffie and Hellman [B47], Koblitz [B94], and Miller [B117]. This primitive derives a shared
secret value from one party’s private key and another party’s public key, where both have the same set of EC
domain parameters. If two parties correctly execute this primitive, they will produce the same output. This
primitive can be invoked by a scheme to derive a shared secret key; specifically, it may be used with the
schemes ECKAS-DH1 and DL/ECKAS-DH2. It assumes that the input keys are valid (see also 7.2.2).

Input:

— The EC domain parameters q, a, b, r, and G associated with the keys s and W′ (the domain
parameters shall be the same for both s and W′)

— The party’s own private key s

— The other party’s public key W′

Assumptions: Private key s, EC domain parameters q, a, b, r, and G, and public key W′ are valid; both keys
are associated with the domain parameters.
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Output: The derived shared secret value, which is a field element z ∈ GF (q); or “error”

Operation: The shared secret value z shall be computed by the following or an equivalent sequence of steps:

1. Compute an elliptic curve point P = s W′.

2. If P = O, output “error” and stop. 

3. Let z = xP, the x-coordinate of P. 

4. Output z as the shared secret value.

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of EC domain parameters q, a, b, r, and G

— At least one valid private key s for each set of domain parameters

— All valid public keys W′ associated with the same set of domain parameters as s

NOTES

1—This primitive does not address small subgroup attacks (see D.5.1.6), which may occur when the public key W′ is not
valid. To prevent them, a key agreement scheme should validate the public key W′ before executing this primitive (see
also 7.2.2). 

2—When the public key W′ and the private key s are valid, W′ has order r and s is in the interval [1, r – 1]. Thus, the
point P in this case is not the element O.

7.2.2 ECSVDP-DHC

ECSVDP-DHC is the Elliptic Curve Secret Value Derivation Primitive, Diffie-Hellman version with cofactor
multiplication. It is based on the work of Diffie and Hellman [B47], Kaliski [B88], Koblitz [B94],
Law et al. [B98], and Miller [B117]. This primitive derives a shared secret value from one party’s private key
and another party’s public key, where both have the same set of EC domain parameters. If two parties
correctly execute this primitive, they will produce the same output. This primitive can be invoked by a
scheme to derive a shared secret key; specifically, it may be used with the schemes ECKAS-DH1 and
DL/ECKAS-DH2. It does not assume the validity of the input public key (see also 7.2.1).

Input:

— The EC domain parameters q, a, b, r, G, and the cofactor associated with the keys s and W′ (the
domain parameters shall be the same for both s and W′)

— The party’s own private key s

— The other party’s public key W′

— An indication as to whether compatibility with ECSVDP-DH is desired

Assumptions: Private key s, EC domain parameters q, a, b, r, G, and k are valid; the private key is associated
with the domain parameters; W′ is on the elliptic curve defined by a and b over GF (q); GCD (k, r) = 1.

Output: The derived shared secret value, which is a field element z ∈ GF (q); or “invalid public key”

Operation: The shared secret value z shall be computed by the following or an equivalent sequence of steps:

1. If compatibility with ECSVDP-DH is desired, then compute an integer t = k–1s mod r;
otherwise set t = s.
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2. Compute an elliptic curve point P = kt W′.

3. If P = O, output “invalid public key” and stop. 

4. Let z = xP, the x-coordinate of P. 

5. Output z as the shared secret value.

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of EC domain parameters q, a, b, r, G, and k

— At least one valid private key s for each set of domain parameters

— All points W′ on the curve over GF (q) defined by a and b, where q, a, and b are from the domain
parameters of s

— Compatibility with ECSVDP-DH may be preset by the implementation, or given as an input flag

NOTES

1—This primitive addresses small subgroup attacks, which may occur when the public key W′ is not valid (see D.5.1.6).
A key agreement scheme only needs to validate that W′ is on the elliptic curve defined by a and b over GF (q) before
executing this primitive (see also 7.2.1).

2—The cofactor k depends only on the EC domain parameters. Hence, it can be computed once for a given set of domain
parameters and stored as part of the domain parameters. Similarly, in the compatibility case, the value k–1 can be
computed once and stored with the domain parameters, and the integer t can be computed once for a given private key s.
Algorithms for computing or verifying the cofactor are included in A.12.3.

3—When the public key W′ and the private key s are valid, the point P will be an element of a subset of the elliptic curve
that consists of all the multiples of G (except for the element O). As a consequence, z will always be defined in this case.
When the public key is invalid, the output will be either “invalid public key” or an element of order r on the elliptic
curve; in particular, it will not be in a small subgroup.

4—In the compatibility case, ECSVDP-DHC computes the same output for valid keys as ECSVDP-DH, so an
implementation that conforms with ECSVDP-DHC in the compatibility case also conforms with ECSVDP-DH. 

7.2.3 ECSVDP-MQV

ECSVDP-MQV is the Elliptic Curve Secret Value Derivation Primitive, Menezes-Qu-Vanstone version. It is
based on the work of Law et al. [B98]. This primitive derives a shared secret value from one party’s two key
pairs and another party’s two public keys, where all the keys and values have the same set of EC domain
parameters. If two parties correctly execute this primitive, they will produce the same output. This primitive
can be invoked by a scheme to derive a shared secret key; specifically, it may be used with the scheme
ECKAS-MQV. It assumes that the input keys are valid (see also 7.2.4).

In this primitive, let h =  (log2 r) / 2. Note that h depends only on the EC domain parameters and, hence,
can be computed once for a given set of domain parameters.

Input:

— The EC domain parameters q, a, b, r, and G associated keys s, (u, V), W′, V′ (the domain parameters
shall be the same for these keys)

— The party’s own first private key s

— The party’s own second key pair (u, V), where V = (x, y)

— The other party’s first public key W′

— The other party’s second public key V′ = (x′, y′)
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Assumptions: Private key s, key pair (u, V), public keys W′, V′, and EC domain parameters q, a, b, r, and G
are valid; all the keys are associated with the domain parameters.

Output: The derived shared secret value, which is a nonzero field element z ∈ GF (q); or “error”

Operation: The shared secret value z shall be computed by the following or an equivalent sequence of steps:

1. Convert x into an integer i using FE2IP. 

2. Compute an integer t = i mod 2h. Let t = t + 2h.

3. Convert x′ into an integer i′ using FE2IP. 

4. Compute an integer t′ = i′ mod 2h. Let t′ = t′ + 2h.

5. Compute an integer e = ts + u mod r.

6. Compute an elliptic curve point P = e (V′ + t′W′). 

7. If P = O, output “error” and stop.

8. Let z = xP, the x-coordinate of P. 

9. Output z as the shared secret value.

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of EC domain parameters q, a, b, r, and g

— At least one valid private key s for each set of domain parameters

— All valid key pairs (u, V) associated with the same set of domain parameters as s

— All valid public keys W′ and V′ associated with the same set of domain parameters as s

NOTES

1—This primitive does not address small subgroup attacks (see D.5.1.6), which may occur when the public keys W′ and
V′ are not valid. To prevent them, a key agreement scheme should validate the public keys W′ and V′ before executing
this primitive (see also 7.2.4). 

2—When the public keys W′ and V′ are valid, the point P will be an element of a subset of the elliptic curve that consists
of all the multiples of G. It is possible (although very unlikely) that even though all the keys and parameters are valid, P
will be the point O. In this case, the primitive will output “error,” and will need to be rerun with a different input. Except
for this rare case, z will always be defined as long as the input keys and parameters are valid.

7.2.4 ECSVDP-MQVC

ECSVDP-MQVC is the Elliptic Curve Secret Value Derivation Primitive, Menezes-Qu-Vanstone version
with cofactor multiplication. It is based on the work of Kaliski [B88] and Law et al. [B98]. This primitive
derives a shared secret value from one party’s two key pairs and another party’s two public keys, where all
the keys and values have the same set of EC domain parameters. If two parties correctly execute this primi-
tive, they will produce the same output. This primitive can be invoked by a scheme to derive a shared secret
key; specifically, it may be used with the scheme ECKAS-MQV. It does not assume the validity of the input
public keys (see also 7.2.3).

In this primitive, let h =  (log2 r) / 2. Note that h depends only on the EC domain parameters and, hence,
can be computed once for a given set of domain parameters.
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Input:

— The EC domain parameters q, a, b, r, G, and the cofactor k associated with keys s, (u, V), W′, V′ (the
domain parameters shall be the same for these keys)

— The party’s own first private key s

— The party’s own second key pair (u, V), where V = (x, y)

— The other party’s first public key W′

— The other party’s second public key V′ = (x′, y′)

— An indication as to whether compatibility with ECSVDP-MQV is desired

Assumptions: Private key s, key pair (u, V), and EC domain parameters q, a, b, r, G, and k are valid; private
key s and key pair (u, V) are associated with the domain parameters; W′ and V′ are on the elliptic curve
defined by a and b over GF (q); GCD (k, r) = 1.

Output: The derived shared secret value, which is a nonzero field element z ∈ GF (q); or “invalid public
key”

Operation: The shared secret value z shall be computed by the following or an equivalent sequence of steps:

1. Convert x into an integer i using FE2IP. 

2. Compute an integer t = i mod 2h. Let t = t + 2h.

3. Convert x′ into an integer i′ using FE2IP. 

4. Compute an integer t′ = i′ mod 2h. Let t′ = t′ + 2h.

5. If compatibility with ECSVDP-MQV is desired, then compute an integer e = k–1(ts + u) mod r;
otherwise, compute an integer e = ts + u mod r.

6. Compute an elliptic curve point P = ke (V′ + t′W′). 

7. If P = O, output “invalid public key” and stop.

8. Let z = xP, the x-coordinate of P. 

9. Output z as the shared secret value.

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of EC domain parameters q, a, b, r, g, and k

— At least one valid private key s for each set of domain parameters

— All valid key pairs (u, V) associated with the same set of domain parameters as s

— All points W′ and V′ on the curve over GF (q) defined by a and b, where q, a, and b are from the
domain parameters of s

— Compatibility with ECSVDP-MQV may be preset by the implementation, or given as an input flag

NOTES

1—This primitive addresses small subgroup attacks, which may occur when the public keys W′ and V′ are not valid (see
D.5.1.6). A key agreement scheme only needs to validate that W′ and V′ are in GF (q) before executing this primitive (see
also 7.2.3).

2—The cofactor k depends only on the EC domain parameters. Hence, it can be computed once for a given set of domain
parameters and stored as part of the domain parameters. Similarly, in the compatibility case, the value k–1 can be
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computed once and stored with the domain parameters. An equivalent way to compute the integer e in this case is as
(tk–1s + k–1u) mod r, where k–1s mod r and k–1u mod r can be computed once for each given private key s and u.
Algorithms for computing or verifying the cofactor are included in A.12.3.

3—When the public key W′ is valid, the point P will be an element of a subset of the elliptic curve that consists of all the
multiples of G. It is possible (although very unlikely) that even though all the keys and parameters are valid, P will be the
point O, and the primitive will output “invalid public key.” In this case, the primitive will need to be rerun with a different
input. Except for this rare case, z will always be defined as long as the input keys and parameters are valid. When one of
the public keys is invalid, the output will be either “invalid public key” or the x coordinate of a point of order r on the
elliptic curve; in particular, it will not be the x coordinate of a point in a small subgroup.

4—In the compatibility case, ECSVDP-MQVC computes the same output for valid keys as ECSVDP-MQV, so an
implementation that conforms with ECSVDP-MQVC in the compatibility case also conforms with ECSVDP-MQV.

7.2.5 ECSP-NR

ECSP-NR is the Elliptic Curve Signature Primitive, Nyberg-Rueppel version. It is based on the work of
Koblitz [B94], Miller [B117], and Nyberg and Rueppel [B120]. It can be invoked in a scheme to compute a
signature on a message representative with the private key of the signer, in such a way that the message
representative can be recovered from the signature using the public key of the signer by the ECVP-NR
primitive. Note, however, that no EC signature schemes with message recovery are defined in this version of
the standard (see C.3.4). ECSP-NR may also be used in a signature scheme with appendix, and can be
invoked in the scheme DLSSA as part of signature generation.

Input:

— The EC domain parameters q, a, b, r, and G associated with the key s

— The signer’s private key s

— The message representative, which is an integer f such that 0 ≤ f < r

Assumptions: Private key s and EC domain parameters q, a, b, r, and G are valid and associated with each
other; 0 ≤ f < r.

Output: The signature, which is a pair of integers (c, d), where 1 ≤ c < r and 0 ≤ d < r

Operation: The signature (c, d) shall be computed by the following or an equivalent sequence of steps:

1. Generate a key pair (u, V) with the same set of domain parameters as the private key s (see the
note below). Let V = (xV, yV) (V ≠ O because V is a public key).

2. Convert xV into an integer i with primitive FE2IP [recall that xV is an element of GF (q)].

3. Compute an integer c = i + f mod r. If c = 0, then go to step 1.

4. Compute an integer d = u – sc mod r.

5. Output the pair (c, d) as the signature.

 Conformance region recommendation: A conformance region should include the following:

— At least one valid set of EC domain parameters q, a, b, r, and G

— At least one valid private key s for each set of domain parameters

— All message representatives f in the range [0, r – 1], where r is from the domain parameters of s

NOTE—The key pair in step 1 should be a one-time key pair, which is generated and stored by the signer following the
security recommendations of D.3.1, D.4.2.2, D.6, and D.7. A new key pair should be generated for every signature. The
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one-time private key u should be discarded after step 4, as its recovery by an opponent can lead to the recovery of the
private key s.

7.2.6 ECVP-NR

ECVP-NR is the Elliptic Curve Verification Primitive, Nyberg-Rueppel version. It is based on the work of
Koblitz [B94], Miller [B117], and Nyberg and Rueppel [B120]. This primitive recovers the message
representative that was signed with ECSP-NR, given only the signature and public key of the signer. It can
be invoked in a scheme as part of signature verification and, possibly, message recovery. Note, however, that
no EC signature schemes with message recovery are defined in this version of the standard (see C.3.4).
ECVP-NR may also be used in a signature scheme with appendix, and can be invoked in the scheme DLSSA
as part of signature verification.

Input:

— The EC domain parameters q, a, b, r, and G associated with the key W

— The signer’s public key W

— The signature to be verified, which is a pair of integers (c, d)

Assumptions: Public key W and EC domain parameters q, a, b, r, and G are valid and associated with each
other.

Output: The message representative, which is an integer f such that 0 ≤ f < r; or “invalid”

Operation: The message representative f shall be computed by the following or an equivalent sequence of
steps:

1. If c is not in [1, r – 1] or d is not in [0, r – 1], output “invalid” and stop.

2. Compute an elliptic curve point P = d G + c W. If P = O, output “invalid” and stop; otherwise,
P = (xP, yP).

3. Convert the field element xP to an integer i with primitive FE2IP.

4. Compute an integer f = c – i mod r.

5. Output f as the message representative. 

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of EC domain parameters q, a, b, r, and G

— At least one valid public key W for each set of domain parameters

— All purported signatures (c, d) that can be input to the implementation; this should include at least all
(c, d), such that c and d are in the range [0, r – 1], where r is from the domain parameters of W

7.2.7 ECSP-DSA

ECSP-DSA is the Elliptic Curve Signature Primitive, DSA version. It is based on the work of Koblitz [B94],
Kravitz [B97], and Miller [B117]. It can be invoked in a scheme to compute a signature on a message
representative with the private key of the signer. The message representative cannot be recovered from the
signature, but ECVP-DSA can be used in the scheme ECSSA to verify the signature.
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Input:

— The EC domain parameters q, a, b, r, and G associated with the key s

— The signer’s private key s

— The message representative, which is an integer f ≥ 0

Assumptions: Private key s and EC domain parameters q, a, b, r, and G are valid and associated with each
other; f ≥ 0.

Output: The signature, which is a pair of integers (c, d), where 1 ≤ c < r and 1 ≤ d < r

Operation: The signature (c, d) shall be computed by the following or an equivalent sequence of steps:

1. Generate a key pair (u, V) with the same set of domain parameters as the private key s (see the
note below). Let V = (xV , yV) (V ≠ O because V is a public key).

2. Convert xV into an integer i with primitive FE2IP [recall that xV is an element of GF (q)].

3. Compute an integer c = i mod r. If c = 0, then go to step 1.

4. Compute an integer d = u–1(f + sc) mod r. If d = 0, then go to step 1.

5. Output the pair (c, d) as the signature.

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of EC domain parameters q, a, b, r, and G

— At least one valid private key s for each set of domain parameters

— A range of message representatives f; this should include at least all f ≥ 0 with bit length no greater
than that of r, where r is from the domain parameters of s

NOTE—The key pair in step 1 should be a one-time key pair, which is generated and stored by the signer following the
security recommendations of D.3.1, D.4.2.2, D.6, and D.7. A new key pair should be generated for every signature. The
one-time private key u should be discarded after step 4, as its recovery by an opponent can lead to the recovery of the pri-
vate key s.

7.2.8 ECVP-DSA

ECVP-DSA is the Elliptic Curve Verification Primitive, DSA version. It is based on the work of Koblitz
[B94], Kravitz [B97], and Miller [B117]. This primitive verifies whether the message representative and the
signature are consistent given the key and the domain parameters. It can be invoked in the scheme ECSSA as
part of signature verification.

Input:

— The EC domain parameters q, a, b, r, and G associated with the key W

— The signer’s public key W

— The message representative, which is an integer f ≥ 0

— The signature to be verified, which is a pair of integers (c, d)

Assumptions: Public key W and EC domain parameters q, a, b, r, and G are valid and associated with each
other; f ≥ 0.
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Output: “Valid” if f and (c, d) are consistent, given the key and the domain parameters; “invalid” otherwise

Operation: The output shall be computed by the following or an equivalent sequence of steps:

1. If c is not in [1, r – 1] or d is not in [1, r – 1], output “invalid” and stop.

2. Compute integers h = d–1 mod r; h1 = f h mod r; h2 = c h mod r.

3. Compute an elliptic curve point P = h1G + h2W. If P = O, output “invalid” and stop; otherwise,
P = (xP, yP).

4. Convert the field element xP to an integer i with primitive FE2IP.

5. Compute an integer c′ = i mod r.

6. If c′ = c, then output “valid”; else, output “invalid.”

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of EC domain parameters q, a, b, r, and G.

— At least one valid public key W for each set of domain parameters.

— All message representatives f ≥ 0 that can be input to the implementation; this should include at least
all f with bit length no greater than that of r, where r is from the domain parameters of W.

— All purported signatures (c, d) that can be input to the implementation; this should include at least all
(c, d) such that c and d are in the range [1, r – 1], where r is from the domain parameters of W.

8. Primitives based on the integer factorization problem

This clause specifies the family of cryptographic primitives based on the integer factorization problem, also
known as the IF family. For background information on this family, see A.1.3, A.1.4, and Rivest, Shamir,
and Adleman [B129].

There are two types of primitives in this family. While they are largely similar, they are based on slightly
different keys and operations. One type is known as RSA, for “Rivest-Shamir-Adleman” (see Rivest,
Shamir, Adleman [B129]); the other is known as RW, for “Rabin-Williams” (see Rabin [B128] and
Williams [B149]). 

8.1 The IF setting

8.1.1 Notation

The list below introduces the notation used in Clause 8, Clause 10, and Clause 11. It is meant as a reference
guide only; for complete definitions of the terms listed, refer to the appropriate text. Some other symbols are
also used occasionally and are introduced in the text where appropriate.

n The modulus, part of the keys

 p, q The two primes whose product is the modulus n

 e The public exponent, part of a public key (e is odd for RSA; e is even for RW)

 d The private exponent, part of some of the representations of a private key
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 d1 d mod (p – 1), part of one of the representations of a private key

 d2 d mod (q – 1), part of one of the representations of a private key

 c q–1 mod p, part of one of the representations of a private key

 (n, e) An RSA or RW public key

 K An RSA or RW private key

 s Signature, an integer, computed by a signature primitive

 g Encrypted message, an integer, computed by an encryption primitive

 f Message representative, an integer, computed by a message-encoding operation

 M The message, an octet string, which is encrypted in an encryption scheme or whose signa-
ture is computed by a signature scheme

NOTE—Multiplication of integers is denoted by ×, although this symbol may be omitted when such omission does not
cause ambiguity. When typographically convenient, notation such as exp(f, e), where f and e are integers, will be used to
denote raising f to the power e. The more traditional notation f e may also be used.

8.1.2 Domain parameters in the IF family

Unlike the DL or EC families, the IF family has no domain parameters. The keys contain all the necessary
information within themselves. While DL or EC primitives and schemes sometimes require domain
parameters to be common to a group of keys, no similar requirement exists for any IF primitive or scheme.
Of course, as with other families, parties need to be aware of each other’s capabilities in order to work
together. For example, some parties may have restrictions on the size of the modulus they can use or
generate, while others may work only with a particular fixed public exponent (see Note 5 in D.4.3.4).

8.1.3 Keys in the IF family

Since there are two types of IF primitives, there are also two types of IF keys. They are similar, but the
distinctions between them are significant.

8.1.3.1 RSA key pairs

An RSA public key consists of a modulus n, which is the product of two odd positive prime integers p and q,
and an odd public exponent e (3 ≤ e < n), which is an integer relatively prime to (p – 1) and (q – 1). The
corresponding RSA private exponent is an integer d (1 ≤ d < n) such that 

 d e ≡ 1 (mod LCM (p – 1, q – 1))

Note that there may be more than one private exponent d corresponding to a public key (n, e).

An RSA private key K may have multiple representations. The use of one of the following three
representations is recommended in this standard:

1. A pair (n, d)

2. A quintuple (p, q, d1, d2, c), where d1 = d mod (p – 1), d2 = d mod (q – 1), and c = q–1 mod p

3. A triple (p, q, d)
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8.1.3.2 RW key pairs

An RW public key consists of a modulus n, which is the product of two odd positive prime integers p and q,
such that p ≡⁄  q (mod 8), and an even public exponent e (2 ≤ e < n), which is an integer relatively prime to
(p – 1)(q – 1)/4. [Note that these conditions imply that p ≡ q ≡ 3 (mod 4); moreover, one of the primes is
congruent to 3 (mod 8) and the other is congruent to 7 (mod 8).] The corresponding RW private exponent is
an integer d (1 ≤ d < n) such that 

 d e ≡ 1 (mod LCM (p – 1, q – 1) / 2)

Note that there may be more than one private exponent d corresponding to a public key (n, e).

An RW private key K may have multiple representations. The use of one of the following three
representations is recommended in this standard:

1. A pair (n, d)

2. A quintuple (p, q, d1, d2, c), where d1 = d mod (p – 1), d2 = d mod (q – 1), and c = q–1 mod p

3. A triple (p, q, d)

8.1.3.3 Considerations common to RSA and RW key pairs

An RSA or RW key pair may or may not be generated by the party using it, depending on the trust model.
This and other security issues related to RSA and RW key pair generation are discussed in D.3.1 and D.4.3.
A suggested method for generating RSA key pairs is contained in A.16.11. A suggested method for
generating RW key pairs is contained in A.16.12.

Parties establish RSA and RW keys as part of key management for a scheme. Depending on the key
management technique, it is possible that an established key does not satisfy the intended definition for the
key, even though it has the same general form (e.g., components n and e). To accommodate this possibility,
the terms RSA public key, RW public key, RSA private key, and RW private key shall be understood in this
standard as referring to instances of the general form for the key. The terms valid RSA public key, valid RW
public key, valid RSA private key, valid RW private key, valid RSA key pair, and valid RW key pair shall be
reserved for keys satisfying the definitions.

Key validation is the process of determining whether a key is valid. Further discussion of key validation is
contained in D.3.3, although no algorithm for IF public-key validation is suggested in Annex A. No
algorithm is given for IF private-key validation, because, generally, a party controls its own private key and
need not validate it. However, private-key validation may be performed if desired.

For security, the primes p and q need to be generated so that they are unpredictable and inaccessible to an
adversary. Whatever form a private key is represented in, it needs to be stored so that it is inaccessible to an
adversary. The compromise of p, q, d, d1, d2, or c will aid the adversary in recovering the private key. These
values should be discarded if not used.

Three representations are provided for IF private keys because of performance tradeoffs between the
representations. Use of the quintuple representation tends to result in faster performance for larger sizes of n.

8.2 Primitives

This subclause describes primitives used in the IF family. Before proceeding with this subclause, the reader
should be familiar with the material of Clause 4.
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As detailed in Clause 4 and Annex B, an implementation of a primitive may make certain assumptions about
its inputs, as listed with the specification of the primitive. For example, if an RSA public key (n, e) is an
input to a primitive, an implementation may assume that the public key is valid [i.e., that n is a product of
two odd primes, 3 ≤ e < n, and e is relatively prime to (p – 1)(q – 1)]. The behavior of an implementation is
not specified in the case where the input does not satisfy these conditions and, in such a case, the
implementation may or may not output an error condition. It is up to the properly implemented scheme to
ensure that only appropriate inputs are passed to a primitive, or to accept the risks of passing inappropriate
inputs. For more on conforming with a primitive, see Annex B.

The primitives described in this subclause can be combined into four pairs: message representatives
encrypted with IFEP-RSA can be decrypted with IFDP-RSA; message representatives signed with
IFSP-RSA1, IFSP-RSA2, or IFSP-RW can be recovered with IFVP-RSA1, IFVP-RSA2, or IFVP-RW,
respectively. While IFEP-RSA is mathematically identical to IFVP-RSA1, and IFDP-RSA is mathematically
identical to IFSP-RSA1, these primitives are used for entirely different purposes and should not be confused.
The three signature primitives are similar, but have some important differences (see C.3.6). To aid in
defining these primitives, the operation “IF Private-Key Operation” is defined first.

8.2.1 IF private-key operation

IF Private-Key Operation is not a primitive in itself, but rather is used in some of the primitives below. The
operation produces the same result, independent of the representation of the private key.

Input:

— An RSA or RW private key K represented as one of the following:

A pair (n, d)
A quintuple (p, q, d1, d2, c)
A triple (p, q, d)

— An integer i such that 0 ≤ i < n (where n = pq if the second or the third representation of K is used), to
which the private key operation is to be applied

Assumptions: Private key K is valid; 0 ≤ i < n.

Output: An integer j such that 0 ≤ j < n, the result of the private key operation on i

Operation: The integer j shall be computed by the following or an equivalent sequence of steps:

I. If the first representation (n, d) of K is used

1. Let j = exp(i, d) mod n.

2. Output j.

II. If the second representation (p, q, d1, d2, c) of K is used

1. Let j1 = exp(i, d1) mod p.

2. Let j2 = exp(i, d2) mod q.

3. Let h = c (j1 – j2) mod p.

4. Let j = j2 + h q.

5. Output j.
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III. If the third representation (p, q, d) of K is used

1. Let j1 = exp(i, d mod (p – 1)) mod p.

2. Let j2 = exp(i, d mod (q – 1)) mod q.

3. Let h = q–1 × (j1 – j2) mod p.

4. Let j = j2 + h q.

5. Output j.

8.2.2 IFEP-RSA

IFEP-RSA is RSA the Encryption Primitive. It is based on the work of Rivest, Shamir, and Adleman [B129].
It is invoked in the scheme IFES as part of encrypting a message, given the message and the public key of
the intended recipient. The message can be decrypted within a scheme by invoking IFDP-RSA.

Input:

— The recipient’s RSA public key (n, e)

— The message representative, which is an integer f such that 0 ≤ f < n

Assumptions: Public key (n, e) is valid; 0 ≤ f < n.

Output: The encrypted message representative, which is an integer g such that 0 ≤ g < n

Operation: The encrypted message representative g shall be computed by the following or an equivalent
sequence of steps:

1. Let g = exp(f, e) mod n.

2. Output g.

Conformance region recommendation: A conformance region should include the following:

— At least one valid RSA public key (n, e)

— All message representatives f in the range [0, n – 1]

8.2.3 IFDP-RSA

IFDP-RSA is the RSA Decryption Primitive. It is based on the work of Rivest, Shamir, and Adleman [B129].
It is used in the scheme IFES as part of decrypting a message encrypted with the use of IFEP-RSA, given the
encrypted message representative and the private key of the recipient.

Input:

— The recipient’s RSA private key K

— The encrypted message representative, which is an integer g such that 0 ≤ g < n

Assumptions: Private key K is valid; 0 ≤ g < n.

Output: The message representative, which is an integer f such that 0 ≤ f < n
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Operation: The message representative f shall be computed by the following or an equivalent sequence of
steps:

1. Perform the IF Private-Key Operation described in 8.2.1 on K and g to produce an integer f.

2. Output f.

Conformance region recommendation: A conformance region should include the following:

— At least one valid RSA private key K

— All encrypted message representatives g in the range [0, n – 1], where n is from the private key K

8.2.4 IFSP-RSA1

IFSP-RSA1 is the RSA Signature Primitive, version 1. It is based on the work of Rivest, Shamir, and
Adleman [B129]. It can be invoked in a scheme to compute a signature on a message representative with the
private key of the signer, in such a way that the message representative can be recovered from the signature
using the public key of the signer by the IFVP-RSA1 primitive. Note, however, that no IF signature schemes
with message recovery are defined in this version of the standard (see C.3.7). IFSP-RSA1 may also be used
in a signature scheme with appendix, and can be invoked in the scheme IFSSA as part of signature
generation.

Input:

— The signer’s RSA private key K

— The message representative, which is an integer f such that 0 ≤ f < n

Assumptions: Private key K is valid; 0 ≤ f < n.

Output: The signature, which is an integer s such that 0 ≤ s < n

Operation: The signature s shall be computed by the following or an equivalent sequence of steps:

1. Perform the IF Private-Key Operation described in 8.2.1 on K and f to produce an integer s.

2. Output s.

Conformance region recommendation: A conformance region should include the following:

— At least one valid RSA private key K

— All message representatives f in the range [0, n – 1], where n is from the private key K

8.2.5 IFVP-RSA1

IFVP-RSA1 is the RSA Verification Primitive, version 1. It is based on the work of Rivest, Shamir, and
Adleman [B129]. This primitive recovers the message representative that was signed with IFSP-RSA1,
given only the signature and public key of the signer. It can be invoked in a scheme as part of signature veri-
fication and, possibly, message recovery. Note, however, that no IF signature schemes with message recov-
ery are defined in this version of the standard (see C.3.7). IFVP-RSA1 may also be used in a signature
scheme with appendix, and can be invoked in the scheme IFSSA as part of signature verification.
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Input:

— The signer’s RSA public key (n, e)

— The signature to be verified, which is an integer s

Assumptions: Public key (n, e) is valid.

Output: The message representative, which is an integer f such that 0 ≤ f < n; or “invalid”

Operation: The message representative f shall be computed by the following or an equivalent sequence of
steps:

1. If s is not in [0, n – 1], output “invalid” and stop.

2. Let f = exp(s, e) mod n.

3. Output f.

Conformance region recommendation: A conformance region should include the following:

— At least one valid RSA public key (n, e)

— All purported signatures s that can be input to the implementation; this should include at least all s in
the range [0, n – 1]

8.2.6 IFSP-RSA2

IFSP-RSA2 is the RSA Signature Primitive, version 2. It is based on the work of ISO/IEC 9796:1991 [B78]
and Rivest, Shamir, and Adleman [B129]. Its output is at least one bit shorter than the RSA modulus n. It can
be invoked in a scheme to compute a signature on a message representative of a certain form with the private
key of the signer, in such a way that the message representative can be recovered from the signature using
the public key of the signer by the IFVP-RSA2 primitive. Note, however, that no IF signature schemes with
message recovery are defined in this version of the standard (see C.3.7). IFSP-RSA2 may also be used in a
signature scheme with appendix, and can be invoked in the scheme IFSSA as part of signature generation.

Input:

— The signer’s RSA private key K

— The message representative, which is an integer f such that 0 ≤ f < n, and f ≡ 12 (mod 16)

Assumptions: Private key K is valid, 0 ≤ f < n, and f is congruent to 12 modulo 16.

Output: The signature, which is an integer s such that 0 ≤ s < n/2

Operation: The signature s shall be computed by the following or an equivalent sequence of steps:

1. Perform the IF Private-Key Operation described in 8.2.1 on K and f to produce an integer t.

2. Let s = min (t, n – t).

3. Output s.
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Conformance region recommendation: A conformance region should include the following:

— At least one valid RSA private key K

— All message representatives f in the range [0, n – 1] such that f ≡ 12 (mod 16), where n is from the
private key K

8.2.7 IFVP-RSA2

IFVP-RSA2 is the RSA Verification Primitive, version 2. It is based on the work of ISO/IEC 9796:1991
[B78] and Rivest, Shamir, and Adleman [B129]. This primitive recovers the message representative that was
signed with IFSP-RSA2, given only the signature and the public key of the signer. It can be invoked in a
scheme as part of signature verification and, possibly, message recovery. Note, however, that no IF signature
schemes with message recovery are defined in this version of the standard (see C.3.7). IFVP-RSA2 may also
be used in a signature scheme with appendix, and can be invoked in the scheme IFSSA as part of signature
verification.

Input:

— The signer’s RSA public key (n, e)

— The signature to be verified, which is an integer s

Assumptions: Public key (n, e) is valid.

Output: The message representative, which is an integer f such that 0 ≤ f < n and f ≡ 12 (mod 16); or
“invalid”

Operation: The message representative f shall be computed by the following or an equivalent sequence of
steps:

1. If s is not in [0, (n – 1) / 2], output “invalid” and stop.

2. Compute t = exp(s, e) mod n.

3. If t ≡ 12 (mod 16), then let f = t.

4. Else let f = n – t. If (mod 16), output “invalid” and stop.

5. Output f.

Conformance region recommendation: A conformance region should include the following:

— At least one valid RSA public key (n, e)

— All purported signatures s that can be input to the implementation; this should include at least all s in
the range [0, (n – 1)/2]

8.2.8 IFSP-RW

IFSP-RW is the RW Signature Primitive. It is based on the work of ISO/IEC 9796:1991 [B78], Rabin
[B128], and Williams [B149]. Its output is at least one bit shorter than the RW modulus n. It can be invoked
in a scheme to compute a signature on a message representative with the private key of the signer, in such a
way that the message representative can be recovered from the signature using the public key of the signer
by the IFVP-RW primitive. Note, however, that no IF signature schemes with message recovery are defined
in this version of the standard (see C.3.7). IFSP-RW may also be used in a signature scheme with appendix,
and can be invoked in the scheme IFSSA as part of signature generation.

f / 12≡



IEEE
PUBLIC-KEY CRYPTOGRAPHY Std 1363-2000

Copyright © 2000 IEEE. All rights reserved. 45

Input:

— The recipient’s RW private key K

— The message representative, which is an integer f such that 0 ≤ f < n and f ≡ 12 (mod 16)

Assumptions: Private key K is valid, 0 ≤ f < n, and f is congruent to 12 modulo 16.

Output: The signature, which is an integer s such that 0 ≤ s < n/2

Operation: The signature s shall be computed by the following or an equivalent sequence of steps:

1. If the Jacobi symbol  = +1, let u = f.

2. Else let u = f/2 (recall that f is even).

3. Perform the IF Private-Key Operation described in 8.2.1 on K and u to produce an integer t.

4. Let s = min (t, n – t).

5. Output s.

Conformance region recommendation: A conformance region should include the following:

— At least one valid RW private key K

— All message representatives f in the range [0, n – 1] such that f ≡ 12 (mod 16), where n is from the
private key K

NOTE—See A.2.9 for a potentially more efficient implementation of the primitive, and A.1.4 and A.2.3 for evaluating
Jacobi symbols.

8.2.9 IFVP-RW

IFVP-RW is the RW Verification Primitive. It is based on the work of ISO/IEC 9796:1991 [B78], Rabin
[B128], and Williams [B149]. This primitive recovers the message representative that was signed with
IFSP-RW, given only the signature and the public key of the signer. It can be invoked in a scheme as part of
signature verification and, possibly, message recovery. Note, however, that no IF signature schemes with
message recovery are defined in this version of the standard (see C.3.7). IFVP-RW may also be used in a sig-
nature scheme with appendix, and can be invoked in the scheme IFSSA as part of signature verification.

Input:

— The signer’s RW public key (n, e)

— The signature to be verified, which is an integer s

Assumptions: Public key (n, e) is valid.

Output: The message representative, which is an integer f such that 0 ≤ f < n and f ≡ 12 (mod 16); or
“invalid”

Operation: The message representative f shall be computed by the following or an equivalent sequence of
steps.

1. If s is not in [0, (n – 1) / 2], output “invalid” and stop.

2. Compute t1 = exp(s, e) mod n.

f
n
--- 
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3. Compute t2 = n – t1.

4. If t1 ≡ 12 (mod 16), then let f = t1.

5. Else if t1 ≡ 6 (mod 8), then let f = 2t1.

6. Else if t2 ≡ 12 (mod 16), then let f = t2.

7. Else if t2 ≡ 6 (mod 8), then let f = 2t2.

8. Else output “invalid” and stop.

9. Output f.

Conformance region recommendation: A conformance region should include the following:

— At least one valid RW public key (n, e)

— All purported signatures s that can be input to the implementation; this should include at least all s in
the range [0, (n – 1)/2]

9. Key agreement schemes

The general model for key agreement schemes is given in 9.1. Three specific schemes and their allowable
options are given in 9.2, 9.3, and 9.4.

9.1 General model

In a key agreement scheme, each party combines its own private key(s) with the other party’s public key(s)
to come up with a secret key. Other (public or private) information known to both parties may also enter the
scheme as key derivation parameters. If the parties use the corresponding keys and identical key derivation
parameters, and the scheme is executed correctly, the parties will arrive at the same secret key (see Note 1
below). A key agreement scheme can allow two parties to derive shared secret keys without any prior shared
secret.

A key agreement scheme consists of a key agreement operation, along with supporting key management.
Domain parameter and key pair generation for the key agreement schemes are specified further in
connection with the DL and EC families (Clause 6 and Clause 7, respectively). Security considerations for
key agreement schemes are given in D.5.1.

A key agreement operation has the following form for all the schemes:

1. Establish one or more sets of valid domain parameters with which the parties’ key pairs shall be
associated.

2. Select one or more valid private keys (and, in some cases, their corresponding public keys) for
the operation, associated with the domain parameters established in step 1 (see Note 2 below).

3. Obtain one or more other party’s purported public keys for the operation (see Note 3 below).

4. (Optional) Depending on the cryptographic operations in step 5, choose an appropriate method
to validate the public keys and the domain parameters. If any validation fails, output “invalid”
and stop. (see Note 4 below).

5. Apply certain cryptographic operations to the private and public keys to produce a shared secret
value.
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6. For each shared secret key to be agreed on, establish or agree on key derivation parameters, and
derive a shared secret key from the shared secret value and the key derivation parameters using
a key derivation function (see Note 5 below).

NOTES

1—(Key confirmation) By the definition of a key agreement scheme, if the correct keys are used and computation is
performed properly, the shared secret keys computed by the two parties will also be the same. However, to verify the
identities of the parties and to ensure that they indeed possess the same key, the parties may need to perform a key
confirmation protocol. (See D.5.1.3 for more information.)

2—(Repeated use of a key pair) A given public/private key pair may be used by either party for any number of key
agreement operations, depending on the implementation.

3—(Authentication of ownership) The process of obtaining the other party’s public key (step 3) may involve
authentication of ownership of the public key, as described in D.3.2 and D.5.1.5. This may be achieved by verifying a
certificate, or by other means. The means by which the key (or the certificate containing it) is obtained may vary, and
may include one party sending the key to the other, or a party obtaining the other party’s key from a third party or from a
local database.

4—(Domain parameter and key validation) Since a key agreement primitive assumes (with some exceptions, depending
on the primitive chosen) that the domain parameters and the public key are valid, the result of the primitive is undefined
otherwise. Consequently, it is recommended that parties validate the set(s) of domain parameters in step 1 and the public
key(s) in step 4, unless the risk of operating on invalid domain parameters or keys is mitigated by other means, as
discussed in D.3.3 and D.5.1.6. Examples of “other means” include validation within the supporting key management, or
use of –DHC and –MQVC primitives together with simpler validation. In the case of key agreement, it is only necessary
that each party is assured of domain parameter and public-key validity prior to use of the shared secret key. Therefore,
while it may be more efficient to validate domain parameters once and then validate each key as it is used, there may be
instances where domain parameter validation follows public-key validation. In other words, an implementation may
perform domain parameter validation and public-key validation in a different order than assumed in the specification
(step 1 followed by step 4), with equivalent effect, provided that both occur prior to use of the shared secret key.

5—(Key derivation parameters) Depending on the key derivation function, there may be security-related constraints on
the set of allowed key derivation parameters. The interpretation of these parameters is left to the implementation. For
instance, it may contain key-specific information, protocol-related public information, and supplementary, private
information. For security, the interpretation should be unambiguous. (See D.5.1.4 for further discussion.)

6—(Attributes of the shared secret key) The attributes of the shared secret key depend on the particular key agreement
scheme used, the attributes of the public/private key pairs, the nature of the parameters to the key derivation function,
and whether or not key confirmation is performed. (See D.5.1 for further discussion of the attributes of the shared secret
key.)

7—(Error conditions) The two parties may produce errors under certain conditions, such as the following:

—Private key not found in step 2
—Public key not found in step 3
—Public key not valid in step 4
—Private key or public key not supported in step 5
—Key derivation parameter not supported in step 6

Such error conditions should be detected and handled appropriately by an implementation; however, the specific
methods for detecting and handling them are outside of the scope of this standard.

9.2 DL/ECKAS-DH1

DL/ECKAS-DH1 is the Discrete Logarithm and Elliptic Curve Key Agreement Scheme, Diffie-Hellman
version, where each party contributes one key pair. 

9.2.1 Scheme options

The following options shall be established or otherwise agreed upon between the parties to the scheme:
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— A secret value derivation primitive, which shall be: DLSVDP-DH, DLSVDP-DHC, ECSVDP-DH,
or ECSVDP-DHC

— For a -DHC secret value derivation primitive, an indication as to whether or not compatibility with
the corresponding -DH primitive is desired

— A key derivation function, which should be KDF1 (see 13.1), or a function designated for use with
DL/ECKAS-DH1 in an amendment to this standard

The above information may remain the same for any number of executions of the key agreement scheme, or
it may be changed at some frequency. The information need not be kept secret.

9.2.2 Key agreement operation

A sequence of shared secret keys, K1, K2, …, Kt, shall be generated by each party by performing the
following or an equivalent sequence of steps:

1. Establish the valid set of DL or EC domain parameters with which the parties’ key pairs shall
be associated.

2. Select a valid private key s for the operation, associated with the parameters established in
step 1.

3. Obtain the other party’s purported public key w′ for the operation, associated with the
parameters established in step 1.

4. (Optional) If the selected secret value derivation primitive is DLSVDP-DHC or ECSVDP-
DHC, then validate that w′ is an element in the appropriate group (i.e., in GF (q) for DL or on
the elliptic curve for EC; see 6.2.2 and 7.2.2); otherwise, validate that w′ is a valid public key. If
any validation fails, output “invalid public key” and stop.

5. Compute a shared secret value z from the private key s and the other party’s public key w′ with
the selected secret value derivation primitive (see 9.2.1).

6. Convert the shared secret value z to an octet string Z using FE2OSP.

7. For each shared secret key to be agreed on

a. Establish or otherwise agree on key derivation parameters Pi for the key.

b. Derive a shared secret key Ki from the octet string Z and the key derivation parameters Pi
with the selected key derivation function (see 9.2.1).

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of domain parameters

— At least one valid private key s for each set of domain parameters

— All valid public keys w′ associated with the same set of domain parameters as s; if key validation is
performed or a –DHC primitive is used, invalid public keys that are appropriately handled by the
implementation may also be included in the conformance region

— A range of key derivation parameters P

NOTE—These schemes, with appropriate restrictions on the scheme options and inputs, may be compatible with the
techniques in ANSI X9.42 [B8] (in the DL case) and ANSI X9.63 [B12] (in the EC case).
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9.3 DL/ECKAS-DH2

DL/ECKAS-DH2 is the Discrete Logarithm and Elliptic Curve Key Agreement Scheme, Diffie-Hellman
version, where each party contributes two key pairs. Particular variants may be derived from the work of
ANSI X9.42 [B8], Blake-Wilson, Johnson, and Menezes [B21], Goss [B67], Gunther [B68], Johnson [B85],
and Matsumoto, Takashima, and Imai [B105].

9.3.1 Scheme options

The following options shall be established or otherwise agreed upon between the parties to the scheme:

— Two secret value derivation primitives, each of which (independently) shall be: DLSVDP-DH,
DLSVDP-DHC, ECSVDP-DH, or ECSVDP-DHC

— For each -DHC secret value derivation primitive, an indication as to whether or not compatibility
with the corresponding -DH primitive is desired

— If the two secret value derivation primitives are the same (and have the same compatibility option in
the -DHC case), an indication whether compatibility with DL/ECKAS-DH1 is desired

— A key derivation function, which should be KDF1 (see 13.1), or a function designated for use with
DL/ECKAS-DH2 in an amendment to this standard

The above information may remain the same for any number of executions of the key agreement function, or
it may be changed at some frequency. The information need not be kept secret.

9.3.2 Key agreement operation

A sequence of shared secret keys, K1, K2, …, Kt, shall be generated by each party by performing the
following or an equivalent sequence of steps:

1. Establish the valid set of DL or EC domain parameters with which the parties’ first key pairs
shall be associated.

2. Establish the valid set of DL or EC domain parameters with which the parties’ second key pairs
shall be associated.

3. Select valid first and second private keys s and u for the operation, associated with the domain
parameters established in steps 1 and 2, respectively.

4. Obtain the other party’s first and second purported public keys w′ and v′ for the operation,
associated with the domain parameters established in steps 1 and 2, respectively.

5. (Optional) If the first selected secret value derivation primitive is DLSVDP-DHC or
ECSVDP-DHC, then validate that w′ is an element in the appropriate group (i.e., in GF(q) for
DL or on the elliptic curve for EC; see 6.2.2 and 7.2.2); otherwise, validate that w′ is a valid
public key. If the second selected secret value derivation primitive is DLSVDP-DHC or
ECSDVP-DHC, then validate that v′ is an element in the appropriate group; otherwise validate
that v′ is a valid public key. If any validation fails, output “invalid public key” and stop.

6. Compute a first shared secret value z1 from s and w′ with the first selected secret value
derivation primitive (see 9.3.1). Convert z1 to an octet string Z1 using FE2OSP.

7. Compute a second shared secret value z2 from u and v′ with the second selected secret value
derivation primitive (see 9.3.1). Convert z2 to an octet string Z2 using FE2OSP.

8. If compatibility with DL/ECKAS-DH1 is desired, the selected private keys s and u (and
associated domain parameters) are the same, and the other party’s public keys w′ and v′ (and
associated domain parameters) are the same, then let Z = Z1. Otherwise, let Z = Z1 || Z2.
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9. For each shared secret key to be agreed on:

a. Establish or otherwise agree on key derivation parameters Pi for the key.

b. Derive a shared secret key Ki from the octet string Z and the key derivation parameters Pi
with the selected key derivation function (see 9.3.1).

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of domain parameters for the first pair of keys.

— At least one valid private key s for each set of domain parameters for the first pair of keys.

— All valid public keys w′ associated with the same set of domain parameters as s.

— At least one valid set of domain parameters for the second pair of keys.

— At least one valid private key u for each set of domain parameters for the second pair of keys.

— All valid public keys v′ associated with the same set of domain parameters as u.

— A range of key derivation parameters P.

— If key validation is performed or a -DHC primitive is used, invalid public keys that are appropriately
handled by the implementation may also be included in the conformance region.

NOTES

1—If the two secret value derivation primitives are the same, compatibility with DL/ECKAS-DH1 is selected, and each
party contributes two identical key pairs, then DL/ECKAS-DH2 will compute the same output as DL/ECKAS-DH1 with
the same primitive and key pairs.

2—This scheme, with appropriate restrictions on the scheme options and inputs, may be compatible with techniques in
ANSI X9.42 [B8] (in the DL case) and ANSI X9.63 [B12] (in the EC case).

9.4 DL/ECKAS-MQV

DL/ECKAS-MQV is the Discrete Logarithm and Elliptic Curve Key Agreement Scheme,
Menezes-Qu-Vanstone version. Each party contributes two key pairs. 

9.4.1 Scheme options

The following options shall be established or otherwise agreed upon between the parties to the scheme:

— A secret value derivation primitive, which shall be: DLSVDP-MQV, DLSVDP-MQVC,
ECSVDP-MQV, or ECSVDP-MQVC

— For an -MQVC secret value derivation primitive, an indication as to whether or not compatibility
with the corresponding -MQV primitive is desired

— A key derivation function, which should be KDF1 (see 13.1), or a function designated for use with
DL/ECKAS-MQV in an amendment to this standard

The above information may remain the same for any number of executions of the key agreement scheme, or
it may be changed at some frequency. The information need not be kept secret.

9.4.2 Key agreement operation

A sequence of shared secret keys, K1, K2, …, Kt, shall be generated by each party by performing the
following or an equivalent sequence of steps:
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1. Establish the valid set of DL or EC domain parameters with which the parties’ two key pairs
shall be associated.

2. Select a valid private key s and a valid key pair (u, v) for the operation, associated with the
parameters established in step 1.

3. Obtain the other party’s two purported public keys w′ and v′ for the operation, associated with
the parameters established in step 1.

4. (Optional) If the selected secret value derivation primitive is DLSVDP-MQVC or
ECSVDP-MQVC, then validate that w′ and v′ are elements in the appropriate group (i.e., in
GF(q) for DL or on the elliptic curve for EC; see 6.2.4 and 7.2.4); otherwise, validate that w′
and v′ are valid public keys. If any validation fails, output “invalid public key” and stop.

5. Compute a shared secret value z from the selected private keys s and u and the other party’s two
public keys w′ and v′ with the selected secret value derivation primitive (see 9.4.1).

6. Convert the shared secret value z to an octet string Z using FE2OSP.

7. For each shared secret key to be agreed on

a. Establish or otherwise agree on key derivation parameters Pi for the key.

b. Derive a shared secret key Ki from the octet string Z and the key derivation parameters Pi
with the selected key derivation function (see 9.4.1).

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of domain parameters.

— At least one valid private key s for each set of domain parameters.

— All valid key pairs (u, v) associated with the same set of domain parameters as s.

— All valid public keys w′ and v′ associated with the same set of domain parameters as s; if key
validation is performed or an -MQVC primitive is used, invalid public keys w′ and v′ that are
appropriately handled by the implementation may also be included in the conformance region.

— A range of key derivation parameters P.

NOTE—These schemes, with appropriate restrictions on the scheme options and inputs, may be compatible with
techniques in ANSI X9.42 [B8] (in the DL case) and ANSI X9.63 [B12] (in the EC case).

10. Signature schemes

The general model for signature schemes is given in 10.1. Two specific schemes and their allowable options
are given in 10.2 and 10.3.

10.1 General model

In a signature scheme, one party, the signer, generates a signature for a message with its own private key, and
another party, the verifier, verifies the signature with the signer’s corresponding public key. A signature
scheme can provide assurance of the origin and integrity of a message, and can protect against
impersonation of parties and modification of messages.

There are two types of signature schemes. In a signature scheme with appendix, the signer conveys both the
message and the signature to the verifier, who verifies their consistency. In a signature scheme with message
recovery, the signer conveys only the signature to the verifier, who verifies the signature and, if it is correct,
recovers the message from it. This standard defines only signature schemes with appendix (see C.3.4 and
C.3.7).
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A signature scheme consists of a signature generation operation and a signature verification operation, along
with supporting key management. Domain parameter and key pair generation for the signature schemes are
specified further in connection with the DL, EC, and IF families (Clause 6, Clause 7, and Clause 8,
respectively). Security considerations for signature schemes are given in D.5.2.

A signature generation operation has the following form for all the schemes:

1. Select a valid private key (together with its set of domain parameters, if any) for the operation.

2. Apply certain cryptographic operations to the message and the private key to produce a
signature.

3. Output the signature.

A signature verification operation in a signature scheme with appendix has the following form:

1. Obtain the signer’s purported public key (together with its set of domain parameters, if any) for
the operation (Note 1 below). 

2. (Optional) Validate the public key and its associated set of domain parameters, if any. If valida-
tion fails, output “invalid” and stop (Note 2 below).

3. Apply certain cryptographic operations to the message, the signature, and the public key to ver-
ify the signature.

4. Output “valid” or “invalid” according to the result of step 3.

NOTES

1—(Authentication of ownership) The process of obtaining the signer’s public key (step 1 of verification) may involve
authentication of ownership of the public key, as further described in D.3.2 and D.5.2.4. This may be achieved by
verifying a certificate or by other means. The means by which the key (or the certificate containing it) is obtained may
vary, and may include the signer sending the key to the verifier, or the verifier obtaining the key from a third party or
from a local database.

2—(Domain parameter and key validation) Since a signature verification primitive assumes that the domain parameters
and the public key are valid, the result of the primitive is undefined otherwise. Consequently, it is recommended that the
verifier validate the public key (and its associated set of domain parameters, if any) in step 3, unless the risk of operating
on invalid domain parameters or keys is mitigated by other means, as discussed in D.3.3 and D.5.2.5. Examples of “other
means” include validation within the supporting key management, or assignment of liability to a purported signer for all
signatures that can be verified with the signer’s public key, whether or not the public key is valid.

3—(Error conditions) The signer’s and verifier’s steps may produce errors under certain conditions, such as the
following:

—Private key not found in signer’s step 1
—Message or private key not supported in signer’s step 2
—Public key not found in verifier’s step 1
—Public key not valid in verifier’s step 2
—Message, signature, or public key not supported in verifier’s step 3

Such error conditions should be detected and handled appropriately by an implementation; however, the specific
methods for detecting and handling them is outside of the scope of this standard.

4—(Repudiation) A dishonest signer may be interested in the ability to claim that something went wrong and the
signature was not authentic, in order to disclaim the liability for the signature. This is known as repudiation. (See D.5.2.3
for more on repudiation and ways to address it.)



IEEE
PUBLIC-KEY CRYPTOGRAPHY Std 1363-2000

Copyright © 2000 IEEE. All rights reserved. 53

10.2 DL/ECSSA

DL/ECSSA is the Discrete Logarithm and Elliptic Curve Signature Scheme with Appendix.

10.2.1 Scheme options

The following options shall be established or otherwise agreed upon between the parties to the scheme (the
signer and the verifier):

— The signature and verification primitives, which shall be one of the following pairs of primitives:
DLSP-NR and DLVP-NR, DLSP-DSA and DLVP-DSA, ECSP-NR and ECVP-NR, or ECSP-DSA
and ECVP-DSA

— The message-encoding method for signatures with appendix, which should be EMSA1 (see 12.1.1),
or a technique designated for use with DL/ECSSA (and the selected signature primitive) in an
amendment to this standard

The above information may remain the same for any number of executions of the signature scheme, or it
may be changed at some frequency. The information need not be kept secret.

10.2.2 Signature generation operation

A signature (c, d) shall be generated by a signer from a message M by the following or an equivalent
sequence of steps:

1. Select a valid private key s and its associated set of domain parameters for the operation.

2. If the selected signature primitive is DLSP-NR or ECSP-NR, then set the maximum length of
the message representative to be l = (length of r in bits) – 1, where r is the order of the base
point in the DL or EC set of domain parameters.

3. If the selected signature primitive is DLSP-DSA or ECSP-DSA, then set the maximum length
of the message representative to be l = length of r in bits.

4. Use the encoding operation of the selected message-encoding method (see 10.2.1) to produce a
message representative f of maximum length l from the message M (f will be a non-negative
integer).

5. Apply the selected signature primitive (see 10.2.1) to the integer f and the private key s to
generate the signature (c, d).

6. Output the signature.

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of domain parameters

— At least one valid private key s for each set of domain parameters

— A range of messages M

10.2.3 Signature verification operation

A signature (c, d) on a message M shall be verified by a verifier by the following or an equivalent sequence
of steps:

1. Obtain the signer’s purported public key w and its associated set of domain parameters for the
operation.
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2. (Optional) Validate the public key w and its associated set of domain parameters. Output
“invalid” and stop if validation fails.

3. If the selected verification primitive is DLVP-NR or ECVP-NR

a. Apply the selected verification primitive (see 10.2.1) to the signature (c, d) and the signer’s
public key to recover an integer f. If the output of the primitive is “invalid,” output
“invalid” and stop.

b. Set the maximum length of the message representative to be l = (length of r in bits) – 1,
where r is the order of the base point in the DL or EC set of domain parameters.

c. Use the verification operation of the selected message-encoding method (see 10.2.1) to
verify that the integer f is a correct encoded representative of the message M according to
the encoding method and maximum length l. If that is the case, output “valid”; otherwise,
output “invalid.”

4. If the selected verification primitive is DLVP-DSA or ECVP-DSA

a. Set the maximum length of the message representative to be l = length of r in bits, where r
is the order of the base point in the DL or EC set of domain parameters.

b. Use the decoding operation of the selected message-encoding method (see 10.2.1) to pro-
duce a message representative f of maximum length l from the message M (f will be a non-
negative integer).

c. Apply the selected verification primitive (see 10.2.1) to the integer f, the signature (c, d),
and the signer’s public key to determine whether they are consistent. If the output of the
primitive is “invalid,” output “invalid;” otherwise, output “valid.”

Conformance region recommendation: A conformance region should include the following:

— At least one valid set of domain parameters.

— At least one valid public key w for each set of domain parameters; if key validation is performed,
invalid public keys w that are appropriately rejected by the implementation may also be included in
the conformance region.

— All messages M that can be input to the implementation.

— All purported signatures (c, d) that can be input to the implementation; this should at least include all
(c, d) such that c and d are in the range [1, r – 1] for -DSA or [0, r – 1] for -NR, where r is from the
domain parameters of w.

NOTES

1—Since message-encoding methods for signatures with appendix are usually based on hash functions, the length of a
message that can be signed by this scheme is usually unrestricted or constrained by a very large number.

2—Because of the way verification is performed when the verification primitive is DLVP-DSA or ECVP-DSA, the
message-encoding method has to be deterministic when one of these primitives is used. Unlike verification using
DLVP-NR or ECVP-NR, where the message representative is an output of the verification primitive, for DLVP-DSA and
ECVP-DSA the message representative is one of the inputs to the verification primitive.

3—These schemes, with appropriate restrictions on the scheme options and inputs, may be compatible with techniques
in ANSI X9.30:1-1997 [B4] (in the DL case), ANSI X9.62-1998 [B11] (in the EC case), and ISO/IEC DIS 14888-3
[B80].
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10.3 IFSSA

IFSSA is the Integer Factorization Signature Scheme with Appendix.

10.3.1 Scheme options

The following options shall be established or otherwise agreed upon between the parties to the scheme (the
signer and the verifier):

— The type of key pair for the signer (RSA or RW).

— The signature and verification primitives, which shall be a pair from the following list:

If the signer’s public key is an RSA public key, then the primitives shall be either the pair
IFSP-RSA1 and IFVP-RSA1, or the pair IFSP-RSA2 and IFVP-RSA2.

If the signer’s public key is an RW public key, then the primitives shall be the pair IFSP-RW
and IFVP-RW.

— The message-encoding method for signatures with appendix, which should be EMSA2 (see 12.1.2),
or a technique designated for use with IFSSA in an amendment to this standard. (If the signature
primitive is IFSP-RSA2 or IFSP-RW, the message-encoding method shall always produce a message
representative congruent to 12 modulo 16.)

The above information may remain the same for any number of executions of the signature scheme, or it
may be changed at some frequency. The information need not be kept secret.

10.3.2 Signature generation operation

A signature s shall be generated by a signer from a message M by the following or an equivalent sequence of
steps:

1. Select a valid private key K for the operation.

2. Set the maximum length of the message representative to be l = (length of n in bits) – 1, where
n is the modulus in the IF private key.

3. Use the encoding operation of the selected message-encoding method (see 10.3.1) to produce a
message representative f of maximum length l from the message M (f will be a non-negative
integer). If the selected signature primitive is IFSP-RSA2 or IFSP-RW, f will be congruent to 12
modulo 16.

4. Apply the selected signature primitive (see 10.3.1) to the integer f and the selected private key
K to generate the signature s.

5. Output the signature.

Conformance region recommendation: A conformance region should include the following:

— At least one valid private key K

— A range of messages M

10.3.3 Signature verification operation

A signature s on a message M shall be verified by a verifier by the following or an equivalent sequence of
steps:
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1. Obtain the signer’s purported public key (n, e).

2. (Optional) Validate the public key (n, e). Output “invalid” and stop if validation fails.

3. Apply the selected verification primitive (see 10.3.1) to the signature s and the signer’s public
key to recover an integer f. If the output of the primitive is “invalid,” output “invalid” and stop.

4. Set the maximum length of the message representative to be l = (length of n in bits) – 1.

5. Verify that the integer f is a correct encoded representative of the message M using the verifica-
tion operation of the selected message-encoding method (see 10.3.1) and maximum length l. If
that is the case, output “valid;” otherwise, output “invalid.”

Conformance region recommendation: A conformance region should include the following:

— At least one valid public key (n, e); if key validation is performed, invalid public keys (n, e) that are
appropriately rejected by the implementation may also be included in the conformance region.

— All messages M that can be input to the implementation.

— All purported signatures s that can be input to the implementation; this should include at least all s in
the range [0, n – 1] for IFVP-RSA1, or [0, (n – 1)/2] for IFVP-RSA2 and IFVP-RW.

NOTES

1—The upper bound on the length in bits of the message representative is so that the message representative is less than
the modulus n, as required by all signature primitives. Since message-encoding methods for signatures with appendix are
usually based on hash functions, the length of a message that can be signed by this scheme is usually unrestricted or
constrained by a very large number.

2—This scheme, with appropriate restrictions on the scheme options and inputs, may be compatible with techniques in
ANSI X9.31-1998 [B7] and ISO/IEC DIS 14888-3 [B80].

11. Encryption schemes

Discussion of encryption schemes, in general, is given in 11.1. A specific scheme and its allowable options
are given in 11.2.

11.1 General model

In an encryption scheme, one party, the sender, generates a ciphertext for a message with another party’s
public key. The other party, called the recipient, decrypts the ciphertext with the corresponding private key to
obtain the original message. An encryption scheme can provide confidentiality of a message. 

In addition to providing confidentiality of a message, an encryption scheme may provide for a secure
association between the message and a string known as encoding parameters. The encoding parameters
themselves are not encrypted by the encryption scheme, but are securely associated with the ciphertext by
the sender. The recipient, during decryption, may also supply encoding parameters and verify whether or not
the sender used the same encoding parameters during encryption. The encoding parameters may be an empty
string. See D.5.3.3 for more information on encoding parameters.

An encryption scheme consists of an encryption operation and a decryption operation, along with supporting
key management. Domain parameter and key pair generation for the encryption scheme below are specified
further in connection with the IF family (see Clause 8). Security considerations for encryption schemes are
given in D.5.3.
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Since there is only one encryption scheme in this standard, the general form of an encryption scheme,
similar to those for key agreement and signature schemes, is not presented here. 

11.2 IFES

IFES is the Integer Factorization Encryption Scheme. 

11.2.1 Scheme options

The following options shall be established or otherwise agreed upon between the parties to the scheme (the
sender and the recipient):

— The message-encoding method for encryption, which should be EME1 (see 12.2.1), or a technique
designated for use with IFES in an amendment to this standard

The above information may remain the same for any number of executions of the encryption scheme, or it
may be changed at some frequency. The information need not be kept secret.

11.2.2 Encryption operation

The ciphertext g shall be generated by a sender from a message M and encoding parameters P by the
following or an equivalent sequence of steps:

1. Obtain the recipient’s purported public key (n, e) for the operation (see Note 1 in 11.2.3).

2. (Optional) Validate the public key (n, e). Stop if validation fails (see Note 2 in 11.2.3).

3. Set the maximum length of the message representative to be l = (length of n in bits) – 1.

4. Use the encoding operation of the selected message-encoding method (see 11.2.1) to produce a
message representative f of maximum length l from the message M and the encoding parame-
ters P (f will be a non-negative integer).   If the message is too long, the encoding method may
not be able to produce a representative of the selected length. In that case, output “error” and
stop.

5. Compute the ciphertext g from f and the recipient’s public key with the primitive IFEP-RSA.

Conformance region recommendation: A conformance region should include the following:

— At least one valid RSA public key (n, e); if key validation is performed, invalid public keys (n, e) that
are appropriately rejected by the implementation may also be included in the conformance region.

— A range of messages M and encoding parameters P (where the range of encoding parameters may
include only the empty string).

11.2.3 Decryption operation

The plaintext M shall be recovered from the ciphertext g and encoding parameters P by the following or an
equivalent sequence of steps:

1. Select the private key K for the operation.

2. Compute an integer f from g and the selected private key K with primitive IFDP-RSA.

3. Set the maximum length of the message representative to be l = (length of n in bits) – 1, where
n is the modulus in the IF private key.
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4. Decode the integer f according to the decoding operation of the selected message-encoding
method (see 11.2.1), maximum length l, and the encoding parameters P to produce the message
M. If the decoding operation produces an error, output “invalid”; otherwise, output the message
M as the plaintext.

Conformance region recommendation: A conformance region should include the following:

— At least one valid RSA private key K

— All ciphertexts g in the range [0, n – 1], where n is from the private key K

— A range of messages M and encoding parameters P (where the range of encoding parameters may
include only the empty string)

NOTES

1—(Authentication of ownership) The process of obtaining the recipient’s public key (step 1 of encryption) may involve
authentication of ownership of the public key, as described in D.3.2 and D.5.3.4. This may be achieved by verifying a
certificate, or by other means. The means by which the key (or the certificate containing it) is obtained may vary, and
may include the recipient sending the key to the sender, or the sender obtaining the key from a third party or from a local
database.

2—(Key validation) Since the encryption primitive assumes that the public key is valid, the result of the primitive is
undefined if the public key is invalid. Consequently, it is recommended that the sender validate the public key (and its
associated set of domain parameters, if any) in step 2, unless the risk of operating on invalid domain parameters or keys
is mitigated by other means, as discussed in D.3.3 and D.5.3.5. Examples of “other means” include validation within the
supporting key management.

3—(Error conditions) The sender’s and recipient’s steps may produce errors under certain conditions, such as the
following:

—Public key not found in sender’s step 1
—Public key not valid in sender’s step 2
—Message, encoding parameters, or public key not supported in sender’s steps 4 and 5
—Private key not found in recipient’s step 1
—Message, encoding parameters, or private key not supported in recipient’s steps 2 and 4.

Such error conditions should be detected and handled appropriately by an implementation; however, the specific
methods for detecting and handling them are outside the scope of this standard.

4—(Length of the message) The upper bound on the length in bits of the encoded message representative is such that,
when converted to an integer, it is less than the modulus n, as required by the encryption primitive. Since the message
representative has to, at the very least, contain the information contained in the message itself, the length of messages
that can be encrypted by this scheme is limited by the modulus length and the selected message-encoding method.

5—(Compatibility) This scheme, with appropriate restrictions on the scheme options and inputs, may be compatible
with techniques in ANSI X9.44 [B9].

12. Message-encoding methods

This clause describes message-encoding methods used in this document as building blocks for schemes.
Unlike cryptographic primitives and schemes, encoding methods do not use keys.

Each message-encoding method consists of an encoding operation, and of either a decoding or a verification
operation. An encoding operation encodes the message to produce a non-negative integer, called a message
representative. It takes the message, the maximum bit length l of the output, and possibly other parameters
as input, and produces the integer of bit length no more than l (see 3.1 for the definition of bit length of an
integer). A decoding operation gives back the original message given the message representative, the length
l, and the same additional parameters as were passed to the encoding operation. A verification operation
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verifies whether the message representative is a valid encoding of a message given the message
representative, the message, the length l, and the same parameters as were passed to the encoding operation.

Different message-encoding methods are needed for different categories of schemes. The use of an
inadequate encoding method may compromise the security of the scheme in which it is used. This standard
strongly recommends the use of the encoding methods contained in this clause, or any encoding methods
defined in an amendment to this standard.

12.1 Message-encoding methods for signatures with appendix

This standard strongly recommends the use of one of the following message-encoding methods for signature
schemes with appendix.

12.1.1 EMSA1

EMSA1 is an encoding method for signatures with appendix based on a hash function. It is recommended
for use with DLSSA and ECSSA (see 10.2).

The method is parameterized by the following choice:

— A hash function Hash with output length hLen octets, which shall be SHA-1 (see 14.1.1), or
RIPEMD-160 (see 14.1.2), or a technique designated for use with EMSA1 in an amendment to this
standard

NOTE—EMSA1 cannot produce message representatives longer than the hash function output; for SHA-1 and
RIPEMD-160, the maximum length is 160 bits.

12.1.1.1 Encoding operation

Input:

— A message, which is an octet string M (depending on the hash function chosen, there may be a
limitation on the length of M; for SHA-1 and RIPEMD-160, the maximum length is 261 – 1 octets)

— The maximum bit length l of the message representative

Output: A message representative, which is an integer f ≥ 0 of bit length at most min(l, 8hLen); or “error”

The message representative f shall be computed by the following or an equivalent sequence of steps:

1. If the length of M is greater than the length limitation (261 – 1 octets for SHA-1 or
RIPEMD-160), output “error” and stop.

2. Compute Hash (M) with the selected hash function to produce an octet string H of length hLen
octets.

3. If l < 8hLen, convert H to a bit-string HB of length 8hLen bits with the primitive OS2BSP.
Remove 8hLen – l rightmost bits of HB, and then convert the remaining l bits to an integer f
using the primitive BS2IP.

4. Else convert H to an integer f using OS2IP.

5. Output f as the message representative.
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12.1.1.2 Verification operation

Input:

— A message, which is an octet string M (depending on the hash function chosen, there may be a
limitation on the length of M; for SHA-1 and RIPEMD-160, the maximum length is 261 – 1 octets)

— The maximum bit length l of the message representative

— The message representative, which is an integer f ≥ 0

Output: “Valid” if f is a correct representative of M; “invalid” otherwise

The validity indicator shall be computed by the following or an equivalent sequence of steps:

1. Use the Encoding Operation of EMSA1 to compute a message representative g, a non-negative
integer. If the encoding operation outputs “error,” output “invalid” and stop.

2. If f = g, output “valid”; otherwise, output “invalid.”

12.1.2 EMSA2

EMSA2 is an encoding method for signatures with appendix based on a hash function, with some additional
formatting based on ANSI X9.31-1998 [B7]. It is recommended for use with IFSSA (see 10.3). 

The method is parameterized by the following choice:

— A hash function Hash with output length 20 octets, which shall be SHA-1 (see 14.1.1) or
RIPEMD-160 (see 14.1.2), or a technique designated for use with EMSA2 in an amendment to this
standard

NOTE—EMSA2 cannot produce message representatives shorter than 191 bits in length.

12.1.2.1 Encoding operation

Input:

— A message, which is an octet string M (depending on the hash function chosen, there may be a
limitation on the length of M; for SHA-1 and RIPEMD-160, the maximum length is 261 – 1 octets)

— The maximum bit length l of the message representative

Output: A message representative, which is an integer f ≥ 0 of bit length at most l; or “error”

The message representative f shall be computed by the following or an equivalent sequence of steps:

1. If the length of M is greater than the length limitation (261 – 1 octets for SHA-1 or RIPEMD-
160), or l < 191, output “error” and stop.

2. Compute Hash (M) with the selected hash function to produce an octet string H of length 20
octets.

3. If M is of length 0 (i.e., an empty string), let P1 be a single octet with hexadecimal value 4b.
Otherwise, let P1 be a single octet with hexadecimal value 6b.

4. Let P2 be an octet string of length (l + 1) / 8 – 24 octets, each with hexadecimal value bb.
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5. Let P3 be a single octet with hexadecimal value 33 if the selected hash function is SHA-1, and
let it be 31 if the selected hash function is RIPEMD-160.

6. Let T = P1 || P2 || ba || H || P3 || cc, where ba and cc are single octets represented in hexadecimal.

7. Convert T to an integer f using OS2IP.

8. Output f as the message representative.

12.1.2.2 Verification operation

Input:

— A message, which is an octet string M (depending on the hash function chosen, there may be a limi-
tation on the length of M; for SHA-1 and RIPEMD-160, the maximum length is 261 – 1 octets)

— The maximum bit length l of the message representative

— The message representative, which is an integer f ≥ 0

Output: “Valid” if f is a correct representative of M; “invalid” otherwise

The validity indicator shall be computed by the following or an equivalent sequence of steps:

1. If the length of M is greater than the length limitation (261 – 1 octets for SHA-1 or RIPEMD-
160), or l < 191, output “invalid” and stop.

2. Convert f to an octet string T of length (l + 1) / 8 octets using the primitive I2OSP.

3. If M is of length 0 (i.e., an empty string), let P1 be a single octet with hexadecimal value 4b.
Otherwise, let P1 be a single octet with hexadecimal value 6b.

4. Verify that the leftmost octet of T is equal to P1, the next (l + 1) / 8 – 24 octets each have
hexadecimal value bb, and the next octet after that has hexadecimal value ba. If not, output
“invalid” and stop.

5. Verify that the second rightmost octet has hexadecimal value 33 if the selected hash function is
SHA-1, and 31 if the selected hash function is RIPEMD-160. If not, output “invalid” and stop.

6. Verify that the rightmost octet has hexadecimal value cc. If not, output “invalid” and stop.

7. Remove the leftmost (l + 1) / 8 – 22 octets of T and the rightmost 2 octets of T to produce an
octet string H′ of length 20 octets.

8. Apply the selected hash function to M to produce an octet string H of length 20 octets.

9. If H = H′, output “valid”; otherwise, output “invalid.”

12.2 Message-encoding methods for encryption

This standard strongly recommends the use of the following message-encoding method for encryption
schemes.

12.2.1 EME1

EME1 is an encoding method for encryption based on the “enhanced Optimal Asymmetric Encryption
Padding (OAEP)” (see Bellare and Rogaway [B18] and Johnson and Matyas [B86]), a hash function (14.1),
and a mask generation function (14.2). It is recommended for use with IFES (11.2). It can produce message
representatives of arbitrary length l; however, there are restrictions on the length of the message it can
encode that depend on l.
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The method is parameterized by the following choices:

— A hash function Hash with output length hLen octets, which shall be SHA-1 (14.1.1) or
RIPEMD-160 (14.1.2), or a technique designated for use with EME1 in an amendment to this
standard

— A mask generation function G, which shall be MGF1, or a technique designated for use with EME1
in an amendment to this standard

12.2.1.1 Encoding operation

Input:

— The maximum bit length l of the message representative.

— A message, which is an octet string M of length mLen ≤ (l/8) – 2hLen – 1 octets.

— Encoding parameters, which are an octet string P (P may be an empty string) (see D.5.3.3 for
possible uses). (Depending on the hash function chosen, there may be a limitation on the length of P;
for SHA-1 and RIPEMD-160, the maximum length is 261 – 1 octets.)

Output: A message representative, which is an integer f ≥ 0 of bit length at most l; or “error”

The message representative f shall be computed by the following or an equivalent sequence of steps:

1. If the length of P is greater than the length limitation (261 – 1 octets for SHA-1 or RIPEMD-
160), output “error” and stop.

2. Let oLen = l/8 and seedLen = hLen. If mLen > oLen – hLen – seedLen – 1, then output “error”
and stop.

3. Let S be the octet string that consists of oLen – mLen – hLen – seedLen – 1 zero octets. Let T be
the octet string consisting of a single octet with hexadecimal value 01.

4. Let M′ = S || T || M.

5. Apply the hash function Hash to the parameters P to produce an octet string cHash of length
hLen.

6. Let DB = cHash || M′. The length of DB is oLen – seedLen octets.

7. Generate a fresh, random octet string seed of length seedLen octets. (See D.6 for more on
generation of random strings.)

8. Apply the mask generation function G to the string seed to produce an octet string dbMask of
length oLen – seedLen octets.

9. Let maskedDB = DB ⊕ dbMask.

10. Apply the mask generation function G to the string maskedDB to produce an octet string seed-
Mask of length seedLen octets.

11. Let maskedSeed = seed ⊕ seedMask.

12. Let EM = maskedSeed || maskedDB.

13. Convert EM to an integer f with the primitive OS2IP.

14. Output f as the message representative.
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12.2.1.2 Decoding operation

Input:

— The maximum bit length l of the message representative.

— The message representative, which is an integer f ≥ 0.

— Encoding parameters, which are an octet string P (P may be an empty string) (see D.5.3.3 for
possible uses). (Depending on the hash function chosen, there may be a limitation on the length of P;
for SHA-1 and RIPEMD-160, the maximum length is 261 – 1 octets.)

Output: The message, which is an octet string M; or “error”

The message shall be decoded by the following or an equivalent sequence of steps:

1. If the length of P is greater than the length limitation (261 – 1 octets for SHA-1 or RIPEMD-
160), output “error” and stop.

2. Let oLen = l/8 and seedLen = hLen. If oLen < seedLen + hLen + 1, output “error” and stop.

3. Convert f to an octet string EM of length oLen with the primitive I2OSP. If the primitive outputs
“error,” output “error” and stop.

4. Let maskedSeed be the leftmost seedLen octets of EM, and maskedDB be the remaining octets.

5. Apply the mask generation function G to the string maskedDB to produce an octet string seed-
Mask of length seedLen octets.

6. Let seed = maskedSeed ⊕ seedMask.

7. Apply the mask generation function G to the string seed to produce an octet string dbMask of
length oLen – seedLen octets.

8. Let DB = maskedDB ⊕ dbMask.

9. Apply the hash function Hash to the parameters P to produce an octet string cHash of length
hLen.

10. Compare the first hLen octets of DB to cHash. If they are not equal, output “error” and stop.

11. Let M′ be all but the first hLen octets of DB.

12. Let T be the leftmost nonzero octet of M′. If T ≠ hexadecimal value 01, output “error” and stop.

13. Remove T and all octets to the left of it (which are all zero) from M′ to produce an octet string
M.

14. Output the message M.

13. Key derivation functions

This clause describes key derivation functions used in this standard as building blocks for key agreement
schemes. A key derivation function computes one or more shared secret keys from shared secret value(s) and
other mutually known parameters. The derived secret keys are usually used in symmetric cryptography.

The use of an inadequate key derivation function compromises the security of the key agreement scheme in
which it is used. This standard strongly recommends the use of the key derivation functions contained in this
clause, or any key derivation functions defined in subsequent amendments to this standard.
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13.1 KDF1

KDF1 is a more general version of a similar key derivation function construction in ANSI X9.42 [B8]. It is
recommended for use with DL and EC key agreement schemes (Clause 9).

The function is parameterized by the following choice:

— A hash function Hash with output length hLen octets, which shall be SHA-1 (14.1.1), or
RIPEMD-160 (14.1.2), or a technique designated for use with KDF1 in an amendment to this
standard

Input:

— A shared secret string, which is an octet string Z of length zLen octets.

— Key derivation parameters, which are an octet string P of length pLen octets. (Depending on the hash
function chosen, there may be a limitation on zLen + pLen; for SHA-1 and RIPEMD-160, the
maximum of zLen + pLen is 261 – 1.)

Output: A shared secret key, which is an octet string K of length hLen octets; or “error”

The shared secret key K shall be computed by the following or an equivalent sequence of steps:

1. If zLen + pLen exceeds the length limitation (261 – 1 for SHA-1 or RIPEMD-160), output
“error” and stop.

2. Compute hash(Z || P) with the selected hash function to produce an octet string K of hLen
octets.

3. Output K as the shared secret key.

NOTE—The interpretation and usage of the hLen-octet output K is beyond the scope of this standard. For example, the
two parties may agree to use the first 128 bits (with parity adjusted) of K as a session key for two-key triple-DES
(ANSI X9.52-1998 [B10]). 

14. Auxiliary functions

14.1 Hash functions

A hash function is a building block for many techniques described in Clause12, Clause 13, and Clause 14. It
takes a variable-length octet string as input and outputs a fixed-length octet string. The length of the input to
a hash function is usually unrestricted or constrained by a very large number. The output depends solely on
the input—a hash function is deterministic.

14.1.1 SHA-1

SHA-1 is defined in FIPS PUB 180-1 [B55].

Input: An octet string M of length mLen octets (mLen has to be less than 261).

Output: A hash value, which is an octet string H of length 20 octets
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The hash value shall be computed by the following or an equivalent sequence of steps:

1. Convert M to a bit string MB of length 8mLen bits with the primitive OS2BSP.

2. Apply the Secure Hash Algorithm, revision 1 (as described in FIPS PUB 180-1) to MB to
produce a bit string HB of length 160 bits.

3. Convert HB to an octet string H with the primitive BS2OSP. The length of H will be 20 octets.

4. Output H as the hash value.

14.1.2 RIPEMD-160

RIPEMD-160 is based on the work of Dobbertin, Bosselaers, and Preneel [B49].

Input: An octet string M of length mLen octets (mLen has to be less than 261).

Output: A hash value, which is an octet string H of length 20 octets

The hash value shall be computed by the following or an equivalent sequence of steps:

1. Apply the RIPEMD-160 hash algorithm as described in Clause 7 of ISO/IEC 10118-3:1998 to
M to produce a bit string HB of length 160 bits.

2. Convert HB to an octet string H with the primitive BS2OSP. The length of H will be 20 octets.

3. Output H as the hash value.

14.2 Mask generation functions

This subclause describes a mask generation function used in this standard as a building block for EME1. A
mask generation function takes as input an octet string and the desired length of the output, and outputs an
octet string of that length. The lengths of both the input to and the output of a mask generation function are
usually unrestricted or constrained by a very large number. The output depends solely on the input—a mask
generation function is deterministic.

14.2.1 MGF1

MGF1 is a mask generation function based on a hash function, following the ideas of Bellare and Rogaway
[B18] and Bellare and Rogaway [B19]. It is used with EME1 (12.2.1).

The function is parameterized by the following choice:

— A hash function Hash with output length hLen octets, which shall be SHA-1 (14.1.1), or
RIPEMD-160 (14.1.2), or a technique designated for use with MGF1 in an amendment to this
standard

Input:

— An octet string Z of zLen octets (depending on the hash function chosen, there may be a limitation on
zLen; for SHA-1 and RIPEMD-160, zLen shall be less than or equal to 261 – 5).

— The desired length of the output, which is a positive integer oLen. (oLen shall be less than or equal to
hLen × 232).

Output: An octet string mask of length oLen octets; or “error”
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The octet string mask shall be computed by the following or an equivalent sequence of steps:

1. If zLen exceeds the length limitation (261 – 5 for SHA-1 or RIPEMD-160), or if
oLen > hLen × 232, output “error” and stop.

2. Let M be the empty string. Let cThreshold =  oLen/hLen .

3. Let counter = 0

3.1 Convert counter to an octet string C of length 4 octets using I2OSP. 

3.2 Compute Hash(Z || C) with the selected hash function to produce an octet string H of hLen
octets.

3.3 Let M = M || H.

3.4 Increment counter by one. If counter < cThreshold, go to step 3.1 above.

4. Output the leading oLen octets of M as the octet string mask.

NOTE—Since counter is only 32 bits, the maximum length of the output is at most hLen × 232.
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Annex A

(informative) 

Number-theoretic background

A.1 Integer and modular arithmetic: overview

A.1.1 Modular arithmetic

Modular reduction

Modular arithmetic is based on a fixed integer m > 1, called the modulus. The fundamental operation is
reduction modulo m. To reduce an integer a modulo m, one divides a by m and takes the remainder r. This
operation is written

r := a mod m

The remainder must satisfy 0 ≤ r < m.

Examples:

11 mod 8 = 3

7 mod 9 = 7

–2 mod 11 = 9

12 mod 12 = 0

Congruences

Two integers a and b are said to be congruent modulo m if they have the same result upon reduction modulo
m. This relationship is written

a ≡ b (mod m)

Two integers are congruent modulo m if, and only if, their difference is divisible by m.

Example:

11 ≡ 19 (mod 8)

If r = a mod m, then r ≡ a (mod m).

If a0 ≡ b0 (mod m) and a1 ≡ b1 (mod m), then

a0 + a1 ≡ b0 + b1 (mod m)

a0 – a1 ≡ b0 – b1 (mod m)

a0a1 ≡ b0b1 (mod m)
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Integers modulo m

The integers modulo m are the possible results of reduction modulo m. Thus, the set of integers modulo m is

Zm = {0, 1, …, m – 1}

One performs addition, subtraction, and multiplication on the set Zm by performing the corresponding
integer operation and reducing the result modulo m. For example, in Z7

3 = 6 + 4

5 = 1 – 3

6 = 4 × 5

Modular exponentiation

If v is a positive integer and g is an integer modulo m, then modular exponentiation is the operation of
computing gv mod m (also written exp (g, v) mod m). A.2.1 contains an efficient method for modular expo-
nentiation.

GCDs and LCMs

If m and h are integers, the greatest common divisor (GCD) is the largest positive integer d dividing both m
and h. If d = 1, then m and h are said to be relatively prime (or coprime). A.2.2 contains an efficient method
for computing the GCD.

The least common multiple (LCM) is the smallest positive integer l divisible by both m and h. The GCD and
LCM are related by

GCD (h, m) × LCM (h, m) = hm

(for h and m positive), so that the LCM is easily computed if the GCD is known.

Modular division

The multiplicative inverse of h modulo m is the integer k modulo m, such that hk ≡ 1 (mod m). The
multiplicative inverse of h is commonly written h–1 (mod m). It exists if h is relatively prime to m and not
otherwise.

If g and h are integers modulo m, and h is relatively prime to m, then the modular quotient g/h modulo m is
the integer gh–1 mod m. If c is the modular quotient, then c satisfies g ≡ hc (mod m).

The process of finding the modular quotient is called modular division. A.2.2 contains an efficient method
for modular division.

A.1.2 Prime finite fields

The field GF (p)

In the case in which m equals a prime p, the set Zp forms a prime finite field and is denoted by GF (p).

In the finite field GF (p), modular division is possible for any denominator other than 0. The set of nonzero
elements of GF (p) is denoted by GF (p)*.
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Orders

The order of an element c of GF (p)* is the smallest positive integer v, such that cv ≡ 1 (mod p). The order
always exists and divides p – 1. If k and l are integers, then ck ≡ cl (mod p) if, and only if, k ≡ l (mod v).

Generators

If v divides p – 1, then there exists an element of GF (p)* having order v. In particular, there always exists an
element g of order p – 1 in GF (p)*. Such an element is called a generator for GF (p)*, because every
element of GF (p)* is some power of g. In number-theoretic language, g is also called a primitive root for p.

Exponentiation and discrete logarithms

Suppose that the element g of GF (p)* has order v. Then an element h of GF (p)* satisfies

h ≡ gl (mod p)

for some l if, and only if, hv ≡ 1 (mod p). The exponent l is called the discrete logarithm of h (with respect to
the base g). The discrete logarithm is an integer modulo v.

DL-based cryptography

Suppose that g is an order-r element of GF (p)*, where r is prime. Then a key pair can be defined as follows:

— The private key s is an integer modulo r.

— The corresponding public key w is an element of GF (p)* defined by

w := gs (mod p).

It is necessary to compute a discrete logarithm in order to derive a private key from its corresponding public
key. For this reason, public-key cryptography based on key pairs of this type relies for its security on the
difficulty of the discrete logarithm problem. Thus, it is an example of DL-based cryptography. The difficulty
of the discrete logarithm problem is discussed in D.4.1.

A.1.3 Composite moduli

RSA moduli

An RSA modulus is the product n of two odd (distinct) primes p and q. It is assumed that p and q are large
enough that factoring n is computationally infeasible (see IF-based cryptography later in this subclause).

A unit modulo n is a positive integer less than n and relatively prime to n (i.e., divisible by neither p nor q).
The set of all units modulo n is denoted by Un. The modular product and modular quotient of units are also
units. If a is a unit and k an integer, then ak mod n is also a unit.

If a positive integer less than n is selected without knowledge of p or q, it is virtually certain to be a unit.
(Indeed, generating a nonunit modulo n is as difficult as factoring n.)

Exponentiation

The universal exponent of an RSA modulus n = pq is defined to be

λ (n) := LCM (p – 1, q – 1)
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If c and d are positive integers congruent modulo λ (n), then

ac ≡ ad (mod n)

for every integer a. It follows that if

de ≡ 1 (mod λ (n))

then

ade ≡ a (mod n)

for every integer a.

IF-based cryptography

Given an RSA modulus n, a pair of integers d, e satisfying de ≡ 1 (mod λ (n)) can be taken as the
components of a key pair. Traditionally, e denotes the public key and d the private key. Given n and e, it is
known that finding d is as difficult as factoring n. This, in turn, is believed to be necessary for computing a
unit a given ae mod n. For this reason, public-key cryptography based on key pairs of this type relies for its
security on the difficulty of the integer factorization problem. Thus, it is an example of
IF-based cryptography. The difficulty of the integer factorization problem is discussed in D.4.3.

A.1.4 Modular square roots

The Legendre symbol

If p > 2 is prime, and a is any integer, then the Legendre symbol is defined as follows. If p divides a, then

= 0. If p does not divide a, then  equals 1 if a is a square modulo p and –1 otherwise. (Despite the

similarity in notation, a Legendre symbol should not be confused with a rational fraction; the distinction

must be made from the context.)

The Jacobi symbol

The Jacobi symbol  is a generalization of the Legendre symbol. If n > 1 is odd with prime factorization 

and a is any integer, then the Jacobi symbol is defined to be 

where the symbols  are Legendre symbols. (Despite the similarity in notation, a Jacobi symbol should

not be confused with a rational fraction; the distinction must be made from the context.)
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The values of the Jacobi symbol are ±1 if a and n are relatively prime and 0 otherwise.   The values 1 and
–1 are achieved equally often (unless n is a square, in which case the value –1 does not occur at all). 

Algorithms for computing Legendre and Jacobi symbols are given in A.2.3.

Square roots modulo a prime

Let p be an odd prime, and let g be an integer with 0 ≤ g < p. A square root modulo p of g is an integer z with
0 ≤ z < p and 

z2 ≡ g (mod p)

The number of square roots modulo p of g is 1+J, where J is the Jacobi symbol .

If g = 0, then there is one square root modulo p, namely z = 0. If g ≠ 0, then g has either 0 or 2 square roots
modulo p. If z is one square root, then the other is p – z.

A procedure for computing square roots modulo a prime is given in A.2.5.

RW moduli

If n = pq is an RSA modulus with p ≡ q ≡ 3 (mod 4) and p ≡/  q (mod 8), then n is called an RW modulus.

Denote by Jn the set of units u such that the Jacobi symbol  equals 1. The set Jn comprises precisely half

of the units. If f is a unit, then either f or f/2 mod n is in Jn.

Exponentiation

Let λ (n) be the universal exponent of n (see A.1.3). If c and d are congruent modulo λ (n)/2, then 

ac ≡ ± ad (mod n)

for every a in Jn. It follows that if 

de ≡ 1 (mod λ (n)/2)

then

ade ≡ ± a (mod n)

for every a in Jn.

IF-based cryptography

Given an RW modulus n, a pair of integers d, e satisfying de ≡ 1 (mod λ (n)/2) can be taken as the
components of a key pair. Traditionally, e denotes the public key and d the private key. The public key e must
be even (see 8.1.3.2).

Given n and e, it is known that finding d is as difficult as factoring n. This, in turn, is necessary for
computing a unit a given ae mod n. For this reason, public-key cryptography based on key pairs of this type
provides another example of IF-based cryptography. The difficulty of the integer factorization problem is
discussed in D.4.3.

g
p
--- 
 

u
n
--- 
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A.2 Integer and modular arithmetic: algorithms

A.2.1 Modular exponentiation

Modular exponentiation can be performed efficiently by the binary method outlined below.

Input: A positive integer v, a modulus m, and an integer g modulo m

Output: gv mod m

1. Let v = vrvr–1...v1v0 be the binary representation of v, where the most significant bit vr of v is 1.

2. Set .

3. For i from r – 1 downto 0 do

                     3.1 Set mod m.

                     3.2 If vi = 1, then set  mod m.

4. Output x.

There are several modifications that improve the performance of this algorithm. These methods are
summarized in Gordon [B65].

A.2.2 The extended Euclidean algorithm

The following algorithm computes efficiently the GCD d of m and h. If m and h are relatively prime, the
algorithm also finds the quotient g/h modulo m.

Input: An integer m > 1 and integers g and h > 0. (If only the GCD of m and h is desired, no input g is
required.)

Output: The GCD d of m and h and, if d = 1, the integer c with 0 < c < m and c ≡ g/h (mod m)

1. If h = 1, then output d := 1 and c := g and stop.

2. Set .

3. Set  mod m.

4. Set .

5. Set  mod m.

6. While r1 > 0

                     6.1 Set .

                     6.2 Set  mod m.

                     6.3 Set  mod m.

                     6.4 Set .

Set .

Set .

Set .

x g←

x x2←

x gx←

r0 m←

r1 h←

s0 0←

s1 g←

q r0 r1⁄←

r2 r0 qr1–←

s2 s0 qs1–←

r0 r1←

r1 r2←

s0 s1←

s1 s2←
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7. Output d := r0.

8. If r0 = 1, then output c := s0.

If m is prime, the quotient exists provided that h ≡/  0 (mod m), and can be found efficiently using
exponentiation via 

c := g hm–2 mod m.

A.2.3 Evaluating Jacobi symbols

The following algorithm efficiently computes the Jacobi symbol.

Input: An integer a and an odd integer n > 1

Output: The Jacobi symbol 

1. Set .
2. While y > 1

                     2.1 Set .

                     2.2 If x > y/2, then

2.2.1 Set .

2.2.2 If y ≡ 3(mod 4), then set .

                     2.3 If x = 0, then set .

                     2.4 While 4 divides x

2.4.1 Set .

                     2.5 If 2 divides x, then

2.5.1 Set .

2.5.2 If y ≡ ± 3 (mod 8), then set .

                     2.6 If x ≡ 3 (mod 4) and y ≡ 3 (mod 4) then set .

                     2.7 Switch x and y.

3. Output J.

If n is equal to a prime p, the Jacobi symbol can also be found efficiently using exponentiation via 

A.2.4 Generating Lucas sequences

Let P and Q be nonzero integers. The Lucas sequence Vk for P, Q is defined by 

V0 = 2, V1 = P, and Vk = PVk–1 – QVk–2 for k ≥ 2

This recursion is adequate for computing Vk for small values of k. For large k, one can compute Vk modulo
an odd integer n > 2 using the following algorithm (see Joye and Quisquater [B87]). The algorithm also
computes the quantity  mod n; this quantity will be useful in the application given in A.2.5.

Input: An odd integer n > 2, integers P and Q, and a positive integer k

a
n
--- 
 

x a← ,y n← ,J 1←

x x mody( )←

x y x–←
J J–←

x 1← ,y 0← ,J 0←

x x 4⁄←

x x 2⁄←
J J–←

J J–←

a
p
--- 
   := a p 1–( )/2 mod p

Q
k 2⁄
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Output: Vk mod n and  mod n

1. Set .

2. Let k = kr kr–1...k1 k0 be the binary representation of k, where the leftmost bit kr of k is 1. 

3. For i from r downto 0 do

                    3.1 Set  mod n.

                    3.2 If ki = 1, then set

 Q mod n.

 q0 mod n.

 q1 mod n.

Else set

.

 q0 mod n.

 q0 mod n.

4. Output v0 and q0.

A.2.5 Finding square roots modulo a prime

The following algorithm computes a square root z modulo p of g ≠ 0.

Input: An odd prime p, and an integer g with 0 < g < p

Output: A square root modulo p of g if one exists. In case III, the message “no square roots exist” is
returned if none exists.

I. p ≡ 3 (mod 4); that is, p = 4k + 3 for some positive integer k (see Lehmer [B100]).

1. Compute (via A.2.1) and output z := gk + 1 mod p. 

II. p ≡ 5 (mod 8); that is, p = 8k + 5 for some positive integer k (see Atkin [B16]).

1. Compute γ := (2g)k mod p via A.2.1.

2. Compute i := 2gγ2 mod p.

3. Compute and output z := gγ(i−1) mod p.

III. p ≡ 1 (mod 8) (see Lehmer [B100]).

1. Set .

2. Generate a value P with 0 < P < p not already chosen.

3. Compute via A.2.4 the quantities

V := V(p + 1)/2 mod p    and    Q0 := Q(p – 1)/4 mod p.

4. Set  mod p.

5. If (z2 mod p) = g, then output z and stop.

6. If 1 < Q0 < p – 1, then output the message “no square roots exist” and stop.

7. Go to step 2 .

Q
k 2⁄

v0 2← ,v1 P← ,q0 1← ,q1 1←

q0 q0q1←

q1 q0←

v0 v0v1 P–←

v1 v1
2 2–←

q1 q0←

v1 v0v1 P–←

v0 v0
2 2–←

Q g←

z V 2⁄←
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NOTES

1—To perform the modular division of an integer V by 2 (needed in step 4 of case III), one can simply divide by 2 the
integer V or V + p (whichever is even). (The integer division by 2 can be accomplished by shifting the binary expansion
of the dividend by one bit.)

2—As written, the algorithm for case III works for all p ≡ 1 (mod 4), although it is less efficient than the algorithm for
case II, when p ≡ 5 (mod 8).

3—In case III, a given choice of P will produce a solution if, and only if, P2 – 4Q is not a quadratic residue modulo p. If
P is chosen at random, the probability of this is at least 1/2. Thus, only a few values of P will be required. It may,
therefore, be possible to speed up the process by restricting to very small values of P and implementing the
multiplications by P in A.2.4 by repeated addition.

4—In case I and case II, the algorithm produces a solution z, provided that one exists. If it is unknown whether a solution
exists, then the output z should be checked by comparing w := z2 mod p with g. If w = g, then z is a solution; otherwise
no solutions exist. In case III, the algorithm performs the determination of whether or not a solution exists.

A.2.6 Finding square roots modulo a power of 2

If r > 2 and a < 2r is a positive integer congruent to 1 modulo 8, then there is a unique positive integer b less
than 2r–2, such that b2 ≡ a (mod 2r). The number b can be computed efficiently using the following
algorithm. The binary representations of the integers a, b, h are denoted as

a = ar–1...a1a0

b = br–1...b1b0

h = hr–1...h1h0

Input: An integer r > 2, and a positive integer a ≡ 1 (mod 8) less than 2r

Output: The positive integer b less than 2r–2, such that b2 ≡ a (mod 2r)

1. Set .

2. Set .

3. For j from 2 to r – 2 do

3.1 If hj+1 ≠ aj+1, then

3.1.1 Set .

3.1.2 If 2j < r, then  mod 2r.

3.1.3 Else  mod 2r.

4. If br–2 = 1, then set . 

5. Output b.

A.2.7 Computing the order of a given integer modulo a prime

Let p be a prime, and let g satisfy 1 < g < p. The following algorithm determines the order of g modulo p.
The algorithm is efficient only for small p.

Input: A prime p and an integer g with 1 < g < p

Output: The order k of g modulo p

h 1←

b 1←

b j 1←

h h 2 j 1+ b 22 j–+( )←

h h 2 j 1+ b+( )←

b 2r 1– b–←
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1. Set  and .

2. Set  mod p and .

3. If b > 1, then go to step 2.

4. Output j.

A.2.8 Constructing an integer of a given order modulo a prime

Let p be a prime, and let T divide p – 1. The following algorithm generates an element of GF (p) of order T.
The algorithm is efficient only for small p.

Input: A prime p and an integer T dividing p – 1

Output: An integer u having order T modulo p

1. Generate a random integer g between 1 and p.

2. Compute via A.2.7 the order k of g modulo p.

3. If T does not divide k, then go to step 1.

4. Output u := gk/T mod p.

A.2.9 An implementation of IF signature primitives

The following algorithm is an implementation of the IFSP-RSA1, IFSP-RSA2, and IFSP-RW signature
primitives. Assuming e is small, it is more efficient for RW signatures than the primitive given in 8.2.8,
because it combines the modular exponentiation and Jacobi symbol calculations. The algorithm requires that
the primes p and q be known to the user; thus, the private key can have either the second or third form
specified in 8.1.3. (Note that this algorithm cannot be applied to IF signature verification, since it requires
knowledge of p and q, which is equivalent to knowledge of the private key.)

One-time computation: If the private key is the triple (p, q, d) (see 8.1.3), then the remaining components,
d1, d2, c, can be computed via

c := q–1 mod p via A.2.2

d1 := d mod (p – 1)

d2 := d mod (q – 1)

NOTE—For the smallest values of e, the values of d1 and d2 can be written down explicitly as follows:

RSA: If e = 3, then 

d1 = (2p – 1)/3 and d2 = (2q – 1)/3

RW: If e = 2, then 

if p ≡ 3 (mod 8), q ≡ 7 (mod 8) and d odd, or

if p ≡ 7 (mod 8), q ≡ 3 (mod 8) and d even

d1 = (p + 1)/4 and d2 = (3q – 1)/4

if p ≡ 3 (mod 8), q ≡ 7 (mod 8) and d even, or

if p ≡ 7 (mod 8), q ≡ 3 (mod 8) and d odd

d1 = (3p – 1)/4 and d2 = (q + 1)/4

b g← j 1←

b gb← j j 1+←
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In the RW case, one also computes via A.2.1

w1 := exp (2, p – 1 – d1) mod p

w2 := exp (2, q – 1 – d2) mod q

Input: The (fixed) integers p, q, e, c, d1, d2, and (for RW) w1 and w2; the (per-message) integer f modulo pq.
(It is unnecessary to store both p and d1, if one can be conveniently computed from the other, as in the cases
e = 2 or e = 3. The same remark holds for q and d2.)

Output: The signature s of f

The steps marked with an asterisk (*) below are to be implemented only for RW and not for RSA.

1. Set  mod p.

2. Compute j1 := exp (f1, d1) mod p via A.2.1.

3.* Compute i1 := exp (j1, e) mod p.

4.* If i1 = f1, then set u1 ← 0; else set u1 ← 1.

5. Set f2 ← f mod q.

6. Compute j2 := exp (f2, d2) mod q via A.2.1.

7.* Compute i2 := exp (j2, e) mod q.

8.* If i2 = f2, then set u2 ← 0; else set u2 ← 1.

9.* If u1 ≠ u2, then compute

                    t1 := j1w1 mod p

                    t2 := j2w2 mod q

and go to step 11.

10. Set

                    t1 ← j1, t2 ← j2.

11. Compute

                    h := (t1 – t2) c mod p

                    t := t2 + hq.

12. If IFSP-RSA1, output s := t. Else (i.e., if IFSP-RSA2 or IFSP-RW), output s := min (t, pq – t).

NOTE—Since the exponents are fixed in steps 2 and 6, the exponentiations can be made more efficient using addition
chains rather than the binary method in A.2.1 (see Gordon [B65]).

A.3 Binary finite fields: overview

A.3.1 Finite fields

A finite field (or Galois field) is a set with finitely many elements in which the usual algebraic operations
(addition, subtraction, multiplication, division by nonzero elements) are possible, and in which the usual
algebraic laws (commutative, associative, distributive) hold. The order of a finite field is the number of
elements it contains. If q > 1 is an integer, then a finite field of order q exists if q is a prime power, and not
otherwise.

f 1 f←
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The finite field of a given order is unique, in the sense that any two fields of order q display identical
algebraic structure. Nevertheless, there are often many ways to represent a field. It is traditional to denote the
finite field of order q by Fq or GF (q); this standard uses the latter notation for typographical reasons. It
should be borne in mind that the expressions “the field GF (q)” and “the field of order q” usually imply a
choice of field representation.

Although finite fields exist of every prime-power order, there are two kinds that are commonly used in
cryptography.

— When q is a prime p, the field GF (p) is called a prime finite field. The field GF (p) is typically
represented as the set of integers modulo p. See A.1.2 for a discussion of these fields.

— When q = 2m for some m, the field GF (2m) is called a binary finite field. Unlike the prime field case,
there are many common representations for binary finite fields. These fields are discussed below
(A.3.3 through A.3.9).

These are the two kinds of finite fields considered in this standard.

A.3.2 Polynomials over finite fields

A polynomial over GF (q) is a polynomial with coefficients in GF (q). Addition and multiplication of
polynomials over GF (q) are defined as usual in polynomial arithmetic, except that the operations on the
coefficients are performed in GF (q).

A polynomial over the prime field GF (p) is commonly called a polynomial modulo p. Addition and
multiplication are the same as for polynomials with integer coefficients, except that the coefficients of the
results are reduced modulo p.

Example: Over the prime field GF (7)

(t2 + 4t + 5) + (t3 + t + 3) = t3 + t2 + 5t + 1

(t2 + 3t + 4) (t + 4) = t3 + 2t + 2

A binary polynomial is a polynomial modulo 2.

Example: Over the field GF (2)

(t3 + 1) + (t3 + t) = t + 1

(t2 + t + 1) (t +1) = t3 + 1

A polynomial over GF (q) is reducible if it is the product of two smaller degree polynomials over GF (q);
otherwise, it is irreducible. For instance, the above examples show that t3 + 2t + 2 is reducible over GF (7)
and that the binary polynomial t3 + 1 is reducible.

Every nonzero polynomial over GF (q) has a unique representation as the product of powers of irreducible
polynomials. (This result is analogous to the fact that every positive integer has a unique representation as
the product of powers of prime numbers.) The degree-1 factors correspond to the roots of the polynomial.
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Polynomial congruences

Modular reduction and congruences can be defined among polynomials over GF (q), in analogy to the
definitions for integers given in A.1.1. To reduce a polynomial a (t) modulo a nonconstant polynomial m (t),
divide a (t) by m (t) by long division of polynomials and take the remainder r (t). This operation is written

r (t) := a (t) mod m (t)

The remainder r (t) must either equal zero or have degree smaller than that of m (t).

If m (t) = t – c for some element c of GF (q), then a (t) mod m (t) is just the constant a (c).

Two polynomials, a (t) and b (t), are said to be congruent modulo m (t) if they have the same result upon
reduction modulo m (t). This relationship is written

a (t) ≡ b (t) (mod m (t))

One can define addition, multiplication, and exponentiation of polynomials (to integral powers) modulo
m (t) analogously to how they are defined for integer congruences in A.1.1. In the case of a prime field GF
(p), each of these operations involves both reduction of the polynomials modulo m (t) and reduction of the
coefficients modulo p.

A.3.3 Binary finite fields

If m is a positive integer, the binary finite field GF (2m) consists of the 2m possible bit strings of length m.
Thus, for example

GF (23) = {000, 001, 010, 011, 100, 101, 110, 111}

The integer m is called the degree of the field.

For m = 1, the field GF (2) is just the set {0, 1} of integers modulo 2. The addition and multiplication
operations are given by

Addition

For m > 1, addition of two elements is implemented by bitwise addition modulo 2. Thus, for example

(11001) + (10100) = (01101)

Multiplication

There is more than one way to implement multiplication in GF (2m). To specify a multiplication rule, one
chooses a basis representation for the field. The basis representation is a rule for interpreting each bit string;
the multiplication rule follows from this interpretation.

There are two common families of basis representations: polynomial basis representations and normal basis
representations.

+ 0 1

0 0 1

1 1 0

         
× 0 1

0 0 0

1 0 1
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A.3.4 Polynomial basis representations

In a polynomial basis representation, each element of GF (2m) is represented by a different binary
polynomial of degree less than m. More explicitly, the bit string (am-1 … a2 a1 a0) is taken to represent the
binary polynomial

am–1 tm–1 + … + a2t 2 + a1t + a0

The polynomial basis is the set

B = {tm–1, …, t2, t, 1}

The addition of bit strings, as defined in A.3.3, corresponds to addition of binary polynomials.

Multiplication is defined in terms of an irreducible binary polynomial p(t) of degree m, called the field
polynomial for the representation. The product of two elements is simply the product of the corresponding
polynomials, reduced modulo p(t).

There is a polynomial basis representation for GF (2m) corresponding to each irreducible binary polynomial
p(t) of degree m. Irreducible binary polynomials exist of every degree. Roughly speaking, every one out of m
binary polynomials of degree m is irreducible.

Trinomials and pentanomials

The reduction of polynomials modulo p(t) is particularly efficient if p(t) has a small number of terms. The
irreducibles with the least number of terms are the trinomials tm + tk + 1. Thus, it is a common practice to
choose a trinomial for the field polynomial, provided that one exists.

If an irreducible trinomial of degree m does not exist, then the next best polynomials are the pentanomials
tm + ta + tb + tc + 1. For every m up to 1000, there exists either an irreducible trinomial or pentanomial of
degree m. Table A.2 in A.8 provides an example for each m up to 1000. Subclause A.8 also provides
algorithms for constructing other irreducibles.

A.3.5 Normal basis representations

Normal bases

A normal basis for GF (2m) is a set of the form

with the property that no subset of B adds to 0. (In the language of linear algebra, the elements of B are said
to be linearly independent.) There exist normal bases for GF (2m) for every positive integer m.

The representation of GF (2m) via the normal basis B is carried out by interpreting the bit string
(a0 a1 a2 … am–1) as the element

B θ,θ2,θ22

, ...,θ2m 1–

{ }=

a0θ a1θ
2 a2θ

22

...+ am 1– θ2m 1–

+ + +
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All of the elements of a normal basis B satisfy the same irreducible binary polynomial p(t). This polynomial
is called the field polynomial for the basis. An irreducible binary polynomial is called a normal polynomial if
it is the field polynomial for a normal basis.

Gaussian normal bases

Normal basis representations have the computational advantage that squaring an element can be done very
efficiently (see A.4.1). Multiplying distinct elements, on the other hand, can be cumbersome in general. For
this reason, it is common to specialize to a class of normal bases, called Gaussian normal bases, for which
multiplication is both simpler and more efficient.

Gaussian normal bases for GF (2m) exist whenever m is not divisible by eight. They include the optimal
normal bases, which have the most efficient multiplication possible in a normal basis.

The type of a Gaussian normal basis is a positive integer measuring the complexity of the multiplication
operation with respect to that basis. The smaller the type, the more efficient the multiplication. For a given m
and T, the field GF (2m) can have, at most, one Gaussian normal basis of type T. Thus, it is proper to speak of
the type T Gaussian normal basis over GF (2m). See Ash, Blake, and Vanstone [B15] for more information
on Gaussian normal bases. A table of Gaussian normal bases is given in A.8.1.

The Gaussian normal bases of Types 1 and 2 have the most efficient multiplication rules of all normal bases.
For this reason, they are called optimal normal bases. The Type 1 Gaussian normal bases are called Type I
optimal normal bases, and the Type 2 Gaussian normal bases are called Type II optimal normal bases. See
Menezes [B108] for more information on optimal normal bases.

A.3.6 Checking for a Gaussian normal basis

If m > 1 is not divisible by eight, the following algorithm (Ash, Blake, and Vanstone [B15]) tests for the
existence of a Gaussian normal basis for GF (2m) of given type. (See also Table A.2 in A.8.1.)

Input: An integer m > 1 not divisible by eight; a positive integer T

Output: If a type T Gaussian normal basis for GF (2m) exists, the message “True”; otherwise “False”

1. Set p ← Tm + 1.

2. If p is not prime, then output “False” and stop.

3. Compute via A.2.7 the order k of 2 modulo p.

4. Set h ← Tm/k.

5. Compute d := GCD (h, m) via A.2.2.

6. If d = 1, then output “True”; else output “False.”

Example: Let m = 4 and T = 3. Then p = 13, and 2 has order k = 12 modulo 13. Since h = 1 is relatively prime
to m = 4, there does exist a Gaussian normal basis of Type 3 for GF (24).

A.3.7 The multiplication rule for a Gaussian normal basis

The following procedure produces the rule for multiplication with respect to a given Gaussian normal basis.
(See A.6 for a more general method applicable to all normal bases.)

Input: Integers m > 1 and T for which there exists a type T Gaussian normal basis B for GF (2m)



IEEE
Std 1363-2000 IEEE STANDARD SPECIFICATIONS FOR

82 Copyright © 2000 IEEE. All rights reserved.

Output: An explicit formula for the first coordinate of the product of two elements with respect to B

1. Set p ← Tm + 1.

2. Generate via A.2.8 an integer u having order T modulo p.

3. Compute the sequence F (1), F (2), …, F (p – 1) as follows:

3.1 Set w ← 1.

3.2 For j from 0 to T – 1 do

Set n ← w.

For i from 0 to m – 1 do

Set F (n) ← i.

Set n ← 2n mod p.

Set w ← uw mod p.

4. If T is even, then set J ← 0; else set

5. Output the formula

Example: For the Type 3 normal basis for GF (24), the values of F are given by

F (1) = 0 F (5) = 1 F (9) = 0

F (2) = 1 F (6) = 1 F (10) = 2

F (3) = 0 F (7) = 3 F (11) = 3

F (4) = 2 F (8) = 3 F (12) = 2

Therefore, after simplifying one obtains

c0 = a0 (b1 + b2 + b3) + a1 (b0 + b2) + a2 (b0 + b1) + a3 (b0 + b3)

Here c0 is the first coordinate of the product

(*) (c0c1 . . . cm–1) = (a0 a1 . . . am–1) × (b0 b1 . . . bm–1)

The other coordinates of the product are obtained from the formula for c0 by cycling the subscripts modulo
m. Thus

c1 = a1 (b2 + b3 + b0) + a2 (b1 + b3) + a3 (b1 + b2) + a0 (b1 + b0)

c2 = a2 (b3 + b0 + b1) + a3 (b2 + b0) + a0 (b2 + b3) + a1 (b2 + b1)

c3 = a3 (b0 + b1 + b2) + a0 (b3 + b1) + a1 (b3 + b0) + a2 (b3 + b2)

J  :=  
k 1=

m 2⁄

∑ ak 1– bm 2⁄ k 1–+ am 2⁄ k 1–+ bk 1–+( )

c0 J  
k 1=

p 2–

∑ aF k 1+( )bF p k–( )+=
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A.3.8 A Multiplication algorithm for a Gaussian normal basis

The formulas given in A.3.7 for c0, …, cm–1 can be implemented in terms of a single expression. For

u = (u0 u1 … um–1), v = (v0 v1...vm-1)

let

F(u, v)

be the expression with

c0 = F (a, b)

Then, the product (*) can be computed as follows:

1. Set (u0 u1 … um–1) ← (a0 a1 … am–1).

2. Set (v0 v1 … vm–1) ← (b0 b1 … bm–1).

3. For k from 0 to m – 1 do

3.1 Compute

       ck := F (u, v).

3.2 Set u ← LeftShift(u) and v ← LeftShift(v), where LeftShift denotes the
circular left shift operation.

4. Output c := (c0 c1 … cm–1).

In the above example

F (u, v) := u0 (v1 + v2 + v3) + u1 (v0 + v2) + u2 (v0 + v1) + u3 (v0 + v3)

If

a := (1000) = θ and b := (1101) = θ + θ2 + θ8

then

c0 = F ((1000), (1101)) = 0

c1 = F ((0001), (1011)) = 0

c2 = F ((0010), (0111)) = 1

c3 = F ((0100), (1110)) = 0

so that 

c = ab = (0010)

A.3.9 Binary finite fields (continued from A.3.3)

Exponentiation

If k is a positive integer and α is an element of GF (2m), then exponentiation is the operation of computing
αk. Subclause A.4.3 contains an efficient method for exponentiation.
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Division

If α and β ≠ 0 are elements of the field GF (2m), then the quotient α/β is the element γ such that α = βγ.

In the finite field GF (2m), division is possible for any denominator other than zero. The set of nonzero ele-
ments of GF (2m) is denoted by GF (2m)*.

Subclause A.4.4 contains an efficient method for division.

Orders

The order of an element γ of GF (2m)* is the smallest positive integer v, such that γv = 1. The order always
exists and divides 2m – 1. If k and l are integers, then γk = γl in GF (2m) if, and only if, k ≡ l (mod v).

Generators

If v divides 2m – 1, then there exists an element of GF (2m)* having order v. In particular, there always exists
an element γ of order 2m – 1 in GF (2m)*. Such an element is called a generator for GF (2m)* because every
element of GF (2m)* is some power of γ.

Exponentiation and discrete logarithms

Suppose that the element γ of GF (2m)* has order v. Then an element η of GF (2m)* satisfies η = γl for some
l if, and only if, ηv = 1. The exponent l is called the discrete logarithm of η (with respect to the base γ). The
discrete logarithm is an integer modulo v.

DL-based cryptography

Suppose that γ is an order-r element of GF (2m)*, where r is prime. Then a key pair can be defined as
follows:

— The private key s is an integer modulo r.

— The corresponding public key w is an element of GF (2m)* defined by w := γs.

It is necessary to compute a discrete logarithm in order to derive a private key from its corresponding public
key. For this reason, public-key cryptography based on key pairs of this type relies for its security on the
difficulty of the discrete logarithm problem. Thus, it is an example of DL-based cryptography. The difficulty
of the discrete logarithm problem is discussed in D.4.1.

Field extensions

Suppose that d and m are positive integers with d dividing m, and let K be a field GF (2m). Then there are
precisely 2d elements α of K satisfying

The set F of all such elements forms a field GF (2d). The field F is called a subfield of K, and K is called an
extension field of F.

Suppose that γ is an element of GF (2m) of prime order r.   The prime r is said to be a primitive factor of
2m – 1 if r does not divide 2d – 1 for any d < m dividing m. It follows from the previous paragraph that r is

α2d

α=
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primitive if, and only if, γ is not an element of any proper subfield of GF (2m). (A proper subfield of a field F
is any subfield except F itself.)

Example

Let K be the field GF (24) given by the polynomial basis with field polynomial p (t) := t4 + t + 1. Since

(t2 + t)3 = (t2 + t + 1)3 = 1

then F = {0, 1, t2 + t, t2 + t + 1} forms the field GF (22).

A.3.10 Parameters for common key sizes

When selecting domain parameters for DL-based cryptography over binary fields, it is necessary to begin by
choosing the following: 

— The degree m of the field (so that the field has 2m elements)

— The prime number r, which is to serve as the order of the base point

These two numbers are related by the condition that r must be a primitive divisor of 2m – 1 (see A.3.9).
Moreover, it is a common practice to choose the two numbers to provide comparable levels of security
(see D.4.1.4, Note 1). Each parameter depends on the size of the symmetric keys which the DL system is
being used to protect. 

Table A.1 below lists several common symmetric key lengths. For each length is given a set of parameters of
m and r, which can be used in conjunction with symmetric keys of that length.

A.4 Binary finite fields: algorithms

The algorithms in this subclause perform operations in a finite field GF (2m) having 2m elements. The

elements of GF (2m) can be represented via either a polynomial basis modulo the irreducible polynomial p

(t), or a normal basis .

Table A.1—Example parameters for DL-based cryptography over binary fields

Key 
size m r

40 189 207617485544258392970753527

56 384 442499826945303593556473164314770689

64 506 2822551529460330847604262086149015242689

80 1024 7455602825647884208337395736200454918783366342657

112 2068 1628456355410411547509613374150158051231656743052344513161858038422-
883778013

128 2880 1919487818858585561290806193694428146403929496534649176795333025024-
9208842371201

θ,θ2,θ22

,...,θ2m 1–

{ }
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A.4.1 Squaring and square roots

Polynomial Basis

If

α = αm–1tm–1 + … + α2t2 + α1t + α0

then

α2 = αm–1t2m–2 + … + α2t4 + α1t2 + α0 mod p(t)

To compute , take α and square m – 1 times.

Normal Basis

If α has representation

α = (α0 α1 . . . αm–1)

then

α2 = (αm–1 α0 α1 . . . αm–2)

and

 = (α1 . . . αm–2 αm–1 α0)

A.4.2 The squaring matrix

If it is necessary to perform frequent squarings in a fixed polynomial basis, it can be more efficient to use a
squaring matrix. This is an m-by-m matrix with coefficients in GF (2).

Suppose that the field polynomial is

p(t) := tm + cm–1 tm–1 + …+ c1 t + c0

Let d0,j ← cj for 0 ≤ j < m, and compute

tm = d0,m–1 tm–1 + …+ d0,1 t + d0,0

tm+1 = d1,m–1 tm–1 + …+ d1,1 t + d1,0

                              ...

t2m–2 = dm–2,m–1 tm–1 + …+ dm–2,1 t + dm–2,0

by repeated multiplication by t. Define the matrix

α

α

S :=
s1 1, ... s1 m,

sm 1, ... sm m,

. . .... ...
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where

If (a0 a1 … am–1) represents the field element α, then the representation for α2 is

(b0 b1 … bm–1) = (a0 a1 … am–1) S

A.4.3 Exponentiation

Exponentiation can be performed efficiently by the binary method outlined below.

Input: A positive integer k, a field GF (2m), and a field element α

Output: αk

1. Let k = kr kr–1 ... k1 k0 be the binary representation of k, where the most significant bit kr of
k is 1.

2. Set x ← α.

3. For i from r – 1 downto 0 do

3.1 Set x ← x2.

3.2 If ki = 1, then set x ← α x.

4. Output x. 

There are several modifications that improve the performance of this algorithm. These methods are
summarized in Gordon [B65].

A.4.4 Division

The quotient α /β can be computed directly (in one step by an algorithm with inputs α and β), or indirectly
(by computing the multiplicative inverse β–1 and then multiplying it by α). There are two common methods
for performing division in a finite field GF (2m), one direct and one indirect.

Method I: the extended Euclidean algorithm

This algorithm produces the quotient directly. (It also can be used for multiplicative inversion of β, and so
for indirect division, by using as input 1 in place of α). By r0(t)/r1(t) is meant the quotient upon
polynomial division, dropping any remainder.

Input: A field GF (2m), and field elements α and β ≠ 0

Output:  γ := α /β

1. Set r0(t) ← p(t).

2. Set r1(t) ← β.

si j,   := 
dm 2i– ,m j–  if i m 2⁄≤

1  if i m 2⁄  and 2i j m+=>

0    otherwise
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3. Set s0(t) ← 0.

4. Set s1(t) ← α.

5. While r1(t) ≠ 0

5.1 Set q(t) ←  r0(t)/r1(t).

5.2 Set r2(t) ← r0(t) + q(t)r1(t).

5.3 Set s2(t) ← s0(t) + q(t)s1(t).

5.4 Set r0(t) ← r1(t); set r1(t) ← r2(t).

5.5 Set s0(t) ← s1(t); set s1(t) ← s2(t).

6. Output γ := s0(t).

NOTES

1—An efficient hardware implementation of this procedure is described in Berlekamp [B20].

2—The extended Euclidean algorithm uses a polynomial basis representation for GF (2m). If a normal basis
representation is being used, then one can divide using this algorithm only by converting the inputs α and β to a
polynomial basis representation, performing the division, and converting the output γ back to normal basis form. (See
A.7.1 for methods of converting between different basis representations.)

Method II: exponentiation

The multiplicative inverse of β can be found efficiently in either basis representation via

β–1 = βk

where k is any positive integer satisfying

k ≡ –1 (mod r)

where r is the order of β. In particular, it is always the case that

If a general-purpose exponentiation algorithm such as in A.4.3 is used, then the best choice is k := r – 1.
However, there is also a specialized algorithm of Itoh, Teechai, and Tsujii [B81] for exponentiating to the
power k = 2m – 2, which is more efficient than the generic method. The efficiency improvements are espe-
cially significant when squaring can be done quickly (e.g., in a normal basis representation). The procedure
is given below.

Input: A field GF (2m) and a nonzero field element β

Output: The reciprocal β–1

1. Let m – 1 = br br–1 ... b1 b0 be the binary representation of m – 1, where the most significant bit
br of m – 1 is 1.

2. Set η ← β and k ← 1.

3. For i from r – 1 downto 0 do

3.1 Set µ ← η.

β 1– β2m 2–=
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3.2 For j = 1 to k do

3.2.1 Set µ ← µ2.

3.3 Set η ← µη and k ← 2k.

3.4 If bi = 1, then set η ← η2β and k ← k + 1.

4. Output η2.

A.4.5 Trace

If α is an element of GF (2m), the trace of α is

The value of Tr (α) is zero for half the elements of GF (2m), and one for the other half. 

The trace can be computed efficiently as follows:

Normal Basis

If α has representation (α0 α1...αm–1), then

Tr (α) = α0 ⊕ α1 ⊕ ... ⊕ αm–1

Polynomial Basis

The basic algorithm inputs α ∈ GF (2m) and outputs T = Tr (α).

1. Set T ←α.

2. For i from 1 to m – 1 do

2.1 T ← T2 + α.

3. Output T.

If many traces are to be computed with respect to a fixed polynomial basis

{tm–1, …, t, 1}

then it is more efficient to compute and store the element

τ = (τm–1…τ1τ0)

where each coordinate

τj = Tr (tj)

is computed via the basic algorithm. Subsequent traces can be computed via

where the “dot product” of the bit strings is given by bitwise AND (or bitwise multiplication).

 Tr α( ) α α2 α22

  +...+ α2m 1–

+ +=

Tr α( ) α τ⋅=
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A.4.6 Half-trace

If m is odd, the half-trace of α ∈ GF (2m) is

The following algorithm inputs α ∈ GF (2m) and outputs H = HfTr (α):

1. Set H ←α.

2. For i from 1 to (m – 1)/2 do

2.1 H ← H2. 

2.2 H ← H2 + α.

3. Output H. 

A.4.7 Solving quadratic equations over GF (2m)

If β is an element of GF (2m), then the equation

z2 + z = β

has 2 – 2T solutions over GF (2m), where T = Tr (β). Thus, there are either zero or two solutions. If z is one
solution, then the other solution is z + 1. In the case β = 0, the solutions are zero and one.

The following algorithms compute a solution if one exists.

Input: A field GF (2m) along with a polynomial or normal basis for representing its elements; an element
β ≠ 0

Output: An element z for which z2 + z = β, if such an element exists

Normal basis

1. Let (β0 β1...βm–1) be the representation of β.

2. Set z0 ← 0.

3. For i = 1 to m – 1 do

3.1 Set zi ← zi–1 ⊕ βi.

4. Output z ← (z0 z1...zm–1).

Polynomial basis

If m is odd, then compute z := half-trace of β via A.4.6. If m is even, proceed as follows:

1. Choose random ρ ∈ GF (2m).

2. Set z ← 0 and w ← ρ.

3. For i from 1 to m – 1 do

3.1 Set z ← z2 + w2 β.

3.2 Set w ← w2 + ρ.

 HfTr α( ) α α22

α24

 +...+ α2m 1–

+ +=
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4. If w = 0, then go to step 1.

5. Output z.

If the latter algorithm is to be used repeatedly for the same field, and memory is available, then it is more
efficient to precompute and store ρ and the values of w. Any element of trace 1 will serve as ρ, and the values
of w depend only on ρ and not on β.

Both of the above algorithms produce a solution z, provided that one exists. If it is unknown whether a
solution exists, then the output z should be checked by comparing γ := z2 + z with β. If γ = β, then z is a
solution; otherwise no solutions exist.

A.5 Polynomials over a finite field

The computations below can take place either over a prime field (having a prime number p of elements), or
over a binary field (having 2m elements).

A.5.1 Exponentiation modulo a polynomial

If k is a positive integer and f(t) and m(t) are polynomials with coefficients in the field GF (q), then f(t)k mod
m(t) can be computed efficiently by the binary method outlined below.

Input: A positive integer k, a field GF (q), and polynomials f(t) and m(t) with coefficients in GF (q)

Output: The polynomial f(t)k mod m(t)

1. Let k = kr kr–1 ... k1 k0 be the binary representation of k, where the most significant bit kr of
k is 1.

2. Set u(t) ← f(t) mod m(t).

3. For i from r – 1 downto 0 do

3.1 Set u(t) ← u(t)2 mod m(t).

3.2 If ki = 1, then set u(t) ← u(t) f(t) mod m(t).

4. Output u(t).

There are several modifications that improve the performance of this algorithm. These methods are
summarized in Gordon [B65].

A.5.2 GCDs over a finite field

If f(t) and g(t) ≠ 0 are two polynomials with coefficients in the field GF (q), then there is a unique monic
polynomial d(t) of largest degree that divides both f(t) and g(t). The polynomial d(t) is called the greatest
common divisor, or GCD, of f(t) and g(t). The following algorithm computes the GCD of two polynomials.

Input: A finite field GF (q) and two polynomials f(t), g(t) ≠ 0 over GF (q)

Output: d(t) = GCD (f(t), g(t))

1. Set a(t) ← f(t), b(t) ← g(t).

2. While b(t) ≠ 0
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2.1 Set c(t) ← the remainder when a(t) is divided by b(t).

2.2 Set a(t) ← b(t).

2.3 Set b(t) ← c(t).

3. Set α ← the leading coefficient of a(t).

4. Set d(t) ← α–1 a(t).

5. Output d(t).

A.5.3 Factoring polynomials over GF (p) (special case)

Let f(t) be a polynomial with coefficients in the field GF (p), and suppose that f(t) factors into distinct
irreducible polynomials of degree d. (This is the special case needed in A.14.) The following algorithm finds
a random degree-d factor of f(t) efficiently.

Input: A prime p > 2, a positive integer d, and a polynomial f(t), which factors modulo p into distinct
irreducible polynomials of degree d

Output: A random degree-d factor of f(t)

1. Set g(t) ← f(t). 

2. While deg(g) > d

2.1 Choose u(t) ← a random monic polynomial of degree 2d – 1. 

2.2 Compute via A.5.1

.

2.3 Set h(t) ← GCD(c(t) – 1, g(t)). 

2.4 If h(t) is constant or deg(g) = deg(h), then go back to step 2.1. 

2.5 If 2 deg(h) > deg(g), then set g(t) ← g(t)/h(t); else g(t) ← h(t). 

3. Output g(t).

A.5.4 Factoring polynomials over GF (2) (special case)

Let f(t) be a polynomial with coefficients in the field GF (2), and suppose that f(t) factors into distinct
irreducible polynomials of degree d. (This is the special case needed in A.14.) The following algorithm finds
a random degree-d factor of f(t) efficiently.

Input: A positive integer d and a polynomial f(t), which factors modulo 2 into distinct irreducible
polynomials of degree d

Output: A random degree-d factor of f(t)

1. Set g(t) ← f(t).

2. While deg(g) > d

2.1 Choose u(t) ← a random monic polynomial of degree 2d – 1.

2.2 Set c(t) ← u(t).

2.3 For i from 1 to d – 1 do

c t( ) := u t( ) p
d 1–( ) 2⁄  mod g t( )
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                            2.3.1  c(t) ← c(t)2 + u(t) mod g(t).

2.4 Compute h(t) := GCD(c(t), g(t)) via A.5.2.

2.5 If h(t) is constant or deg(g) = deg(h), then go back to step 2.1. 

2.6 If 2 deg(h) > deg(g), then set g(t) ← g(t)/h(t); else g(t) ← h(t).

3. Output g(t).

A.5.5 Checking polynomials over GF (2r) for irreducibility

If f(t) is a polynomial with coefficients in the field GF (2r), then f(t) can be tested efficiently for irreducibility
using the following algorithm.

Input: A polynomial f(t) with coefficients in GF (2r)

Output: The message “True” if f(t) is irreducible; the message “False” otherwise

1. Set d ← degree of f(t).

2. Set u(t) ← t.

3. For i from 1 to d/2 do

3.1 For j from 1 to r do

                                       Set u(t) ← u(t)2 mod f(t);
                         Next j.

3.2 Set g(t) ← GCD(u(t) + t, f(t)).

3.3 If g(t) ≠ 1, then output “False” and stop.

4. Output “True.”

A.5.6 Finding a root in GF (2m) of an irreducible binary polynomial

If f(t) is an irreducible polynomial modulo 2 of degree d dividing m, then f(t) has d distinct roots in the field
GF (2m). A random root can be found efficiently using the following algorithm.

Input: An irreducible polynomial modulo 2 of degree d, and a field GF (2m), where d divides m

Output: A random root of f(t) in GF (2m)

1. Set g(t) ← f(t) [g(t) is a polynomial over GF (2m)].

2. While deg(g) > 1

2.1 Choose random u ∈ GF (2m).

2.2 Set c(t) ← ut.

2.3 For i from 1 to m – 1 do

                            2.3.1  c(t) ← c(t)2 + ut mod g(t).

2.4 Set h(t) ← GCD(c(t), g(t)).

2.5 If h(t) is constant or deg(g) = deg(h), then go back to step 2.1.

2.6 If 2 deg(h) > deg(g), then set g(t) ← g(t)/h(t); else g(t) ← h(t).

3. Output g(0).
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A.5.7 Embedding in an extension field

Given a field F = GF (2d), the following algorithm embeds F into an extension field K = GF (2de).

Input: Integers d and e; a (polynomial or normal) basis B for F = GF (2d) with field polynomial p(t); a
(polynomial or normal) basis for K = GF (2de)

Output: An embedding of F into K; that is, a function taking each α ∈ F to a corresponding element β of K

1. Compute via A.5.6 a root λ ∈ K of p(t).

2. If B is a polynomial basis then output

β := am–1 λm–1 + … + a2λ
2 + a1λ + a0

where (am–1 … a1 a0) is the bit string representing α with respect to B.

3. If B is a normal basis then output

where (a0 a1 … am–1) is the bit string representing α with respect to B.

A.6 General normal bases for binary fields

The algorithms in this clause allow computation with any normal basis. (In the case of Gaussian normal
bases, the algorithms of A.3 are more efficient.)

A general normal basis is specified by its field polynomial p(t) (see A.3.5). The rule for multiplication with
respect to a general normal basis is most easily described via a multiplication matrix. The multiplication
matrix is an m-by-m matrix with entries in GF (2). A description of how to multiply using the multiplication
matrix is given in A.6.4.

A.6.1 Checking for a normal basis

The following algorithm checks whether an irreducible polynomial p(t) over GF (2) is normal and, if so,
outputs two matrices to be used later in deriving the multiplication rule for the corresponding normal basis.

Input: An irreducible polynomial p(t) of degree m over GF (2)

Output: If p(t) is normal, two m-by-m matrices over GF (2). If not, the message “not normal.”

1. Compute

t = a0,0 + a0,1t + a0,2t2 + …+ a0,m–1tm –1 (mod p(t))

t2 = a1,0 + a1,1t + a1,2t2 + …+ a1,m–1tm –1 (mod p(t))

t4 = a2,0 + a2,1t + a2,2t2 + …+ a2,m–1tm –1 (mod p(t))

...

= am–1,0 + am–1,1t + am–1,2t2 + …+ am–1,m–1tm –1 (mod p(t))

modulo 2 via repeated squaring.

β := a0λ a1λ
2 a2λ

22

 +...+ am 1– λ2m 1–

+ +

t2m 1–
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2. Set

3. Attempt to compute the inverse B of the matrix A over GF (2).

4. If A is not invertible, output the message “not normal” and stop; otherwise output A and B.

A.6.2 Finding a normal basis

If m is a multiple of eight, then the Gaussian normal basis construction of A.3 does not apply. In this case (or
in any case where a nonGaussian normal basis is desired), it is possible to find a normal basis by searching
for a normal polynomial of degree m over GF (2). 

The procedure is to produce an irreducible polynomial of degree m over GF (2), test it for normality via
A.6.1, and repeat until a normal polynomial is found. To produce an irreducible, one can use the table in
A.8.1, the random search routine in A.8.2, or one of the techniques in A.8.3 through A.8.5.

The probability of a randomly chosen irreducible polynomial of degree m over GF (2) being normal is at
least 0.2 if m ≤ 2000, and is usually much higher. Thus, one should expect to try no more than about five
irreducibles before finding a normal polynomial.

A.6.3 Computing the multiplication matrix

The following algorithm computes the multiplication matrix of a basis B that has been deemed “normal” by
A.6.1.

Input: A normal polynomial

p(t) = tm + cm–1 tm–1 + … + c1 t + c0

over GF (2); the matrices A and B computed by A.6.1.

Output: The multiplication matrix M for p(t)

1. Set 

2. Compute D := ACB over GF (2). (Let di,j denote the (i, j)th entry of D, for 0 ≤ i,j < m.)

3. Set µi,j := dj–i,–i for each i and j, where each subscript is regarded as an integer modulo m. 

A:=

a0,0 a0,1 … a0,m 1–

a1,0 a1,1 … a1,m 1–

am 1– ,0 am 1– ,1 … am 1– ,m 1–

… …… . . .

C  := 

0 1 0 … 0

0 0 1 … 0

0 0 0 … 1

c0 c1 c2 … cm 1–

... ..
.

..
.

..
.

..
.
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4. Output

Example: Let p(t) = t4 + t3 + t2 + t + 1. Then

so that

Also

so that

Therefore

In the case of a Gaussian normal basis, the multiplication matrix M can be written down immediately from
the explicit multiplication rule. For 0 ≤ i < m and 0 ≤ j < m, µi,j is 1 if aibj appears in the formula for c0, and
0 otherwise.

M :=

µ0,0 µ0,1 … µ0,m 1–

µ1,0 µ1,1 … µ1,m 1–

µm 1– ,0 µm 1– ,1 … µm 1– ,m 1–

...... ... ...
A

0 1 0 0

0 0 1 0

1

0

1

0

1 

0 

1

1

=

B A 1–

1 1 1 1

1 0 0 0

0

0

1

0

0

0
 
0

1

= =

C

0 1 0 0

0 0 1 0

0

1

0

1

0 1

1 1

=

D ACB

0 1 0 0

0 0 0 1

1

0

1

0

1 1

1 0

= =

M

0 0 1 0

0 0 1 1

1

0

1

1

0 0

0 1

=
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Example: If B is the Type 3 normal basis over GF (24), then it was found in A.3.7 that if

(c0 c1 … cm–1) = (a0 a1… am–1) × (b0 b1 … bm–1)

then

c0 = a0 (b1 + b2 + b3) + a1 (b0 + b2) + a2 (b0 + b1) + a3 (b0 + b3)

Thus, the multiplication matrix for B is

A.6.4 Multiplication

The following algorithm implements the multiplication of two elements of a field GF (2m) represented in
terms of a normal basis.

Input: The multiplication matrix M for the field GF (2m); field elements a = (a0 a1 … am–1) and
b = (b0 b1 … bm–1)

Output: The product c = (c0 c1 … cm–1) of a and b

1. Set x ← a.

2. Set y ← b.

3. For k from 0 to m – 1 do

3.1 Compute via matrix multiplication

ck := x M ytr

where ytr denotes the matrix transpose of the vector y.

3.2 Set x ← LeftShift(x) and y ← LeftShift(y), where LeftShift denotes the
circular left shift operation.

4. Output c = (c0 c1 … cm–1).

Example: Let θ ∈ GF (24) be a root of the normal polynomial p(t) = t4 + t3 + t2 + t + 1. Consider multiplying
the elements

a = (1000) = θ

and

b = (1101) = θ + θ2 + θ8

M

0 1 1 1

1 0 1 0

1

1

1

0

0 0

0 1

=
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The multiplication matrix for p(t) was found in A.6.3 to be

Thus

so that c = ab = (0111).

A.7 Basis conversion for binary fields

In order to use DL and EC protocols over a finite field F = GF (2m), it is necessary for the users to agree on a
common field degree m, but not on a common basis representation of F. If the users do not agree on the
basis, however, it is necessary for one or both users to perform a change-of-basis; i.e., to convert incoming
and/or outgoing field elements between one's own representation and that of the other user.

A.7.1 The change-of-basis matrix

Suppose that a user has received a field element that is represented in terms of the basis B0, while the user
himself uses basis B1 for his own computations. This user must now perform a change-of-basis from B0 to
B1 on this element. This can be accomplished using a change-of-basis matrix from B0 to B1. This is an
m-by-m matrix with entries in GF (2).

M

0 0 1 0

0 0 1 1

1

0

1

1

0 0

0 1

=

c0 1000( )M

1

1

0

1

0==

c1 0001( )M

1

0

1

1

1==

c2 0010( )M

0

1

1

1

1==

c3 0100( )M

1

1

1

0

1==
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Suppose that Γ is the change-of-basis matrix from B0 to B1, and that u is the bit string representing α ∈ GF
(2m) in terms of B0. Then

v = u Γ

is the bit string representing α in terms of B1.

If Γ is the change-of-basis matrix from B0 to B1, then the inverse Γ–1 of the matrix over GF (2) is the
change-of-basis matrix from B1 to B0. Thus, given a bit string v representing α ∈ GF (2m) in terms of B1, the
bit string

u = v Γ–1

represents α in terms of B0.

If Γ is the change-of-basis matrix from B0 to B1, and Γ′ is the change-of-basis matrix from B1 to B2, then the
matrix product Γ′′ = Γ Γ′ is the change-of-basis matrix from B0 to B2.

The algorithm for calculating the change-of-basis matrix is given in A.7.3. A special case is treated in A.7.4.

Example: Suppose that B0 is the Type I optimal normal basis for GF (24), and B1 is the polynomial basis
with field polynomial t4 + t + 1. Then the change-of-basis matrix from B0 to B1 is

(see A.7.3). If α is the element of GF (24) represented by (1001) with respect to B0, then its representation
with respect to B1 is

(1001) Γ = (0100)

The inverse of Γ over GF (2) is

If β is the element of GF (24) represented by (1101) with respect to B1, then its representation with respect to
B0 is

(1101) Γ–1 = (0111)

A.7.2 The field polynomial of a Gaussian normal basis

In order to compute the change-of-basis matrix for conversion to or from a normal basis B, it is necessary to
compute the field polynomial for that basis (see A.3.5).

Γ

1 1 0 0

1 1 1 1

1

1

0

0

1 0

0 0

 =

Γ 1–

0 0 0 1

1 0 0 1

0

1

0

1

1 1

1 1

=
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If GF (2m) has a type T Gaussian normal basis over GF (2), the following algorithm efficiently produces its
field polynomial.

Input: Positive integers m and T for which there exists a type T Gaussian normal basis for GF (2m) over
GF (2)

Output: The field polynomial p(t) for the basis

I. T = 1 (Type I optimal normal basis).

1. Set p(t) ← tm + tm–1 + … + t + 1.

2. Output p(t).

II. T = 2 (Type II optimal normal basis).

1. Set q(t) ← 1.

2. Set p(t) ← t + 1.

3. For i = 1 to m – 1 do

r(t) ← q(t)

q(t) ← p(t)

p(t) := t q(t) + r(t).

4. Output p(t).

III. T ≥ 3 (suboptimal Gaussian normal basis).

1. Set p ← T m + 1.

2. Generate via A.2.8 an integer u having order T modulo p.

3. For k from 1 to m do

                             3.1 Compute

4. Compute the polynomial

(The polynomial f(t) has integer coefficients.)

5. Output p(t) := f(t) mod 2.

NOTE—The complex numbers ek must be computed with sufficient accuracy to identify each coefficient of the
polynomial f(t). Since each such coefficient is an integer, this means that the error incurred in calculating each coefficient
should be less than 1/2.

Example: Let m = 4 and T = 3. By the example of A.3.6, there exists a Gaussian normal basis of Type 3 for
GF (24) over GF (2). Now p = 13, and u = 3 has order T = 3 modulo p = 13.

The complex numbers ek are

e1 := e2πi/13 + e6πi/13 – e5πi/13

≈ 0.6513878188659973233 + 0.522415803456407715 i

ek  exp 
j 0=

T 1–

∑
2ku jπi

p
---------------- 
 =

f t( ) :=  
k 1=

m

∏ t ek–( )
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e2 := e4πi/13 + e12πi/13 + e10πi/13

≈ –1.1513878188659973233 + 1.7254221884220093641 i

e3 := e8πi/13 – e11πi/13 – e7πi/13

≈ 0.6513878188659973233 – 0.522415803456407715 i

e4 := –eπi/13 – e3πi/13 – e9πi/13

≈ –1.1513878188659973233 – 1.7254221884220093641 i

Thus

f(t) := (t – e1) (t – e2) (t – e3) (t – e4) = t4 + t3 + 2t2 – 4t + 3

so that p(t) := t4 + t3 + 1 is the field polynomial for the basis.

A.7.3 Computing the change-of-basis matrix

The following algorithm efficiently calculates the change-of-basis matrix from a (polynomial or normal)
basis B0 to one’s own (polynomial or normal) basis B1.

Input: A field degree m; a (polynomial or normal) basis B0 with field polynomial p0(u); a (polynomial or
normal) basis B1 with field polynomial p1(t). (Note that in the case of a Gaussian normal basis, the field
polynomial can be computed via A.7.2.)

Output: The change-of-basis matrix Γ from B0 to B1

1. Let u be a root of p0(u) represented with respect to B1 (u can be computed via A.5.6).

2. Define the elements e0, . . ., em–1 via

3. Compute the elements γi,j for 0 ≤ i < m, 0 ≤ j < m as follows:

— If B0 is a polynomial basis, then compute

e j
tm 1– j–     if B1 tm 1– , ... ,t2,t ,1{ }=  

θ2 j

    if B1 θ,θ2,θ22

, ... ,θ2m 1–

{ }=  





=

1 γm 1– , j
j 0=

m 1–

∑ e j=

u γm 2– , j
j 0=

m 1–

∑ e j=

…

um 2– γ 1, j
j 0=

m 1–

∑ e j=
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by repeated multiplication by u.

— If B0 is a normal basis, then compute

by repeated squaring.

4) Output

Example: Suppose that B0 is the Type I optimal normal basis for GF (24), and B1 is the polynomial basis
modulo p1(t) = t4 + t + 1. Then a root of p0(u) = u4+ u3 + u2 + u + 1 is given by u = t3 + t2. By repeated
squaring modulo p1(t)

u = t3 + t2

u2 = t3 + t2 + t + 1

u4 = t3 + t

u8 = t3 

so that

Example: Suppose that B0 is polynomial basis modulo p0(u) = u5 + u4 + u2 + u + 1, and B1 is the polynomial
basis modulo p1(t) = t5 + t2 + 1. Then a root of p0(u) is given by u = t + 1. Thus

um 1– γ 0, j
j 0=

m 1–

∑ e j=

u γ 0, j
j 0=

m 1–

∑ e j=

u2 γ 1, j
j 0=

m 1–

∑ e j=

u22

γ 2, j
j 0=

m 1–

∑ e j=

…

u2m 1–

γm 1– , j
j 0=

m 1–

∑ e j=

Γ

γ 0,0 γ 0,1 … γ 0,m 1–

γ 1,0 γ 1,1 … γ 1,m 1–

γm 1– 0, γm 1– 1, … γm 1– m 1–,

← … …… . . .

Γ :=

1 1 0 0

1 1 1 1

1

1

0

0

1 0

0 0
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1 = 1
u = t + 1

u2 = t2 + 1

u3 = t3 + t2 + t + 1

u4 = t4 + 1

so that

Example: Suppose that B0 is polynomial basis modulo p0(u) = u5 + u2 + 1, and B1 is the Type II optimal
normal basis for GF (25). Then a root of p0(u) is given by u = θ2 + θ4 + θ8 + θ16. Thus

1 = θ + θ2 + θ4 + θ8 + θ16

u = θ2 + θ4 + θ8 + θ16

u2 = θ + θ4 + θ8 + θ16

u3 = θ + θ4 + θ16

u4 = θ + θ2 +θ8 + θ16

so that

NOTE—If both B0 and B1 are normal bases, then it is sufficient to perform the first computation

and omit the rest. This expression provides the top row of the matrix Γ, and subsequent rows are obtained by right cyclic
shifts.

Example: Suppose that B0 is the Type 3 Gaussian normal basis for GF (24), and B1 is the Type I optimal
normal basis for GF (24). Then a root of p0(u) = u4+ u3 + 1 is given by u = θ + θ4 + θ8. Thus

Γ := 

1 0 0 0 1

0 1 1 1 1

0

0

0

0

0

0

1 0 1

0 1 1

0 0 1

Γ := 

1 1 0 1 1

1 0 1 0 1

1

0

1

0

1

1

1 1 1

1 1 1

1 1 1

u γ0, j
j 0=

m 1–

∑ e j=

Γ := 

1 0 1 1

1 1 0 1

1

0

1

1

1

1
 
0

1
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A.7.4 Conversion to a polynomial basis

If one is representing elements of GF (2m) with respect to the normal basis B1, and it is desired to perform
division via the Euclidean algorithm (see A.4.4), then it is necessary to construct a change-of-basis matrix
from some polynomial basis B0 to the basis B1. If another means of division is not available, it is necessary
to construct this matrix using an algorithm other than that of A.7.3 (which requires division in its first step).
This can be done as follows:

Input: A field degree m; a normal basis B1 with field polynomial p(t)

NOTE—if B1 is a Gaussian normal basis, then p(t) can be computed via A.7.2.

Output: The change-of-basis matrix Γ from B0 to B1, where B0 is the polynomial basis with field
polynomial p(t)

If B1 is a Type I optimal normal basis, then the change-of-basis matrix is

where

In the general case, the algorithm of A.7.3 can be used, with step 1 replaced by

1’. Set u ← θ with respect to 

A.8 Bases for binary fields: tables and algorithms

A.8.1 Basis table

Table A.2 provides irreducible polynomials modulo 2 that are minimal, in the sense that they have as few
terms as possible and that those terms are of the smallest possible degree. More precisely, if an irreducible
binary trinomial tm + tk + 1 exists, then the minimal possible value of k is listed; if no such trinomial exists,
then a pentanomial tm + ta + tb + tc + 1 is listed. In the latter case, the value of a is minimal; the value of b is
minimal for the given a; and c is minimal for the given a and b. In addition, for each m not divisible by 8 is
given the minimal type among Gaussian normal bases for GF (2m).

The optimal normal bases are Type 1 and Type 2 Gaussian normal bases (see A.3.5). In the cases where both
Type 1 and Type 2 bases exist, they are both listed in Table A.2.

Γ:=

γ 0,0 γ 0,1 … γ 0,m 1–

γ 1,0 γ 1,1 … γ 1,m 1–

γm 1– 0, γm 1– 1, … γm 1– m 1–,

… …… . . .

γ i j,   = 
1  if i m 1–=  

1  if 2 j i 2+( )–≡ mod m 1+( )
0 otherwise  






B1 θ,θ2,θ22

, ... ,θ2m 1–

{ }=



IEEE
PUBLIC-KEY CRYPTOGRAPHY Std 1363-2000

Copyright © 2000 IEEE. All rights reserved. 105

Table A.2—Basis table 

m Coeff GB 
type m Coeff GB

type m Coeff GB
type m Coeff GB

type

2 1 1,2 252 15 3 502 8, 5, 4 10 752 13, 10, 3 —

3 1 2 253 46 10 503 3 6 753 158 16

4 1 1 254 7, 2, 1 2 504 15, 14, 6 — 754 19 10

5 2 2 255 52 6 505 156 10 755 12, 10, 1 2

6 1 2 256 10, 5, 2 — 506 23 5 756 45 1

7 1 4 257 12 6 507 13, 6, 3 4 757 7, 6, 1 16

8 4, 3, 1 — 258 71 5 508 9 1 758 233 6

9 1 2 259 10, 6, 2 10 509 8, 7, 3 2 759 98 4

10 3 1 260 15 5 510 69 3 760 11, 6, 5 —

11 2 2 261 7, 6, 4 2 511 10 6 761 3 2

12 3 1 262 9, 8, 4 3 512 8, 5, 2 — 762 83 10

13 4, 3, 1 4 263 93 6 513 26 4 763 16, 14, 9 22

14 5 2 264 9, 6, 2 — 514 67 33 764 6, 5, 3 3

15 1 4 265 42 4 515 14, 7, 4 2 765 9, 7, 4 2

16 5, 3, 1 — 266 47 6 516 21 3 766 22, 19, 9 6

17 3 6 267 8, 6, 3 8 517 12, 10, 2 4 767 168 6

18 3 1,2 268 25 1 518 33 14 768 19, 17, 4 —

19 5, 2, 1 10 269 7, 6, 1 8 519 79 2 769 120 10

20 3 3 270 53 2 520 15, 11, 2 — 770 14, 5, 2 5

21 2 10 271 58 6 521 32 32 771 17, 15, 6 2

22 1 3 272 9, 3, 2 — 522 39 1 772 7 1

23 5 2 273 23 2 523 13, 6, 2 10 773 10, 8, 6 6

24 4, 3, 1 — 274 67 9 524 167 5 774 185 2

25 3 4 275 11, 10, 9 14 525 6, 4, 1 8 775 93 6

26 4, 3, 1 2 276 63 3 526 97 3 776 15, 14, 7 —

27 5, 2, 1 6 277 12, 6, 3 4 527 47 6 777 29 16

28 1 1 278 5 2 528 11, 6, 2 — 778 375 21

29 2 2 279 5 4 529 42 24 779 10, 8, 3 2

30 1 2 280 9, 5, 2 — 530 10, 7, 3 2 780 13 13

31 3 10 281 93 2 531 10, 5, 4 2 781 17, 16, 2 16

32 7, 3, 2 — 282 35 6 532 1 3 782 329 3

33 10 2 283 12, 7, 5 6 533 4, 3, 2 12 783 68 2

34 7 9 284 53 3 534 161 7 784 13, 9, 6 —

35 2 2 285 10, 7, 5 10 535 8, 6, 2 4 785 92 2

36 9 1 286 69 3 536 7, 5, 3 — 786 12, 10, 3 1
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37 6, 4, 1 4 287 71 6 537 94 8 787 7, 6, 3 6

38 6, 5, 1 6 288 11, 10, 1 — 538 195 6 788 17, 10, 3 11

39 4 2 289 21 12 539 10, 5, 4 12 789 5, 2, 1 14

40 5, 4, 3 — 290 5, 3, 2 5 540 9 1 790 9, 6, 1 3

41 3 2 291 12, 11, 5 6 541 13, 10, 4 18 791 30 2

42 7 5 292 37 1 542 8, 6, 1 3 792 9, 7, 3 —

43 6, 4, 3 4 293 11, 6, 1 2 543 16 2 793 253 6

44 5 9 294 33 3 544 8, 3, 1 — 794 143 14

45 4, 3, 1 4 295 48 16 545 122 2 795 7, 4, 1 10

46 1 3 296 7, 3, 2 — 546 8, 2, 1 1 796 9, 4, 1 1

47 5 6 297 5 6 547 13, 7, 4 10 797 12, 10, 4 6

48 5, 3, 2 — 298 11, 8, 4 6 548 10, 5, 3 5 798 53 6

49 9 4 299 11, 6, 4 2 549 16, 4, 3 14 799 25 22

50 4, 3, 2 2 300 5 19 550 193 7 800 9, 7, 1 —

51 6, 3, 1 2 301 9, 5, 2 10 551 135 6 801 217 12

52 3 1 302 41 3 552 19, 16, 9 — 802 15, 13, 9 6

53 6, 2, 1 2 303 1 2 553 39 4 803 14, 9, 2 2

54 9 3 304 11, 2, 1 — 554 10, 8, 7 2 804 75 5

55 7 12 305 102 6 555 10, 9, 4 4 805 8, 7, 2 6

56 7, 4, 2 — 306 7, 3, 1 2 556 153 1 806 21 11

57 4 10 307 8, 4, 2 4 557 7, 6, 5 6 807 7 14

58 19 1 308 15 15 558 73 2 808 14, 3, 2 —

59 7, 4, 2 12 309 10, 6, 4 2 559 34 4 809 15 2

60 1 1 310 93 6 560 11, 9, 6 — 810 159 2

61 5, 2, 1 6 311 7, 5, 3 6 561 71 2 811 12, 10, 8 10

62 29 6 312 9, 7, 4 — 562 11, 4, 2 1 812 29 3

63 1 6 313 79 6 563 14, 7, 3 14 813 10, 3, 1 4

64 4, 3, 1 — 314 15 5 564 163 3 814 21 15

65 18 2 315 10, 9, 1 8 565 11, 6, 1 10 815 333 8

66 3 1 316 63 1 566 153 3 816 11, 8, 2 —

67 5, 2, 1 4 317 7, 4, 2 26 567 28 4 817 52 6

68 9 9 318 45 11 568 15, 7, 6 — 818 119 2

69 6, 5, 2 2 319 36 4 569 77 12 819 16, 9, 7 20

70 5, 3, 1 3 320 4, 3, 1 — 570 67 5 820 123 1

71 6 8 321 31 12 571 10, 5, 2 10 821 15, 11, 2 8

Table A.2—Basis table  (continued)

m Coeff GB 
type m Coeff GB

type m Coeff GB
type m Coeff GB

type
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72 10, 9, 3 — 322 67 6 572 12, 8, 1 5 822 17 3

73 25 4 323 10, 3, 1 2 573 10, 6, 4 4 823 9 10

74 35 2 324 51 5 574 13 3 824 11, 6, 4 —

75 6, 3, 1 10 325 10, 5, 2 4 575 146 2 825 38 6

76 21 3 326 10, 3, 1 2 576 13, 4, 3 — 826 255 1

77 6, 5, 2 6 327 34 8 577 25 4 827 12, 10, 7 14

78 6, 5, 3 7 328 8, 3, 1 — 578 23, 22,16 6 828 189 1

79 9 4 329 50 2 579 12, 9, 7 10 829 4, 3, 1 10

80 9, 4, 2 — 330 99 2 580 237 3 830 17, 10, 7 14

81 4 2 331 10, 6, 2 6 581 13, 7, 6 8 831 49 2

82 8, 3, 1 1 332 89 3 582 85 3 832 13, 5, 2 —

83 7, 4, 2 2 333 2 24 583 130 4 833 149 2

84 5 5 334 5, 2, 1 7 584 14, 13, 3 — 834 15 2

85 8, 2, 1 12 335 10, 7, 2 12 585 88 2 835 14, 7, 5 6

86 21 2 336 7, 4, 1 — 586 7, 5, 2 1 836 10, 9, 2 15

87 13 4 337 55 10 587 11, 6, 1 14 837 8, 6, 5 6

88 7, 6, 2 — 338 4, 3, 1 2 588 35 11 838 61 7

89 38 2 339 16, 10, 7 8 589 10, 4, 3 4 839 54 12

90 27 2 340 45 3 590 93 11 840 11, 5, 1 —

91 8, 5, 1 6 341 10, 8, 6 8 591 9, 6, 4 6 841 144 12

92 21 3 342 125 6 592 13, 6, 3 — 842 47 5

93 2 4 343 75 4 593 86 2 843 11, 10, 7 6

94 21 3 344 7, 2, 1 — 594 19 17 844 105 13

95 11 2 345 22 4 595 9, 2, 1 6 845 2 8

96 10, 9, 6 — 346 63 1 596 273 3 846 105 2

97 6 4 347 11, 10, 3 6 597 14, 12, 9 4 847 136 30

98 11 2 348 103 1 598 7, 6, 1 15 848 11, 4, 1 —

99 6, 3, 1 2 349 6, 5, 2 10 599 30 8 849 253 8

100 15 1 350 53 2 600 9, 5, 2 — 850 111 6

101 7, 6, 1 6 351 34 10 601 201 6 851 13, 10, 5 6

102 29 6 352 13, 11, 6 — 602 215 5 852 159 1

103 9 6 353 69 14 603 6, 4, 3 12 853 10, 7, 1 4

104 4, 3, 1 — 354 99 2 604 105 7 854 7, 5, 3 18

105 4 2 355 6, 5, 1 6 605 10, 7, 5 6 855 29 8

106 15 1 356 10, 9, 7 3 606 165 2 856 19, 10, 3 -

Table A.2—Basis table  (continued)

m Coeff GB 
type m Coeff GB

type m Coeff GB
type m Coeff GB

type
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107 9, 7, 4 6 357 11, 10, 2 10 607 105 6 857 119 8

108 17 5 358 57 10 608 19, 13, 6 — 858 207 1

109 5, 4, 2 10 359 68 2 609 31 4 859 17, 15, 4 22

110 33 6 360 5, 3, 2 — 610 127 10 860 35 9

111 10 20 361 7, 4, 1 30 611 10, 4, 2 2 861 14 28

112 5, 4, 3 — 362 63 5 612 81 1 862 349 31

113 9 2 363 8, 5, 3 4 613 19, 10, 4 10 863 6, 3, 2 6

114 5, 3, 2 5 364 9 3 614 45 2 864 21, 10, 6 —

115 8, 7, 5 4 365 9, 6, 5 24 615 211 2 865 1 4

116 4, 2, 1 3 366 29 22 616 19, 10, 3 — 866 75 2

117 5, 2, 1 8 367 21 6 617 200 8 867 9, 5, 2 4

118 33 6 368 7, 3, 2 — 618 295 1,2 868 145 19

119 8 2 369 91 10 619 9, 8, 5 4 869 11, 7, 6 12

120 4, 3, 1 — 370 139 6 620 9 3 870 301 2

121 18 6 371 8, 3, 2 2 621 12, 6, 5 6 871 378 6

122 6, 2, 1 6 372 111 1 622 297 3 872 13, 3, 1 —

123 2 10 373 8, 7, 2 4 623 68 12 873 352 2

124 19 3 374 8, 6, 5 3 624 11, 6, 5 — 874 12, 7, 4 9

125 7, 6, 5 6 375 16 2 625 133 36 875 12, 8, 1 12

126 21 3 376 8, 7, 5 — 626 251 21 876 149 1

127 1 4 377 41 14 627 13, 8, 4 20 877 6, 5, 4 16

128 7, 2, 1 — 378 43 1,2 628 223 7 878 12, 9, 8 15

129 5 8 379 10, 8, 5 12 629 6, 5, 2 2 879 11 2

130 3 1 380 47 5 630 7, 4, 2 14 880 15, 7, 5 —

131 8, 3, 2 2 381 5, 2, 1 8 631 307 10 881 78 18

132 17 5 382 81 6 632 9, 2, 1 — 882 99 1

133 9, 8, 2 12 383 90 12 633 101 34 883 17, 16, 12 4

134 57 2 384 12, 3, 2 — 634 39 13 884 173 27

135 11 2 385 6 6 635 14, 10, 4 8 885 8, 7, 1 28

136 5, 3, 2 — 386 83 2 636 217 13 886 13, 9, 8 3

137 21 6 387 8, 7, 1 4 637 14, 9, 1 4 887 147 6

138 8, 7, 1 1 388 159 1 638 6, 5, 1 2 888 19, 18, 10 —

139 8, 5, 3 4 389 10, 9, 5 24 639 16 2 889 127 4

140 15 3 390 9 3 640 14, 3, 2 — 890 183 5

141 10, 4, 1 8 391 28 6 641 11 2 891 12, 4, 1 2

Table A.2—Basis table  (continued)

m Coeff GB 
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142 21 6 392 13, 10, 6 — 642 119 6 892 31 3

143 5, 3, 2 6 393 7 2 643 11, 3, 2 12 893 11, 8, 6 2

144 7, 4, 2 — 394 135 9 644 11, 6, 5 3 894 173 3

145 52 10 395 11, 6, 5 6 645 11, 8, 4 2 895 12 4

146 71 2 396 25 11 646 249 6 896 7, 5, 3 —

147 14 6 397 12, 7, 6 6 647 5 14 897 113 8

148 27 1 398 7, 6, 2 2 648 13, 3, 1 — 898 207 21

149 10, 9, 7 8 399 26 12 649 37 10 899 18, 15, 5 8

150 53 19 400 5, 3, 2 — 650 3 2 900 1 11

151 3 6 401 152 8 651 14 2 901 13, 7, 6 6

152 6, 3, 2 — 402 171 5 652 93 1 902 21 3

153 1 4 403 9, 8, 5 16 653 10, 8, 7 2 903 35 4

154 15 25 404 65 3 654 33 14 904 12, 7, 2 —

155 62 2 405 13, 8, 2 4 655 88 4 905 117 6

156 9 13 406 141 6 656 7, 5, 4 — 906 123 1

157 6, 5, 2 10 407 71 8 657 38 10 907 12, 10, 2 6

158 8, 6, 5 2 408 5, 3, 2 — 658 55 1 908 143 21

159 31 22 409 87 4 659 15, 4, 2 2 909 14, 4, 1 4

160 5, 3, 2 — 410 10, 4, 3 2 660 11 1 910 15, 9, 7 18

161 18 6 411 12, 10, 3 2 661 12, 11, 4 6 911 204 2

162 27 1 412 147 3 662 21 3 912 7, 5, 1 —

163 7, 6, 3 4 413 10, 7, 6 2 663 107 14 913 91 6

164 10, 8, 7 5 414 13 2 664 11, 9, 8 — 914 4, 2, 1 18

165 9, 8, 3 4 415 102 28 665 33 14 915 8, 6, 3 10

166 37 3 416 9, 5, 2 — 666 10, 7, 2 22 916 183 3

167 6 14 417 107 4 667 18, 7, 3 6 917 12, 10, 7 6

168 15, 3, 2 — 418 199 1 668 147 11 918 77 10

169 34 4 419 15, 5, 4 2 669 5, 4, 2 4 919 36 4

170 11 6 420 7 1 670 153 6 920 14, 9, 6 —

171 6, 5, 2 12 421 5, 4, 2 10 671 15 6 921 221 6

172 1 1 422 149 11 672 11, 6, 5 — 922 7, 6, 5 10

173 8, 5, 2 2 423 25 4 673 28 4 923 16, 14, 13 2

174 13 2 424 9, 7, 2 — 674 11, 7, 4 5 924 31 5

175 6 4 425 12 6 675 6, 3, 1 22 925 16, 15, 7 4

176 11, 3, 2 — 426 63 2 676 31 1 926 365 6

Table A.2—Basis table  (continued)
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177 8 4 427 11, 6, 5 16 677 8, 4, 3 8 927 403 4

178 31 1 428 105 5 678 15, 5, 3 10 928 10, 3, 2 —

179 4, 2, 1 2 429 10, 8, 7 2 679 66 10 929 11, 4, 3 8

180 3 1 430 14, 6, 1 3 680 23, 16, 9 — 930 31 2

181 7, 6, 1 6 431 120 2 681 11, 9, 3 22 931 10, 9, 4 10

182 81 3 432 13, 4, 3 — 682 171 6 932 177 3

183 56 2 433 33 4 683 11, 6, 1 2 933 16, 6, 1 2

184 9, 8, 7 — 434 12, 11, 5 9 684 209 3 934 22, 6, 5 3

185 24 8 435 12, 9, 5 4 685 4, 3, 1 4 935 417 2

186 11 2 436 165 13 686 197 2 936 15, 13, 12 —

187 7, 6, 5 6 437 6, 2, 1 18 687 13 10 937 217 6

188 6, 5, 2 5 438 65 2 688 19, 14, 6 — 938 207 2

189 6, 5, 2 2 439 49 10 689 14 12 939 7, 5, 4 2

190 8, 7, 6 10 440 4, 3, 1 — 690 79 2 940 10, 7, 1 1

191 9 2 441 7 2 691 13, 6, 2 10 941 11, 6, 1 6

192 7, 2, 1 — 442 7, 5, 2 1 692 299 5 942 45 10

193 15 4 443 10, 6, 1 2 693 15, 8, 2 6 943 24 6

194 87 2 444 81 5 694 169 3 944 12, 11, 9 —

195 8, 3, 2 6 445 7, 6, 4 6 695 177 18 945 77 8

196 3 1 446 105 6 696 23, 10, 2 — 946 21, 20, 13 1

197 9, 4, 2 18 447 73 6 697 267 4 947 9, 6, 5 6

198 9 22 448 11, 6, 4 — 698 215 5 948 189 7

199 34 4 449 134 8 699 15, 10, 1 4 949 8, 3, 2 4

200 5, 3, 2 — 450 47 13 700 75 1 950 13, 12, 10 2

201 14 8 451 16, 10, 1 6 701 16, 4, 2 18 951 260 16

202 55 6 452 6, 5, 4 11 702 37 14 952 16, 9, 7 —

203 8, 7, 1 12 453 15, 6, 4 2 703 12, 7, 1 6 953 168 2

204 27 3 454 8, 6, 1 19 704 8, 3, 2 — 954 131 49

205 9, 5, 2 4 455 38 26 705 17 6 955 7, 6, 3 10

206 10, 9, 5 3 456 18, 9, 6 — 706 12, 11, 8 21 956 305 15

207 43 4 457 16 30 707 15, 8, 5 6 957 10, 9, 6 6

208 9, 3, 1 — 458 203 6 708 15 1 958 13, 9, 4 6

209 6 2 459 12, 5, 2 8 709 4, 3, 1 4 959 143 8

210 7 1,2 460 19 1 710 13, 12, 4 3 960 12, 9, 3 —

211 11, 10, 8 10 461 7, 6, 1 6 711 92 8 961 18 16

Table A.2—Basis table  (continued)
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212 105 5 462 73 10 712 5, 4, 3 — 962 15, 8, 5 14

213 6, 5, 2 4 463 93 12 713 41 2 963 20, 9, 6 4

214 73 3 464 19, 18, 13 — 714 23 5 964 103 9

215 23 6 465 31 4 715 7, 4, 1 4 965 15, 4, 2 2

216 7, 3, 1 — 466 14, 11, 6 1 716 183 5 966 201 7

217 45 6 467 11, 6, 1 6 717 16, 7, 1 18 967 36 16

218 11 5 468 27 21 718 165 15 968 9, 5, 2 —

219 8, 4, 1 4 469 9, 5, 2 4 719 150 2 969 31 4

220 7 3 470 9 2 720 9, 6, 4 — 970 11, 7, 2 9

221 8, 6, 2 2 471 1 8 721 9 6 971 6, 2, 1 6

222 5, 4, 2 10 472 11, 3, 2 — 722 231 26 972 7 5

223 33 12 473 200 2 723 16, 10, 4 2 973 13, 6, 4 6

224 9, 8, 3 — 474 191 5 724 207 13 974 9, 8, 7 2

225 32 22 475 9, 8, 4 4 725 9, 6, 5 2 975 19 2

226 10, 7, 3 1 476 9 5 726 5 2 976 17, 10, 6 —

227 10, 9, 4 24 477 16, 15, 7 46 727 180 4 977 15 8

228 113 9 478 121 7 728 4, 3, 2 — 978 9, 3, 1 6

229 10, 4, 1 12 479 104 8 729 58 24 979 178 4

230 8, 7, 6 2 480 15, 9, 6 — 730 147 13 980 8, 7, 6 9

231 26 2 481 138 6 731 8, 6, 2 8 981 12, 6, 5 32

232 9, 4, 2 — 482 9, 6, 5 5 732 343 11 982 177 15

233 74 2 483 9, 6, 4 2 733 8, 7, 2 10 983 230 14

234 31 5 484 105 3 734 11, 6, 1 3 984 24, 9, 3 —

235 9, 6, 1 4 485 17, 16, 6 18 735 44 8 985 222 10

236 5 3 486 81 10 736 13, 8, 6 — 986 3 2

237 7, 4, 1 10 487 94 4 737 5 6 987 16, 13, 12 6

238 73 7 488 4, 3, 1 — 738 347 5 988 121 7

239 36 2 489 83 12 739 18, 16, 8 4 989 10, 4, 2 2

240 8, 5, 3 — 490 219 1 740 135 3 990 161 10

241 70 6 491 11, 6, 3 2 741 9, 8, 3 2 991 39 18

242 95 6 492 7 13 742 85 15 992 17, 15, 13 —

243 8, 5, 1 2 493 10, 5, 3 4 743 90 2 993 62 2

244 111 3 494 17 3 744 13, 11, 1 — 994 223 10

245 6, 4, 1 2 495 76 2 745 258 10 995 15, 12, 2 14

246 11, 2, 1 11 496 16, 5, 2 — 746 351 2 996 65 43

Table A.2—Basis table  (continued)
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A.8.2 Random search for other irreducible polynomials

The basic method for producing an irreducible polynomial modulo 2 of degree m is as follows: 

— Generate a random polynomial (perhaps subject to certain conditions, such as number of terms). 

— Test for irreducibility (via A.5.5 with r = 1). 

— Repeat until an irreducible is found. 

The polynomial f(t) should satisfy the following three conditions, since these are necessary for irreducibility
modulo 2:

— f(t) must have an odd number of (nonzero) terms.

— The constant term of f(t) must be 1.

— There must be at least one odd-degree term.

If a random f(t) of degree at most m satisfies these conditions, then the probability that f(t) is irreducible is
roughly 4/m. Thus, one can expect to find an irreducible after ≈ m/4 random tries.

A.8.3 Irreducibles from other irreducibles

If f(t) is an irreducible of degree m, then so are the following five polynomials:

g(t) = tm f(1/t)

h(t) = g(t + 1)

j(t) = tm h(1/t)

k(t) = j(t + 1)

l(t) = tm k(1/t)

= f(t + 1)

Example:

f(t) = t5 + t2 + 1

g(t) = t5 + t3 + 1

h(t) = t5 + t4 + t3 + t2 + 1

247 82 6 497 78 20 747 10, 6, 4 6 997 12, 6, 3 4

248 15, 14, 10 — 498 155 9 748 19 7 998 101 2

249 35 8 499 11, 6, 5 4 749 7, 6, 1 2 999 59 8

250 103 9 500 27 11 750 309 14 1000 5, 4, 3 —

251 7, 4, 2 2 501 5, 4, 2 10 751 18 6

Table A.2—Basis table  (continued)

m Coeff GB 
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j(t) = t5 + t3 + t2 + t + 1

k(t) = t5 + t4 + t3 + t + 1

l(t) = t5 + t4 + t2 + t + 1

Another construction is as follows. Suppose that f(t) is an irreducible of odd degree m. Define the
polynomials h0(t), h1(t), h2(t) by

f(t) = h0(t3) + t h1(t3) + t2 h2(t3)

Then

g(t) = h0(t)3 + t h1(t)3 + t2 h2(t)3 + t h0(t) h1(t) h2(t)

is an irreducible of degree m.

More generally, if r is an odd number relatively prime to 2m – 1, then define h0(t), …, hr–1(t) by

Define the functions

wk(t) = tk/r hk(t)

Let M be the r-by-r matrix with entries

Mi,j = wi–j(t)

where the subscripts of w are taken modulo r. Then, the determinant of M is an irreducible of degree m.

A.8.4 Irreducibles of even degree

If m = 2d, then one can produce an irreducible of degree m more efficiently by generating an irreducible of
degree d and using the following degree-doubling technique.

If

is irreducible, then so is

Note that the sum over i is allowed to be empty.

f t( )  
k 0=

r 1–

∑ tkhk tr( )=

p t( ) td td 1– 1 t
ki

i

∑+ + +=

P t( ) t2d td t2d 2– td 1– 1 t
2ki t

ki+( )
i
∑+ + + + +=



IEEE
Std 1363-2000 IEEE STANDARD SPECIFICATIONS FOR

114 Copyright © 2000 IEEE. All rights reserved.

Examples:

p(t) = t3 + t2 + 1

P(t) =t6 + t4 + t3 + t2 + 1

p(t) = t5 + t4 + t3 +t + 1

P(t) = t10 + t8 + t6 + t5 + t4 +t3 + t2 + t + 1

p(t) = t5 + t4 + t2 + t + 1

P(t) = t10 + t8 + t5 + t + 1

If an irreducible f(t) is not of the form required for degree doubling, then it may be used to construct one that
is suitable via the methods of A.8.3. In particular, if m = 2d with d odd, then either f(t) or f(t + 1) is of the
suitable form.

Input: An irreducible f(t) of odd degree d

Output: An irreducible P(t) of degree 2d

1. If f(t) has a degree d – 1 term, then set p(t) ← f(t); else set p(t) ← f(t + 1).

2. Apply degree doubling to p(t) and output the result.

The degree doubling technique can often be applied more than once. The following algorithm treats a family
of cases in which this is possible.

Input: An irreducible f(t) of odd degree d satisfying at least one of the following three conditions:

1. f(t) contains both degree 1 and degree d – 1 terms.

2. f(t) contains a degree 1 term and contains an even number of odd-degree terms in all.

3. f(t) contains a degree d – 1 term and contains an odd number of odd-degree terms in all.

Output: An irreducible of degree 4d

1. If f(t) satisfies condition 3 above, then set p(t) ← f(t); else set p(t) ← td f(1/t).

2. Apply degree doubling to p(t) to produce an irreducible P(t) of degree 2d.

3. Set g(t) ← P(t + 1).

4. Set h(t) ← t2d g(1/t).

5. Apply degree doubling to h(t) and output the result.

A.8.5 Irreducible trinomials

A search for irreducible trinomials should take into account the following restrictions on which trinomials
can be irreducible modulo 2.

Suppose the trinomial to be checked is f(t) = tm + tk + 1, where m > k > 0. Note that since f(t) is irreducible if,
and only if, tm + tm–k + 1 is irreducible, then only half the possible k need to be checked. For instance, it is
sufficient to check for k ≤ m/2. Then f(t) is reducible in all of the following cases:
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— m and k are both even.

— m is a multiple of 8.

— m = hn and k = 2h or (n – 2)h, for some odd numbers n, h, such that n ≡ ± h (mod 8).

— k = 2h or m – 2h for some h not dividing m, and m ≡ ± 3 (mod 8).

— m = 2n, where n is odd and n ≡ k (mod 4), except for the polynomials t2k + tk + 1 with k a power of 3.
(All of these polynomials are irreducible.)

A.9 Elliptic curves: overview

A.9.1 Introduction

A plane curve is defined to be the set of points satisfying an equation F (x, y) = 0. The simplest plane curves
are lines (whose defining equation has degree 1 in x and y) and conic sections (degree 2 in x and y). The next
simplest are the cubic curves (degree 3). These include elliptic curves, so called because they arose
historically from the problem of computing the circumference of an ellipse. 

NOTE—See Silverman [B139] for a mathematically precise definition of “elliptic curve.” This standard restricts its
attention to cubic plane curves, although other representations could be defined. The coefficients of such a curve must
satisfy a side condition to guarantee the mathematical property of nonsingularity. The side condition is given below for
each family of curves.

In cryptography, the elliptic curves of interest are those defined over finite fields. That is, the coefficients of
the defining equation F (x, y) = 0 are elements of GF (q), and the points on the curve are of the form
P = (x, y), where x and y are elements of GF (q). Examples are given below.

The Weierstrass equation

There are several kinds of defining equations for elliptic curves, but the most common are the Weierstrass
equations.

— For the prime finite fields GF (p) with p > 3, the Weierstrass equation is

y2 = x3 + ax + b

where a and b are integers modulo p for which 4a3 + 27b2 ≡⁄ 0 (mod p).

— For the binary finite fields GF (2m), the Weierstrass equation is

y2 + xy = x3 + ax2 + b

where a and b are elements of GF (2m) with b ≠ 0.

NOTE—There is another kind of Weierstrass equation over GF (2m), giving what are called supersingular curves.
However, these curves are cryptographically weak (see Menezes, Okamoto, and Vanstone [B111]); thus, they are omitted
from this standard.

Given a Weierstrass equation, the elliptic curve E consists of the solutions (x, y) over GF (q) to the defining
equation, along with an additional element called the point at infinity (denoted O). The points other than O
are called finite points. The number of points on E (including O) is called the order of E and is denoted by
#E (GF (q)).
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Example: Let E be the curve

y2 = x3 + 10 x + 5

over the field GF (13). Then the points on E are

{O, (1,4), (1,9), (3,6), (3,7), (8,5), (8,8), (10,0), (11,4), (11,9)}

Thus, the order of E is #E (GF (13)) = 10.

Example: Let E be the curve

y2 + xy = x3 + (t + 1) x2 + 1

over the field GF (23) given by the polynomial basis with field polynomial t3 + t + 1 = 0. Then the points on
E are

{O, ((000), (001))

((010), (100)), ((010), (110)), ((011), (100)), ((011), (111)),

((100), (001)), ((100), (101)), ((101), (010)), ((101), (111)),

((110), (000)), ((110), (110)), ((111), (001)), ((111), (110))}

Thus, the order of E is #E (GF (23)) = 14.

For more information on elliptic curve cryptography, see Menezes [B109].

A.9.2 Operations on elliptic curves

There is an addition operation on the points of an elliptic curve that possesses the algebraic properties of
ordinary addition (e.g., commutativity and associativity). This operation can be described geometrically as
follows:

Define the inverse of the point P = (x, y) to be

Then, the sum P + Q of the points P and Q is the point R, with the property that P, Q, and –R lie on a
common line.

The point at infinity

The point at infinity O plays a role analogous to that of the number 0 in ordinary addition. Thus

P + O = P

P + (– P) = O

for all points P.

P–
x, y–( ) if q p prime,=

x,x y+( ) if q 2m=



=
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Full addition

When implementing the formulas for elliptic curve addition, it is necessary to distinguish between doubling
(adding a point to itself) and adding two distinct points that are not inverses of each other, because the
formulas are different in the two cases. Besides this, there are also the special cases involving O. By full
addition is meant choosing and implementing the appropriate formula for the given pair of points.
Algorithms for full addition are given in A.10.1, A.10.2, and A.10.8.

Scalar multiplication

Elliptic curve points can be added but not multiplied. It is, however, possible to perform scalar
multiplication, which is another name for repeated addition of the same point. If n is a positive integer and P
a point on an elliptic curve, the scalar multiple nP is the result of adding n copies of P. Thus, for example,
5P = P + P + P + P + P.

The notion of scalar multiplication can be extended to zero and the negative integers via

0P = O,        (–n) P = n (–P)

A.9.3 Elliptic curve cryptography

Orders

The order of a point P on an elliptic curve is the smallest positive integer r such that rP = O. The order
always exists and divides the order of the curve #E(GF (q)). If k and l are integers, then kP = lP if, and only
if, k ≡ l (mod r).

Elliptic curve discrete logarithms

Suppose that the point G on E has prime order r, where r2 does not divide the order of the curve #E(GF (q)).
Then, a point P satisfies P = lG for some l if, and only if, rP = O. The coefficient l is called the elliptic curve
discrete logarithm of P (with respect to the base point G). The elliptic curve discrete logarithm is an integer
modulo r.

EC-based cryptography

Suppose that the base point G on E has order r as described in the preceding paragraph. Then a key pair can
be defined as follows:

— The private key s is an integer modulo r.

— The corresponding public key W is a point on E defined by W := sG.

It is necessary to compute an elliptic curve discrete logarithm in order to derive a private key from its
corresponding public key. For this reason, public-key cryptography based on key pairs of this type relies for
its security on the difficulty of the elliptic curve discrete logarithm problem. Thus, it is an example of EC-
based cryptography. The difficulty of the elliptic curve discrete logarithm problem is discussed in D.4.2.

A.9.4 Analogies with DL

The discrete logarithm problem in finite fields GF (q)* and the elliptic curve discrete logarithm are, in some
sense, the same abstract problem in two different settings. As a result, the primitives and schemes of DL- and
EC-based cryptography are closely analogous to each other. Table A.3 makes these analogies explicit.
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A.9.5 Curve orders

The most difficult part of generating EC parameters is finding a base point of prime order. Generating such a
point requires knowledge of the curve order n = #E(GF (q)). Since r must divide n, one has the following
problem: given a field F = GF (q), find an elliptic curve defined over F whose order is divisible by a
sufficiently large prime r. (Note that “sufficiently large” is defined in terms of the desired security; see A.9.3
and D.4.2.) This subclause discusses this problem.

Basic facts

— If n is the order of an elliptic curve over GF (q), then the Hasse bound is

Thus, the order of an elliptic curve over GF (q) is approximately q.

— If q is a prime p, let n be the order of the curve y2 = x3 + ax + b, where a and b are both nonzero. Then
if λ ≠ 0, the order of the curve y2 = x3 + aλ2x + bλ3 is n if λ is a square modulo p, and 2p + 2 – n
otherwise. (This fact allows one to replace a given curve by one with the same order and satisfying
some extra condition, such as a = p – 3, which will be used in A.10.4.) In the case b = 0, there are
four possible orders; in the case a = 0, there are six. The formulas for these orders can be found in
step 6 of A.14.2.3.

— If q = 2m, let n be the order of the curve y2 + xy = x3 + ax2 + b, where a and b are both nonzero. Then
if λ ≠ 0, the order of the curve y2 + xy = x3 + (a + λ) x2 + b is n if λ has trace 0, and 2m+1 + 2 – n
otherwise (see A.4.5). (This fact allows one to replace a given curve by one with the same order and
satisfying some extra condition, such as a = 0, which will be used in A.10.7.)

— If q = 2m, then the curves y2 + xy = x3 + ax2 + b and y2 + xy = x3 + a2 x2 + b2 have the same order.

Near primality

Given a trial division bound lmax, the positive integer k is called smooth if every prime divisor of k is at most
lmax. Given large positive integers rmin and rmax, u is called nearly prime if u = kr for some prime r in the
interval rmin ≤ r ≤ rmax and some smooth integer k. (The requirement that k be smooth is omitted in most
definitions of near primality. It is included here to guarantee that there exists an efficient algorithm to check
for near primality.) In the case in which a prime order curve is desired, the bound lmax is set to 1.

NOTE—Since all elliptic curves over GF (q) have order at most umax = q + 2  + 1, then rmax should be no greater
than umax. [If no maximum is desired (e.g., as in ANSI X9.62-1998 [B11]), then one takes rmax ← umax.] Moreover, if
rmin is close to umax, then there will be a small number of possible curves to choose from, so that finding a suitable one
will be more difficult. If a prime-order curve is desired, a convenient choice is rmin = q + .

Table A.3—Comparison between DL- and EC-based cryptography

DL EC

Setting GF (q)* Curve E over GF (q)

Basic operation Multiplication in GF (q) Addition of points

Main operation Exponentiation Scalar multiplication

Base element Generator g Base point G

Base element order Prime r Prime r

Private key s (integer modulo r) s (integer modulo r)

Public key w [element of GF (q)] W (point on E)

q 2 q– 1+ n q 2 q 1++≤ ≤

q

q
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Finding curves of appropriate order

In order to perform EC-based cryptography, it is necessary to be able to find an elliptic curve. The task is as
follows: given a field size q and lower and upper bounds rmin and rmax for base point order, find an elliptic
curve E over GF (q) and a prime r in the interval rmin ≤ r ≤ rmax, which is the order of a point on E.

Since large numbers are difficult to factor in general, a trial division bound lmax is chosen, and the search is
restricted to nearly prime curve orders (see A.15.5). There are four approaches to selecting such a curve, as
follows:

— Select a curve at random, compute its order directly, and repeat the process until an appropriate order
is found.

— Select curve coefficients with particular desired properties, compute the curve order directly, and
repeat the process until an appropriate order is found.

— If q = 2m, where m is divisible by a “small” integer d, then select a curve defined over GF (2d) and
compute its order [over GF (2m)] via A.11.6. Repeat, if possible, until an appropriate order is found.

— Search for an appropriate order, and construct a curve of that order.

The first approach is described in A.12.4 and A.12.6 (except for the point-counting algorithm, which is
omitted). The second approach is not described, because its details depend on the particular desired
properties. The third approach is given in A.11.4 through A.11.6. The fourth approach is implemented using
the complex multiplication (CM) method in A.14.

A.9.6 Representation of points

This subclause discusses the issues involved in choosing representations for points on elliptic curves, for
purposes of internal computation and for external communication.

Affine coordinates

A finite point on E is specified by two elements x, y in GF (q) satisfying the defining equation for E. These
are called the affine coordinates for the point. The point at infinity O has no affine coordinates. For purposes
of internal computation, it is most convenient to represent O by a pair of coordinates (x, y) not on E. For
q = 2m, the simplest choice is O = (0,0). For q = p, one chooses O = (0, 0) unless b = 0, in which case
O = (0, 1).

Coordinate compression

The affine coordinates of a point require 2m bits to store and transmit, where q is either 2m or an m-bit prime.
This is far more than is needed, however. For purposes of external communication, therefore, it can be
advantageous to compress one or both of the coordinates.

The y coordinate can always be compressed. The compressed y coordinate, denoted , is a single bit,
defined as follows:

— If q is an odd prime, then := y mod 2, where y is interpreted as a positive integer less than q. Put
another way,  is the rightmost bit of y.

— If q is a power of 2, then  is the rightmost bit of the field element y x–1 (except when x = 0, in which
case  := 0).

ỹ

ỹ
ỹ

ỹ
ỹ
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Compression of x coordinates takes place only when q = 2m. Moreover, the x coordinate of a point can be
compressed if, and only if, the point is twice another point. In particular, every point of prime order can be
compressed. Therefore, x coordinate compression can be used in all cryptographic algorithms specified in
this standard that are based on an elliptic curve over a binary field.

The compressed x coordinate, denoted , is a bit string one bit shorter than the bit string representing x.

The string  is derived from x by dropping a certain bit from the bit string representing x. If F is given by a
normal basis, or if m is odd, then the rightmost bit is dropped. If F is given by a polynomial basis 

{tm–1, …, t, 1}

and m is even, then one drops the rightmost bit corresponding to a basis element of trace 1. In other words,
one drops the bit in the location of the rightmost 1 in the vector τ defined in A.4.5. 

Examples:

a) If m = 5 and x = (11001), then  = (1100).

b) If F is given by the field polynomial t6 + t5 + 1, then

τ = (111110)

so that the compressed form of x = (a5 a4 a3 a2 a1 a0) is  = (a5 a4 a3 a2 a0).

The choice of dropped bit depends only on the representation of the field, not on the choice of point.

NOTES

1—Algorithms for decompressing coordinates are given in A.12.8 through A.12.10. 

2—There are many other possible ways to compress coordinates; the methods given here are the ones that have appeared
in the literature (see Menezes [B110] and Seroussi [B135]).

3—It is a common usage (adopted, in particular, within this standard) to say that the point P is compressed if its y
coordinate is compressed but its x coordinate is not (see E.2.3.1).

Projective coordinates

If division within GF (q) is relatively expensive, then it may pay to keep track of numerators and
denominators separately. In this way, one can replace division by α with multiplication of the denominator
by α. This is accomplished by the projective coordinates X, Y, and Z given by

 

The projective coordinates of a point are not unique because 

(X, Y, Z) = (λ2X, λ3Y, λZ)

for every nonzero λ ∈ GF (q).

The projective coordinates of the point at infinity are (λ2, λ3, 0), where λ ≠ 0.

x̃

x̃

x̃

x̃

x
X

Z2
------,y Y

Z3
------= =
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Other kinds of projective coordinates exist, but the ones given here provide the fastest arithmetic on elliptic
curves (see Chudnovsky and Chudnovsky [B38]). 

The formulas above provide the method for converting a finite point from projective coordinates to affine. To
convert from affine to projective, one proceeds as follows: 

X ← x, Y ← y, Z ← 1

Projective coordinates are well suited for internal computation, but not for external communication because
they require so many bits. They are more common over GF (p), because division tends to be more expensive
there.

A.10 Elliptic curves: algorithms

A.10.1 Full addition and subtraction (prime case)

The following algorithm implements a full addition (on a curve modulo p) in terms of affine coordinates:

Input: A prime p > 3; coefficients a, b for an elliptic curve E: y2 = x3 + ax + b modulo p; points P0 = (x0, y0)
and P1 = (x1, y1) on E

Output: The point P2 := P0 + P1

1. If P0 = O, then output P2 ← P1 and stop.

2. If P1 = O, then output P2 ← P0 and stop.

3. If x0 ≠ x1, then

3.1 Set λ ← (y0 – y1)/(x0 – x1) mod p.

3.2 Go to step 7.

4. If y0 ≠ y1, then output P2 ← O and stop.

5. If y1 = 0, then output P2 ← O and stop.

6. Set λ ← (  + a)/(2y1) mod p.

7. Set x2 ← λ2 – x0 – x1 mod p.

8. Set y2 ← (x1 – x2) λ – y1 mod p.

9. Output P2 ← (x2, y2).

The above algorithm requires three or four modular multiplications and a modular inversion.

To subtract the point P = (x, y), add the point –P = (x, –y).

A.10.2 Full addition and subtraction (binary case)

The following algorithm implements a full addition [on a curve over GF (2m)] in terms of affine coordinates:

Input: A field GF (2m); coefficients a, b for an elliptic curve E: y2 + xy = x3 + ax2 + b over GF (2m); points
P0 = (x0, y0) and P1 = (x1, y1) on E

3x1
2
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Output: The point P2 := P0 + P1

1. If P0 = O, then output P2 ← P1 and stop.

2. If P1 = O, then output P2 ← P0 and stop.

3. If x0 ≠ x1 then

3.1 Set λ ← (y0 + y1)/(x0 + x1).

3.2 Set x2 ← a + λ2 + λ + x0 + x1.

3.3 Go to step 7.

4. If y0 ≠ y1, then output P2 ← O and stop.

5. If x1 = 0, then output P2 ← O and stop.

6. Set

6.1 λ ← x1 + y1/x1.

6.2 x2 ← a + λ2 + λ.

7. y2 ← (x1 + x2) λ + x2 + y1.

8. P2 ← (x2, y2).

The above algorithm requires two general multiplications, a squaring, and a multiplicative inversion.

To subtract the point P = (x, y), add the point –P = (x, x + y).

Further speedup

The two steps

6.1 λ ← x1 + y1/x1

6.2 x2 ← a + λ2 + λ

require a multiplication and an inversion. If GF (2m) is represented by a normal basis, this can be improved
by replacing the two lines with the following steps:

6.1 .

6.2 x2 ← w + b/w.

6.3 Solve the equation µ2 + µ = x2 + a for µ via A.4.7 (normal basis case).

6.4 z ← w + y1.

6.5 If z = µx1, then λ ← µ; else λ ← µ + 1.

NOTE—The determination of whether z = µx1 can be accomplished by computing one bit of the product µx1 (any bit for
which the corresponding bit of x1 is 1) and comparing it to the corresponding bit of z.

This routine is more efficient than the ordinary method, because it replaces the general multiplication by a
multiplication by the constant b (see Schroeppel et al. [B133]).

w x1
2←
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A.10.3 Elliptic scalar multiplication

Scalar multiplication can be performed efficiently by the addition-subtraction method outlined below.

Input: An integer n and an elliptic curve point P

Output: The elliptic curve point nP

1. If n = 0, then output O and stop.

2. If n < 0, then set Q ← (–P) and k ← (–n); else set Q ← P and k ← n.

3. Let hl hl–1 ... h1 h0 be the binary representation of 3k, where the most significant bit hl is 1.

4. Let kl kl–1 ... k1 k0 be the binary representation of k.

5. Set S ← Q.

6. For i from l – 1 downto 1 do

Set S ← 2S.

If hi = 1 and ki = 0, then compute S ← S + Q via A.10.1 or A.10.2.

If hi = 0 and ki = 1, then compute S ← S – Q via A.10.1 or A.10.2.

7. Output S.

There are several modifications that improve the performance of this algorithm. These methods are
summarized in Gordon [B65].

A.10.4 Projective elliptic doubling (prime case)

The projective form of the doubling formula on the curve y2 = x3 + ax + b modulo p is

2 (X1, Y1, Z1) = (X2, Y2, Z2)

where

Z2 = 2Y1Z1

X2 = M2 – 2S

Y2 = M (S – X2) – T.

The algorithm Double given below performs these calculations.

Input: A modulus p; the coefficients a and b defining a curve E modulo p; projective coordinates (X1, Y1, Z1)
for a point P1 on E

Output: Projective coordinates (X2, Y2, Z2) for the point P2 = 2P1

M 3X1
2 aZ1

4+=

S 4X1Y 1
2=

T 8Y 1
4=
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1. T1 ← X1.

2. T2 ← Y1.

3. T3 ← Z1.

4. If T2 = 0 or T3 = 0, then output (1, 1, 0) and stop.

5. If a = p – 3 then

T5 ← T1 – T4

T4 ← T1 + T4

T5 ←T4 × T5

T4 ← 3 × Τ5 (this step computes Μ)

                    else

T4 ← a

T5 ← T4 × T5

T4 ←3 × T4 

T4 ← T4 + T5 (this step computes Μ).

6. T3 ← T2 × T3.

7. T3 ← 2 × T3 (this step computes Z2).

8. .

9. T5 ← T1 × T2.

10. T5 ← 4 × T5 (this step computes S).

11. .

12. T1 ← T1 – 2 × T5 (this step computes X2).

13. .

14. T2 ← 8 × T2 (this step computes T).

15. T5 ← T5 – T1.

16. T5 ← T4 × T5.

17. T2 ← T5 – T2 (this step computes Y2).

18. X2 ← T1.

19. Y2 ← T2.

20. Z2 ← T3.

T 4 T 3
2←

T 5 T 3
2←

T 5 T 5
2←

T 4 T 1
2←

T 2 T 2
2←

T 1 T 4
2←

T 2 T 2
2←



IEEE
PUBLIC-KEY CRYPTOGRAPHY Std 1363-2000

Copyright © 2000 IEEE. All rights reserved. 125

This algorithm requires ten field multiplications and five temporary variables. If a is small enough that
multiplication by a can be done by repeated addition, only 9 field multiplications are required. If a = p – 3,
then only eight field multiplications are required (see Chudnovsky and Chudnovsky [B38]). The proportion
of elliptic curves modulo p that can be rescaled so that a = p – 3 is about 1/4 if p ≡ 1 (mod 4) and about 1/2
if p ≡ 3 (mod 4) (see A.9.5).

A.10.5 Projective elliptic addition (prime case)

The projective form of the adding formula on the curve y2 = x3 + ax + b modulo p is

(X0, Y0, Z0) + (X1, Y1, Z1) = (X2, Y2, Z2)

where

W = U0 – U1

R = S0 – S1

T = U0 + U1

M = S0 + S1

Z2 = Z0Z1W

X2 = R2 – TW2

V = TW2 – 2X2

2Y2 = VR – MW3.

The algorithm Add given below performs these calculations.

Input: A modulus p; the coefficients a and b defining a curve E modulo p; projective coordinates (X0, Y0, Z0)
and (X1, Y1, Z1) for points P0 and P1 on E, where Z0 and Z1 are nonzero

Output: Projective coordinates (X2, Y2, Z2) for the point P2 = P0 + P1, unless P0 = P1. In this case, the triplet
(0, 0, 0) is returned. [The triplet (0, 0, 0) is not a valid projective point on the curve, but rather a marker
indicating that routine Double should be used.]

1. T1 ← X0 [this step computes U0 (if Z1 = 1)].

2. T2 ← Y0 [this step computes S0 (if Z1 = 1)].

3. T3 ← Z0.

4. T4 ← X1.

5. T5 ← Y1.

6. If Z1 ≠ 1, then

                                 T6 ← Z1 

U0 X0Z1
2=

S0 Y 0Z1
3=

U1 X1Z0
2=

S1 Y 1Z0
3=
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                                 T7← 

                                 T1← T1 × T7 [this step computes U0 (if Z1 ≠ 1)]

                                 T7 ←T6 × T7

                                 T2 ← T2 × T7 [this step computes S0 (if Z1 ≠ 1)].

7. T7 ← .

8. T4 ←T4 × T7 (this step computes U1).

9. T7 ← T3 × T7.

10. T5 ← T5 × T7 (this step computes S1).

11. T4 ← T1 – T4 (this step computes W).

12. T5 ← T2 – T5 (this step computes R).

13. If T4 = 0, then

               If T5 = 0, output (0,0,0) and stop;

               else output (1, 1, 0) and stop.

14. T1 ← 2 × T1 – T4 (this step computes T).

15. T2 ← 2 × T2 – T5 (this step computes M).

16. If Z1 ≠ 1, then

               T3 ← T3 × T6.

17. T3 ← T3 × T4 (this step computes Z2).

18. T7 ← .

19. T4 ← T4 × T7.

20. T7 ← T1 × T7. 

21. T1 ← .

22. T1 ← T1 – T7 (this step computes X2).

23. T7 ← T7 – 2 × T1 (this step computes V).

24. T5 ← T5 × T7.

25. T4 ← T2 × T4.

26. T2 ← T5 – T4.

27. T2 ← T2/2 (this step computes Y2).

28. X2 ← T1.

29. Y2 ← T2.

30. Z2 ← T3.

NOTE—The modular division by two in step 27 can be carried out in the same way as in A.2.4.

This algorithm requires sixteen field multiplications and seven temporary variables. In the case Z1 = 1, only
eleven field multiplications and six temporary variables are required. (This is the case of interest for elliptic
scalar multiplication.)

T 6
2

T 3
2

T 4
2

T 5
2
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A.10.6 Projective elliptic doubling (binary case)

The projective form of the doubling formula on the curve y2 + xy = x3 + ax2 + b over GF (2m) does not use
the coefficient b, but rather the field element

computed from b by m – 2 squarings (thus, b = c4). The formula is

2 (X1, Y1, Z1) = (X2, Y2, Z2)

where

.

The algorithm Double given below performs these calculations.

Input: A field of 2m elements; the field elements a and c specifying a curve E over GF (2m); projective
coordinates (X1, Y1, Z1) for a point P1 on E

Output: Projective coordinates (X2, Y2, Z2) for the point P2 = 2P1

1. T1 ← X1.

2. T2 ← Y1. 

3. T3 ← Z1.

4. T4 ← c.

5. If T1 = 0 or T3 = 0, then output (1, 1, 0) and stop.

6. T2 ← T2 × T3.

7. T3 ← 

8. T4 ← T3 × T4.

9. T3 ← T1 × T3 (this step computes Z2).

10. T2 ← T2 + T3.

11. T4 ← T1 + T4.

12. T4 ← .

13. T4 ←  (this step computes X2).

14. T1 ← .

15. T2 ←T1 + T2 (this step computes U).

16. T2 ← T2 × T4.

c := b2m 2–

Z2 X1Z1
2=

X2 X1 cZ1
2+( )

4
=

U Z2 X1
2 Y 1Z1+ +=

Y 2 X1
4Z2 U X2+=

T 3
2

T 4
2

T 4
2

T 1
2
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17. T1 ← .

18. T1 ← T1 × T3.

19. T2 ← T1 + T2 (this step computes Y2).

20. T1 ← T4.

21. X2 ← T1.

22. Y2 ← T2.

23. Z2 ← T3.

This algorithm requires five field squarings, five general field multiplications, and four temporary variables.

A.10.7 Projective elliptic addition (binary case)

The projective form of the adding formula on the curve y2 + xy = x3 + ax2 + b over GF (2m) is

(X0, Y0, Z0) + (X1, Y1, Z1) = (X2, Y2, Z2)

where

W = U0 + U1

R = S0 + S1

L = Z0 W

V = RX1 + LY1

Z2 = LZ1

T = R + Z2

Y2 = TX2 + VL2.

The algorithm Add given below performs these calculations.

Input: A field of 2m elements; the field elements a and b defining a curve E over GF (2m); projective
coordinates (X0, Y0, Z0) and (X1, Y1, Z1) for points P0 and P1 on E, where Z0 and Z1 are nonzero

Output: Projective coordinates (X2, Y2, Z2) for the point P2 = P0 + P1, unless P0 = P1. In this case, the triplet
(0, 0, 0) is returned. [The triplet (0, 0, 0) is not a valid projective point on the curve, but rather a marker
indicating that routine Double should be used.]

1. T1 ← X0 [this step computes U0 (if Z1 = 1)].

2. T2 ← Y0 [this step computes S0 (if Z1 = 1)].

3. T3 ← Z0.

T 1
2

U0 X0Z1
2=

S0 Y 0Z1
3=

U1 X1Z0
2=

S1 Y 1Z0
3=

X2 aZ2
2 TR W 3+ +=
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4. T4 ← X1.

5. T5 ← Y1

6. If a ≠ 0, then

   T9 ← a.

7. If Z1 ≠ 1, then

   T6 ← Z1 

   T7 ← 

   T1 ← T1 × T7 [this step computes U0 (if Z1 ≠ 1)]

   T7 ← T6 × T7

   T2 ← T2 × T7 [this step computes S0 (if Z1 ≠ 1)].

8. T7 ← .

9. T8 ← T4 × T7 (this step computes U1).

10. T1 ← T1 + T8 (this step computes W).

11. T7 ← T3 × T7.

12. T8 ← T5 × T7 (this step computes S1).

13. T2 ← T2 + T8 (this step computes R).

14. If T1 = 0, then

              If T2 = 0, output (0, 0, 0) and stop;

              else output (1, 1, 0) and stop.

15. T4 ← T2 × T4.

16. T3 ← T1 × T3 [this step computes L (and Z2 if Z1 = 1)].

17. T5 ← T3 × T5.

18. T4 ← T4 + T5 (this step computes V).

19. T5 ← .

20. T7 ← T4 × T5.

21. If Z1 ≠ 1, then

               T3 ← T3 × T6 [this step computes Z2 (if Z1 ≠ 1)].

22. T4 ← T2 + T3 (this step computes T).

23. T2 ← T2 × T4.

24. T5 ← .

25. T1 ←T1 × T5.

26. If a ≠ 0, then

             T8 ← 

             T9 ← T8 × T9

             T1 ← T1 + T9.

27. T1 ← T1 + T2 (this step computes X2).

T 6
2

T 3
2

T 3
2

T 1
2

T 3
2
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28. T4 ← T1 × T4.

29. T2 ← T4 + T7 (this step computes Y2).

30. X2 ← T1.

31. Y2 ← T2.

32. Z2 ← T3.

This algorithm requires five field squarings, fifteen general field multiplications and nine temporary
variables. If a = 0, then only four field squarings, fourteen general field multiplications, and eight temporary
variables are required. [About half of the elliptic curves over GF (2m) can be rescaled so that a = 0. They are
precisely the curves with order divisible by four (see A.9.5)].

In the case Z1 = 1, only four field squarings, eleven general field multiplications, and eight temporary
variables are required. If a = 0, then only three field squarings, ten general field multiplications, and seven
temporary variables are required. (These are the cases of interest for elliptic scalar multiplication.)

A.10.8 Projective full addition and subtraction

The following algorithm FullAdd implements a full addition in terms of projective coordinates.

Input: A field of q elements; the field elements a and b defining a curve E over GF (q); projective
coordinates (X0, Y0, Z0) and (X1, Y1, Z1) for points P0 and P1 on E

Output: Projective coordinates (X2, Y2, Z2) for the point P2 = P0 + P1

1. If Z0 = 0, then output (X2, Y2, Z2) ← (X1, Y1, Z1) and stop.

2. If Z1 = 0, then output (X2, Y2, Z2) ← (X0, Y0, Z0) and stop.

3. Set (X2, Y2, Z2) ← Add[(X0, Y0, Z0), (X1, Y1, Z1)].

4. If (X2, Y2, Z2) = (0, 0, 0), then set (X2, Y2, Z2) ← Double[(X1, Y1, Z1)].

5. Output (X2, Y2, Z2).

An elliptic subtraction is implemented as follows:

Subtract[(X0, Y0, Z0), (X1, Y1, Z1)] = FullAdd[(X0, Y0, Z0), (X1, U, Z1)]

where

.

A.10.9 Projective elliptic scalar multiplication

Input: An integer n and an elliptic curve point P = (X, Y, Z)

Output: The elliptic curve point nP = (X*, Y*, Z*)

1. If n = 0 or Z = 0, then output (1, 1, 0) and stop.

2. Set

U
Y– 1

X1Z1 Y 1+
  

mod p

  

    if q p=

       if q 2m=



=
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2.1 X* ← X

2.2 Z* ← Z

2.3 Z1 ←1.

3. If n < 0, then go to step 6.

4. Set

4.1 k ← n

4.2 Y* ← Y.

5. Go to step 8.

6. Set k ← (–n).

7. If q = p, then set Y* ← –Y (mod p); else set Y* ← XZ +Y.

8. If Z* = 1, then set X1 ← X*, Y1 ← Y*; else set X1 ← X*/(Z*)2, Y1 ← Y* / (Z*)3.

9. Let hl hl–1 ... h1 h0 be the binary representation of 3k, where the most significant bit hl is 1.

10. Let kl kl–1...k1 k0 be the binary representation of k.

11. For i from l – 1 downto 1 do

11.1 Set (X*, Y*, Z*) ← Double[(X*, Y*, Z*)].

11.2 If hi = 1 and ki = 0, then set (X*, Y*, Z*) ← FullAdd[(X*, Y*, Z*), (X1, Y1, Z1)].

11.3 If hi = 0 and ki = 1, then set (X*, Y*, Z*) ← Subtract[(X*, Y*, Z*), (X1, Y1, Z1)].

12. Output (X*, Y*, Z*).

There are several modifications that improve the performance of this algorithm. These methods are
summarized in Gordon [B65].

A.11 Functions for elliptic curve parameter and key generation

A.11.1 Finding a random point on an elliptic curve (prime case)

The following algorithm provides an efficient method for finding a random point (other than O) on a given
elliptic curve over the finite field GF (p):

Input: A prime p > 3 and the parameters a, b of an elliptic curve E modulo p

Output: A randomly generated point (other than O) on E

1. Choose random x with 0 ≤ x < p.

2. Set α ← x3 + ax + b mod p.

3. If α = 0, then output (x, 0) and stop.

4. Apply the appropriate technique from A.2.5 to find a square root modulo p of α or determine
that none exists.

5. If the result of step 4 indicates that no square roots exist, then go to step 1; otherwise, the output
of step 4 is an integer β with 0 < β < p such that

          β2 ≡ a (mod p).

6. Generate a random bit µ and set y ← (–1)µ β.

7. Output (x, y).
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A.11.2 Finding a random point on an elliptic curve (binary case)

The following algorithm provides an efficient method for finding a random point (other than O) on a given
elliptic curve over the finite field GF (2m):

Input: A field GF (2m) and the parameters a, b of an elliptic curve E over GF (2m)

Output: A randomly generated point (other than O) on E

1. Choose random x in GF (2m).

2. If x = 0, then output (0, ) and stop.

3. Set α ← x3 + ax2 + b.

4. If α = 0, then output (x, 0) and stop.

5. Set β ← x –2 α.

6. Apply the appropriate technique from A.4.7 to find an element z for which z2 + z = β or
determine that none exists.

7. If the result of step 6 indicates that no solutions exist, then go to step 1; otherwise, the output of
step 6 is a solution z.

8. Generate a random bit µ and set y ← (z + µ) x.

9. Output (x, y).

A.11.3 Finding a point of large prime order

If the order #E(GF (q)) = u of an elliptic curve E is nearly prime, the following algorithm efficiently
produces a random point on E whose order is the large prime factor r of u = kr. (See A.9.5 for the definition
of nearly prime.)

Input: A prime r; a positive integer k not divisible by r; an elliptic curve E over the field GF (q)

Output: If #E(GF (q))= kr, a point G on E of order r. If not, the message “wrong order.”

1. Generate a random point P (not O) on E via A.11.1 or A.11.2.

2. Set G ← kP.

3. If G = O, then go to step 1.

4. Set Q ← rG.

5. If Q ≠ O, then output “wrong order” and stop.

6. Output G.

A.11.4 Curve orders over small binary fields

If d is “small” (i.e., it is feasible to perform 2d arithmetic operations), then the order of the curve y2 + xy = x3

+ ax2 + b over GF (2d) can be calculated directly as follows: Let

µ = (–1)Tr(a)

For each nonzero x ∈ GF (2d), let

λ (x) = Tr (x + b/x2)

b2m 1–
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Then

A.11.5 Curve orders over extension fields

Given the order of an elliptic curve E over a finite field GF (2d), the following algorithm computes the order
of E over the extension field GF (2de):

Input: Positive integers d and e; an elliptic curve E defined over GF (2d); the order w of E over GF (2d)

Output: The order u of E over GF (2de)

1. Set P ← 2d + 1 – w and Q ← 2d.

2. Compute via A.2.4 the Lucas sequence element Ve.

3. Compute u := 2de + 1 – Ve.

4. Output u. 

A.11.6 Curve orders via subfields

The algorithms of A.11.4 and A.11.5 allow construction of elliptic curves with known orders over GF (2m),
provided that m is divisible by an integer d that is small enough for A.11.4. The following algorithm finds
such curves with nearly prime orders when such exist. (See A.9.5 for the definition of nearly prime.)

Input: A field GF (2m); a subfield GF (2d) for some (small) d dividing m; lower and upper bounds rmin and
rmax for the base point order

Output: Elements a, b ∈ GF (2m) specifying an elliptic curve E, along with the nearly prime order
n = #E(GF (2m)), if one exists; otherwise, the message “no such curve”

1. Select elements a0, b0 ∈ GF (2d) such that b0 has not already been selected. (If all the possible
values for b0’s have already been tried, then output the message “no such curve” and stop.) Let
E be the elliptic curve y2 + xy = x3 + a0 x2 + b0.

2. Compute the order w = #E(GF (2d)) via A.11.4.

3. Compute the order u = #E(GF (2m)) via A.11.5.

4. Test u for near-primality via A.15.5.

5. If u is nearly prime, then set λ ← 0 and n ← u and go to step 9.

6. Set u′ = 2m+1 + 2 – u.

7. Test u′ for near-primality via A.15.5.

8. If u′ is nearly prime, then set λ ← 1 and n ← u′, else go to step 1.

9. Find the elements a1, b1 ∈ GF (2m) corresponding to a0 and b0 via A.5.7.

10. If λ = 0, then set τ ← 0. If λ = 1 and m is odd, then set τ ← 1. Otherwise, find an element  τ ∈
GF (2m) of trace 1 by trial and error using A.4.5.

11. Set a ← a1 + τ and b ← b1.

12. Output n, a, b.

NOTE—It follows from the basic facts of A.9.5 that any a0 can be chosen at any time in step 1.

#E GF 2d( )( ) 2d 1 µ  
x 0≠
∑ 1–( )λ x( )+ +=
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A.12 Functions for elliptic curve parameter and key validation

A.12.1 The MOV condition

The MOV condition ensures that an elliptic curve is not vulnerable to the reduction attack of Menezes,
Okamoto, and Vanstone [B111].

Before performing the algorithm, it is necessary to select an MOV threshold. This is a positive integer B such
that taking discrete logarithms over GF (qB) is judged to be at least as difficult as taking elliptic discrete
logarithms over GF (q). It follows from the complexity discussions of D.4.1 and from Menezes [B110] that
B should be large enough so that

T (mB) ≥ m

where

2m ≤ q < 2m+1

and

(As before, ln x denotes the natural logarithm of x.) The constant in this formula follows from Dodson and
Lenstra [B50] and Odlyzko [B121]. Table A.4 gives the smallest value of B satisfying the above condition,
for each q whose bit length m is between 128 and 512.

Once an appropriate B has been selected, the following algorithm checks the MOV condition for the choice
of field size q and base point order r by verifying that qi is not congruent to 1 modulo r for any i ≤ B.

Input: A MOV threshold B; a prime-power q; a prime r

Output: The message “True” if the MOV condition is satisfied for an elliptic curve over GF (q) with a base
point of order r; the message “False” otherwise

Table A.4—MOV thresholds

m B m B m B

128–142 6 281–297 14 407–420 22

143–165 7 298–313 15 421–434 23

166–186 8 314–330 16 435–448 24

187–206 9 331–346 17 449–462 25

207–226 10 347–361 18 463–475 26

227–244 11 362–376 19 476–488 27

245–262 12 377–391 20 489–501 28

263–280 13 392–406 21 502–512 29

T n( )
8
3
--- 3n log2 n 1n 2( )( )2( )

1 3⁄
   17.135872–=
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1. Set t  ← 1.

2. For i from 1 to B do

2.1 Set t ← tq mod r.

2.2 If t = 1, then output “False” and stop.

3. Output “True.”

A.12.2 The Weil pairing

The Weil pairing is a function < P, Q > of pairs P, Q of points on an elliptic curve E. It can be used to
determine whether P and Q are multiples of each other. It will be used in A.12.3.

Let l > 2 be prime, and let P and Q be points on E with lP = lQ = O. The following procedure computes the
Weil pairing:

— Given three points (x0, y0), (x1, y1), (u, v) on E, define the function f ((x0, y0), (x1, y1), (u, v)) by

 

if E is the curve y2 = x3 + ax + b over GF (p), and by

if E is the curve y2 + xy = x3 + ax2 + b over GF (2m).

— Given points A, B, C on E, let

g (A, B, C) := f (A, B, C) / f(A + B, – A – B, C)

— The Weil function h is computed via the following algorithm.

Input: A prime l > 2; a curve E; finite points D, C on E with lD = lC = O

Output: The Weil function h (D, C)

1. Set A ← D, B ← D, h ← 1, n ← l.

2. Set n ← n/2.

3. Set h ←g (B, B, C)n × h.

4. Set B ← 2B.

5. If n is odd then

5.1 If n = 1

                then h ← g (A, – A, C) × h;

                else h ← g (A, B, C) × h.

5.2 Set A ← A + B.

u x1                                                         if  x0 x1  and  y0 y– 1

3x1
2 a+( ) u x1–( ) 2y1– v y1–( )                 if  x0 x1=  and y0 y1

x0 x1–( )v y0 y1–( )u x0y1 x1y0–( )    if  x0 x1≠––
=
==–

u x1+                                                          if  x0 x1  and  y0 x1 y+ 1

x1
3 x1

2 y1+( )u x1v++                                 if  x0 x1=  and y0 y1

x0 x1+( )v y0 y1+( )u x0y1 x1y0+( )   if  x0 x1≠++
=
==
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6. If n > 1, then go to step 2.

7. Output h.

— Given points R and S on E, let

j (R, S) := h (R, S) / h (S, R).

— Given points P and Q on E with lP = lQ = O, the Weil pairing < P, Q > is computed as follows:

Choose random points T, U on E and let

V = P + T,    W = Q + U.

Then

< P, Q > = j (T, U) j (U, V) j (V, W) j (W, T).

If, in evaluating < P, Q >, one encounters f ((x0, y0), (x1, y1), (u, v)) = 0, then the calculation fails. In this
(unlikely) event, repeat the calculation with newly chosen T and U.

In the case l = 2, the Weil pairing is easily computed as follows: < P, Q > equals 1 if P = Q, and –1 otherwise.

Define < P, O > =1 for all points P.

A.12.3 Verification of cofactor

Let E be an elliptic curve over GF (q) of order u = kr, where r is the prime order of the base point G. The
integer k is called the cofactor. The DL and EC key agreement schemes provide an option for exponentiation
or scalar multiplication of the shared secret value by the cofactor. In order to implement this option, it is
necessary to know the cofactor k. 

In the DL case, the cofactor is simply k = (q – 1)/r. In the EC case, a simple formula exists only if r > 4 
(which is typically the case). In this case, k can be computed directly from the verified parameters q and r
(see A.16.8) via the formula

If r ≤ 4 , then k cannot be computed from q and r alone. Therefore, the value of k must be sent along with
the EC parameters, and should be verified by the recipient. This verification is accomplished by a rather
complex algorithm, as described below.

Torsion points

If l is a prime, then an l-torsion point is a finite point T, such that lT = O. The following algorithm (a
subroutine of the cofactor verification procedure to be given below) generates an l-torsion point or reports
that none exists. The algorithm is probabilistic, but the probability of error can be made as small as desired.
(A parameter β is included for this purpose.)

Input: The EC parameters q, a, and b; the putative order u = #E(GF (q)); a prime l ≠ r; the largest positive
integer v such that lv divides u; and a positive integer β

Output: An l-torsion point T and a positive integer α ≤ v, such that T = lα P for some point P, or the message
“no torsion point found”

q

k  := q 1+( )
2

r
-----------------------

q
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1. Set h ← kr/lv.

2. Set µ ← 0.

3. Set µ ← µ + 1.

4. If µ  > β, then output “no torsion point found” and stop.

5. Generate a random finite point R via A.11.1 or A.11.2.

6. Compute S := hR.

7. If S = O then go to step 3.

8. Set α ← 1.

9. Set α ← α + 1.

10. It α > v, then output “no torsion point found” and stop.

11. Set T ← S.

12. Set S ← lS.

13. If S ≠ O, then go to step 9.

14. Output T and α.

Cofactor verification procedure

Input: The EC parameters q, a, b, r, and k; an upper bound ε for the probability of error

Output: “Cofactor confirmed” or “cofactor rejected”

1. Set u ← kr.

2. If u < (  – 1)2 or u > (  + 1)2, then output “cofactor rejected” and stop.

3. Factor

 

where the li’s are distinct primes and each vi is positive.

4. For i from 1 to s do

4.1 Set l ← li, v ← vi.

4.2 Set

.

4.3 Set j ← 0.

4.4 If q ≡ 1 (mod l), then set e ← 0, f ← 0, U ← O, V ← O.

4.5 Set j ← j + 1.

4.6 If j > vβ, then output “cofactor rejected” and stop.

4.7 Generate an l-torsion point T and associated integer α via the subroutine.

4.8 If the output of the subroutine is “no torsion point found,” then output “cofactor rejected”
and stop.

4.9 If q ≡⁄  1 (mod l), then set ρ ← α; else

q q

k  := l1
v1… ls

vs

β := log s ε⁄( )
v  log l

---------------------
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4.9.1 If α ≤ e, then go to step 4.10.

4.9.2 Compute the Weil pairing w := < T, V > via A.12.2.

4.9.3 If α ≥ f, then go to step 4.9.6.

4.9.4 If w ≠ 1, then set e ← α, U ← T.

4.9.5 Go to step 4.9.8.

4.9.6 If w ≠ 1, then set e ← f, U ← V.

4.9.7 Set f ← α, V ← T.

4.9.8 Set ρ← e + f.

4.9.9 If ρ < v, then go to step 4.5.

5. Output “cofactor confirmed.”

A.12.4 Constructing verifiably pseudo-random elliptic curves (prime case)

It is common to use an elliptic curve selected at random from the curves of appropriate order (see A.9.5).
The following algorithm produces a set of elliptic curve parameters for such a curve over a field GF (p),
along with sufficient information for others to verify that the curve was indeed chosen pseudo-randomly.
(The algorithm is consistent with the one given in ANSI X9.62-1998 [B11]).

See 5.5 for the conversion routines BS2IP and I2BSP.

It is assumed that the following quantities have been chosen:

— A prime modulus p

— Lower and upper bounds rmin and rmax for the order of the base point

— A cryptographic hash function H with output length B bits, where

 

— The bit length L of inputs to H, satisfying L ≥ B

The following notation is adopted below:

v = log2 p

s = (v – 1)/B
w = v – B s – 1

Input: A prime modulus p; lower and upper bounds rmin and rmax for r; a trial division bound lmax < rmin

Output: A bit string X; EC parameters q = p, a, b, r, and G

1. Choose an arbitrary bit string X of bit length L.

2. Compute h := H (X).

3. Let W0 be the bit string obtained by taking the w rightmost bits of h.

4. Convert the length-L bit string X to an integer z via BS2IP.

5. For i from 1 to s do

B
1
2
--- log2 rmin( )≥
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5.1 Convert the integer (z + i) mod (2L) to a length-L bit string Xi via I2BSP.

5.2 Compute Wi := H (Xi).

6. Let W be the bit string obtained by the concatenation of W0, W1, …, Ws as follows:

          W = W0 || W1 || … || Ws.

7. Convert the length-(v – 1) bit string W to an integer c via BS2IP.

8. If c = 0 or 4c + 27 ≡ 0 (mod p), then go to step 1.

9. Choose integers a, b ∈ GF (p) such that

          cb2 ≡ a3 (mod p).

(The simplest choice is a = c and b = c. However, one may want to choose differently for perfor-
mance reasons; e.g., the condition a = p – 3 used in A.10.4.)

10. Compute the order u of the elliptic curve E over GF (p) given by y2 = x3 + ax + b. (This can be
done using the techniques described in ANSI X9.TG-17 [B14].)

11. Test u for near-primality via A.15.5.

12. If u is not nearly prime, then go to step 1; otherwise, the output of A.15.5 consists of the
integers k, r.

13. Generate a point G on E of order r via A.11.3.

14. Output X, a, b, r, G.

A.12.5 Verification of elliptic curve pseudo-randomness (prime case)

The following algorithm verifies the validity of a set of elliptic curve parameters. In addition, it determines
whether an elliptic curve over GF (p) was generated using the method of A.12.4.

The quantities B, L, v, s, and w, and the hash function H, are as in A.12.4. See 5.5 for the conversion routines
BS2IP and I2BSP.

Input: A bit string X of length L; EC parameters q = p, a, b, r, and G = (x, y)

Output: “True” or “False”

1. Compute h := H (X).

2. Let W0 be the bit string obtained by taking the w rightmost bits of h.

3. Convert the bit string X to an integer z via BS2IP.

4. For i from 1 to s do

4.1 Convert the integer (z + i) mod (2L) to a length-L bit string Xi via I2BSP.

4.2 Compute Wi := H (Xi).

5. Let W be the bit string obtained by the concatenation of W0, W1, …, Ws as follows:

                         W = W0 || W1 || … || Ws

6. Convert the length-(v – 1) bit string W to an integer c via BS2IP.

7. Perform the following checks:

7.1 c > 0
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7.2 (4c + 27 mod p) > 0

7.3 cb2 ≡ a3 (mod p)

7.4 G ≠ O

7.5 y2 ≡ x3 + ax + b (mod p)

7.6 rG = O.

8. If all the checks in step 7 work, then output “True”; otherwise output “False.”

A.12.6 Constructing verifiably pseudo-random elliptic curves (binary case)

It is common to use an elliptic curve selected at random from the curves of appropriate order (see A.9.5).
The following algorithm produces a set of elliptic curve parameters for such a curve over a field GF (2m),
along with sufficient information for others to verify that the curve was indeed chosen pseudo-randomly.
(The algorithm is consistent with the one given in ANSI X9.62-1998 [B11].)

See 5.5 for the conversion routines BS2IP, I2BSP, BS2OSP, and OS2FEP.

It is assumed that the following quantities have been chosen:

— A field GF (2m)

— Lower and upper bounds rmin and rmax for the order of the base point

— A cryptographic hash function H with output length B bits, where

 

— The bit length L of inputs to H, satisfying L ≥ B.

The following notation is adopted below:

s = (m – 1)/B
w = m – B s

Input: A field GF (2m); lower and upper bounds rmin and rmax for r; a trial division bound lmax < rmin

Output: A bit string X; EC parameters q = 2m, a, b, r, and G

1. Choose an arbitrary bit string X of bit length L.

2. Compute h := H (X).

3. Let W0 be the bit string obtained by taking the w rightmost bits of h.

4. Convert the length-L bit string X to an integer z via BS2IP.

5. For i from 1 to s do

5.1 Convert the integer (z + i) mod (2L) to a length-L bit string Xi via I2BSP.

5.2 Compute Wi := H (Xi).

6. Let W be the bit string obtained by the concatenation of W0, W1, …, Ws as follows:

        W = W0 || W1 || … || Ws

7. Convert the length-m bit string W to a field element b via BS2OSP and OS2FEP.

B
1
2
---log2 rmin( )≥
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8. If b = 0, then go to step 1.

9. Let a be an arbitrary element in GF (2m). (The simplest choice is a = 0, which also allows for
the efficient implementation given in A.10.7. However, one may want to choose differently for
other reasons, such as other performance issues or the availability of suitable curves.)

10. Compute the order u of the elliptic curve E over GF (2m) given by y2 + xy = x3 + ax2 + b. (This
can be done using the techniques described in ANSI X9.TG-17 [B14]. See also Menezes
[B109].)

11. Test u for near-primality via A.15.5.

12. If u is not nearly prime, then go to step 1; otherwise, the output of A.15.5 consists of the
integers    k, r.

13. Generate a point G on E of order r via A.11.3.

14. Output X, a, b, r, G.

A.12.7 Verification of elliptic curve pseudo-randomness (binary case)

The following algorithm verifies the validity of a set of elliptic curve parameters. In addition, it determines
whether an elliptic curve over GF (2m) was generated using the method of A.12.6.

The quantities B, L, s, and w, and the hash function H, are as in A.12.6. See 5.5 for the conversion routines
BS2IP, I2BSP, BS2OSP, and OS2FEP.

Input: A bit string X of length L; EC parameters q = 2m, a, b, r, and G = (x, y)

Output: “True” or “False”

1. Compute h := H (X).

2. Let W0 be the bit string obtained by taking the w rightmost bits of h.

3. Convert the bit string X to an integer z via BS2IP.

4. For i from 1 to s do

4.1 Convert the integer (z + i) mod (2L) to a length-L bit string Xi via I2BSP.

4.2 Compute Wi := H (Xi).

5. Let W be the bit string obtained by the concatenation of W0, W1, …, Ws as follows:

        W = W0 || W1 || … || Ws

6. Convert the length-m bit string W to the field element b′ via BS2OSP and OS2FEP.

7. Perform the following checks:

7.1 b ≠ 0

7.2 b = b′ 

7.3 G ≠ O 

7.4 y2 + xy = x3 + ax2 + b

7.5 rG = O.

8. If all the checks in step 7 work, then output “True”; otherwise output “False.”
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A.12.8 Decompression of y coordinates (prime case)

The following algorithm recovers the y coordinate of an elliptic curve point from its compressed form.

Input: A prime number p; an elliptic curve E defined modulo p; the x coordinate of a point (x, y) on E; the
compressed representation  of the y coordinate

Output: The y coordinate of the point

1. Compute g := x3 + ax + b mod p.

2. Find a square root z of g modulo p via A.2.5. If the output of A.2.5 is “no square roots exist,”
then return an error message and stop.

3. Let  be the rightmost bit of z (in other words, z mod 2).

4. If  = , then y ← z, else y ← p – z.

5. Output y. 

NOTE—When implementing the algorithm from A.2.5, the existence of modular square roots should be checked.
Otherwise, a value may be returned even if no modular square roots exist.

A.12.9 Decompression of y coordinates (binary case)

The following algorithm recovers the y coordinate of an elliptic curve point from its compressed form.

Input: A field GF (2m); an elliptic curve E defined over GF (2m); the x coordinate of a point (x, y) on E; the
compressed representation  of the y coordinate

Output: The y coordinate of the point

1. If x = 0, then compute y :=  via A.4.1 and go to step 7.

2. Compute the field element α := x3 + ax2 + b in GF (2m).

3. Compute the element β := α (x2)–1 via A.4.4.

4. Find a field element z such that z2 + z = β via A.4.7. If the output of A.4.7 is “no solutions
exist,” then return an error message and stop.

5. Let  be the rightmost bit of z.

6. Compute y := (z +  + ) x.

7. Output y. 

NOTES

1—When implementing the algorithm from A.4.7, the existence of solutions to the quadratic equation should be
checked. Otherwise, a value may be returned even if no solutions exist. 

2—If both coordinates are compressed, the x coordinate must be decompressed first and then the y coordinate
(see A.12.10).

ỹ

z̃

z̃ ỹ

ỹ

b

z̃

z̃ ỹ
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A.12.10 Decompression of x coordinates (binary case)

The following algorithm recovers the x coordinate of an elliptic curve point from its compressed form. The
statement of the algorithm assumes that the point has prime order, because that is the case of cryptographic
interest; in fact, however, that condition is unnecessarily restrictive (see A.9.6).

In addition to the EC parameters and the compact representation of the point, it is necessary to possess the
trace Tr (a) of the coefficient a of the curve (see A.4.5). If F is represented by a polynomial basis

B = {tm–1, …, t, 1}

and m is even, it is also necessary to possess the smallest positive integer s such that Tr (ts) = 1, because this
indicates which bit has been dropped during compression. If a given set of EC parameters is to be reused,
these two quantities can be computed once and stored with the parameters.

Input: A field F of 2m elements; an elliptic curve E defined over F; the compact form  of the x coordinate
of a point P on E of prime order; the trace of the coefficient a of the curve; if F is represented by a
polynomial basis {tm–1, …, t, 1} and m is even, the smallest positive integer s such that Tr (ts) = 1

Output: The x coordinate of P

If F is represented by a normal basis or m is odd

1. Set x* := (  || 0).

2. If Tr (x*) = Tr (a), then set x ← x*; else set x := (  || 1).

3. Output x.

If F is represented by a polynomial basis and m is even

1. Write  = (um–1 … u1).

2. Let x* be the field element 

x* := (wm–1 … w0)

where

wj = uj for j > s

ws = 0

wj = uj + 1 for 0 ≤ j < s.

That is, x* is the polynomial

um–1 tm–1 + …+ us+1 ts+1 + us t
s–1 + … + u1.

3. If Tr (x*) = Tr (a), then output x ← x*; else output x ← x* + ts.

A.13 Class group calculations

The computations listed in this clause are necessary for the complex multiplication technique described in
A.14.

x̃

x̃

x̃

x̃
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A.13.1 Overview

A reduced symmetric matrix is one of the form

 

where the integers A, B, C satisfy the following conditions:

— GCD (A, 2B, C) = 1.

— |2B| ≤ A ≤ C.

— If either A = |2B| or A = C, then B ≥ 0.

The matrix S will be abbreviated as [A, B, C] when typographically convenient. 

The determinant D := AC – B2 of S will be assumed throughout this clause to be positive and squarefree (i.e.,
containing no square factors).

Given D, the class group H(D) is the set of all reduced symmetric matrices of determinant D. The class
number h(D) is the number of matrices in H(D).

The class group is used to construct the reduced class polynomial. This is a polynomial wD (t) with integer
coefficients of degree h(D). The reduced class polynomial is used in A.14 to construct elliptic curves with
known orders.

A.13.2 Class group and class number

The following algorithm produces a list of the reduced symmetric matrices of a given determinant D (see
Buell [B33]).

Input: A squarefree determinant D > 0

Output: The class group H (D)

1. Let s be the largest integer less than .

2. For B from 0 to s do

2.1 List the positive divisors A1, …, Ar of D + B2 that satisfy 2B ≤ A ≤ .

2.2 For i from 1 to r do

                             2.2.1   Set C ← (D + B2)/Ai.

                             2.2.2   If GCD (Ai, 2B, C) = 1, then

List [Ai, B, C]

If 0 < 2B < Ai < C, then list [Ai, – B, C].

3. Output list.

Example: D = 71. The values of B that need to be checked are 0 ≤ B < 5. 

— B = 0 gives A = 1, leading to [1,0,71]. 

S A B

B C
=

D 3⁄

D B2+
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— B = 1 gives A = 2,3,4,6,8, leading to [3, ±1,24] and [8, ±1,9]. 

— B = 2 gives A = 5, leading to [5, ±2, 15]. 

— B = 3 gives A = 8, but no reduced matrices. 

— B = 4 gives no divisors A in the right range. 

Thus the class group is

H (71) = {[1,0,71], [3, ±1,24], [8, ±1,9], [5, ±2, 15]} 

and the class number is h (71) = 7.

A.13.3 Reduced class polynomials

Let

= 1– z – z2 + z5 + z7 – z12 – z15 + ...

and

Let

f0(A, B, C) = θ–1/24 F(–θ)/F(θ2)

f1(A, B, C) = θ–1/24 F(θ)/F(θ2)

NOTE—Since

the series F (z) used in computing the numbers fJ(A, B, C) converges as quickly as a power series in .

If [A, B, C] is a matrix of determinant D, then its class invariant is 

C(A, B, C) = (N λ–BL 2–I/6 (fJ (A, B, C))K)G

where

G = GCD(D,3)

F z( ) 1 1–( ) j

j 1=

∞

∑ z 3 j
2

j–( ) 2⁄ z 3 j
2

j+( ) 2⁄+( )+=

θ exp 
D– Bi+
A

-------------------------π 
 =

f2 A B C, ,( ) 2 θ1/12F θ4( )/F θ2( )=

θ e
π– 3 2⁄

 0.0658287≈<

e π– 3 2⁄
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If [A1, B1, C1],..., [Ah,Bh,Ch] are the reduced symmetric matrices of (positive squarefree) determinant D,
then the reduced class polynomial for D is

The reduced class polynomial has integer coefficients.

NOTE—The above computations must be performed with sufficient accuracy to identify each coefficient of the
polynomial wD (t). Since each such coefficient is an integer, this means that the error incurred in calculating each
coefficient should be less than half.

I  = 

3 if D 1, 2, 6, 7 ≡ (mod 8)

0 if D 3≡  (mod 8)  and D / 0≡  (mod 3)

2          

6  

if D 3≡  (mod 8)  and D 0≡  (mod 3)

if D 5≡  (mod 8)






J
0  for AC  odd

1  for C  even

2  for A even 





=

K
2 if D 1, 2, 6 ≡ (mod 8)

1 if D  3, 7≡  (mod 8)

4 if D 5≡  (mod 8)





=

L

A C A2C+– if AC  odd or D 5 (mod 8) and C  even≡

A 2C AC2–+ if D  1, 2, 3, 6, 7 (mod 8) and C  even ≡

A C 5AC2+–

A C– AC2–

if

if

D 3 (mod 8) and A even ≡

D  1, 2, 5, 6, 7 (mod 8) and A even ≡








=

M 1–( ) A
2 1–( ) 8⁄ if A  odd 

1–( ) C
2 1–( ) 8⁄ if A even 





=

N
1 if D 5 (mod 8), or  D 3≡  (mod 8) and AC  odd, or D 7≡  (mod 8) and AC  even≡
M if D  1, 2, 6 (mod 8) or D 7 (mod 8) and AC  odd≡≡
M– if D 3 (mod 8) and AC  even ≡






=

λ eπiK 24⁄=

wD t( )  
j I=

h

∏ t C– A j,B j,C j( )( )=
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Example:

= (t – 2.13060682983889533005591468688942503...) 

(t – (0.95969178530567025250797047645507504...) +

(0.34916071001269654799855316293926907...) i) 

(t –(0.95969178530567025250797047645507504...) –

(0.34916071001269654799855316293926907...) i) 

(t + (0.7561356880400178905356401098531772...) + 

(0.0737508631630889005240764944567675...) i) 

(t + (0.7561356880400178905356401098531772...) – 

(0.0737508631630889005240764944567675...) i) 

(t + (0.2688595121851000270002877100466102...) – 

(0.84108577401329800103648634224905292...) i) 

(t + (0.2688595121851000270002877100466102...) +

(0.84108577401329800103648634224905292...) i) 

= t7– 2t6 – t5 + t4 + t3 + t2 – t – 1

A.14 Complex multiplication

A.14.1 Overview

If E is a non-supersingular elliptic curve over GF (q) of order u, then

Z = 4q – (q + 1 – u)2

w71 t( ) t
1

2
-------f0 (1,0,71)– 

 =

t
e iπ– 8⁄

2
-------------f1 (3,1,24) – 

  t
eiπ 8⁄

2
-----------– f1 (3,–1,24) 

 

t
e 23iπ– 24⁄

2
--------------------f2 (8,1,9) – 

  t
e23iπ 24⁄

2
------------------– f2 (8,–1,9) 

 

t  + 
e 5iπ– 12⁄

2
------------------f0 (5,2,15)  

  t  + 
e5iπ 12⁄

2
----------------f0 (5,–2,15) 
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is positive by the Hasse bound (see A.9.5). Thus, there is a unique factorization 

Z = DV2

where D is squarefree (i.e., contains no square factors). Thus, for each non-supersingular elliptic curve over
GF (q) of order u, there exists a unique squarefree positive integer D such that

for some W and V.

It is said that E has complex multiplication by D (or, more properly, by ). D is called a CM discriminant
for q.

If one knows D for a given curve E, one can compute its order via (*) and (**). As will be demonstrated
below, one can construct the curves with CM by small D. Therefore, one can obtain curves whose orders u
satisfy (*) and (**) for small D. The near-primes are plentiful enough that one can find curves of nearly
prime order with small enough D to construct.

Over GF (p), the CM technique is also called the Atkin-Morain method (see Morain [B118]); over GF (2m),
it is also called the Lay-Zimmer method (see Lay and Zimmer [B99]). Although it is possible [over GF (p)]
to choose the order first and then the field, it is preferable to choose the field first, because there are fields in
which the arithmetic is especially efficient.

There are two basic steps involved: finding an appropriate order, and constructing a curve having that order.
More precisely, one begins by choosing the field size q, the minimum point order rmin, and trial division
bound lmax. Given those quantities, D is called appropriate if there exists an elliptic curve over GF (q) with
CM by D and having nearly prime order.

Step 1 (A.14.2 and A.14.3 Finding a nearly prime order)

Find an appropriate D. When one is found, record D, the large prime r, and the positive integer k, such that u
= kr is the nearly prime curve order.

Step 2 (A.14.4 and A.14.5 Constructing a curve and point)

Given D, k, and r, construct an elliptic curve over GF (q) and a point of order r.

A.14.2 Finding a nearly prime order over GF (p)

A.14.2.1 Congruence conditions

A squarefree positive integer D can be a CM discriminant for p only if it satisfies the following congruence
conditions. Let

(*)                4q W 2 DV 2+=

(**)               u q 1 W±+=

D–

K p 1+( )
2

rmin
------------------------=
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— If p ≡ 3 (mod 8), then D ≡ 2, 3, or 7 (mod 8).

— If p ≡ 5 (mod 8), then D is odd.

— If p ≡ 7 (mod 8), then D ≡ 3, 6, or 7 (mod 8).

— If K = 1, then D ≡ 3 (mod 8).

— If K = 2 or 3, then D ≡⁄  7 (mod 8).

Thus, the possible squarefree values of D are as follows:

If K = 1, then

D = 3, 11, 19, 35, 43, 51, 59, 67, 83, 91, 107, 115, ….

If p ≡ 1 (mod 8) and K = 2 or 3, then

D = 1, 2, 3, 5, 6, 10, 11, 13, 14, 17, 19, 21, ….

If p ≡ 1 (mod 8) and K ≥ 4, then

D = 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, ….

If p ≡ 3 (mod 8) and K = 2 or 3, then

D = 2, 3, 10, 11, 19, 26, 34, 35, 42, 43, 51, 58, ….

If p ≡ 3 (mod 8) and K ≥ 4, then

D = 2, 3, 7, 10, 11, 15, 19, 23, 26, 31, 34, 35, ….

If p ≡ 5 (mod 8) and K = 2 or 3, then

D = 1, 3, 5, 11, 13, 17, 19, 21, 29, 33, 35, 37, ….

If p ≡ 5 (mod 8) and K ≥ 4, then

D = 1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, ….

If p ≡ 7 (mod 8) and K = 2 or 3, then

D = 3, 6, 11, 14, 19, 22, 30, 35, 38, 43, 46, 51, ….

If p ≡ 7 (mod 8) and K ≥ 4, then

D = 3, 6, 7, 11, 14, 15, 19, 22, 23, 30, 31, 35, ….

A.14.2.2 Testing for CM discriminants (prime case)

Input: A prime p and a squarefree positive integer D satisfying the congruence conditions from A.14.2.1

Output: If D is a CM discriminant for p, an integer W such that

4p = W2 + DV2
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for some V. (In the cases D = 1 or 3, the output also includes V.) If not, the message “not a CM discriminant.”

1. Apply the appropriate technique from A.2.5 to find a square root modulo p of –D or determine
that none exists.

2. If the result of step 1 indicates that no square roots exist, then output “not a CM discriminant”
and stop. Otherwise, the output of step 1 is an integer B modulo p.

3. Let A ← p and C ← (B2 + D) / p.

4. Let  and .

5. Until |2B| ≤ A ≤ C, repeat the following steps:

5.1 Let .

5.2 Let .

5.3 Replace U by T –1U.

5.4 Replace S by T t S T, where T t denotes the transpose of T.

6. If D = 11 and A = 3, let δ ← 0 and repeat 5.2, 5.3, 5.4.

7. Let X and Y be the entries of U; that is,

.

8. If D = 1 or 3, then output W ← 2X and V ← 2Y and stop.

9. If A = 1, then output W ← 2X and stop.

10. If A = 4, then output W ← 4X + BY and stop.

11. Output “not a CM discriminant.”

A.14.2.3 Finding a nearly prime order (prime case)

Input: A prime p; a trial division bound lmax; lower and upper bounds rmin and rmax for base point order

Output: A squarefree positive integer D; a prime r in the interval rmin ≤ r ≤ rmax; a smooth integer k such
that u = kr is the order of an elliptic curve modulo p with complex multiplication by D

1. Choose a squarefree positive integer D, not already chosen, satisfying the congruence
conditions of A.14.2.1.

2. Compute via A.2.3 the Jacobi symbol . If J = –1, then go to step 1.

3. List the odd primes l dividing D.

4. For each l, compute via A.2.3 the Jacobi symbol . If J = –1 for some l, then go to
step 1.

5. Test via A.14.2.2 whether D is a CM discriminant for p. If the result is “not a CM
discriminant,” go to step 1. (Otherwise, the result is the integer W, along with V if D = 1 or 3.)

6. Compile a list of the possible orders, as follows:

S A B

B C
← U 1

0
←

δ B
C
---- 1

2
---+←

T 0 1–

1 δ
←

U X
Y 
 =

J
D–
P

------- 
 =

J
p
l
--- 
 =
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—  If D = 1, the orders are

p + 1 ± W, p + 1 ± V;

—  If D = 3, the orders are

p + 1 ± W, p + 1 ± (W + 3V)/2, p + 1 ± (W – 3V)/2;

—  Otherwise, the orders are p + 1 ± W.

7. Test each order for near-primality via A.15.5. If any order is nearly prime, output (D, k, r) and
stop.

8. Go to step 1.

Example: Let p = 2192 – 264 – 1. Then

where D = 235

X = –31037252937617930835957687234

Y = 5905046152393184521033305113

and r is the prime

r = 6277101735386680763835789423337720473986773608255189015329.

Thus, there is a curve modulo p of order r having complex multiplication by D.

A.14.3 Finding a nearly prime order over GF (2m)

A.14.3.1 Testing for CM discriminants (binary case)

Input: A field degree d and a squarefree positive integer D ≡ 7 (mod 8)

Output: If D is a CM discriminant for 2d, an odd integer W such that

2d+2 = W2 + DV2

for some odd V. If not, the message “not a CM discriminant.”

1. Compute via A.2.6 an integer B such that B2 ≡ –D (mod 2d+2).

2. Let A ← 2d+2 and C ← (B2 + D) / 2d+2. (Note that the variables A and C will remain positive
throughout the algorithm.)

3. Let .

4. Until |2B| ≤ A ≤ C, repeat the following steps:

4.1 Let .

p 4X2 2XY
1 D+

4
------------- Y 2+–   and  p 1 4X Y–( ) r=–+=

S A B

B C
  and  U 1

0
←←

δ B
C
---- 1

2
---+←
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4.2 Let .

4.3 Replace U by T –1U.

4.4 Replace S by T t S T, where T t denotes the transpose of T.

5. Let X and Y be the entries of U; that is

.

6. If A = 1, then output W ← X and stop.

7. If A = 4 and Y is even, then output W ← (4X + BY) / 2 and stop.

8. Output “not a CM discriminant.”

A.14.3.2 Finding a nearly prime order (binary case)

Input: A field degree d; a trial division bound lmax; lower and upper bounds rmin and rmax for base point
order

Output: A squarefree positive integer D; a prime r in the interval rmin ≤ r ≤ rmax; a smooth integer k such
that u = kr is the order of an elliptic curve over GF (2d) with complex multiplication by D

1. Choose a squarefree positive integer D ≡ 7 (mod 8), not already chosen.

2. Compute H ← the class group for D via A.13.2.

3. Set h ← the number of elements in H.

4. If d does not divide h, then go to step 1.

5. Test via A.14.3.1 whether D is a CM discriminant for 2d. If the result is “not a CM
discriminant,” go to step 1; otherwise, the result is the integer W.

6. The possible orders are 2d + 1 ± W.

7. Test each order for near-primality via A.15.5. If any order is nearly prime, output (D, k, r) and
stop.

8. Go to step 1.

Example: Let q = 2155. Then

4q = X2 + DY2   and   q + 1 – X = 4r

where 

D = 942679

X = 229529878683046820398181 

Y = –371360755031779037497 and 

r is the prime

r = 11417981541647679048466230373126290329356873447.

Thus, there is a curve over GF (q) of order 4r having complex multiplication by D.

T 0 1–

1 δ
←

U X

Y
=
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A.14.4 Constructing a curve and point (prime case)

A.14.4.1 Constructing a curve with prescribed CM (prime case)

Given a prime p and a CM discriminant D, the following technique produces an elliptic curve y2 ≡ x3 + a0 x
+ b0 (mod p) with CM by D. (Note that there are at least two possible orders among curves with CM by D.
The curve constructed here will have the proper CM, but not necessarily the desired order. This curve will be
replaced in A.14.4.2 by one of the desired order.)

For nine values of D, the coefficients of E can be written down at once, as shown in Table A.5.

For other values of D, the following algorithm may be used:

Input: A prime modulus p and a CM discriminant D > 3 for p

Output: a0 and b0 such that the elliptic curve

y2 ≡ x3 + a0x + b0 (mod p)

has CM by D.

1. Compute w(t) ← wD(t) mod p via A.13.3.

2. Let W be the output from A.14.2.2.

3. If W is even, then use A.5.3 with d = 1 to compute a linear factor t – s of wD(t) modulo p. Let

V := (–1)D 24I/K s24/(GK) mod p

where G, I, and K are as in A.13.3. Finally, let

a0 := –3(V + 64)(V + 16) mod p

b0 := 2(V + 64)2 (V – 8) mod p.

4. If W is odd, then use A.5.3 with d = 3 to find a cubic factor g (t) of wD(t) modulo p. Perform the
following computations, in which the coefficients of the polynomials are integers modulo p:

Table A.5—Coefficients of E for certain values of D

D a0 b0

1 1 0

2 –30 56

3 0 1

7 –35 98

11 –264 1694

19 –152 722

43 –3440 77658

67 –29480 1948226

163 –8697680 9873093538
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a1(t) := –3(V(t) + 64) (V(t) + 256) mod g(t)

b1(t) := 2(V(t) + 64)2 (V(t) – 512) mod g(t)

a3(t) := a1(t)3 mod g(t)

b2(t) := b1(t)2 mod g(t).

Now let σ be a nonzero coefficient from a3(t), and let τ be the corresponding coefficient from b2(t). 
Finally, let

a0 := στ mod p

b0 := στ2 mod p.

5. Output (a0, b0).

Example: If D = 235, then

wD(t) = t6 – 10 t5 + 22 t4 – 24 t3 + 16 t2 – 4 t + 4

If p = 2192 – 264 – 1, then

wD(t) ≡ (t3 – (5 + φ)t2 + (1 – φ)t – 2) (t3 – (5 – φ)t2 + (1 + φ)t – 2) (mod p)

where φ = 1254098248316315745658220082226751383299177953632927607231. The resulting
coefficients are

a0 = –2089023816294079213892272128

b0 = –36750495627461354054044457602630966837248

Thus the curve y2 ≡ x3 + a0x + b0 modulo p has CM by D = 235.

A.14.4.2 Choosing the curve and point (prime case)

Input: EC parameters p, k, and r, and coefficients a0, b0 produced by A.14.4.1

Output: A curve E modulo p and a point G on E of order r, or a message “wrong order”

1. Select an integer ξ with 0 < ξ < p.

2. If D = 1, then set a ← a0ξ mod p and b ← 0; if D = 3, then set a ← 0 and b ← b0ξ mod p. 

      Otherwise, set a ← a0ξ
2 mod p and b ← b0ξ

3 mod p.

3. Look for a point G of order r on the curve

y2 ≡ x3 + ax + b (mod p)

       via A.11.3.

V t( ) := t24–  mod g t( ) if 3 does not divide D

256– t8 mod g t( )  if 3 divides D
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4. If the output of A.11.3 is “wrong order,” then output the message “wrong order” and stop.

5. Output the coefficients a, b, and the point G.

The method of selecting ξ in the first step of this algorithm depends on the kind of coefficients desired. Two
examples follow:

— If D ≠ 1 or 3, and it is desired that a = –3 (see A.10.4), then take ξ to be a solution of the congruence
a0ξ

2 ≡ –3 (mod p), provided one exists. If one does not exist, or if this choice of ξ leads to the
message “wrong order,” then select another curve as follows. If p ≡ 3 (mod 4) and the result was
“wrong order,” then choose p – ξ in place of ξ; the result leads to a curve with a = –3 and the right
order. If no solution ξ exists, or if p ≡ 1 (mod 4), then repeat A.14.4.1 with another root of the
reduced class polynomial. The proportion of roots leading to a curve with a = –3 and the right order
is roughly one-half if p ≡ 3 (mod 4), and one-quarter if p ≡ 1 (mod 4).

— If there is no restriction on the coefficients, then choose ξ at random. If the output is the message
“wrong order,” then repeat the algorithm until a set of parameters a, b, G is obtained. This will
happen for half the values of ξ, unless D = 1 (one-quarter of the values) or D = 3 (one-sixth of the
values).

A.14.5 Constructing a curve and point (binary case)

A.14.5.1 Constructing a curve with prescribed CM (binary case)

Input: A field GF (2m); a CM discriminant D for 2m; the desired curve order u

Output: a and b, such that the elliptic curve

y2 + xy = x3 + ax2 + b

over GF (2m) has order u.

1. Compute w(t) ← wD(t) mod 2 via A.13.3.

2. Use A.14.3.1 to find the smallest divisor d of m greater than (log2 D) – 2, such that D is a CM
discriminant for 2d.

3. Compute p (t) := a degree d factor modulo 2 of w(t). (If d = h, then p(t) is just w(t) itself. If d <
h, p(t) is found via A.5.4.)

4. Compute α := a root in GF (2m) of p(t) = 0 via A.5.6.

5. If 3 divides D, then

set b← α;

else set b ← α3.

6. If u is divisible by 4, then set a ← 0;

else if m is odd, then set a ← 1;

else generate (by trial and error using A.4.5) a random element a ∈ GF (2m) of trace 1.

7. Output (a, b).
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Example: If D = 942679, then

wD(t) ≡ 1 + t2 + t6 + t10 + t12 + t13 + t16 + t17 + t20 + t22 + t24 + t27 + t30 + t33 + t35 + t36 + t37 + t41 + t42 +t43

+ t45 + t49 + t51 + t54 + t56 + t57 + t59 + t61 + t65 + t67 + t68 + t69 + t70 + t71 + t72 + t74 + t75 + t76 + t82 + t83 +
t87 + t91 + t93 + t96 + t99 + t100 + t101 + t102 + t103 + t106 + t108 + t109 + t110 + t114 + t117 + t119 + t121 + t123 +
t125 + t126 + t128 + t129 + t130 + t133 + t134 + t140 + t141 + t145 + t146 + t147 + t148 + t150 + t152 + t154 + t155 +
t157 + t158 + t160 + t161 + t166 + t167 + t171 + t172 + t175 + t176 + t179 + t180 + t185 + t186 + t189 + t190 + t191 +
t192 + t195 + t200 + t201 + t207 + t208 + t209 + t210 + t211 + t219 + t221 + t223 + t225 + t228 + t233 + t234 + t235 +
t237 + t238 + t239 + t241 + t242 + t244 + t245 + t248 + t249 + t250 + t252 + t253 + t255 + t257 + t260 + t262 + t263 +
t264 + t272 + t273 + t274 + t276 + t281 + t284 + t287 + t288 + t289 + t290 + t292 + t297 + t299 + t300 + t301 + t302 +
t304 + t305 + t306 + t309 + t311 + t312 + t313 + t314 + t317 + t318 + t320 + t322 + t323 + t325 + t327 + t328 + t329 +
t333 + t335 + t340 + t341 + t344 + t345 + t346 + t351 + t353 + t354 + t355 + t357 + t358 + t359 + t360 + t365 + t366 +
t368 + t371 + t372 + t373 + t376 + t377 + t379 + t382 + t383 + t387 + t388 + t389 + t392 + t395 + t398 + t401 + t403 +
t406 + t407 + t408 + t409 + t410 + t411 + t416 + t417 + t421 + t422 + t423 + t424 + t425 + t426 + t429 + t430 + t438 +
t439 + t440 + t441 + t442 + t443 + t447 + t448 + t450 + t451 + t452 + t453 + t454 + t456 + t458 + t459 + t460 + t462 +
t464 + t465 + t466 + t467 + t471 + t473 + t475 + t476 + t481 + t482 + t483 + t484 + t486 + t487 + t488 + t491 + t492 +
t495 + t496 + t498 + t501 + t503 + t505 + t507 + t510 + t512 + t518 + t519 + t529 + t531 + t533 + t536 + t539 + t540 +
t541 + t543 + t545 + t546 + t547 + t548 + t550 + t552 + t555 + t556 + t557 + t558 + t559 + t560 + t563 + t565 + t566 +
t568 + t580 + t585 + t588 + t589 + t591 + t592 + t593 + t596 + t597 + t602 + t604 + t606 + t610 + t616 + t620 (mod 2).

This polynomial factors into four irreducibles over GF (2), each of degree 155. One of these is 

p(t) = 1 + t + t2 + t6 + t9 + t10 + t11 + t13 + t14 + t15 + t16 + t18 + t19 + t22 + t23 + t26 + t27 + t29 + t31 + t49 + t50

+ t51 + t54 + t55 + t60 + t61 + t62 + t64 + t66 + t70 + t72 + t74 + t75 + t80 + t82 + t85 + t86 + t88 + t89 + t91 + t93 +
t97 + t101 + t103 + t104 + t111 + t115 + t116 + t117 + t118 + t120 + t121 + t123 + t124 + t126 + t127 + t128 + t129 +
t130 + t131 + t132 + t134 + t136 + t137 + t138 + t139 + t140 + t143 + t145 + t154 + t155.

If t is a root of p(t), then the curve

y2 + xy = x3 + t3

over GF (2155) has order 4r, where r is the prime

r = 11417981541647679048466230373126290329356873447

A.14.5.2 Choosing the curve and point (binary case)

Input: A field size GF (2m); an appropriate D; the corresponding k and r from A.14.3.2

Output: A curve E over GF (2m) and a point G on E of order r

1. Compute a and b via A.14.5.1 with u = kr.

2. Find a point G of order r via A.11.3.

3. Output the coefficients a, b, and the point G.
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A.15 Primality tests and proofs

Techniques for generating and testing primes are also provided in ANSI X9.80 [B13].

A.15.1 A Probabilistic primality test

If n is a large positive integer, the following probabilistic algorithm (the strong probable prime test or the
Miller-Rabin test) will determine whether n is prime or composite, with arbitrarily small probability of error
(see Knuth [B93]).

Input: An odd integer n > 2 to be tested; a positive integer 

 

t

 

 for the number of trials

 

Output:

 

 The message “prime” or “composite”

1. Compute 

 

v 

 

and odd 

 

w

 

 such that n – 1 = 2

 

v

 

w

 

. 

2. For 

 

j

 

 from 1 to 

 

t

 

 do

2.1 Choose random 

 

a

 

 in the interval 0 

 

<

 

 

 

a

 

 

 

<

 

 

 

n

 

. 

2.2 Set 

 

b

 

 

 

←

 

 

 

a

 

w

 

 mod 

 

n

 

. 

2.3 If 

 

b

 

 = 1 or 

 

n

 

 – 1, go to step 2.6. 

2.4 For 

 

i 

 

from 1 to 

 

v

 

 – 1 do

2.4.1 Set 

 

b

 

 

 

←

 

 

 

b

 

2

 

 mod 

 

n

 

. 

2.4.2 If 

 

b

 

 = 

 

n

 

 – 1 go to step 2.6. 

2.4.3 If 

 

b

 

 = 1, output “composite” and stop. 

2.4.4 Next 

 

i

 

. 

2.5 Output “composite” and stop.

2.6 Next 

 

j

 

. 

3. Output “prime.”

If the algorithm outputs “composite,” then 

 

n

 

 is composite. If the algorithm outputs “prime” then 

 

n

 

 is almost
certainly prime. 

 
A.15.2 Testing a randomly generated integer for primality

 

If a random 

 

k

 

-bit integer 

 

n

 

 has tested “prime” after

 

 t

 

 trials of the Miller-Rabin test, then the probability that 

 

n

 

is composite is at most

(provided that 

 

t

 

 

 

>

 

 1 and 

 

k

 

 

 

≥

 

 88; see Damgard, Landrock, and Pomerance [B43]).

To achieve a probability of error less than 2

 

–100

 

 for a random 

 

k

 

-bit integer, one should choose the number 

 

t

 

of trials according to Table A.6.

The values of 

 

t

 

 in Table A.6 can be lowered in many cases (see Burthe [B35] and Damgard, Landrock, and
Pomerance [B43]). 

Pk ,t 2t 4+ k 2 tk–( ) k
t
--=
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A.15.3 Validating primality of a given integer

 

In 

 

generating

 

 parameters, one can take random numbers and test them for primality according to A.15.2.
When 

 

verifying

 

 parameters, however, one cannot treat the putative prime number as random. In this case, the
Miller-Rabin test should be run 

 

t

 

 = 50 times in order to achieve a probability of error less than 2

 

–100

 

.

 

A.15.4 Proving primality

 

Another application of the complex multiplication algorithm of A.14 is 

 

proving

 

 the primality of an integer
deemed “prime” by a probabilistic test, such as in A.15.1. The 

 

Goldwasser-Kilian-Atkin algorithm

 

 produces
a 

 

primality certificate: 

 

a collection

 

C

 

 = {

 

C

 

1

 

,...

 

C

 

s

 

}

in which each component 
 

C
 

i  
 

 
consists of positive integers

 

C

 

i

 

 = (

 

p

 

i

 

, 

 

r

 

i

 

,

 

 a

 

i

 

,

 

 b

 

i

 

,

 

 x

 

i

 

,

 

 y

 

i

 

)

where

— for all 

 

i

 

, (

 

x

 

i

 

, 

 

y

 

i

 

) is a point of order 

 

r

 

i

 

 

 

on the elliptic curve 

 

y

 

2

 

 

 

≡

 

 x

 

3

 

 + 

 

a

 

i

 

x

 

 + 

 

b

 

i

 

 (mod 

 

p

 

i

 

)

— for all 

 

i

 

—

 

p

 

1

 

 = 

 

n

 

—

 

p

 

i

 

+1

 

 = 

 

r

 

i

 

 

 

for 1 

 

≤

 

 i

 

 

 

<

 

 s

 

—

—

 

r

 

s

 

 is proved prime by trial division.

 

Table A.6—Number of trials for the Miller–Rabin test

 

k t k t k t

 

160 34 202-208 23 335-360 12

161-163 33 209-215 22 361-392 11

164-166 32 216-222 21 393-430 10

167-169 31 223-231 20 431-479 9

170-173 30 232-241 19 480-542 8

174-177 29 242-252 18 543-626 7

178-181 28 253-264 17 627-746 6

182-185 27 265-278 16 747-926 5

186-190 26 279-294 15 927-1232 4

191-195 25 295-313 14 1233-1853 3

196-201 24 314-334 13 1854-up 2

ri pi
4 1+>

rs lmax
2<
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If a primality certificate exists for 

 

n

 

, then 

 

n

 

 is prime by the following result (see Goldwasser and Kilian
[B60]):

 

Let p and r be positive integers greater than 3 with 

 

. 

 

Let a, b, x, and y be integers modulo p,
such that (x, y) is a point of order r on the elliptic curve

y

 

2

 

 

 

≡

 

 

 

x

 

3

 

 + ax + b (mod p)

Then, p is prime if r is.

The GKA algorithm can be implemented as follows:

Input: A large odd positive integer n that has tested “prime” in A.15.1, and a trial division bound lmax

Output: A primality certificate for n, or an error message

1. Set C ← {}.

2. Set i ← 0.

3. Set r ← n.

4. While  do

4.1 Set i ← i + 1.

4.2 Set p ← r.

4.3 Set rmin ← .

4.4 Find positive integers D, k, r (via A.14.2.3) such that 

                             —     r ≥ rmin

                             —     r tests “prime” in A.15.3

                             —     kr is an order of an elliptic curve over GF (p) with CM by D.

4.5 Set Ci ←(p, r, D, k).

4.6 Append Ci to C.

5. s ← i.

6. Confirm primality of r by trial division. (If it is found that r is composite, then output an error
message and stop.)

7. For i from 1 to s do

7.1 Recover (p, r, D, k) ← Ci.

7.2 Find via A.14.4.2 a curve

E : y2 ≡ x3 + ax + b (mod p)

over GF (p) and a point (x, y) on E of order r.

7.3 Set Ci ← (p, r, a, b, x, y).

8. Output C.

r p4 1+>

r lmax
2>

p4 1+( )
2
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A.15.5 Testing for near primality

Given lower and upper bounds rmin and rmax, and a trial division bound lmax, the following procedures test
an integer u for near primality in the sense of A.9.5. Let

K := u/rmin

— If K = 1, then u is nearly prime if and only if it is prime.

— If K ≥ 2, then the following algorithm tests u for near primality. Note that one can always take
lmax ≤ K.

Input: Positive integers u, lmax, rmin, and rmax

Output: If u is nearly prime, a prime r in the interval rmin ≤ r ≤ rmax, and a smooth integer k such that u = kr.
If u is not nearly prime, the message “not nearly prime.”

1. Set r ← u, k ← 1. 

2. For l from 2 to lmax do 

2.1 If l is composite, then go to step 2.3. 

2.2 While (l divides r) 

2.2.1 Set r ← r / l and k ← k l. 

2.2.2 If r < rmin, then output “not nearly prime” and stop. 

2.3 Next l. 

3. If r > rmax, then output “not nearly prime” and stop.

4. Test r for primality via A.15.3 (and A.15.4 if desired).

5. If r is prime, then output k and r and stop. 

6. Output “not nearly prime.”

A.15.6 Generating random primes

The following algorithm generates random primes within a given interval.

The primes p found by this algorithm also satisfy the condition that p – 1 is relatively prime to a specified
odd positive integer f. Such a condition is required for generating IF parameters. In the case of RSA, f is set
equal to the public exponent. In the case of RW, f is set equal to the largest odd divisor of the public
exponent. For applications where such a condition is not needed, one takes f = 1, since this choice leads to a
vacuous condition.

Input: A lower bound pmin for p; an upper bound pmax for p; an odd positive integer f

Output: A random prime p from the range pmin ≤ p ≤ pmax, for which p – 1 is relatively prime to f   

1. Let kmin := (pmin – 1) / 2 and kmax := (pmax – 1) / 2.

2. Generate a random integer k from the range kmin ≤ k ≤ kmax.

3. Set p ← 2k + 1.

4. Compute d := GCD (p – 1, f) via A.2.2
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5. If d = 1, then

5.1 Test p for primality via A.15.2 (and A.15.4 if desired).

5.2 If p is prime, then output p and stop.

6. Go to step 2.

A.15.7 Generating random primes with congruence conditions

The following algorithm differs from the preceding one only in that it imposes the additional condition on
the prime p that p ≡ a (mod r) for some specified a and r that are relatively prime. The remarks made at the
beginning of A.15.6 apply here as well.

Input: Positive integers r > 2 and a that are relatively prime to each other; a lower bound pmin for p; an
upper bound pmax for p; an odd positive integer f

Output: A random prime p from the range pmin ≤ p ≤ pmax satisfying p ≡ a (mod r), and for which p – 1 is
relatively prime to f

1. If a is odd, set b ← a; else set b ← a + r. If r is odd, set s ← 2r; else set s ← r.

2. Let kmin := (pmin – b) / s and kmax := (pmax – b) / s.

3. Generate a random integer k from the range kmin ≤ k ≤ kmax.

4. Set p ← sk + b.

5. Compute d := GCD (p – 1, f) via A.2.2.

6. If d = 1, then

6.1 Test p for primality via A.15.2 (and A.15.4 if desired).

6.2 If p is prime, then output p and stop.

7. Go to step 3.

NOTE—If r and p are to have roughly the same bit length, it is possible that a prime will not be found. More precisely,
the expected number of primes for a given r is at most (pmax – pmin) / (r log pmax). If this quantity is very small, one
should give up after a few iterations and restart the algorithm with a new value of r.

A.15.8 Strong primes

A large prime p is called strong if

— p ≡ 1 (mod r) for some large prime r

— p ≡ –1 (mod s) for some large prime s

— r ≡ 1 (mod t) for some large prime t 

The following algorithm efficiently produces a strong prime p, such that p – 1 is relatively prime to the
specified odd positive integer z. (If the latter condition is not wanted, the choice z = 1 leads to a vacuous
condition.)

Input: A lower bound pmin for p; an upper bound pmax for p; the desired bit lengths L(r), L(s), and L(t); an
odd positive integer z
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Output: A random strong prime p from the interval pmin ≤ p ≤ pmax, where the primes r, s, and t have lengths
L(r), L(s), and L(t), respectively, where p – 1 is relatively prime to z

1. Generate a random prime t from the interval 2L(t)–1 ≤ t ≤ 2L(t) – 1 using A.15.6 with f = 1.

2. Generate a random prime r from the interval 2L(r)–1 ≤ r ≤ 2L(r) – 1 satisfying r ≡ 1 (mod t),
using A.15.7 with f = 1.

3. Generate a random prime s from the interval 2L(s)–1 ≤ s ≤ 2L(s) – 1 using A.15.6 with f = 1.

4. Compute u := 1/s mod r via A.2.2.

5. Compute v := 1/r mod s via A.2.2.

6. Compute a ← su – rv mod rs.

7. Generate a random prime p from the interval pmin ≤ p ≤ pmax satisfying p ≡ a (mod rs) using
A.15.7 with f = z.

8. Output p.

If the strong prime p is also to satisfy an additional congruence condition p ≡ h (mod m), then the last
two steps of the algorithm should be replaced by the following steps:

7. Compute b := 1 / (rs) mod m via A.2.2.

8. Compute k := 1 / m mod rs via A.2.2.

9. Compute c ← akm + bhrs mod mrs.

10. Generate a random prime p from the interval pmin ≤ p ≤ pmax satisfying p ≡ c (mod mrs) using
A.15.7 with f = z.

11. Output p.

A.16 Generation and validation of parameters and keys

A.16.1 An algorithm for generating DL parameters (prime case)

Input: Lower and upper bounds pmin and pmax for the modulus p; lower and upper bounds rmin and rmax for
the generator order r; whether or not the parameters will be used for DLSVDP-DHC or DLSVDP-MQVC

Output: DL parameters q = p, r, and g, satisfying pmin ≤ p ≤ pmax and rmin ≤ r ≤ rmax; the cofactor k, if
desired

1. Generate a random prime r from the interval rmin ≤ r ≤ rmax using A.15.6 with f = 1.

2. Generate a random prime p from the interval pmin ≤ p ≤ pmax satisfying the condition p ≡ 1
(mod r), using A.15.7 with f = 1.

3. Let k = (p – 1) / r.

4. If the parameters will be used for DLSVDP-DHC or DLSVDP-MQVC, check if r divides k; if
so, go to step 1.

5. Choose an integer h, not already chosen, satisfying 1 < h < p – 1.

6. Compute

g := hk mod p

        via A.2.1.
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7. If g = 1 then go to step 5.

8. Output p, r, g. If desired, also output k.

A.16.2 An algorithm for validating DL parameters (prime case)

Input: DL parameters q = p, r, and g; the cofactor k (optional); whether or not the parameters will be used
for DLSVDP-DHC or DLSVDP-MQVC

Output: “True” or “False”

1. Check that p is an odd integer and p > 2. Check primality of p via A.15.3.

2. Check that r is an odd integer and r > 2. Check primality of r via A.15.3.

3. Check that g is an integer such that 1 < g < p.

4. Check that gr ≡ 1 (mod p).

5. If k is supplied, check that k is an integer such that kr = p – 1.

6. If the parameters will be used for DLSVDP-DHC or DLSVDP-MQVC, check that r does not
divide k. (If k is not supplied, first set k ← (p – 1)/r.)

7. Output “True” if all checks work, and “False” otherwise.

NOTE—A method for verifiably pseudo-random generation of DL parameters is provided in ANSI X9.30:1-1997 [B4],
ANSI X9.42 [B8], and FIPS PUB 185 [B56]. (See D.4.1.4 for more information.)

A.16.3 An algorithm for generating DL parameters (binary case)

Input: Lower and upper bounds rmin and rmax for the generator order r; a list of possible field degrees
m1, …, ml; whether polynomial or normal basis is desired; whether or not the parameters will be used for
DLSVDP-DHC or DLSVDP-MQVC

Output: DL parameters q = 2m, r, and g (and the cofactor k, if desired), satisfying rmin ≤ r ≤ rmax and m = mi
for some i, if such exist; otherwise, the message “no such parameters”

1. For i from 1 to l do

1.1 Set m ← mi.

1.2 If m does not appear in Table A.1 in A.3.10, then go to step 1.5.

1.3 Set r to the value in Table A.1 that corresponds to m.

1.4 If rmin ≤ r ≤ rmax, then go to step 4.

1.5 Next i.

2. For i from 1 to l do

2.1 Set m ← mi.

2.2 Obtain the known primitive prime factors of 2m – 1 (see Note 1 below).

2.3 Remove those factors r from the list that are not between rmin and rmax.

2.4 If the parameters will be used for DLSVDP-DHC or DLSVDP-MQVC, remove those
prime factors r from the list for which r2 divides 2m – 1.

2.5 If any factors remain, then let r be one of them and go to step 4.

2.6 Next i.
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3. Output the message “no such parameters” and stop.

4. Set k ← (2m – 1)/r.

5. Choose a polynomial or normal basis for the field GF (2m) (see Note 2 below).

6. Choose an element h of GF (2m) not already chosen.

7. Compute g := hk in GF (2m) via A.4.3.

8. If g = 1, then go to step 6.

9. Output 2m, r, g, and k.

NOTES

1—See A.3.9 for the definition of a primitive prime factor of 2m – 1.

The Cunningham tables are published collections of factors of 2m – 1 for m up to 1200, even m up to 2400, and m ≡ 4
(mod 8) up to 4800. They are available in print (see Brillhart et al. [B31]); an up-to-date version is available via FTP
from Oxford University at ftp://sable.ox.ac.uk/pub/math/cunningham/.

If m ≤ 1200 is odd, then the primitive prime factors of 2m – 1 are listed in Cunningham Table 2–, in the entry n = m. If m
≤ 2400 is even, but not divisible by four, then the primitive prime factors of 2m – 1 are listed in Cunningham Table 2+
(Odd), in the entry n = m/2. If m ≤ 4800 is divisible by four, but not by eight, then the primitive prime factors of 2m – 1
are listed in Cunningham Table 2LM, in the two entries for n = m/2. If m ≤ 2400 is divisible by eight, then the primitive
prime factors of 2m – 1 are listed in Cunningham Table 2+ (4k), in the entry n = m/2.

In the FTP version, the last three tables are combined into one, called 2+; but the entries are listed in the same notation.

2—A polynomial basis can be obtained from the basis table given in A.8.1 if m ≤ 1000. Alternatively, irreducible
polynomials over GF (2) can be obtained using the methods given in A.8.2 through A.8.5.

If a normal basis is desired, and if m ≤ 1000 is not divisible by eight, then a Gaussian normal basis can be obtained from
the basis table given in A.8.1. Alternatively, normal polynomials over GF (2) can be obtained via A.6.2.

A.16.4 An algorithm for validating DL parameters (binary case)

Input: DL parameters q = 2m, r, and g; the cofactor k (optional); the representation for the elements of GF
(2m); whether or not the parameters will be used for DLSVDP-DHC or DLSVDP-MQVC

Output: “True” or “False”

1. If the representation for the field elements is given by a polynomial basis, check that m is a pos-
itive integer and that the polynomial is of degree m. Check that it is irreducible via A.5.5.

2. If the representation for the field elements is given by a Gaussian normal basis of type T, check
that m is a positive integer not divisible by eight and that T is a positive integer; check that such
a basis exists via A.3.6.

3. If the representation for the field elements is given by a general normal basis, check that m is a
positive integer and that the polynomial is of degree m. Check that it is irreducible via A.5.5
and that it is normal via A.6.1.

4. Check that r is an odd integer and r > 2. Check primality of r via A.15.3.

5. Check via A.2.7 that the order of 2 modulo r is m [otherwise, it will be less than m, which
means that r is not a primitive factor of 2m – 1 (see A.16.3 and A.3.9)].

6. Check that g is an element of GF (2m) and that g ≠ 0 and g ≠ 1 in GF (2m).

7. Check that gr = 1 in GF (2m).

8. If k is supplied, check that k is an integer such that kr = 2m – 1.
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9. If the parameters will be used for DLSVDP-DHC or DLSVDP-MQVC, check that r does not
divide k. (If k is not supplied, first set k ← (2m – 1)/r.)

10. Output “True” if the checks work, and “False” otherwise.

A.16.5 An algorithm for generating DL keys

Input: Valid DL parameters q, r, and g

Output: A public key w; a private key s

1. Generate an integer s in the range 0 < s < r designed to be hard for an adversary to guess (e.g., a
random integer).

2. Compute w by exponentiation: w := gs in GF (q).

3. Output w and s.

A.16.6 Algorithms for validating DL public keys

The following algorithm verifies if a DL public key is valid:

Input: Valid DL parameters q, r, and g; the public key w

Output: “True” or “False”

1. If q = p is an odd prime, check that w is an integer such that 1 < w < p.

2. If q = 2m is a power of two, check that w is an element of GF (2m) and that w ≠ 0 and w ≠ 1 in
GF (2m).

3. Check that wr = 1 in GF (q).

4. Output “True” if the checks work, and “False” otherwise.

The following algorithm does not verify the validity of a DL public key, but merely checks if it is in the
multiplicative group of GF (q). It may be used in conjunction with DLSVDP-DHC and DLSVDP-MQVC
primitives.

Input: Valid DL parameters q, r, and g; the public key w

Output: “True” or “False”

1. If q = p is an odd prime, check that w is an integer such that 0 < w < p.

2. If q = 2m is a power of two, check that w is an element of GF (2m) and that w ≠ 0 in GF (2m).

3. Output “True” if the checks work, and “False” otherwise.

A.16.7 An algorithm for generating EC parameters

Input: A field size q (where q is an odd prime p or 2m); lower and upper bounds rmin and rmax for the base
point order r; a trial division bound lmax; the representation for the elements of GF (2m) if q = 2m [see Note 2
in A.16.3 for information on methods for choosing a basis for GF (2m)]; whether or not the parameters will
be used for key validation, ECSVDP-DHC or ECSVDP-MQVC
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Output: EC parameters q, a, b, r, and G; the cofactor k if desired

1. Use the techniques of A.14 to find a positive integer k, a prime r in the interval rmin ≤ r ≤ rmax,
a curve E over GF (q) of order kr, and a point G of order r.

2. If q is prime and q = r, then the curve is anomalous and subject to the reduction attack described
in Semaev [B134], Smart [B140], and Satoh and Araki [B130]. Go to step 1.

3. If the parameters will be used for key validation, ECSVDP-DHC or ECSVDP-MQVC, check if
r divides k. If so, go to step 1.

4. Check the MOV condition via A.12.1. If the output is “False,” then go to step 1.

5. Output q, a, b, r, and G (and k if desired).

A.16.8 An algorithm for validating EC parameters

Input: EC parameters q (where q is an odd prime p or 2m), a, b, r, and G; the cofactor k (optional); the
representation for the elements of GF (2m) if q = 2m; whether or not the parameters will be used for key
validation, ECSVDP-DHC or ECSVDP-MQVC; whether or not the curve is verifiably pseudo-random and,
if so, the parameters given in A.12.5 (if q odd) or A.12.7 (if q even)

Output: “True” if validation was possible; otherwise “False”

1. If k is not supplied

1.1 If  and the parameters will be used for key validation, ECSVDP-DHC or
ECSVDP-MQVC, then output “False” and stop.

1.2 Go to step 4.

2. If r <  and the parameters will be used for key validation, ECSVDP-DHC or
ECSVDP-MQVC, then verify that r does not divide k. If this is not the case (i.e., if r divides k)
then output “False” and stop.

3. Check that the cofactor k is a positive integer. Verify k via A.12.3. If the result is “cofactor
rejected,” then output “False” and stop.

4. Check that r is an odd integer and that r > 2. Check primality of r via A.15.3.

5. If q = p, then

5.1 Check that p is an odd integer and p > 2. Check primality of p via A.15.3.

5.2 Check that a and b are integers such that 0 ≤ a < p and 0 ≤ b < p.

5.3 If the curve is verifiably pseudo-random, then check this via A.12.5.

5.4 Check that 4a3 + 27b2 mod p is not 0.

5.5 Check that G ≠ O; let G = (x, y).

5.6 Check that x and y are integers such that 0 ≤ x < p and 0 ≤ y < p.

5.7 Check that y2 ≡ x3 + ax + b (mod p).

5.8 Check that rG = O.

5.9 Check that the curve is not an instance of one of the following excluded cases:

5.9.1  If the output of the algorithm given in A.12.1 is “False,” then the curve is excluded
because it is subject to the MOV reduction attack described in Menezes, Okamoto,
and Vanstone [B111]. 

r 4 q≤

q 1+
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5.9.2  If r = p, then the curve is excluded because it is subject to the reduction attack
described in Semaev [B134], Smart [B140], and Satoh and Araki [B130] (see D.4.2
for more information). 

6. If q = 2m then

6.1 Check the representation for the field elements, as follows:

6.1.1  If the representation for the field elements is given by a polynomial basis, check that
m is a positive integer and that the polynomial is of degree m. If the polynomial is
not listed in Table A.2, then check that it is irreducible via A.5.5.

6.1.2  If the representation for the field elements is given by a Gaussian normal basis of
type T, check that m is a positive integer not divisible by eight and that T is a
positive integer. If the value for T does not appear in the entry for m in Table A.2,
then check that such a basis exists via A.3.6.

6.1.3  If the representation for the field elements is given by a general normal basis, check
that m is a positive integer and that the polynomial is of degree m. Check that it is
irreducible via A.5.5 and that it is normal via A.6.1.

6.2 Check that a and b are elements of GF (2m).

6.3 If the curve is verifiably pseudo-random, then check this via A.12.7.

6.4 Check that b ≠ 0 in GF (2m).

6.5 Check that G ≠ O; let G = (x, y).

6.6 Check that x and y are elements of GF (2m).

6.7 Check that y2 + xy = x3 + ax2 + b in GF (2m).

6.8 Check that rG = O.

6.9 Check that the curve is not an instance of the following excluded case:

6.9.1  If the output of the algorithm given in A.12.1 is “False,” then the curve is excluded
because it is subject to the MOV reduction attack described in Menezes, Okamoto,
and Vanstone [B111]. 

7. Output “True” if the checks given in steps 4 through 6 work, and “False” otherwise.

NOTE—The condition  is the usual practice and is required by the ISO and ANSI standards dealing with EC
parameter validation. Thus, in the typical environment, it will always be the case that . For an environment in
which this is known to be the case, step 1.1 and step 2 may be omitted.

A.16.9 An algorithm for generating EC keys

Input: Valid EC parameters q, a, b, r, and G

Output: A public key W; a private key s

1. Generate an integer s in the range 0 < s < r designed to be hard for an adversary to guess (e.g., a
random integer).

2. Compute the point W by scalar multiplication: W = sG.

3. Output W and s.

r 4 q>
r 4 q>
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A.16.10 Algorithms for validating EC public keys

The following algorithm verifies if an EC public key is valid.

Input: Valid EC parameters q, a, b, r, G, and k such that r does not divide k; a public key W

Output: “True” or “False”

1. Check that W ≠ O. Let W = (x, y).

2. If q = p, check that x and y are integers, such that 0 ≤ x < p and 0 ≤ y < p and y2 ≡ x3 + ax + b
(mod p).

3. If q = 2m, check that x and y are elements of GF (2m) and that y2 + xy = x3 + ax2+ b in GF (2m).

4. Check that rW = O.

5. Output “True” if the checks work, and “False” otherwise.

The following algorithm does not verify the validity of an EC public key, but merely checks if it is a
nonidentity point on the elliptic curve specified by the parameters. It may be used in conjunction with
ECSVDP-DHC and ECSVDP-MQVC primitives.

Input: Valid EC parameters q, a, b, r, and G; a public key W.

Output: “True” or “False.”

1. Check that W ≠ O. Let W = (x, y).

2. If q = p, check that x and y are integers, such that 0 ≤ x < p and 0 ≤ y < p and y2 ≡ x3 + ax + b
(mod p).

3. If q = 2m, check that x and y are elements of GF (2m) and that y2 + xy = x3 + ax2+ b in GF (2m).

4. Output “True” if the checks work, and “False” otherwise.

A.16.11 An algorithm for generating RSA keys

An RSA modulus is a product n of two (large) primes p and q. Given a public verification (or encryption)
exponent e, the following algorithm efficiently produces such an RSA modulus, along with the secret
signing (or decryption) exponent d.

Common choices for e include the Fermat primes 3, 5, 17, 257, and 65537, because these choices lead to
particularly efficient exponentiations using the binary method of A.2.1. If a pseudo-random value of e is
desired, it should be generated independently of p and q.

The primes produced may be randomly generated, or they may be strong primes (see A.15.8). A large,
randomly generated prime is virtually certain to be strong enough in practice.

Input: The desired bit length L for the modulus; an odd public exponent e > 1

Output: An RSA modulus n of bit length L; the secret exponent d

1. Generate a prime p from the interval

2M–1 ≤ p ≤ 2M – 1
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where M = (L + 1)/2, using A.15.6 with f = e (for random primes) or A.15.8 with z = e (for strong
primes).

2. Generate a prime q from the interval

using A.15.6 with f = e (for random primes) or A.15.8 with z = e (for strong primes).

3. Set n := pq.

4. Compute l := LCM (p – 1, q – 1) via A.1.1 and A.2.2.

5. Compute d := e–1 mod l via A.2.2.

6. Output n and d.

A.16.12 An algorithm for generating RW keys

A Rabin-Williams (RW) modulus is a product n of two (large) primes p ≡ 3 (mod 8) and q ≡ 7 (mod 8). Given
a public verification exponent e, the following algorithm efficiently produces such an RW modulus, along
with the secret signing exponent d.

The usual choice for the verification exponent is e = 2, because this choice means that signature verification
can be implemented via a modular squaring rather than a modular exponentiation. If a pseudo-random value
of e is desired, it should be generated independently of p and q.

The primes produced may be randomly generated, or they may be strong primes (see A.15.8). A large,
randomly generated prime is virtually certain to be strong enough in practice.

Input: The desired bit length L for the modulus; an even public exponent e

Output: An RW modulus n of bit length L; the secret exponent d

1. Let x > 0 be the odd integer usch that e= 2k x for some integer k > 0.
2. Generate a prime p ≡ 3 (mod 8) from the interval

2M–1 ≤ p ≤ 2M – 1

where M = (L + 1)/2, using A.15.7 with f = x (for random primes) or A.15.8 with z = x (for
strong primes).

3. Generate a prime q ≡ 7 (mod 8) from the interval

using A.15.7 with f = x (for random primes) or A.15.8 with z = x (for strong primes).

4. Set n := pq.

5. Compute l := LCM (p – 1, q – 1) / 2 via A.1.1 and A.2.2.

6. Compute d := e–1 mod l via A.2.2.

7. Output n and d.

2L 1–

p
----------- 1+ q 2L

p
-----≤ ≤

2L 1–

p
----------- 1+ q 2L

p
-----≤ ≤



IEEE
Std 1363-2000 IEEE STANDARD SPECIFICATIONS FOR

170 Copyright © 2000 IEEE. All rights reserved.

Annex B

(normative) 

Conformance

The purpose of this annex is to provide implementers with a consistent language for claiming conformance
with parts of this standard. Note, however, that this annex does not provide the means for verifying that a
particular implementation indeed operates as claimed (this is sometimes called implementation validation).
Therefore, conformance claims made by an implementation are merely claims, unless their accuracy can be
assured by other means. Such other means may include, for example, implementation validation or
assignment of legal liability to the implementer claiming conformance. They are outside the scope of this
standard.

Note also that conformance for the purposes of this standard is a matter of functional correctness, not secure
implementation; for the latter, implementers should refer to the security considerations in Annex D.

An implementation may claim conformance with one or more primitives, schemes, or scheme operations
specified in this standard, as further described in this annex.

An implementation shall not claim conformance with this standard as a whole.

Refer to Clause 4 for background on primitives and schemes. Specific primitives and schemes are defined in
Clause 6 through Clause 10.

B.1 General model

A claim of conformance is an assertion by an implementation that it operates in accordance with some
specification, over some set of inputs. Thus, a claim of conformance has, fundamentally, two parts:

— The specification with which conformance is claimed

— A set of inputs, or conformance region, for which the specification is defined, and over which
conformance is claimed

For the purposes of this standard, the specification may be that of a primitive, a scheme operation, or a
scheme. (An implementation may claim conformance with a scheme by claiming conformance with each
operation in the scheme.) For a primitive, the inputs are those stated in the specification; for a scheme
operation, the term “input” refers both to initial inputs, such as messages, and inputs obtained during a step
of the operation, such as domain parameters, keys, and key derivation parameters. Recommended
conformance regions are given in the specifications.

The set of inputs for which a specification is defined depends on the particular primitive or scheme. For a
primitive, the set consists of all inputs that satisfy the assumptions stated for the primitive. For a scheme
operation, the set includes at least those inputs that satisfy the assumptions for any primitives invoked by the
operation. If the operation includes key validation or domain parameter validation, then the specification
may also be defined for certain inputs that do not satisfy the assumptions for a primitive invoked by the
scheme. Thus, for example, the specification of a scheme operation may be defined for invalid, as well as
valid, keys when key validation is included in the scheme, even though the specification of a primitive
invoked by the scheme is not defined for invalid keys. This is because the behavior of the scheme with key
validation is defined as follows on invalid keys: the keys are rejected.

The minimum behavioral requirements for claiming conformance over a conformance region are as follows:
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a) On all inputs in the conformance region, the implementation shall perform steps identical or
equivalent to those specified.

b) On all other inputs it accepts, the behavior of the implementation shall not interfere with correct
operation on inputs in the conformance region. The behavior is otherwise unconstrained.

Acceptable behaviors in item b) include the following:

— Operating in accordance with the specification (if the specification is defined for the input) 

— Rejecting the input 

— Performing steps similar to those specified 

— Performing some other noninterfering operation.

Since primitives are intended for low-level software or hardware implementation, it may be inconvenient for
an implementation of a primitive to check whether an input is supported. Consequently, while an
implementation of a primitive may reject some unsupported inputs, it is not expected that an implementation
of a primitive will reject every unsupported input. Primitives are not intended to provide security apart from
schemes, so such checking is appropriately deferred to the schemes. It is expected that an implementation of
a scheme will reject many or even all unsupported inputs, depending on whether key and domain parameter
validation is included. For more discussion on the risks of not rejecting unsupported inputs, see D.3.3.

An implementation may claim conformance over more than one conformance region, or with more than one
specification. 

NOTES

1—In the interest of interoperability, a conformance region should be sufficiently broad to support a range of possible
applications. It is expected that implementation profiles for various applications will give minimum interoperability
criteria, in terms of specifications and associated conformance region constraints. For a similar reason, a conformance
region should be documented explicitly. (In some cases, however, the documentation may be implicit to some extent; for
instance, the domain parameters may be unambiguously specified, but secret.)

2—Although an implementation’s behavior is unconstrained on inputs outside the conformance region (except for not
interfering with the behavior on inputs in the conformance region), it is recommended, in the interest of robustness, that
an implementation include checks that prevent failure when specified assumptions are not satisfied. For instance, an
implementation should include checks that prevent division by zero, or infinite loops, even if those checks are not
necessary when the specified assumptions are satisfied.

3—The concept of “equivalence” (as in “perform steps... equivalent to”) should be understood in the sense of
indistinguishability. A conformant implementation of a scheme or primitive may perform steps identical to those
specified for the scheme or primitive, in the sense of performing those steps exactly as specified; or it may perform
similar steps that produce the same observable behavior.

For instance, if a step calls for generating a random number, the implementation may generate a pseudo-random number.
Under the usual cryptographic assumption that the pseudo-random generator is indistinguishable from a truly random
generator, the implementation is equivalent to the specification at that step.

Similarly, an implementation may choose to apply restrictions that exclude certain rare events. For instance, an
implementation may exclude DL or EC private keys that are equal to one, and instead generate private keys in the range
[2, r – 1]. An implementation with such a restriction will be indistinguishable from the specification, and may still claim
conformance. On the other hand, an implementation that generates private keys in the range [1,1000] could not claim
conformance, because its behavior would be observably different from the specification.

As another example, an implementation of IFES-RSA might output an error message when the output of the encryption
primitive equals its input, which is a rare event.

B.2 Conformance requirements

An implementation claiming conformance with a primitive or scheme specified in this standard shall meet
the requirements specified in the subclauses that are specified in Table B.1 and Table B.2, in addition to the
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general criteria in B.1. Requirements are to be understood in the context of Clause 2, Clause 3, Clause 4, and
Clause 5.     

Table B.1—Required subclauses for conformance with primitives

Primitive Subclauses

DLSVDP-DH 4.2, 6.1, 6.2.1

DLSVDP-DHC 4.2, 6.1, 6.2.2

DLSVDP-MQV 4.2, 6.1, 6.2.3

DLSVDP-MQVC 4.2, 6.1, 6.2.4

DLSP-NR 4.2, 6.1, 6.2.5

DLVP-NR 4.2, 6.1, 6.2.6

DLSP-DSA 4.2, 6.1, 6.2.7

DLVP-DSA 4.2, 6.1, 6.2.8

ECSVDP-DH 4.2, 7.1, 7.2.1

ECSVDP-DHC 4.2, 7.1, 7.2.2

ECSVDP-MQV 4.2, 7.1, 7.2.3

ECSVDP-MQVC 4.2, 7.1, 7.2.4

ECSP-NR 4.2, 7.1, 7.2.5

ECVP-NR 4.2, 7.1, 7.2.6

ECSP-DSA 4.2, 7.1, 7.2.7

ECVP-DSA 4.2, 7.1, 7.2.8

IFEP-RSA 4.2, 8.1, 8.2.2

IFDP-RSA 4.2, 8.1, 8.2.1, 8.2.3

IFSP-RSA1 4.2, 8.1, 8.2.1, 8.2.4

IFVP-RSA1 4.2, 8.1, 8.2.5

IFSP-RSA2 4.2, 8.1, 8.2.1, 8.2.6

IFVP-RSA2 4.2, 8.1, 8.2.7

IFSP-RW 4.2, 8.1, 8.2.1, 8.2.8

IFVP-RW 4.2, 8.1, 8.2.9

Table B.2—Required subclauses for conformance with schemes

Scheme Operation Subclauses

DL/ECKAS-DH1 Key agreement 4.3, 9.1, 9.2

DL/ECKAS-DH2 Key agreement 4.3, 9.1, 9.3

DL/ECKAS-MQV Key agreement 4.3, 9.1, 9.4

DL/ECSSA Signature generation 4.3, 10.1, 10.2.1, 10.2.2

Signature verification 4.3, 10.1, 10.2.1, 10.2.3

IFSSA Signature generation 4.3, 10.1, 10.3.1, 10.3.2

Signature verification 4.3, 10.1, 10.3.1, 10.3.3

IFES Encryption 4.3, 11.1, 11.2.1, 11.2.2

Decryption 4.3, 11.1, 11.2.1, 11.2.3
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An implementation may claim conformance with a primitive, a scheme, or a scheme operation. For a scheme
or scheme operation, conformance requirements for the selected primitive or primitives, and for additional
techniques such as encoding methods or key derivation functions, are also assumed. When documenting
conformance with a scheme, these scheme options shall be noted explicitly. In addition, the documentation
shall indicate whether the implementation includes key validation or domain parameter validation and, if so,
what is validated (i.e., what properties of keys and parameters are assured by the validation). An
implementation claiming conformance with a scheme shall satisfy the requirements for each operation in the
scheme.

The following is a template for a claim of conformance: 

“Conforms with IEEE Std 1363-2000 (technique/options) over the region where (constraints on inputs).”

The “technique/options” component identifies the primitive, scheme, or scheme operation, together with any
underlying techniques, such as the encoding method or hash function, and any additional choices, such as
whether and how domain parameter or key validation is performed. The “constraints on inputs” component
identifies the conformance region. The method of expressing these components is left to the implementation.
Some examples are given in B.3.

B.3 Examples

This clause gives some examples of claims of conformance with the primitives and scheme operations in this
standard.

B.3.1 DLSP-DSA

A hardware cryptographic module claims conformance with DLSP-DSA. The two parts of its conformance
claim are as follows:

— Specification: DLSP-DSA, as given in 6.2.7

— Conformance region: Inputs of the form

The DL domain parameters q, r, and g associated with the key s

The signer’s private key s

The message representative, which is an integer f ≥ 0

where the DL domain parameters and the private key are valid and associated, subject to additional
conditions that constrain the conformance region.

The following is an example of additional conditions (this follows the recommendations in 6.2.7):

— The DL field order q is a 512 bit to 1024 bit prime.

— The DL subgroup order r is a 160 bit prime.

— The message representative f is, at most, 160 bits long.

A module claiming conformance under these conditions may document its conformance as follows:

Conforms with IEEE Std 1363-2000 DLSP-DSA over the region where the DL field order q is a 512 bit
to 1024 bit prime, the DL subgroup order r is a 160 bit prime, the domain parameters and the private
key are valid and associated, and the message representative f is at most 160 bits long.
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Such a module may also claim conformance over a subset of the region just stated. For instance, it may claim
conformance with the region specified in the Digital Signature Standard (ANSI X9.30:1-1997 [B4] or
FIPS PUB 186 [B56]), where the DL field order q is a 512 bit, 576 bit, …, or 1024 bit prime, and the
subgroup order r and message representative f are as already stated.

B.3.2 DLSSA signature verification

A software application claims conformance with the DLSSA signature verification operation. The two parts
of its conformance claim are as follows:

— Specification: DLSSA signature verification, as given in 10.2.3, with a particular signature
verification primitive and encoding method, and optionally with particular domain parameter and
key validation methods

— Conformance region: Inputs of the form

The DL domain parameters q, r, and g associated with the key w

The signer’s purported public key w

The message M

The purported signature (c, d)

subject to additional conditions that constrain the conformance region, some of which may depend on the
specification. 

Examples of the particulars for DLSSA signature verification are as follows:

— Signature verification primitive: DLSP-DSA

— Encoding method: EMSA1, with SHA-1 hash function

— No domain parameter or key validation

With this specification, the behavior is undefined for invalid domain parameters and keys. An
implementation may thus claim conformance over only a conformance region consisting of valid domain
parameters and keys. Examples of the conditions that constrain the conformance region in this case are as
follows:

— Domain parameters and public key are valid and associated.

— The DL field order q is a 512 bit to 1024 bit prime.

— The DL subgroup order r is a 160 bit prime.

— Message M is any that can be input to the implementation, at most 100 Mbytes long.

— The purported signature (c, d) is any that can be input to the implementation, including at least all
those such that c and d are in the range [1, r – 1].

A module claiming conformance under these conditions may document its conformance as follows (with
shorthand for the specification):

Conforms with IEEE Std 1363-2000 DLSSA/DLVP-DSA/EMSA1/SHA-1 signature verification opera-
tion with no explicit domain parameter or key validation over the region where the DL field order q is a
512 bit to 1024 bit prime, the DL subgroup order r is a 160 bit prime, the domain parameters and public
key are valid and associated, the message M is at most 100 Mbytes long, and the purported signature (c,
d) is any that can be input to the implementation, including at least all those such that c and d are in the
range [1, r - 1].
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Other examples of the particulars are as follows:

— Signature verification primitive: DLSP-DSA

— Encoding method: EMSA1, with SHA-1 hash function

— “Canonical seeded hash” domain parameter validation ANSI X9.30:1-1997 [B4], and key validation
(A.16.6).

With this specification, the behavior is defined as follows for invalid domain parameters and public keys:
they are rejected. (Indeed, domain parameters that are otherwise valid according to the definitions in this
standard, but for which the seed is incorrect, are also rejected.) An implementation may thus claim
conformance over a conformance region consisting of valid and invalid domain parameters and keys. The
same example conditions as given above may be followed here, except for the condition that the domain
parameters and public key are valid and associated.

An example conformance statement for this case is as follows:

Conforms with IEEE Std 1363-2000 DLSSA/DLVP-DSA/EMSA1/SHA-1 signature verification opera-
tion with “canonical seeded hash” domain parameter validation and key validation over the region
where the DL field order q is a 512 bit to 1024 bit prime, the DL subgroup order r is a 160 bit prime, the
message M is at most 100 Mbytes long, and the purported signature (c, d) is any that can be input to the
implementation, including at least all those such that c and d are in the range [1, r – 1].

B.3.3 IFSP-RSA2

A hardware cryptographic module claims conformance with IFSP-RSA2. The two parts of its conformance
claim are as follows:

— Specification: IFSP-RSA2, as given in 8.2.6

— Conformance region: Inputs of the form

—The signer’s RSA private key K

—The message representative, which is an integer f such that 0 ≤ f < n

where the private key K is valid and such that f ≡ 12 (mod 16), subject to additional conditions that constrain
the conformance region.

Examples of additional conditions are as follows (this follows the recommendations in 8.2.6):

— Size of the modulus n in the private key is 512 to 2048 bits.

— Message representative f is in the range [0, n – 1].

A module claiming conformance under these conditions may document its conformance as follows:

Conforms with IEEE Std 1363-2000 IFSP-RSA2 over the region where the private key K is valid and the
size of the modulus n is 512 to 2048 bits, and the message representative f ≡ 12 (mod 16) is in the range
[0, n – 1].

The module may also claim conformance over a subset of the region just stated. For instance, it may claim
conformance with the region where the modulus size is 1024 to 2048 bits.
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B.3.4 IFSSA signature verification

A software application claims conformance with the IFSSA signature verification operation. The two parts
of its conformance claim are as follows:

— Specification: IFSSA signature verification, as given in 10.3.3, with a particular signature
verification primitive and encoding method and, optionally, with a particular key validation method

— Conformance region: Inputs of the form

The signer’s purported public key (n, e)

The message M

The purported signature s

subject to additional conditions that constrain the conformance region, some of which may depend on the
specification. 

Examples of the particulars for IFSSA signature verification are as follows:

— Signature verification primitive: IFVP-RSA2

— Encoding method: EMSA2, with SHA-1 hash function

— No domain parameter or key validation

With this specification, the behavior is undefined for invalid keys. An implementation may thus claim
conformance only over a conformance region consisting of valid keys. Examples of the conditions that
constrain the conformance region in this case are as follows:

— Public key (n, e) is valid.

— Size of the modulus n in the public key is 512 to 2048 bits.

— Message M is any that can be input to the implementation, at most 100 Mbytes long.

— The purported signature s is any that can be input to the implementation, including at least all s in the
range [0, (n – 1)/2].

The application may document its conformance as follows (with shorthand for the specification):

Conforms with IEEE Std 1363-2000 IFSSA / IFVP-RSA2 / EMSA2 / SHA-1 signature verification oper-
ation with no explicit key validation over the region where the public key (n, e) is valid, the size of the
modulus n is 512 to 2048 bits, the message M is at most 100 Mbytes long, and the purported signature s
is any that can be input to the implementation, including at least all s in the range [0, (n – 1)/2].
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Annex C

(informative) 

Rationale

This annex is presented in the form of questions and answers.

C.1 General

C.1.1 Why are there three families of cryptographic techniques?

All three of the families (DL, EC, and IF) are established in the marketplace. They have different advantages
and disadvantages, such as performance, key size, code size, availability of cryptoanalytic research, patent
coverage, and use in other standards. The goal of this standard is not to restrict users to a single choice, but
rather to provide a framework that would allow selection of methods appropriate for particular applications.
Since implementers of this standard need not implement it in its entirety, they have the option to choose the
techniques that best suit their needs.

C.1.2 Why are primitives and schemes separated?

In this standard, primitives are presented as mathematical operations, while schemes are presented in a
general form based on certain primitives and additional techniques, such as encoding methods. Historically,
primitives were discovered based on number-theoretic one-way functions. Encoding methods and other
components of the scheme were added later to achieve particular security attributes, and tend to focus more
on bit-string manipulation. The general form of the scheme lays down a good framework to allow alternative
techniques to be included in a given scheme in future versions of the standard. An implementation can
conform to either a primitive or a scheme (see Annex B). Hardware components, in particular, may find it
advantageous to conform to a primitive, because primitives tend to be less flexible and change less than
encoding methods and other components of a scheme. Note, however, that primitives alone are not intended
to provide security (see Clause 4).

C.1.3 How were the decisions made regarding the inclusion of individual schemes?

Three types of schemes are defined in this standard: key agreement, digital signatures, and public-key
encryption. In practice, these are the most basic yet important functions in a public-key cryptosystem. Other
types of schemes (e.g., identification schemes) may be included in future versions of this standard.

The main purpose of this standard is to specify the basic public-key techniques in a common way. Additional
techniques remain to be specified, which could eventually be added to the standard. However, many of those
additional techniques require further development before being standardized, whereas the basic techniques
in the current version are relatively more established. To facilitate the completion of the work on basic
techniques, while also providing a forum for discussing additional techniques, the Working Group decided
to have two separate projects: P1363 and P1363a. P1363a will supplement the more established techniques
already covered in the P1363 document, and it is intended that the two documents will be merged in a future
version. 

The selection of schemes in the current version of the standard was based on the above decision. Some
reasons for the selection of each individual scheme can be found in C.3.
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C.1.4 Why are constraints on key sizes not specified?

Key sizes are chosen in accordance with security requirements and are application-dependent. As the focus
of this standard is specifications of public-key techniques, not security certification, no constraints are given
on the key size for any of the schemes. However, recommendations on key sizes for each family of
techniques are included in Annex D.

C.1.5 Why are message-encoding methods for encryption and signature needed?

The mathematical structure of certain “raw” cryptographic algorithms can lead to a number of delicate
attacks, such as chosen ciphertext attacks (where one obtains the decryption of a ciphertext by asking for the
decryption of an apparently unrelated ciphertext), or chosen message attacks (where one obtains a signature
of a message after requesting signatures for apparently unrelated messages). An appropriate
message-encoding method provides a systematic way of thwarting all such attacks. Quite a few encoding
methods for encryption and signature have appeared in academic literature and other standards. The methods
included in this standard are well-established techniques. It is highly recommended to use these methods
when implementing the schemes specified in this standard. More discussions on security properties of
message-encoding methods are given in Annex D. 

C.1.6 Why are key derivation functions needed?

A key derivation function is needed in the DL/EC key agreement schemes. One reason is that the output
from a DL/EC secret value derivation primitive may not be appropriate to use directly as a session key, due
to a bias in some of the bits of the derived secret value. A good key derivation function helps to remove such
bias and to use all the entropy in the output of the secret value derivation primitive. Another reason is that, in
many cases, it is useful to be able to derive more than one key from a secret value. In addition, key derivation
functions, as defined in this standard, also take as input key derivation parameters, which allow one to
specify additional information related to the derived key, as well as the parties in the key agreement scheme.

C.1.7 Why are data formats for input/output, keys, and domain parameters not
normative?

Some data formats for input/output, keys, and domain parameters are specified in the informative Annex E.
The choice of a particular data format does not affect security, as long as the choice is unambiguous and
known to all parties involved, and provides for adequate and unambiguous representation of the relevant
data. Two implementations with different choices of data formats may not be interoperable. They will need
to convert between each other's formats to achieve interoperability. The data formats are not normative
because some applications may not require interoperable formats.

C.2 Keys and domain parameters

C.2.1 Why have two types of fields for the DL and EC families?

Modular arithmetic is already implemented in many systems and may have performance advantages in
software. On the other hand, arithmetic in finite fields of characteristic two may have performance advan-
tages in hardware. There are also security issues related to the two types of fields (see Annex D for more
discussion). In addition, certain techniques in both cases are covered by patents, and a particular application
will have to weigh these tradeoffs when deciding what type of field to use.
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C.2.2 Why allow multiple representations for GF (2m)?

While there is a single most commonly used representation for GF (p), there are multiple natural, commonly
used representations for GF (2 m). There are performance tradeoffs in the use of each representation. When
choosing a representation, one needs to consider whether hardware or software performance is more
important, as well as time complexity, memory complexity, and relevant patents.

While it would have been possible to standardize one representation and require that applications that want
to do computations in a different representation convert from one to the other, the expense of basis conver-
sion may be unacceptable in certain applications. The aim instead was to provide a flexible framework
within which applications will decide how to interoperate. Therefore, recommendations on two particular
representations are provided. It is possible that other representations for GF (2m), as well as GF (p), will be
provided in P1363a.

C.3 Schemes

C.3.1 For the DL and EC families, why have three key agreement schemes
(-DH1, -DH2, and -MQV)? 

The schemes DL/ECKAS-DH1 are based on the traditional Diffie-Hellman key agreement schemes, in
which each party contributes one key pair. The scheme DL/ECKAS-DH2 is based on the so-called “unified
model” for key agreement, in which each party contributes two key pairs. The schemes DL/ECKAS-MQV
also utilize two key pairs from each party, but are more computationally efficient than DL/ECKAS-DH2.
Certain security attributes can be achieved in different ways by the schemes, as discussed in Annex D.

The reason all three schemes are in this standard is that there are tradeoffs in efficiency, depending on how
the security attributes are achieved with each of the schemes. There may also be differences in patent
coverage. When choosing a scheme, one needs to consider the desired security attributes, communication,
time and memory complexity, and relevant patents.

C.3.2 For the DL and EC families, why have the “compatibility” option for the DHC
and MQVC primitives?

The “compatibility” option provides flexibility to implementers. The “compatible” versions of DHC and
MQVC are likely to achieve greater interoperability with existing DH and MQV implementations, but the
“incompatible” versions may have some implementation advantages, as they may be easier to layer on top of
existing DH and MQV implementations. (In particular, it may be convenient in some architectures to view
the cofactor multiplication as an additional step applied after ordinary DH and MQV.) Concerns about
interoperability can be addressed in profiles and other standards based on this standard.

C.3.3 For the EC and DL families, why have both DSA and NR signature schemes
with appendix?

The scheme DLSSA-DSA is a generalization of the U.S. Government Digital Signature Standard (DSS)
specified in ANSI X9.30:1-1997 [B4] and FIPS PUB 186 [B56], and it has withstood extensive
cryptanalysis. The scheme ECSSA-DSA is the elliptic curve analog of DLSSA-DSA, and a similar scheme
called ECDSA is specified in ANSI X9.62-1998 [B11].

Note that ANSI X9.30:1-1997 [B4], FIPS PUB 186 [B56] and ANSI X9.62-1998 [B11] mandate the use of
the hash function SHA-1 with DSS (and ECDSA), and they have restrictions on the sizes of the DL and EC
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parameters. However, this standard attempts to provide a more flexible specification by allowing other
suitable hash functions and a larger range of key sizes. A particular application may find that its key sizes
need to be shorter or longer than DSS allows, and that a different hash function better suits its needs.
Implementations of DLSSA-DSA and ECSSA-DSA can be compliant with ANSI X9.30:1-1997 [B4],
ANSI X9.62-1998 [B11], or FIPS PUB 186 [B56].

The schemes DL/ECSSA-NR have the advantages of better performance and smaller code size (in particular,
because they do not require computation of a multiplicative inverse in a finite field). Also, DL/ECSP-NR and
DL/ECVP-NR, the basic primitives for the schemes, allow for message recovery, whereas DL/ECSP-DSA
and DL/ECVP-DSA do not. Should a signature scheme with message recovery be necessary for the DL or
EC system, it can be constructed based on DL/ECSP-NR and DL/ECVP-NR, although such a scheme is not
currently specified in the standard (see C.3.4).

C.3.4 For the DL and EC families, why are there no signature schemes with
message recovery?

A signature scheme with message recovery requires the use of an encoding method which, in particular, adds
redundancy to a message. The Working Group was not aware of an encoding method that would be
acceptable for standardization for the DL and EC family. Should an application require a DL or EC signature
scheme with message recovery, it may use an encoding method of its choice with the NR signature and
verification primitives (see Annex B). It is also possible a suitable encoding method will be established
during the P1363a effort (see C.1.3). Note that ISO/IEC 9796-4 [B79] (currently in draft stage) defines a
signature scheme with message recovery based on the Nyberg-Rueppel primitive.

C.3.5 For the DL and EC families, why are there no encryption schemes?

A DL or EC encryption scheme, in general, requires the use of an encoding method that provides the
security properties as described in D.5.3. In addition, since EC keys commonly used in practice are fairly
short and, hence, can be shorter than the data to be encrypted, an encoding method should be designed to
also handle this size difference. Several proposals on DL and EC encryption schemes were presented to the
P1363 Working Group to address these issues. However, none of the proposals was considered mature
enough, and it was decided that they would benefit from further study before being standardized. It is likely
that a suitable encryption scheme for the DL and EC families will be established during the P1363a effort
(see C.1.3). (Note that ANSI X9.63 [B12] defines encryption schemes for the EC family.)

C.3.6 For the IF family, why have both RSA and RW signature schemes?

Both RSA and RW are established signature schemes based on the integer factorization problem. The RSA
signature schemes are well understood and widely used. The RW signature verification is generally faster
than the RSA signature verification if the public exponent of two is used; however, the RSA signature
generation has a code-size and speed advantage, because there is no need to compute the Jacobi symbol.
Both RSA and RW signatures are described in the appendix to ISO/IEC 9796:1991 [B78]. 

Note that there are two signature and verification primitives (IFSP/IFVP) for RSA, namely RSA1 and RSA2.
RSA1, which specifies just the “raw” RSA operation, has been widely used in various implementations and
protocols, such as PKCS #1 ([B126] and [B127]), SET ([B104]), and S/MIME (Dusse et al. [B51] and
Dusse et al. [B52]). RSA2 has an extra simple step to adjust the most significant bit of the signature to zero
and, hence, can save one bit (and potentially one byte for some key sizes) compared with RSA1. RSA2 is a
component in ANSI X9.31-1998 [B7] and ISO/IEC 9796: 1991 [B78].
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C.3.7 For the IF family, why are there no signature schemes with message
recovery?

Unlike the DL and EC cases, there is a well-established encoding method for the IF case of signatures with
message recovery, specified in ISO/IEC 9796:1991 [B78]. However, work by Coron, Naccache, and Stern
[B42] and Coppersmith, Halevi, and Jutla [B40] demonstrated practical chosen-message attacks against this
method. The Working Group decided that the attacks warranted exclusion of this method from the standard.
The Working Group was not aware of another encoding method that would have been ready for
standardization for the IF family. Should an application require an IF signature scheme with message
recovery, it may use an encoding method of its choice with the IF signature and verification primitives (see
Annex B). It is also possible that a suitable encoding method will be established during the P1363a effort
(see C.1.3). Note that ISO/IEC JTC1 SC27 (the subcommittee responsible for the ISO/IEC 9796 series of
standards) is currently considering modifications to the encoding method of ISO/IEC 9796:1991 [B78], as
well as other methods, which will be issued in the ISO/IEC 9796 series.

C.3.8 For the IF family, why are there no key agreement schemes?

In general, key agreement can be achieved using techniques based on integer factorization. For example,
each party can transport a secret value using an IF encryption scheme to the other party, and a shared secret
key can then be derived using the two secret values. However, such methods are better described as protocols
rather than as schemes in the model given in Clause 4. This may be a semantic distinction between
“protocol” and “scheme.” Under the model in Clause 4, a key agreement scheme is a collection of related
operations by which parties can agree on one or more secret keys in some protocol. While one can use IF
encryption and decryption operations to agree upon secret keys, those operations are more naturally
described in an encryption scheme. It is possible that key agreement techniques based on the IF family will
be specified during the P1363a effort.
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Annex D

(informative) 

Security considerations

D.1 Introduction

This annex addresses security considerations for the cryptographic techniques that are defined in this
standard. It is not the intent of this annex to teach everything about security or cover all aspects of security
for public-key cryptography. Rather, the goal of this annex is to provide guidelines for implementing the
techniques specified in this standard. Moreover, since cryptography is a rapidly changing field, the
information provided here is necessarily limited to the published state-of-the-art as of the time the standard
was drafted in August 1998. Implementers should, therefore, review the information against more recent
results at the time of implementation; the Working Group website may contain additional relevant informa-
tion (see http://grouper.ieee.org/groups/1363/index.html). 

Security recommendations (in the form of “should”) are given throughout this annex. It should be
understood, however, that there may be choices other than the ones recommended here that achieve a given
level of security. Furthermore, as discussed in D.2, the definition of security depends on the types of attack
that are relevant to an implementation. If an attack is not relevant, then some recommendations may not
apply. Thus, while the recommendations given here enable security, they should not necessarily be taken as
requirements. Nevertheless, it is expected that other standards based on this standard may upgrade some of
the recommendations to requirements.

The considerations are presented in six parts. General security principles applying to all the families and
schemes are presented in D.2. Key management considerations that also apply to all the families and
schemes are summarized in D.3. Family-specific considerations are given in D.4, and scheme-specific
considerations are given in D.5. As generation of random numbers is a common tool needed to implement
this standard, random number generation considerations are summarized in D.6. Implementation
considerations, relevant to all the families and schemes, are given in D.7.

For readers who are interested in extensive and in-depth discussions on security and cryptography, see
Menezes, van Oorschot, and Vanstone [B112], Schneier [B132], Stallings [B143], and Stinson [B145] in
Annex F.

D.2 General principles

The storage and transmission of data in modern computer and communications systems is vulnerable to a
number of threats, including unauthorized disclosure and modification, as well as impersonation of parties in
the system. Parties’ assurances of where data is from, whether data is in its original form, who has access to
data, and whether a party claiming a certain identity is authentic, all depend on appropriate protection of
data.

Policy measures, such as requiring a password for access to a system; physical measures, such as concealing
wires; and legal measures, such as prohibiting eavesdropping by statute, all provide a degree of defense
against the threats just mentioned. But such approaches are all indirect, as they address only the
implementation or use of a system—not the data itself. Direct protection, involving operations on the data, is
the purpose of cryptography.
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As noted in Clause 4, three common means of data protection provided by public-key cryptography are key
agreement schemes, encryption schemes, and digital signature schemes. Implemented and combined
appropriately, they can address the threats just mentioned. With either a key agreement scheme or an
encryption scheme, for instance, parties can establish a shared secret key. The parties can then prevent
unauthorized disclosure by applying a symmetric encryption algorithm to the data using the shared secret
key, so that parties not possessing the key cannot recover the data. A party can also encrypt data directly with
an encryption scheme. Similarly, with a signature scheme, parties can detect unauthorized modification as
well as impersonation.

The need for the protection of data and identities against the threats mentioned above leads to consideration
of the following question: “What is a secure system?” There is no easy answer to this question. As the
Handbook of Applied Cryptography states, “… security manifests itself in many ways according to the
situation and requirement” (see Section 1.2 of Menezes, van Oorschot, and Vanstone [B112]). The following
paragraphs explore some of the general principles that help answer this question.

In a typical security analysis, an opponent (also called an adversary)—the source of the threats mentioned
above—is assumed to have certain abilities. Under the usual model, called Kerckhoffs’ assumption,
Kerckhoffs [B92], an opponent will have full knowledge of system design, including the specification of all
cryptographic operations (as, for instance, this standard would provide). Usually, the opponent will be able
to use more tools than just “passive wiretapping” in order to read messages exchanged between parties. For
example, the opponent may also be able to modify the message between parties. The opponent should also
be considered to have some computational resources. The opponent may also be trusted by other parties to
some extent. For instance, legitimate parties may be willing to perform selected cryptographic operations
requested by the opponent, or the opponent’s keys may be accepted as legitimate by other parties. In other
words, the opponent may appear to other parties as a legitimate party. However, the opponent generally will
not know all of the secrets in the system, such as long-term private keys, and it is this knowledge that distin-
guishes the opponent from the legitimate parties. Any attempt by the opponent to violate the security of a
system in some manner is called an attack.

Under the assumption that such an opponent is present, the legitimate parties need to ensure that certain
security properties (such as data confidentiality or data integrity) are satisfied. Just as there are different
classes of opponents, there are different desirable security properties. A higher level of security is likely to
be desirable for more valuable data, for instance, or for data with a long lifetime. Thus, as a general
principle, security properties should be selected consistent with the value of the data being protected and the
set of opponents envisioned. Since the cost of providing security generally varies according to the security
properties, decisions related to security are appropriately framed as cost-benefit analyses.

In light of the above discussion, security may be defined as the assurance of trust in the face of opponents
with certain knowledge and resources. Thus, the opponent, and the types of attack it can mount, is a required
component of the definition of security.

A designer’s objective, then, is to choose security techniques that provide certain desired security properties
when faced with an opponent considered reasonable for a particular system. The cost-benefit analysis that
can be applied to make decisions related to security can also be applied when evaluating the capabilities of a
potential opponent. For example, an opponent is unlikely to spend more on breaking the system than it will
obtain by doing so. However, it is important not to overestimate the opponent’s costs, because an opponent
may be using stolen, borrowed, or free resources (such as spare cycles of multiple computers). Indeed, in the
case of free resources, the attack is always worth doing in a cost-benefit analysis, assuming the cost is really
zero. Also, a large one-time investment for an opponent may pay off over time if the opponent breaks
multiple systems. For example, if many DL-based systems use one particular finite field, a large investment
in accelerated hardware modules for solving the DL problem in that specific field may pay off for the
opponent, especially because the computation time per logarithm goes down if multiple discrete logarithms
need to be computed. It is also important not to underestimate the opponent’s benefit—it may be unclear
how much publicity, personal satisfaction, or furthering of political goals may be worth to a potential
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opponent. Finally, one must also consider risk in terms of an opponent's probability of success. Even a
chance of one in one million may be unacceptably large in some situations, so it is not only the cost of
guaranteed success that is relevant.

In support of this process of choosing appropriate techniques when faced with a potential opponent, this
annex summarizes the choices related to cryptographic techniques in this standard. Note, however, that this
standard (and this annex in particular) focuses on individual implementation of individual cryptographic
techniques, and not on entire systems. In particular, this standard defines cryptographic techniques from the
point of view of a single party, rather than protocols in which multiple parties participate and multiple
cryptographic operations are performed. It is expected that techniques in this standard will be combined into
protocols by other standards or implementers. However, such combinations, especially ones where multiple
cryptographic operations (e.g., both encryption and signature) on the same data are performed, require
additional security analyses.

D.3 Key management considerations

This clause provides general information on key management. Proper key management is an essential com-
ponent of cryptographic security. It is needed, in particular, to ensure integrity, authenticity and, where
appropriate, secrecy of domain parameters and keys.

D.3.1 Generation of domain parameters and keys

A set of domain parameters may be generated by one of the parties that intend to use it, by a third party, or
jointly by any subset of these. A capability to audit the domain parameter generation may be provided to
other parties by generating random components of the domain parameters using one-way function(s) of
random seed(s), and publishing the seed(s). Any party can then verify that the domain parameters indeed
correspond to the seed(s). This provides some degree of assurance that the party generating the parameters
did not pick them specifically to possess some particular special property. The property in question should be
rare enough so that it is infeasible to obtain it simply by trying different seeds. The one-way function should
be such that it is hard to find a seed that produces parameters with that property (e.g., the property should not
be closely related to the one-way function). See A.12.4 through A.12.7 for examples of parameter generation
that provide for auditing. Additional information for auditing domain parameter generation is provided by
family in D.4.

A public/private key pair may be generated as follows:

— By the owner of the keys (this is the most commonly used method).

— Jointly by the owner of the keys and by another party, such as a certifying authority. Depending on
the technique used, the other party may not need to be entrusted with any secrets by the owner of the
key pair. This method may be used to ensure that the key pair is not picked by the owner to have
some particular special property, and may eliminate the need for a separate verification that the party
possesses its private key (see D.3.2). Chen and Williams [B36] provide an example of this method.

— By a third party that can be trusted with the private key (in particular, it should be trusted to keep the
private key secret and not use its knowledge of the private key to its advantage). If the third party is
trusted to perform the key generation properly, this method may be used to ensure that the key pair is
not picked by the owner to have some particular special property, and may eliminate the need for a
separate verification that the party possesses its private key (see D.3.2).

A capability to audit the key generation may be provided using methods similar to those for parameter
generation, as described above. However, because (as opposed to parameters) the private key is meant to be
a secret, the random seed should be kept secret (as securely as the private key), because revealing it would
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reveal the private key. The actual auditing, therefore, must be done only by trusted parties, or in situations
when it is appropriate to reveal the private key. 

Private keys should never be shared among parties. Every private key should be generated independently of
other private keys. If random numbers for use in producing the private keys are generated properly,
accidental sharing of private keys is extremely unlikely to occur (see D.6 for more on random number
generation). Two or more dishonest parties, however, may collude in order to make their private keys the
same (or make them stand in some relation known to the colluding parties). Dishonest parties may do so, for
example, for the purposes of claiming the failure of a key generation procedure and for repudiating signa-
tures produced with those keys (see D.5.2.3 for more on repudiation). Such concerns may be addressed by
establishing trust in the implementation of key generation, or by involving a trusted party in the key
generation process, as described above. It may be possible for an authority to check that no two public keys
(and, hence, private keys) are equal in a limited system. However, this check will not reveal a pair of keys
that stand in some special relation to each other, and it may be impractical to implement in some systems.

More considerations for key and parameter generation are given by family in D.4.

D.3.2 Authentication of ownership

Authentication of ownership of a public key is the assurance that a given, identified party intends to be
associated with the public key (and the corresponding set of domain parameters, if any). It may also include
assurance that the party possesses the corresponding private key; this is commonly known as Proof of
Possession (POP). The latter assurance is stronger, in the sense that it prevents an opponent from misleading
other parties into believing that the results of operations performed with the private key are associated with
the opponent, rather than with the actual owner of the private key.

Further considerations related to authentication are given by type of scheme in D.5.

Authentication of ownership may be conveyed as part of the supporting key management (e.g., in a
certificate, which is a message signed by a certifying authority indicating that a particular party, typically
identified by a name, owns a given public key) (see [Section 13.4.2 of B112]). Anyone who knows the
certifying authority’s public key and trusts the certifying authority can verify the signature on the certificate
and, thereby, authenticate the party’s ownership of the public key. Certifying authorities may issue
certificates to other certifying authorities, so that trust in a single “root” certifying authority’s public key can
extend through a chain of certificates to the public keys of a large community. Other attributes, such as key
cryptoperiod or usage restrictions, may also be bound to a public key in this manner (see D.3.6 and Kaliski
[B82]). To gain assurance that a party possesses a private key and, thereby, to convey this assurance, a
certifying authority should perform an appropriate protocol verifying the possession before issuing the
certificate. Such methods may be found in Adams and Myers [B1], (Sections 10.3.3, 10.4, and 13.4.2 of
Menezes, van Oorschot, and Vanstone [B112], and Solo et al. [B141]).

Another way of conveying authentication of ownership is for a party to issue its own certificate (i.e., to sign
the message containing the public key with a separate private key). This approach is helpful when the public
key has a short cryptoperiod and it is impractical to obtain a certificate from a certifying authority. However,
this approach does not necessarily provide assurance that the party possesses the corresponding private key.

A public key should be securely associated with its set of domain parameters, if any. This may be
accomplished by including the set of domain parameters in the certificate. The set of domain parameters
may also be embedded into the system if, for example, the system implementation only performs operations
with a single set of domain parameters. Domain parameters should be authenticated and protected from
unauthorized modification in the same manner as a public key.
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In general, a party’s possession of a private key should be authenticated as part of authenticating the party’s
association with a public key. Situations in which it may be acceptable not to do so are given by type of
scheme in D.5.

D.3.3 Validation of domain parameters and keys

Most primitives specified in this standard are not defined when an input set of domain parameters or a key is
invalid (see 4.2 and Annex B). Implementations should, therefore, appropriately address this possibility. The
risks of operating on invalid domain parameters or keys vary depending on the scheme used and the
particular implementation, and are addressed by type of scheme in D.5.

DL and EC domain parameters and keys may be validated explicitly before being input to a primitive using,
for example, the techniques given in A.16. Note that no techniques for private-key validation are provided
because, generally, a party controls its own private key and need not validate it. However, private-key
validation may be performed if desired. Also note that no techniques for IF public-key validation are
provided in this standard; however, see Gennaro, Micciancio, and Rabin [B58] and Liskov and Silverman
[B103] for some proposed techniques.

Alternatively, domain parameters may be validated within the infrastructure by an authority. For example, a
certifying authority may validate domain parameters and keys as part of issuing a certificate; certificate
verification will then imply validity of the domain parameters or keys it contains. Generation of keys or
parameters by a trusted authority or jointly with it (see D.3.1) may provide assurance of their validity. As
another means of domain parameter validation, a standards body may publish a set of domain parameters, in
effect serving as a trusted third party assuring their validity. Such domain parameters have been published,
for example, in ANSI X9.30:1-1997 [B4], ANSI X9.42 [B8], and FIPS PUB 186 [B56] for the DL family,
and in ANSI X9.62-1998 [B11], ANSI X9.63 [B12], NIST [B119], and Standards for Efficient Cryptography
[B144] for the EC family.

The above methods ensure that keys satisfy their definitions (i.e., are valid). They do not, however, ensure
that the keys were generated in a secure manner. Such assurance, in addition to the assurance of validity,
may be provided by ensuring that only appropriately validated modules can be used for generating keys (see
D.7). (In contrast, domain parameters may potentially be generated in unvalidated modules, provided that
the parameters are validated, since no secrets are involved.)

Public-key validation and POP (see D.3.2) can be considered as duals. Public-key validation shows that the
party’s public key is valid, but not necessarily that the party possesses the corresponding private key. POP
demonstrates that the party possesses the private key, but not necessarily that the public key is valid
(although certain methods for POP may demonstrate both). Both public-key validation and POP should be
considered in high-assurance applications, unless the risk of operating with invalid keys or without
assurance that a party possesses a private key is mitigated by other means.

Some additional ways to address the risks of operating on invalid domain parameters and keys are given by
type of scheme in D.5.

D.3.4 Cryptoperiod and protection lifetime of domain parameters and keys

The cryptoperiod of a set of domain parameters or a key is the period during which operations may be
performed with the set of domain parameters or the key. A set of domain parameters or a key should have an
appropriate cryptoperiod to limit the amount of data whose protection is at risk (in the event of cryptanalytic
attack or physical compromise of a private key), and the amount of data available for cryptanalysis. The
cryptoperiod of a set of domain parameters should be at least as long as the cryptoperiod of keys associated
with the set of domain parameters. The cryptoperiod of a public key used for signature verification should be
at least as long as the cryptoperiod of the corresponding private key for signature generation; the
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cryptoperiod of a private key used for decryption should be at least as long as the cryptoperiod of the
corresponding public key for encryption.

Keys with long cryptoperiods are known as long-term or static; keys with short cryptoperiods are known as
short-term or ephemeral. These terms are most commonly used in the context of key agreement schemes
(see D.5.1). Note that whether a key is static or ephemeral is independent of whether or not it is
authenticated.

The protection lifetime of a key is the amount of time that the key is needed to protect data, and it is
generally longer than the cryptoperiod of a key. For example, even after the cryptoperiod of an encrypting
key expires, the data protected by it may still be sensitive; similarly, the data signed by a signing key may
need to be protected from unauthorized modification long after the cryptoperiod of the signing key has
expired. Hence, the security measures for a key (including the appropriate key sizes) should be picked
primarily according to its protection lifetime, rather than its cryptoperiod.

In general, there is a distinction between the risk of an opponent learning a private key through physical
compromise, versus an opponent learning a private key through cryptanalysis. Cryptanalysis may be
defended against by appropriate key sizes and by limiting the number of operations performed with a given
key and, thus, the availability of data to the cryptanalyst. The risk of physical compromise of a given key and
the value of the key to the opponent may be reduced by giving a private key a short cryptoperiod and erasing
the key thereafter.

Implications of domain parameter and key cryptoperiods are described further by type of scheme in D.5.

The cryptoperiod of domain parameters and public keys may be conveyed as part of the supporting key
management (e.g., as certificate attributes). The cryptoperiod should be securely associated with the
parameters and keys and protected from unauthorized modification (see D.3.6). To limit the impact of a
successful cryptanalytic attack or a physical compromise, provisions should also be made in supporting key
management for early termination of a set of domain parameters or a key (e.g., through certificate
revocation) (see ITU-T Recommendation X.509 (1997 E) [B82], Section 13.6.3 of Menezes, van Oorschot,
and Vanstone [B112], and Solo et al. [B142]).

D.3.5 Usage restrictions

A set of domain parameters or a key should have appropriate restrictions on its use to prevent misapplication
of the set of domain parameters or the key as input to an operation, as well as misinterpretation of the results
of an operation.

Examples of usage restrictions include

— Restrictions on the type of scheme; (e.g., only a signature scheme, or only an encryption scheme)

— Restrictions on scheme options (e.g., only a particular encoding method or hash function for a
signature scheme)

— Restrictions on messages processed (e.g., only payment orders of a certain format, up to a certain
value)

As a prudent security practice, the use of a particular key should be restricted to a single scheme with a
single specific set of scheme options. Otherwise, the variability of data associated with the key may aid an
opponent. If a single key is to be used for a variety of schemes or scheme options, additional security
analysis is required. A set of domain parameters may be identified as intended to be used with a single
specified scheme, with a set of specified schemes, or with all schemes to which it applies in a given family.
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(The granularity of what constitutes a “scheme”— for instance, in terms of scheme options—depends on the
implementation and on what is considered to constitute an attack.)

Usage restrictions should be securely associated with the parameters and keys and protected from
unauthorized modification (see D.3.6). To accomplish this, they may be conveyed as part of the supporting
key management (e.g., as certificate attributes) see e.g., ITU-T Recommendation X.509 (1997 E) [B82].
They may also be embedded (explicitly or implicitly) into a system. For example, in a closed system that is
only capable of producing and verifying one specific type of signature, there may be no need to convey
restrictions on the type of scheme or scheme options as part of key management.

D.3.6 Storage and distribution methods

The storage and distribution methods for domain parameters and keys should provide appropriate protection.

It is presumed that domain parameters and keys will be identified somehow (perhaps by the owner’s identity)
and possibly associated with certain attributes, such as ownership, cryptoperiod, and usage restrictions. It is
important to protect the integrity of this identification and association when keys or domain parameters are
stored and distributed. Specifically, it should be difficult for an opponent to modify the key or set of domain
parameters, its identification, or any attributes that are associated with the key or set of domain parameters.
The specific protections depend on the component.

— A set of domain parameters should be protected from unauthorized modification, but generally need
not be protected from disclosure.

— A public key should be protected from unauthorized modification, but generally need not be
protected from disclosure.

— A private key should be protected from unauthorized modification and, with the possible exception
of its associated set of domain parameters, if any, protected from unauthorized disclosure.

— Identification information and attributes associated with a key or set of domain parameters should be
protected from unauthorized modification.

The security properties for a storage or distribution method should be commensurate with the security
properties intended to be provided by a set of domain parameters or key. A typical protection method for
domain parameters and public keys is to bind them with identification information and attributes in a
certificate, which may be stored or distributed; the signature on the certificate protects against unauthorized
modification. Another method, commonly used for “root” public keys and domain parameters (such as
public keys of root certifying authorities; see D.3.2), is to embed them in software or hardware in such a way
that they become an inherent part of the system and are protected from unauthorized modification by the
same mechanisms as the system itself (see D.7).

When a key is associated with a set of domain parameters, the set of domain parameters may either be stored
and distributed explicitly with the key, or referenced implicitly. When the set of domain parameters is
referenced implicitly, the reference and the set itself should be protected from unauthorized modification.
For instance, suppose a key references a shared set of domain parameters. The reference to the shared set
should be unambiguous, and the set itself should be protected from unauthorized modification.

D.4 Family-specific considerations

This subclause gives further information on security parameters for each of the three families, as well as
generation of domain parameters (if any) and key pairs.
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D.4.1 DL Family

D.4.1.1 Security parameters

The primary security parameters for the DL family are the length in bits of the field order q, and the length in
bits of the subgroup order r. A common minimum field order length is 1024 bits and a common minimum
subgroup order length is 160 bits (ANSI X9.44 [B8]) (see Note 1 of D.4.1.4).

The field type (prime versus binary) may affect the security of the schemes (see Note 2 of D.4.1.4).

D.4.1.2 Generation method

Considerations for generating domain parameters in the DL family include the following:

— Prime case: The field order q (i.e., the prime p) should be generated randomly or pseudo-randomly
among those field orders with a sufficiently large subgroup, with a prime generation method that has
a sufficiently low probability of producing a nonprime. For a canonical method of domain parameter
generation that can be audited, the field order should be generated as a one-way function of a
random seed (see Note 3 of D.4.1.4).

— Binary case: The field order q may be predetermined. In a canonical method of domain parameter
generation that can be audited, the field order should be selected from a set of allowed values (see
A.16.3 and A.16.4 for one such method) (see Note 4 of D.4.1.4).

— The subgroup order r may have any value consistent with the other parameters, provided it is
sufficiently large and prime (and primitive in the case of binary fields; see Note 5 of D.4.1.4). It may
be predetermined, generated randomly or pseudo-randomly, or derived from the field order. Prime
generation or primality testing for the subgroup order may admit the possibility of error, provided
the probability of error is sufficiently low (see Note 5 of D.4.1.4).

— The base g may have any value consistent with the other domain parameters (see Note 6 of D.4.1.4).

Considerations for generating key pairs in the DL family include the following:

— The private key s should be generated at random from the range [1, r – 1], or a sufficiently large
subset of it (see Note 7 of D.4.1.4).

The domain parameters q, r, and g (and the field representation in the binary case) may be shared among key
pairs. The private key s should not be shared (see Note 8 of D.4.1.4).

D.4.1.3 Other considerations

The field representation (in the binary case) is not known to affect security, although, since the field
representation is a domain parameter, it should be protected from unauthorized modification, along with the
other domain parameters (see Note 9 of D.4.1.4).

D.4.1.4 Notes

1. Security parameters: The security of schemes in the DL family against attacks whose goal is to solve
the discrete logarithm problem depends on the difficulties of general-purpose discrete logarithm
methods and of collision-search methods. In turn, the difficulty of general-purpose discrete logarithm
methods depends on the length in bits of the field order q; and the difficulty of collision-search
methods depends on the length in bits of the subgroup order r.
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For large prime fields, the fastest general-purpose discrete logarithm method today is the generalized
number field sieve (GNFS) (see Gordon [B64], Section 3.6.5 of Menezes, van Oorschot, and
Vanstone [B112], and Schirokauer [B131]), which has asymptotic running time exp
(((64/9)1/3 + o(1)) (ln q)1/3 (ln ln q)2/3), where o(1) denotes a number that goes to zero as q grows.
For more on estimating the complexity of GNFS for large prime fields, see Note 1 in D.4.3.4; the
table given there also applies, except that the memory requirements for the linear algebra are log2 q
times greater for the discrete logarithm problem than they are for the integer factorization problem.
(See http://www.rsasecurity.com/rsalabs/challenges/factoring/index.html for the status of solving the
integer factorization problem. The result can be used as an estimate for an appropriate field order in
the discrete logarithm system.) For large binary fields, a similar method (Section 3.6.5 of Menezes,
van Oorschot, and Vanstone [B112] and Gordon and McCurley [B66]) has asymptotic running time
within a constant factor of exp(1.587 (ln q)1/3 (ln ln q)2/3). In particular, the method is faster for
binary fields than for prime fields.

For both types of field, the Pollard rho method (Pollard [B125] and Section 3.6.3 of Menezes,
van Oorschot, and Vanstone [B112]) and the related Pollard lambda and other collision-search
methods (e.g., van Oorschot and Wiener [B122]) can compute discrete logarithms after, on average,
(π r/4)1/2 field multiplications. The memory requirements of such methods are relatively small. (See
ECC challenge link from http://www.certicom.com/research.html for the status of solving the elliptic
curve discrete logarithm problem. The result can be used as an estimate for an appropriate subgroup
order in the discrete logarithm system.)

The length of the field order and the length of the subgroup order should be selected so that both the
general-purpose methods and the collision-search methods have sufficient running time. Often, the
parameters are selected so that the difficulty of both methods is about the same. It does not have to be
the same, however. For a variety of reasons, such as availability of hardware, an implementation may
choose a larger field or subgroup. As noted, a common minimum field order length is 1024 bits, and
a common minimum subgroup order length is 160 bits. 

When a set of domain parameters is shared among parties, the size should also take into account the
number of key pairs associated with the set, since the total running time for computing k discrete
logarithms with the same set of domain parameters is only about k1/2 times the running time of
computing a single discrete logarithm, provided that more memory is available (van Oorschot and
Wiener [B122]). In general, a set of domain parameters that is shared among a large number of key
pairs should have larger security parameters than one that is shared among a small number of key
pairs. A prudent practice is to pick security parameters such that computing even a single discrete
logarithm is considered infeasible.

2. Field type: prime versus binary: The field type may affect the security of the schemes, because the
running time of general-purpose discrete logarithm methods differs between prime fields and binary
fields. Also, since the cost of finite field operations may differ between the two types of field, the
actual running time of collision-search methods may vary by a small factor. Furthermore, since there
is only one binary field for each field order length, there are fewer alternatives to choose from should
some binary field be cryptanalyzed, than should a single prime field be cryptanalyzed.

3. Prime generation: The field order q (i.e., the prime p) should be generated randomly or
pseudo-randomly, because this provides resistance to special-purpose discrete logarithm methods,
such as the Special Number Field Sieve, or those given in Gordon [B63]. The prime generation
method should have a sufficiently low probability that a nonprime is generated, so that the
probability of generating an invalid set of domain parameters is small. A small but nonzero
probability of error (e.g., < 2–100) is acceptable, since it makes no difference in practice; methods
with a small probability of error are generally simpler than those with zero error. See D.6 for more on
generating random numbers and A.15 for more on generating primes.
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A desired security level can also be provided when the field order has a special form; such a choice
requires further security analysis by the implementer.

Computing the field order as a one-way function of a random seed provides a degree of auditing,
because it makes it difficult to select a prime with some predetermined rare property. It may not
entirely prevent the party generating the prime from producing primes with special properties, since
the party can try many different seeds, looking for one that yields the desired property, if the property
is likely enough to occur. However, it will make it difficult for a party to produce primes that are
vulnerable to a special-purpose discrete logarithm method, such as the Special Number Field Sieve,
provided that the prime is large enough. (A party might seek to introduce such a vulnerability in the
interest of determining users’ private keys.) It will also make it difficult to mount an attack on DSA,
in which the opponent picks a particular subgroup order r in order for two messages to have the same
signature (Vaudenay [B146]). (This attack is of concern if the message representative is not shorter
than the subgroup order r.) See ANSI X9.30:1-1997 [B4], ANSI X9.42 [B8], and FIPS PUB 186
[B56] for an auditable method of generating primes by incremental search.

4. Field order generation, binary case: The field order q may be predetermined, since there is only one
binary field for each field order length, and random generation is not meaningful. For the same
reason, in canonical domain parameter generation, the field order is selected from a list of allowed
values, not generated at random.

5. Subgroup order: The subgroup order r may have any value consistent with the other domain
parameters (provided it is a primitive divisor of q – 1 in the case of binary fields, see A.3.9), because
the difficulty of the collision-search methods for the discrete logarithm problem depends only on the
size of the subgroup order, not on its particular value, as long as it is prime. Selecting a field order
that is larger than the size of the hash value employed in a signature scheme, as is done in
ANSI X9.62-1998 [B11], has the benefit of thwarting Vaudenay's attack (Vaudenay [B146]). A small
but nonzero probability of error in prime generation or primality testing (e.g., < 2–100) is acceptable,
since it makes no difference in practice. The subgroup order r should be a primitive divisor of q – 1 in
the case of binary fields (see A.3.9) because, otherwise, the subgroup is contained entirely in a proper
subfield GF (2d) of GF (2m), in which case the opponent need only solve the DL problem in the
smaller field GF (2d). 

6. Base: The base g may have any value consistent with the other domain parameters, because the
difficulty of the discrete logarithm problem does not depend on which base is employed for a given
subgroup. All bases are equivalent in the sense that if an opponent can compute discrete logarithms
with respect to one base, say h, the opponent can compute discrete logarithms with respect to any
other base for the same subgroup, say g, by taking the ratio

logg w = logh w / logh g mod r

Computing the base g as a one-way function of a random seed provides a degree of auditing, because
it makes it difficult to select a predetermined base, such as one that depends on another user’s public
key, as in Vaudenay [B146]. In particular, it thwarts attacks in which the opponent ensures that two
parties have different (but related) bases, while thinking that they have the same set of parameters
[B146]. Such attacks may also be prevented by ensuring that both parties have the same set of
parameters—for example, by verifying the authenticity of the parameters, as described in D.3.2.

7. Private keys: The private key should be generated at random from the range [1, r–1], because this
maximizes the difficulty of recovering the private key by collision-search methods. A desired level of
security can also be provided when the private key is restricted to a large enough subset of the range
(e.g., is shorter than the subgroup order, has low weight, or has some other structure). Such choices
require further security analysis by the implementer. (See D.6 for more on random number
generation.)
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8. Domain parameters, public-key and private-key sharing: A set of domain parameters may be shared,
because by definition, the set of domain parameters may be common to any number of keys. A
private key should not be shared.

9. Field representation: The field representation is not known to affect security; its only cryptographic
role is the conversion of field elements to integers in the signature and verification primitives, and to
octet strings in the key agreement schemes. The choice of field representation for domain parameters
and keys is otherwise a matter of data formatting. In the single cryptographic role mentioned, no
reason is currently known why the field representation should have any impact on security. However,
it is important that the parties to a scheme agree on the representation in which conversion is to take
place because, otherwise, an opponent may be able to trick the parties into operating with a different
representation for conversion in an attempt to forge signatures or obtain information about keys.

D.4.2 EC family

D.4.2.1 Security parameters

The primary security parameter for the EC family is the length in bits of the subgroup order r. A common
minimum subgroup order length is 161 bits (ANSI X9.62-1998 [B11]) (see Note 1 of D.4.2.4).

The field type (prime versus binary) may slightly affect the security of the schemes (see Note 2 of D.4.2.4).

D.4.2.2 Generation method

Considerations for generating domain parameters in the EC family include the following:

— Prime case: The field order q (i.e., the prime p) may have any value that provides a sufficiently large
subgroup; it may be predetermined, or generated randomly or pseudo-randomly. Prime generation
for the field order may admit the possibility of error, provided the probability of error is sufficiently
low (see Note 3 of D.4.2.4).

— Binary case: The field order q may be predetermined (see Note 4 of D.4.2.4). 

— The elliptic curve may be any curve satisfying the definition in 5.4, as well as the MOV and
anomalous criteria (see Note 1 of D.4.2.4) that provide a sufficiently large prime-order subgroup. It
may be predetermined, or generated randomly or pseudo-randomly, perhaps subject to certain
conditions that simplify the computation of the number of points on the elliptic curve. For example,
a 169 bit Koblitz curve may be estimated to be about 13 times faster to solve than a canonical
random 169 bit curve; although in practice, the additional calculations may result in a smaller
speedup. This corresponds to a decrease of about 3.5 bits of symmetric key exhaustion security, or 7
bits of elliptic curve security. For a canonical random method of domain parameter generation that
can be audited, the elliptic curve coefficients should be generated as a one-way function of a random
seed (see A.12.4 through A.12.7 for one such method) (see Note 5 of D.4.2.4).

— The subgroup order r may have any value consistent with the other domain parameters, provided that
it is sufficiently large and prime. Prime generation or primality testing for the subgroup order may
admit the possibility of error, provided the probability of error is sufficiently low
(see Note 6 of D.4.2.4).

— The base point G may have any value consistent with the other domain parameters
(see Note 7 of D.4.2.4).
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Considerations for generating key pairs in the EC family include the following:

— The private key s should be generated at random from the range [1, r – 1], or a sufficiently large
subset of it (see Note 8 of D.4.2.4).

The domain parameters may be shared among key pairs. The private key s should not be shared
(see Note 9 of D.4.2.4).

D.4.2.3 Other considerations

The field representation (in the binary case) is not known to affect security; although, because the field
representation is a domain parameter, it should be protected from unauthorized modification, along with the
other domain parameters (see Note 10 of D.4.2.4).

D.4.2.4 Notes

1. Security parameters: The security of schemes in the EC family against many attacks whose goal is to
solve the elliptic curve discrete logarithm problem depends on the difficulty of collision-search
methods, which are the fastest methods known today for computing discrete logarithms on an
arbitrary elliptic curve. The difficulty of collision-search methods depends, in turn, on the length in
bits of the subgroup order r. The Pollard rho (Pollard [B125]) and the related Pollard lambda, as well
as other collision-search methods (e.g., van Oorschot and Wiener [B122]), can compute elliptic curve
discrete logarithms after, on average, (π r/4)1/2 elliptic curve additions. The memory requirements of
such methods are relatively small. For special classes of curves, improved collision-search methods
are available. In particular, curves not satisfying the MOV condition (see A.12.1) and anomalous
curves over prime fields (those where the order r of the base point is equal to the field order q and,
hence, by the Hasse bound (A.9.5), equal to the curve order; see Semaev [B134], Smart [B140],
Satoh and Araki [B130]), are considered insecure and are, thus, avoided in this standard. Collision-
search methods may also be sped up by a factor of about (m/e)1/2 for curves over a binary field GF
(2m) whose coefficients lie in a smaller subfield GF (2e) (see Gallant, Lambert, and Vanstone [B57]
and Wiener [B148]). This improvement is not considered significant enough to warrant avoidance of
such curves, but it may suggest higher key sizes than for general curves. (See ECC challenge link
from http://www.certicom.com/research.html for more information on the status of solving the
elliptic curve discrete logarithm problem.)

Table D.1 provides an estimate for the running time of collision-search methods for different sizes of
r. The estimate is given in MIPS-years, which is the approximate amount of computation that a
machine capable of performing one million arithmetic instructions per second would perform in one
year (about 3 × 1013 arithmetic instructions).

There is some variation among published estimates of running time due to the particular definition of
a MIPS-year and to the difficulty of estimating actual processor utilization. (How many arithmetic

Table D.1—Estimated crypotographic strength for EC generator order sizes

Size of generator order r 
(Bits)

Processing time
(MIPS-years)

128 4.0 × 105

172 3 × 1012

234 3 × 1021

314 2 × 1033
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instructions a modern processor performs in a second when running an actual piece of code depends
not only on the clock rate, but also heavily on the processor architecture, the amount and speed of
caches and RAM, and the particular piece of code.) Thus, the estimates given here may differ from
others in the literature, although the relative order of growth remains the same. The length of the field
order and the length of the subgroup order should be selected so that the collision-search methods
have sufficient difficulty. A common minimum subgroup order length is 161 bits.

When a set of domain parameters is shared among parties, the size should also take into account the
number of key pairs associated with the set, because the total running time for computing k elliptic
curve discrete logarithms with the same set of domain parameters is only about k1/2 times the running
time of computing a single elliptic curve discrete logarithm, provided that more memory is available
(van Oorschot and Wiener [B122]). In general, a set of domain parameters that is shared among a
large number of key pairs should have larger security parameters than one that is shared among a
small number of key pairs. A prudent practice is to pick security parameters such that computing
even a single elliptic curve discrete logarithm is considered infeasible.

2. Field type: prime versus binary: The field type may slightly affect the security of the schemes, since
the cost of finite field operations may differ between the two types of fields, and the actual running
time of collision-search methods may vary by a small factor. Furthermore, since there is only one
binary field for each field order length, there are fewer alternatives to choose from should some
binary field be cryptanalyzed, than should a single prime field be cryptanalyzed. In either case,
however, there are many elliptic curves to choose from, and no method is known that cryptanalyzes
all elliptic curves over a given field at the same time.

3. Prime generation: No special primes are known where computing elliptic curve discrete logarithms
might be substantially easier. A small but nonzero probability of error in prime generation or
primality testing (e.g., < 2–100) is acceptable, since it makes no difference in practice; methods with a
small probability of error are generally simpler than those with zero error. (See A.15 for more on
generating primes.)

4. Field order generation, binary case: The field order q may be predetermined, because there is only
one binary field for each field order length.

5. Elliptic curve: The elliptic curve may be any curve satisfying the definition in 5.4, as well as MOV
and anomalous criteria (Note 1) that provide a sufficiently large prime-order subgroup, as no other
special classes of elliptic curves are known where computing elliptic curve discrete logarithms might
be substantially easier. The elliptic curve may be predetermined, or generated randomly or
pseudo-randomly, perhaps subject to certain conditions that simplify the computation of the number
of points on the elliptic curve. Among the methods for curve generation described in A.9.5, Method 1
(selecting a random curve and computing its order) imposes no additional conditions on the curve,
and the other three methods impose additional conditions. In particular, Method 3 (selecting a curve
over a subfield) imposes additional conditions that make the discrete logarithm computation on the
curve subject to the speed-up due to Gallant, Lambert, and Vanstone [B57] and Wiener and
Zuccherato [B148], as further described in Note 1.

Computing the elliptic curve coefficients (or other inputs to elliptic curve generation) as a one-way
function of a random seed provides a degree of auditing, because it makes it difficult to select an
elliptic curve with some predetermined rare property. It may not entirely prevent the party generating
the elliptic curve from producing curves with special properties, since the party can try many
different seeds, looking for one that yields the desired property, if the property is likely enough to
occur. However, it will make it difficult to mount an attack in which the opponent picks a particular
subgroup order r in order for two messages to have the same signature. (See Vaudenay [B146] for
such an attack on DSA, and also Note 6.) (See A.12.4 through A.12.7 for an example of such a
method.) 
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6. Subgroup order: The subgroup order r may have any value consistent with the other domain
parameters, since the difficulty of the collision-search methods for the elliptic curve discrete
logarithm problem depends only on the size of the subgroup order, not on its particular value,
provided that the subgroup order is prime. Selecting a field order that is larger than the size of the
hash value employed in a signature scheme, as is done in ANSI X9.62-1998 [B11], has the benefit of
thwarting Vaudenay's attack (Vaudenay [B146]). A small but nonzero probability of error in prime
generation or primality testing (e.g., < 2–100) is acceptable, since it makes no difference in practice.

7. Base: See Note 6 of D.4.1.4, replacing “base g” with “base point G.” 

8. Private keys: See Note 7 of D.4.1.4.

9. Domain parameters, public-key and private-key sharing: See Note 8 of D.4.1.4.

10. Field representation: See Note 9 of D.4.1.4.

D.4.3 IF family

D.4.3.1 Security parameter

The primary security parameter for the IF family is the length in bits of the modulus n. A common minimum
length is 1024 bits (ANSI X9.31-1998 [B7]) (see Note 1 of D.4.3.4).

The key type (RSA versus RW) is not known to affect the security of the schemes with the recommended
encoding methods (see Note 2 of D.4.3.4).

D.4.3.2 Generation method

Considerations for generating keys in the IF family include the following:

— The lengths of the primes p and q should be approximately half the length of the modulus n, although
other lengths may also provide sufficient security. See A.16.11 and A.16.12 for examples
(see Note 3 of D.4.3.4).

— The primes p and q should be generated randomly or pseudo-randomly with a prime generation
method that has a sufficiently low probability of producing a non-prime. If auditing of key
generation is required, then the primes should be generated as a one-way function of a random secret
seed (see Note 4 of D.4.3.4).

— The public exponent e may have any value consistent with the modulus and key type; it may be
predetermined, or generated randomly or pseudo-randomly (see Note 5 of D.4.3.4).

— The private exponent d should be derived from the public exponent e or generated at random
(see Note 6 of D.4.3.4).

The public exponent e may be shared among keys. The modulus n, the primes p and q, and the private
exponent d should not be shared (see Note 7 of D.4.3.4).

D.4.3.3 Other considerations

The private-key representation does not affect security in general, although the effectiveness of certain
physical attacks may vary according to the representation. The private key should be stored securely,
regardless of the representation, as discussed in D.7 (Note 8 of D.4.3.4).
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D.4.3.4 Notes

1. Modulus size: The security of schemes in the IF family against attacks whose goal is to
recover the private key depends on the difficulty of integer factorization by general-purpose methods,
which, in turn, depends on the length in bits of the modulus n. For large moduli, the fastest
general-purpose factoring method today is the GNFS (see Buchmann, Loho, and Zayer [B32] and
Buhler, Lenstra, and Pomerance [B34]), which has asymptotic running time
exp(((64/9)1/3 + o(1)) (ln n)1/3 (ln ln n)2/3), where o(1) denotes a number that goes to zero as n grows.
Previously, the fastest general-purpose method was the multiple polynomial quadratic sieve (MPQS)
(Silverman [B138]), which has a running time of about O(exp (ln n ln ln n)). See Section 3.2 of
Menezes, van Oorschot, and Vanstone [B112] and Odlyzko [B121] for more discussion on integer
factorization. (See http://www.rsasecurity.com/rsalabs/challenges/factoring/index.html for more
information on the status of solving the integer factorization problem.)

In order to compute the complexity of the GNFS accurately for a particular n, one needs to know the
precise value of the o(1) term for that n. In particular, the complexity of the GNFS is difficult to
measure accurately for numbers of cryptographic interest, because they are larger than GNFS can
currently factor. The standard practice is to estimate the complexity by extrapolating from running
times observed for factoring smaller numbers. Following this practice, ANSI X9.31-1998 [B7]
provides estimates for GNFS factorization at various modulus sizes, which are reproduced in
Table D.2 below. In this table, processing time is the total computational effort, given in MIPS-years
(a MIPS-year is the approximate amount of computation that a machine capable of performing one
million arithmetic instructions per second would perform in one year [about 3 × 1013 arithmetic
instructions]); memory requirements consider the amount of processor memory for a sieving process,
which may be distributed among many processors, and for linear algebra operations, which would
typically be on a single processor; and storage requirements is the amount of disk space.

There is some variation among published estimates of running time due to the particular definition of
a MIPS-year and to the difficulty of estimating actual processor utilization. (How many arithmetic
instructions a modern processor performs in a second when running an actual piece of code depends
not only on the clock rate, but also heavily on the processor architecture, the amount and speed of
caches and RAM, and the particular piece of code.) Thus, the estimates given here may differ from
others in the literature, although the relative order of growth remains the same. The length of the
modulus should be selected so that integer factorization methods have sufficient difficulty; as
mentioned earlier, a common minimum length is 1024 bits.

2. Key type: RSA versus RW: The key type (which varies only for the signature schemes) is not known
to affect the security of the schemes with recommended and correctly implemented encoding
methods. Although root extraction for an even exponent is provably as difficult as integer
factorization, only certain encoding methods [e.g., PSS (Bellare and Rogaway [B19])] result in

Table D.2—Estimated cryptographic strength for IF modulus sizes

Modulus size Processing time
(MIPS-years)

Memory requirements
(bytes)

Storage 
requirements

(bytes)

Sieving process Linear algebra

512 4.0 × 105 1.3 × 108 2.0 × 1010 5.0 × 1010

1024 3 × 1012 3 × 1011 1 × 1014 2 × 1014

2048 3 × 1021 8 × 1015 3 × 1018 7 × 1018

4096 2 × 1033 8 × 1021 3 × 1024 7 × 1024
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schemes whose security can be proven equivalent to integer factorization; the ones recommended
here do not. However, certain attack strategies on signature schemes (Joye and Quisquater [B84])
have been shown to yield the factorization of the modulus in the RW case, but not in the RSA case.
Root extraction for an odd exponent is not known to be equivalent to integer factorization. (Boneh
and Venkatesan [B30] have recently shown strong evidence that the problems are not equivalent for
low-exponent RSA.) Nevertheless, integer factorization is the only known approach for forging
signatures or recovering messages for the schemes with recommended encoding methods, regardless
of key type. 

3. Prime size: The lengths in bits of the primes p and q should be approximately half the length of the
modulus n, because this maximizes the difficulty of certain special-purpose integer factorization
methods. Such methods include the Pollard rho method (Pollard [B124]), with asymptotic expected
running time O(p1/2); the Pollard p – 1 method (Pollard [B123]), with running time O(p′), where p′ is
the largest prime factor of p – 1; and the p + 1 method (Williams [B150]), with running time O(p′),
where p′ is the largest prime factor of p + 1. The elliptic curve method (ECM) (Lenstra [B101]) is
superior to these; its asymptotic running time is O(exp (2ln p ln ln p)1/2). All these methods are
slower than GNFS (see Note 1) for factoring a large IF modulus with prime factors that are
approximately half the length of the modulus. These methods may be effective, however, when one
of the prime factors is small. 

A desired security level can also be provided when the lengths of the primes are not approximately
half the length of the modulus, as long as the primes are large enough to resist the special-purpose
methods just mentioned. Such a choice requires further security analysis by the implementer. (For
further discussion, see Shamir [B136]; see also Gilbert et al. [B59] for a security analysis.)

4. Prime generation: The primes should be generated randomly or pseudo-randomly, because this
provides resistance to exhaustive search and other special-purpose attacks. (See D.6 for more on
random number generation.) The prime generation method should have a sufficiently low probability
that a nonprime is generated, so that the probability of generating an invalid key is small. A small but
nonzero probability of error (e.g., < 2–100) is acceptable, since it makes no difference in practice;
methods with a small probability of error are generally simpler than those with zero error. Other
criteria may be added to prime generation to ensure that primes meet certain properties. Acceptable
prime-generation methods include those described in A.15.6 and A.15.8 with either probabilistic
primality testing (probability of nonprime output of less than 2–100; see A.15.1 through A.15.2) or
primality proving (see A.15.4); and recursive construction of primes with an implicit proof of
primality, such as Maurer [B107], Mihailescu [B116], and Shawe-Taylor [B137]. (See also ANSI
X9.31-1998 [B7], ANSI X9.80 [B13], and Sections 4.1–4.4 of Menezes, van Oorschot, and Vanstone
[B112].)

Computing primes as a one-way function of a random seed provides a degree of auditing, because it
makes it difficult to select a prime with some predetermined rare property. It may not entirely prevent
a user from producing primes with special properties, since a user can try many different seeds,
looking for one that yields the desired property, if the property is likely enough to occur. However, it
will make it difficult for a user to produce primes that are vulnerable to a special-purpose factoring
method such as the p – 1 method, provided that the prime is large enough. (A malicious user may
wish to do this in the interest of later disavowing a signature.) The seed should be kept secret,
because revealing it would reveal p and q and, thus, the private key. Therefore, the actual auditing
must be done only by trusted parties or in situations when it is appropriate to reveal the private key.
See ANSI X9.31-1998 [B7] for an auditable method of generating primes by incremental search.

5. Public exponent selection: The public exponent may have any value consistent with the modulus and
key type, because the value of the public exponent is not known to affect the security of the schemes
with recommended and correctly implemented encoding methods. IF schemes with
nonrecommended (or incorrectly implemented) encoding methods, or implementations that leak a
fraction of the bits of the private exponent or the primes, may be vulnerable to certain attacks when
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the public exponent is small (see Boneh, Durfee, and Frankel [B28], Coppersmith et al. [B39], and
Hastad [B70]). Moreover, it has been shown that for very small public exponents such as e = 3, the
RSA problem may not be equivalent to the integer factorization problem [B30] (see Note 2).
However, the recommended encoding methods and appropriate protection of the private key (see
D.7) prevent these attacks. Typical public exponent values are e = 2 for RW keys and e = 3 or 216 + 1
for RSA keys.   A larger public exponent may, nevertheless, offer an additional line of defense, as it
can mitigate concerns about implementation failures in the encoding methods or in the underlying
random number generation for an IF encryption scheme.

Restricting the allowed set of public exponents system-wide, and ensuring that system components
refuse to perform operations with public exponents that do not satisfy the restriction, may provide a
measure of protection against protocol attacks that exploit the ability of an opponent to pick an
arbitrary public exponent (e.g., Chen and Hughes [B37]). However, such attacks are generally better
defended against by picking appropriate protocols.

A more common use for a system-wide restriction is picking a specific public exponent system-wide
in order to avoid having to store and transmit it with the public key. For example, a system using RW
keys may have a system-wide policy that e = 2 for all keys, in which case just n, not (n, e), needs to
be transmitted and stored for public keys.   The system-wide e should be protected from unauthorized
modification the same way any public key would be. 

6. Private exponent selection: The private exponent should be derived from the public exponent or
generated at random (see D.6), so that with high probability, it will have approximately the same size
as the modulus. In particular, the private exponent should be substantially longer than one quarter of
the modulus length. This makes it difficult to recover the private exponent by certain methods, such
as Boneh and Durfee [B27] and Wiener [B147]. (Note that ANSI X9.31-1998 [B7] requires that for a
1024 bit modulus, the private exponent is at least 2512+128s, where s is an integer ≥ 0.) A desired
difficulty can also be provided when the private exponent is significantly shorter than the modulus or
has some other structure, such as low weight; such choices require further security analysis by the
implementer.

7. Modulus, prime, and exponent sharing: A modulus should not be shared because it is possible, given
two public keys with the same modulus and one of the corresponding private keys, to determine the
other private key. A prime should not be shared, because moduli with one prime factor in common
can be factored by taking their GCD. A private exponent should not be shared, because it is the only
private component of the private key. Sharing of any of these quantities is unlikely to occur if primes
are generated at random and the private exponent is derived from the public exponent or generated at
random. A public exponent may be shared because it is public and may have any value consistent
with the modulus and key type.

8. Private-key representation: The choice of private-key representation does not affect security against
cryptanalytic attack, although security against certain implementation attacks may vary according to
the representation. For instance, the Bellcore fault-analysis attack (Boneh, DeMillo, and Lipton
[B26]) is more feasible if the private key contains the prime factors of the modulus, because a single
undetected bit error in an exponentiation modulo one of the primes will compromise the private key.
(See D.7 for more on implementation attacks.)

D.5 Scheme-specific considerations

This clause gives further information on security implications of choices for each of the three types of
scheme, including primitives; key derivation function or encoding method; key derivation or encoding
parameters; and authentication, validation, and cryptoperiod specifics for keys in the schemes.
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D.5.1 Key agreement schemes

Key agreement schemes are generally used to ensure that nobody but the two legitimate parties involved in
the protocol can compute the shared secret key. Note that a basic key agreement scheme does not ensure that
the parties are correct about each other’s identities, or that both parties can actually compute their shared
secret keys. Key confirmation (see D.5.1.3) is often used to provide such additional assurances.

In addition, key agreement schemes are sometimes used to provide forward secrecy. See D.5.1.7 for more on
forward secrecy and how the key agreement schemes in this standard can provide it.

The application of key agreement schemes in a key establishment protocol is a particularly challenging task,
as illustrated by the various attacks on key agreement protocols that have been observed over the years.
Apparently slight changes, such as the ordering of messages, may well introduce unintended security
weaknesses. Conversely, slight differences may yield security benefits. For instance, requiring each party to
commit to its short-term key by sending a hash of the short-term key, prior to exchanging the short-term
keys, can remove some potential for an opponent to manipulate a protocol. Although the recommendations
in this subclause cover many of the general principles of key agreement, the implementer is encouraged to
consult recent literature on key agreement protocols for further information.

D.5.1.1 Primitives

Secret value derivation primitive choices include the following (the particular choices vary among the three
key agreement schemes):

— DLSVDP-DH, DLSVDP-DHC, DLSVDP-MQV, DLSVDP-MQVC

— ECSVDP-DH, ECSVDP-DHC, ECSVDP-MQV, ECSVDP-MQVC

The choice between DL and EC affects security to the extent that the difficulties of the underlying problem
differ (see D.4). Attacking the underlying problem is the best currently known method for attacking the
primitives. [For ECSVDP-DH and ECSVDP-DHC, attacking the primitive is equivalent to attacking the
underlying problem in the sense that if one takes exponential time, then the other takes exponential time as
well (Boneh and Lipton [B29]).] The choice of -DH versus -DHC, or -MQV versus -MQVC, affects security
with respect to key validation (see D.5.1.6).

D.5.1.2 Key derivation function

The only recommended key derivation function is KDF1.

A key derivation function for the key agreement schemes in this standard (i.e., the three DL/ECKAS
schemes) should produce keys that are computationally indistinguishable from randomly generated keys.
(See D.6 for more on computational indistinguishability.) KDF1 is considered to have this property,
provided that the length of the key derivation parameters is the same for all keys computed from a given
shared secret value.

The security of KDF1 depends on the underlying hash function; SHA-1 and RIPEMD-160 are allowed. The
length of the hash function’s intermediate chaining value (for iterative constructions such as SHA-1 and
RIPEMD-160) governs the security of KDF1 against certain forms of attack. Typical theoretical attacks for
distinguishing KDF1 from a random source involve on the order of 280 operations, assuming a 160 bit hash
function, and these attacks do not necessarily yield any particular key.



IEEE
Std 1363-2000 IEEE STANDARD SPECIFICATIONS FOR

200 Copyright © 2000 IEEE. All rights reserved.

D.5.1.3 Key confirmation

Key confirmation is the assurance provided to each party participating in the key agreement protocol that the
other party is actually capable of computing the agreed-upon key, and that it is the same for both parties.
Note that key agreement does not necessarily, by itself, provide key confirmation. For example, an opponent
may present a public key that is identical or related to some other party’s public key, to make it appear as
though a derived key is shared with the opponent, when in fact it is shared with the other party. This is
known as the unknown key-share attack (see Blake-Wilson and Menezes [B22], Diffie, van Oorschot, and
Wiener [B48], Kaliski [B89], Law et al. [B98], and Menezes, Qu, and Vanstone [B113]).

An unknown key share attack may be a concern in situations where a party assumes that another party has
certain privileges as a result of a successful key agreement protocol, and the other party is not further
identified in the protocol. If an opponent can make it appear as though a derived key is shared with the
opponent, when in fact it is shared with the other party, then the opponent may be able to impersonate the
other party in subsequent messages encrypted with the derived key (even though the opponent does not
know the derived key). In typical protocols, this is a theoretical concern, since exchanged messages (e.g.,
funds transfers) should generally identify the parties.

In general, if an opponent can obtain a certificate for another party’s public key, the opponent can trivially
mount an unknown key share attack by substituting its certificate for the other party's certificate. The CA can
prevent this kind of attack by checking for duplicate public keys, or by requiring a proof of possession of the
corresponding private key.

For variants of DH2, where one party's ephemeral key is combined with another party's static key, an
opponent can also mount an unknown key share attack by substituting powers or multiples of the combined
static and ephemeral public keys, obtaining a certificate for the new static key, and substituting the new
certificate (Menezes, Qu, and Vanstone [B113]). A CA can prevent this attack by requiring a proof of
possession of the private key, but cannot prevent it by checking for duplicates.

For MQV, an opponent can mount an unknown key share attack with certain substitutions, as further
described in Kaliski [B89]. A CA cannot prevent the attack either by checking for duplicates or by requiring
a proof of possession of the private key. As a result, if the unknown key share attack is a concern, protocol
steps such as key confirmation are essential. 

In general, to avoid unknown key share attacks and other possible attacks, the parties should perform a key
confirmation protocol that securely associates the names of the parties with the knowledge of the shared
secret key. Such protocols usually involve computations of cryptographic functions based on the identities of
the parties and the derived keys (see e.g., ANSI X9.42 [B8], ANSI X9.62-1998 [B11], Blake-Wilson,
Johnson, and Menezes [B21], and Menezes, Qu, and Vanstone [B113]).

D.5.1.4 Key derivation parameters 

The purpose of key derivation parameters is to distinguish one derived key from another. As such, the
parameters should have an unambiguous interpretation. If no other key confirmation is performed, they
should identify the parties exchanging the key and specify the purpose of the derived key (e.g., its type and
position within a sequence of derived keys of the given type).

For KDF1, the set of all possible key derivation parameters for a given shared secret value should be
prefix-free. [A string P is called a prefix of a string S if S begins with P (i.e., S = P || R for some string R); a
set of strings is prefix-free if it does not contain a pair of strings P, S such that P is a prefix of S.] Otherwise,
due to the nature of hash functions used in KDF1, an opponent may be able to derive new shared secret keys
based on the same shared secret value and new key derivation parameters, without knowing the shared secret
value. If all key derivation parameters are the same length, or if they are BER or DER encodings of ASN.1
structures, they will satisfy the prefix-free requirement.
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D.5.1.5 Authentication of ownership

If it is desired to verify that a particular party has the ability to compute a given derived key, the party’s
ownership of a public key from which the derived key is computed should be authenticated. Table D.3
summarizes the typical means of associating the derived key with a particular party, in terms of which public
key should be authenticated.

In general, as noted in D.3.2 and D.5.1.2, the party’s possession of the corresponding private key should also
be authenticated by means of a key confirmation protocol or otherwise. The risk of not doing so is the same
as the lack of key confirmation, as further discussed in D.5.1.3.

A situation in which it may be acceptable not to authenticate a party’s possession of a private key (directly or
through key confirmation) is one in which the key derivation parameters include information identifying the
party. The identifying information avoids any ambiguity in the sharing of the derived key.

D.5.1.6 Validation of domain parameters and keys

As discussed in D.3.3, using invalid keys or domain parameters as inputs to a primitive carries with it certain
risks. Specifically, for the key agreement schemes, the risks are outlined below. Note that the risks will vary
with the particular implementation:

— Failure of the implementation, resulting in an error state

— Reduction in size of the key space for derived keys (see, e.g., Jablon [B83])

— Compromise of information about a private key that is combined with the invalid public key in a
secret value derivation primitive (Lim and Lee [B102])

An attack in which an opponent deliberately provides an invalid public key is sometimes referred to as a
small-subgroup attack. If an opponent’s public key is not valid, the opponent may be able to use a small
subgroup of the underlying group to confine the shared secret value or to obtain information about the
legitimate party’s private key. (If both public keys are valid, then the shared secret value ranges over the
subgroup of size r generated by the generator g; otherwise, it may be outside the subgroup of size r, possibly
in a subgroup of small size.)

These risks can be mitigated by ensuring the validity of domain parameters and public keys. However,
validation does not address certain other risks. A key may be valid and still be insecure (e.g., if the random
number generation for the key generation was performed improperly, or if the private key is stored
insecurely or deliberately disclosed). Therefore, an implementer should consider other ways in which the
key may be insecure, and then decide how to appropriately mitigate the risk. FIPS PUB 140-1
implementation validation and random number generation are typical ways to address some of these
concerns (see D.6.1 and D.7).

Table D.3—Summary of typical means of associating public keys with parties in a key 
agreement scheme

Scheme Authenticated public key

DH1 The party’s public key

DH2 Either of the parties’ public keys

MQV The party’s first public key
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An alternative to validating the public key is to select a secret value derivation primitive with cofactor
multiplication (i.e., -DHC or -MQVC). Provided that the associated set of domain parameters is valid, and
the public key is validated as an element of the underlying group (i.e., element of the finite field or point on
the elliptic curve), a -DHC or -MQVC primitive will operate appropriately on invalid public keys; no further
validation is necessary.

A situation in which it may be acceptable not to validate a public key is one in which the public key is
authenticated (typically by the other party in a key agreement operation), and the private key with which the
public key is combined in a secret value derivation primitive has a short cryptoperiod. The authentication
prevents an outside opponent from substituting an invalid public key in an attempt to reduce the key space.
The short cryptoperiod of the private key mitigates the potential for an adversary to benefit from
compromising information about the private key.

The amount of information about the private key that the opponent can possibly compromise by using an
invalid public key may be limited if the group has few elements of order less than r (e.g., if q = 2r + 1 in the
DL case or if the cofactor k is small in the EC case), as described in Lim and Lee [B102]. However, an
opponent may still be able to reduce the variability of the shared secret value by confining it to a small
subgroup.

D.5.1.7 Cryptoperiod and protection lifetime

In a key agreement scheme, if an opponent learns a party’s private key or keys, then the opponent may be
able to recover derived keys produced from the private key or keys. The longer the cryptoperiod, the more
derived keys are potentially vulnerable to recovery. The private keys used for key agreement schemes should
be erased after their cryptoperiods expire, in order to limit a private key’s potential vulnerability to physical
compromise.

By giving certain private keys a short cryptoperiod and erasing them after they expire, it is possible to
overcome the risk of recovery of derived keys due to the compromise of parties’ cryptographic states. This
prevents a passive opponent who merely recorded past communications encrypted with the shared secret
keys from decrypting them some time in the future by compromising the parties’ cryptographic state. This
property is called forward secrecy. One-party forward secrecy means that an opponent’s knowledge of that
party’s cryptographic state after a key agreement operation does not enable the opponent to recover derived
keys. Two-party forward secrecy (Gunther [B68]) (see also Diffie, van Oorschot, and Wiener [B48]), means
that an opponent’s knowledge of both parties’ cryptographic state does not enable recovery of previously
derived keys.

Table D.4 summarizes the typical means for achieving forward secrecy with respect to one party or both
parties with the key agreement schemes, in terms of which private keys should have a short cryptoperiod
(i.e., be short-term).

Table D.4—Summary of typical means for achieving forward secrecy in a key                 
agreement scheme

Scheme
Short-term private key 

(one-party forward 
secrecy)

Short-term private keys 
(two-party forward 

secrecy)

DH1 Party’s private key Both parties’ private keys

DH2 Either party’s private key Both parties’ second private 
keys (see note below)

MQV Party’s second private key Both parties’ second private 
keys
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Here, “short-term” means that a private key is generated immediately prior to a secret value derivation
operation, and destroyed as soon as possible thereafter.

Key cryptoperiod and authentication are independent considerations; a public key may be authenticated even
if the corresponding private key is short-term. The STS protocol is an example of this approach (see p. 568
of Diffie [B46], Diffie, van Oorschot, and Wiener [B48], and Section 12.6 of Menezes, van Oorschot, and
Vanstone [B112]).

NOTE—In the DH2 scheme, it is also possible to achieve two-party forward secrecy if both parties’ first private keys are
short-term; however, conventionally, it is the second private keys that are short-term for two-party forward secrecy.
Two-party forward secrecy is not achieved if one party’s first key and the other party’s second key are short-term while
the other keys are long-term.

D.5.2 Signature schemes

Signature schemes are generally used to provide authenticity of data—an assurance that only the party
possessing the corresponding private key is capable of producing a signature that verifies as valid with a
given public key. A commonly used theoretical definition for the security of signature schemes is given in
Goldwasser, Micali, and Rivest [B62].

There are two types of signature schemes: signature schemes with appendix, and signature schemes with
message recovery. Signature schemes with appendix require the message to be transmitted in addition to the
signature; without knowing the message signed, one cannot verify the signature. Signature schemes with
message recovery produce signatures that contain the message within them. The verifier does not need to
know the message in order to verify the signature; if the signature is valid, the message signed is recovered
during the signature verification process. While signature schemes with appendix may be used to sign
messages of practically any length (subject only to the limitations of the encoding method), signature
schemes with recovery are generally used for messages that are short enough. Note that no signature
schemes with recovery are defined in this standard (see C.3.4 and C.3.7) and, hence, no security
considerations are given here for such signature schemes.

D.5.2.1 Primitives

Signature and verification primitive choices include the following pairs (the particular choices vary among
the three signature schemes):

— DLSP-NR and DLVP-NR, DLSP-DSA and DLVP-DSA, ECSP-NR and ECVP-NR, ECSP-DSA and
ECVP-DSA, IFSP-RSA1 and IFVP-RSA1, IFSP-RSA2 and IFVP-RSA2, IFSP-RW and IFVP-RW

The choice between DL, EC, and IF affects security to the extent that the difficulties of the underlying
problems differ (see D.4). Although none of the primitives is known to be equivalent to the underlying
problem, attacking the underlying problem is the best currently known method for attacking the primitives.
Note that the DL and EC signature primitives use randomness and, thus, require an appropriate random
number generator for security (see D.6 for more on random number generation).

D.5.2.2 Encoding methods

The recommended encoding methods for signatures with appendix are EMSA1 (for DL/ECSSA) and
EMSA2 (for IFSSA).

An encoding method for a signature scheme with appendix in this standard (i.e., DL/ECSSA or IFSSA)
should have the following properties, stated informally:

— It should be difficult to find a message with a given message representative (the one-way property).
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— It should be difficult to find two messages with the same representative (collision resistance).

— The encoding method should have minimal mathematical structure that could interact with the
selected signature primitive (e.g., if the signature primitive is multiplicative, the encoding method
should not be).

— The encoding method may identify the hash function (and other options) within the message
representative in order to prevent an opponent from tricking a verifier into operating with a different
hash function than the signer intended—perhaps a broken hash function; however, this may also be
accomplished by key usage restrictions (see D.3.5).

EMSA1 is considered to have these properties (except for identifying the hash function) for DL/ECSSA.
EMSA2 is considered to have these properties for IFSSA. (Although EMSA1 does not identify the hash
function, in practice it is typically combined with a single hash function, SHA-1, which amounts to a key
usage restriction, and removes any risk of ambiguity.)

The security of EMSA1 and EMSA2 depends on the underlying hash function; SHA-1 and RIPEMD-160
are allowed. The length of the hash function output governs the security of both encoding methods. Typical
attacks for finding a message with a given representative involve on the order of 2160 operations, assuming a
160 bit hash function; attacks for finding two messages with the same representative involve 280 operations.

If the maximum length l of the message representative is less than the output length of the hash function,
then EMSA1 will simply truncate the hash function output. Therefore, for DL and EC signature schemes, if
the length of the generator order r (and, hence, the maximum length of the message representative) is less
than 160 bits, the security of the encoding method will be limited by 2l and 2l/2, rather than 2160 and 280,
respectively. In addition, for DLSP-DSA and ECSP-DSA, if the length of r is not greater than 160, then an
opponent may pick r in such a way as to cause two different messages to have the same signature Vaudenay
[B146]. This can be prevented by increasing the length of r beyond 160 bits, or by auditing domain
parameter generation (see Note 3 in D.4.1.4 and Note 5 in D.4.2.4).   It is customary for the length of r and
the length of the hash function output to be approximately equal, so the message representative input to the
primitive appears to be a random value between 0 and r – 1. If the length of r is greater than the length of the
hash value, then this appearance will no longer hold; however, this is not known to result in any security risk.

A further discussion of desired theoretical properties for signature schemes may be found in Bellare and
Rogaway [B19].

D.5.2.3 Repudiation

Signature schemes have a special security concern, similar to that for handwritten signatures. Namely, a
dishonest signer may be interested in using deliberately weak methods in order to produce a signature that is
accepted, but later be able to claim that the signature was forged by someone else who “broke” the
cryptosystem. This may allow the signer to later repudiate the signature. Since signers are often in some way
liable for the statements they sign, this will allow a dishonest signer to avoid the liability. In fact, a dishonest
signer may not be using weak methods, but merely be able to claim that the methods were weak by claiming,
for example, that the key was leaked or that the random number generator was weak.

Systems in which this is a concern should consider what conditions may be accepted as a basis for
repudiation, and then ensure that none of the conditions is present before accepting a signature. For example,
if repudiation is possible on the basis that the key size was too small, systems should set policies by which
signatures with keys under a certain size are not accepted. If repudiation is possible on the basis that a key
was not authentic or invalid, systems should ensure authenticity and validity of keys and parameters (see
D.3.2, D.3.3, D.5.2.4, and D.5.2.5). If repudiation is possible on the basis that the implementation was
insecure, implementation validation may be appropriate (see D.7). Implementations may also ensure that
users are not able to copy or view their own private keys and, thus, cannot deliberately leak them to other
parties (see also D.3.1 for more on key-sharing).
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System-wide policies may also help address this concern. For example, if signers generate their own keys, a
system may choose to prohibit repudiation on the basis that a key was invalid, reasoning that honest signers
should not generate invalid keys in the first place. They may also choose to prohibit any repudiation as long
as public keys are securely associated with the signers, by asserting that it is the signers’ responsibility to
ensure that their keys are secure. In the latter case, a signer has a motivation to perform key validation after
key generation, if there is any risk that the keys were not generated correctly (e.g., an error occurred).

When performing security analysis of a system that uses signatures, one needs to take into consideration not
only adversaries whose goal it is to forge signatures, but also adversaries whose goal it is to repudiate them. 

D.5.2.4 Authentication of ownership

If it is desired to verify that a particular party has the ability to generate a given signature (e.g., to prevent
future repudiation of the signature by the party) (see D.5.2.3), then the party’s ownership of the public key
with which the signature is verified should be authenticated. In general, as noted in D.3.2, the party’s
possession of the corresponding private key should also be authenticated. The risk of not doing so is that an
opponent may present a public key that is identical or related to some other party’s public key, to make it
appear as though a message was signed by the opponent, when in fact it was signed by the other party. Note,
of course, that the opponent can always sign any message it knows with its own key. Thus, this risk is of
concern in the following two cases:

— The signature is stored in such a way that it cannot be modified by the opponent, and the opponent is
trying to show that it generated the signature.

— A portion of the message is secret, and the verifier is relying on the signature as assurance that the
purported signer knows the secret. (Note that the use of signature schemes for verification of
knowledge of secrets is not discussed in this standard, because such verification is usually
accomplished by a protocol, rather than by a scheme. [Protocols and schemes are discussed in
Clause 4.] Such use requires additional security analysis by the implementer.)

If the message on which the signature is computed includes the signer's name, an opponent cannot make it
appear as though the opponent is the actual signer, because the opponent's name is different. (This is
essentially how a signature-based proof of possession protocol works.)

D.5.2.5 Validation of domain parameters and keys

As discussed in D.3.3, using invalid keys or domain parameters as inputs to a primitive carries with it certain
risks. Specifically, for the signature schemes, the risks are outlined below. Note that the risks will vary with
the particular implementation.

— Failure of the implementation, resulting in an error state

— Potential signature forgery

— Repudiation of signatures based on the argument that the key is invalid and, hence, insecure

The risk of implementation failure can be addressed by appropriate implementation handling of error cases,
or by ensuring the validity of the domain parameters and public keys as described in D.3.3.

The risk of signature forgery can be mitigated by ensuring the validity of the parameters and keys. However,
validation does not address certain other risks. A key may be valid and still be insecure (e.g., if the random
number generation for the key generation was performed improperly, or if the private key is stored
insecurely or deliberately disclosed). Therefore, an implementer should consider other ways in which the
key may be insecure, and then decide how to appropriately mitigate the risk. FIPS PUB 140-1
implementation validation and random number generation are typical ways to address some of these
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concerns (see D.6.1 and D.7). Public-key and parameter validation will ensure that no invalid public keys
and parameters are used to verify a signature.

The risk of repudiation and ways to address it are described in more detail in D.5.2.3. 

D.5.2.6 Cryptoperiod and protection lifetime

In a signature scheme, if an opponent learns a signer’s private key, the opponent can generate new signatures
that can be verified with the corresponding public key. The longer the cryptoperiod of a private key in a
signature scheme, the more data is available to a cryptanalyst. The longer the private key is not erased, the
longer it is potentially vulnerable to physical compromise. However, if the private key is erased and its
owner needs to repudiate a signature that was forged by an opponent, the private key is not available as
evidence. (The owner may need to use the private key to show, for example, that the private key was
somehow weak and, therefore, forgery was possible.)

If a verifier requires a secure timestamp (Section 13.8.1 of Menezes, van Oorschot, and Vanstone [B112]) on
signed messages and only accepts signatures that have timestamps prior to a certain date, then the opponent
is limited to generating new signatures before that date. Hence, if secure timestamps are used, the protection
lifetime of the private key can be limited by a specific date, provided that the date is securely associated with
the corresponding public key (see D.3.6). Note, however, that secure timestamping is more than just a date
field added by the signer. The existence of the signature on the message at the claimed date must be
independently confirmed by the verifier or by a third party. 

D.5.3 Encryption schemes

Encryption schemes are generally used to provide confidentiality of data. A theoretical definition of
“semantic security” (or, equivalently, “indistinguishability” or “polynomial security”) is commonly used as
the basis for the meaning of “confidentiality” (see Goldwasser and Micali [B61], Section 8.7 of Menezes,
van Oorschot, and Vanstone [B112], Micali, Rackoff, and Sloan [B114], and Yao [B151]). Semantic security
provides that it should be computationally infeasible to recover any information about the plaintext (except
its length) from the ciphertext without knowing the private key. This implies, in particular, that it should also
be infeasible to find out whether two ciphertexts correspond to the same, or in some way related, plaintexts,
or whether a given ciphertext is an encryption of a given plaintext.In addition, encryption schemes are some-
times used to provide integrity of data in the form of plaintext-awareness—an assurance that nobody could
generate a valid ciphertext without knowing the corresponding plaintext (Bellare and Rogaway [B18]).
(Data integrity in this context is different than for a signature scheme, where it ensures that a message has
not been modified since it was signed by an identified signer. Here, data integrity ensures that a message has
not been modified since it was encrypted by a possibly unidentified sender. Plaintext-awareness means that
the sender “knew” the message.) In particular, plaintext-awareness implies security against an adaptively
chosen ciphertext attack (an attack in which the opponent requests decryptions of specially constructed
ciphertexts in order to be able to decrypt other ciphertexts). The encryption scheme in this standard is
believed to provide plaintext-awareness and, hence, security against adaptively chosen ciphertext attack.

See Bellare et al. [B17] for more on relations among notions of security and modes of attack for encryption
schemes. 

D.5.3.1 Primitives

There is only one pair of encryption and decryption primitives for encryption schemes in this standard

— IFEP-RSA and IFDP-RSA
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Although the primitives are not known to be equivalent to the underlying problem of factoring, attacking the
underlying problem is the best currently known method for attacking the primitives.

D.5.3.2 Encoding method

The only recommended encoding method for encryption is EME1.

An encoding method for an encryption scheme in this standard (i.e., IFES) should have the following
properties, stated informally:

— Representatives of different messages should be unrelated.

— The encoding method, through incorporation of randomness or otherwise, should ensure that
representatives of the same message produced at different times are unrelated, and that it is difficult
to determine (without the private key), given a ciphertext and a plaintext, whether the ciphertext is an
encryption of the plaintext.

— Message representatives should have some verifiable structure, so that it is difficult to produce a
ciphertext that decrypts to a valid message representative (plaintext awareness).

— The encoding method should have minimal mathematical structure that could interact with the
encryption primitive (e.g., the encoding method should not be multiplicative, because IFEP-RSA is).

EME1 is considered to have these properties for IFES. (One motivation for using EME1 as opposed to other
encoding methods is a result by Bleichenbacher [B23].) It also has the additional property of securely
associating optional encoding parameters with a message, where the encoding parameters are not encrypted
but are protected from modification (see D.5.3.3).

The security of EME1 depends on the underlying hash function, mask generation function, and random
number generator for generating the seed. SHA-1 and RIPEMD-160 are allowed for the hash function, and
MGF1 (with SHA-1 or RIPEMD-160) is allowed for the mask generation function. See D.6 for
recommendations on random number generation. The length of the hash function output governs the security
of the encoding method. 

A further discussion of desired theoretical properties may be found in Bellare and Rogaway [B18].

D.5.3.3 Encoding parameters

The purpose of encoding parameters in an encryption scheme is to associate control information with a
message. The parameters should have an unambiguous interpretation. Their content depends on the
implementation, and they may be omitted (i.e., the parameters may be an empty string). The parameters are
not encrypted by the encryption scheme, but are securely associated with the ciphertext and protected from
modification. Whether they have been modified or not is verified during the decryption process. See Johnson
and Matyas [B86] for information on the encoding parameters.

For EME1, the length of the encoding parameters can vary from one encryption operation to another.

D.5.3.4 Authentication of ownership

If it is desirable to verify that a particular party has the ability to decrypt a given ciphertext, the party’s
ownership of the public key with which the ciphertext is produced should be authenticated.
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D.5.3.5 Validation of domain parameters and keys

As discussed in D.3.3, using invalid keys as inputs to a primitive carries with it certain risks. Specifically, for
the encryption schemes, the risks are outlined below. Note that the risks will vary with the particular
implementation

— Failure of the implementation, resulting in an error state

— Loss of confidentiality of the data

The risk of implementation failure can be addressed by appropriate implementation handling of error cases,
or by ensuring the validity of the domain parameters and public keys as described in D.3.3.

The risk of loss of confidentiality can be mitigated by ensuring the validity of the parameters and keys.
However, validation does not address certain other risks. A key may be valid and still be insecure (e.g., if the
random number generation for the key generation was performed improperly, or if the private key is stored
insecurely or deliberately disclosed). Even if the key is secure, the recipient may (because of insecure
implementation or deliberately) leak the content of the message. Therefore, an implementer should consider
other ways in which the key or the message content may be insecure, and then decide how to appropriately
mitigate the risk. FIPS PUB 140-1 implementation validation and random number generation are typical
ways to address some of these concerns (see D.6.1 and D.7). Public-key validation will ensure that no
messages are encrypted with invalid keys. Indeed, public-key validation is one of the precautions a message
sender may apply directly, whereas the other countermeasures mentioned here require the sender to rely on
representations by another party (e.g., that the implementation is secure).

D.5.3.6 Cryptoperiod and protection lifetime

In an encryption scheme, if an opponent learns a recipient’s private key, then the opponent can recover all
messages encrypted with the corresponding public key. The longer the cryptoperiod of a public key in an
encryption scheme, the more messages are potentially vulnerable to recovery. The longer the private key is
not erased, the longer it is potentially vulnerable to physical compromise. However, once the private key is
erased, no data encrypted with the corresponding public key can be decrypted.

The protection lifetime in an encryption scheme should be determined by how long the data encrypted with
the public key remains sensitive.

D.6 Random number generation

As indicated throughout this standard, and this annex in particular, generation of random numbers (or, more
generally, random bit strings) is a tool commonly used in cryptography. Proper generation of random bit
strings for cryptographic purposes is essential to security, particularly because secrets, such as private keys,
are commonly derived from such strings. Failure of a random number generator (resulting in, for example,
generation of predictable or repeating keys) is likely to make a system extremely vulnerable to an opponent.
As opposed to random number generation in some other settings, where security is not a concern,
cryptographic random number generation cannot generally be accomplished by simply invoking the
software subroutine “random” in one’s favorite software library.

This subclause describes some of the security concerns related to generating random bit strings. A more
detailed exposition is given in [Chapter 5, B112]. ISO and ANSI have recently started studying random
number generation. (The ANSI X9F1 Working Group has a work item numbered X9.82; in the ISO,
ISO/IEC JTC1 SC 27 WG 2 is studying the issue.) The reader may find the future results of this work useful.
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Random strings in cryptography are commonly generated by the following method: collect enough data
from a random source to get a seed for a pseudo-random bit generator, and then use the pseudo-random bit
generator to get the string of the desired length. D.6.1 and D.6.2 address both steps of this two-step process.

D.6.1 Random seed

An opponent can be assumed to have full knowledge of the pseudo-random bit generator (see D.2), except
for its seed input. The random seed is, thus, the only component of the random number generation process
that the opponent may not know. Therefore, implementers should ensure that the seed is collected from a
source that has sufficient variability and cannot be accessed, guessed, or influenced in a predictable way by
the opponent. In short, the seed should be unpredictable. If the result of the random number generation
process is to be kept secret, the seed should be kept secret as well.

Ideally, each bit produced by the random source should be evenly distributed and independent of all the
other bits. In such a case, there are 2n equally probable random seeds of length n, and the opponent has no
advantage in guessing the seed. However, in reality, this is often not the case. As random sources usually
have biased and correlated bits, opponents often have a better chance of guessing the seed of length n than 1
in 2n. When evaluating a random source, it is essential to establish that an opponent with appropriately large
computational resources, and full knowledge of the nature of the random source, has a negligible probability
of guessing a seed output by the random source. Note that the opponent should be considered to have as
many attempts at guessing as the opponent’s potential computational resources would allow.

Informally, variability of a random source is measured in bits of randomness (also called “bits of
variability”) per bits of output. For example, if a random source is said to have variability of “one bit per
byte,” this generally means that there are about 2k different strings of more or less equal probability of length
8k bits. Thus, in order to get about 160 bits of randomness from such a source, one needs 1280 bits of data.

If the random bits are biased or correlated, it is common to run them through a cryptographic hash function
in order to “distill” the randomness. This method relies on the assumption that the cryptographic hash
function will produce a distribution on the outputs that is reasonably close to uniform, because the hash
function is not correlated to the biases of the random source. In the example above, the 1280 bits of data
could be given as an input to, for example, SHA-1 to come up with a 160 bit output that has (presumably)
about 160 bits of randomness. Note that the hash function output should not be longer that the number of bits
of randomness believed to be provided by the data.

If the random seed needs to be kept secret, it is essential that the source of the random data be protected from
eavesdropping. For example, if one is using the timing of a user’s keystrokes as the source of the random
data, it is important that the keystrokes cannot be observed by the opponent through, for example, a hidden
camera installed in the room.

Whether or not the seed needs to be kept secret, it is also essential that the source of random data be
protected from manipulation by the opponent. For example, if system loads or network statistics are used for
random data, the opponent having access to the system or the network may be able to manipulate them in
order to reduce their variability, even if not able to observe them directly.

A common precaution is to combine many available sources of randomness and to use a hash function, as
described above, in order to “mix” them. If, for example, one collects enough data for 160 bits of variability,
each from three different sources, then even if two of the sources fail, the remaining source will provide
about 160 bits of variability in the hash function output. It is generally safer to collect more data rather than
less data from each of the sources, even if only a short seed is needed.
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Some sources of randomness that may be used include the following:

— Photon polarization detected at 45° out of phase.

— Elapsed time between emissions of particles from a radioactive source.

— Quantum effects in a semiconductor, such as a noisy diode or a noisy resistor.

— Frequency fluctuations of free-running oscillators.

— Fluctuations in the amount a metal insulator semiconductor capacitor is charged during a fixed
period of time.

— Fluctuations in read times caused by air turbulence within a sealed disk drive dedicated to this task
(Davis, Ihaka, and Fenstermacher [B44]).

— The difference between the output of two microphones in two different points in a room (provided
their amplification is normalized to minimize the difference signal).

— The noise within the signal of a microphone or video-camera in a room (tends to provide less
variability and is easier to predict and observe than the previous method).

— The electronic noise of an A-D converter with an unplugged microphone. (The variability depends
heavily on the particular converter and environment.)

— Variation in mouse movements or keystrokes and their timing. (For example, the user may be asked
to sign his or her name with the mouse; note that accessibility of correct high-resolution timing data
for mouse movements and key strokes varies among different systems.)

— The system clock (which tends to provide very little variability and can be assumed to be known to
the opponent, except for the last few digits, but may be used in combination with other sources).
Note also that the resolution of the system clock that is available to the application varies among
different systems.

— Operating system statistics that cannot be observed by a potential opponent (and tend to provide little
variability).

When using any of these sources, it is essential not to overestimate the amount of variability that is
inaccessible to the opponent. For example, if the user is asked to sign his or her name, the signature may be
known to the opponent, and only the deviations from the usual signature should be considered to provide
variability. Or if the room sounds in a particular frequency range are used as a source of randomness, the
opponent may be able to inject noises in that frequency range in order to bias the result. A more detailed
analysis of some of these, as well as other, sources is provided in Eastlake, Crocker, and Schiller [B53].

The quality of a particular source of randomness for generating random seeds should be tested by one or
more statistical tests. While statistical tests do not provide a guarantee that the generator is “good,” they help
detect some weaknesses the generator may have. A number of tests are described in Section 5.4 of Menezes,
van Oorschot, and Vanstone [B112] and Section 4.11.1 of FIPS PUB 140-1 [B54]. (FIPS PUB 140-1 [B54]
also describes a continuous random number generator test in Section 4.11.2.) A particular test that detects
many weaknesses is given in Maurer [B106] (see also Coron and Naccache [B41]). Note that while
statistical tests may detect certain weaknesses, they do not guarantee unpredictability of the random bit
source.

It is important not to confuse random-looking but public sources of information for secret sources of
randomness. For example, USENET feeds, TV broadcasts, tables of pseudo-random numbers, or digits of π
should be assumed to be accessible to the opponent and should not be relied upon as sources of random
seeds.
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D.6.2 Pseudo-random bit generation

Pseudo-random bit generators are deterministic algorithms that, given a seed as input, produce a
pseudo-random bit string of a desired length. (Deterministic here means that they do not use any randomness
other than that given by the input seed.) Because they are algorithms and should be assumed publicly known,
the unpredictability of their output relies heavily on the unpredictability of the input seed.

A pseudo-random bit generator is generally used to output more bits than the seed provides; therefore, its
outputs are not random, even if the seeds are random. In fact, the distribution of the outputs cannot possibly
be close to uniform, because the number of possible outputs is limited by the number of possible seeds. For
example, if a pseudo-random bit generator uses a 160 bit seed as input and returns a 300 bit output, only 2160

out of the possible 2300 (or one in 2140) 300 bit strings can be potentially output by the generator. 

Thus, the appropriate security condition to impose on a pseudo-random bit generator is not that it behave
like a true random source. Rather, the condition is that it be indistinguishable from a true random source by
any statistical test that can be computed with resources available to an opponent. More precisely, no
computation that can be performed with a feasible amount of computational resources should be able to
distinguish a truly random string from the output of a pseudo-random bit generator with probability
significantly better than one half. (It is, of course, easy to distinguish with probability exactly one half by
simply randomly guessing which one is the random string and which one is the output of the generator.) This
condition is sometimes called indistinguishability (Yao [B151]).

A condition that is equivalent to indistinguishability is the following: given all but one bit of the output of the
pseudo-random bit generator, it is infeasible to predict what the remaining bit is with probability
significantly better than one half. In particular, it is infeasible to predict what the next bit of the output will
be, even when given all the previous bits. This condition is sometimes called unpredictability (Blum and
Micali [B25]).

It is essential that pseudo-random bit generators used in cryptography reasonably satisfy the above
conditions. Some such generators are defined in ANSI X9.17-1985 [B3], Blum, Blum, and Shub [B24],
FIPS PUB 186 [B56], Micali and Schnorr [B115]; see Sections 5.3 and 5.5 of Menezes, van Oorschot, and
Vanstone [B112] for their descriptions. The formal basis for the belief of security varies according to the
generator. The security of some (ANSI X9.17-1985 [B3] and FIPS PUB 186 [B56]) is based on heuristic
assumptions, such as the unpredictability of outputs of DES or SHA-1 when a key or other input is
unknown. The security of others (Blum, Blum, and Shub [B24] and Micali and Schnorr [B115]) is based on
reduction from a hard problem, such as integer factorization. Some attacks on some of the above generators,
and suggestions for improving pseudo-random generator design, are contained in Kelsey et al. [B91].

The above two conditions imply that it is infeasible to guess the seed given just the output of the generator.
This is why pseudo-random generators may provide assurance that a set of parameters or keys was generated
from a seed (rather than the seed reconstructed after the generation), as detailed in D.3.1 and D.4.

The above two conditions also imply that the output of the pseudo-random generator, if long enough, is very
unlikely to repeat in any reasonable time. Thus, keys, if generated properly, are very unlikely to be repeated
or accidentally shared among users.

Statistical tests described in the previous clause for testing the quality of the seed may also be used to test the
quality of the pseudo-random bit generator. However, some generators commonly used outside of
cryptography (such as the linear congruential generator) may pass many of the statistical tests, while being
entirely predictable and, therefore, insecure for cryptographic purposes.
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D.7 Implementation considerations

This standard (and this annex in particular) focuses on cryptographic methods and the algorithms used to
implement them. Many engineering-related considerations are just as important in a secure implementation.
This subclause gives a sampling of the problems an implementer needs to consider. It is not meant to be
comprehensive, as solutions to these problems are outside the scope of this standard. For more on secure
implementation, see FIPS PUB 180-1 [B54] and Book 2, Appendix P of SET Secure Electronic Transaction
Specification [B104].

As with other security considerations, sources of the potential threats and their capabilities need to be
examined. For example, opponents may be able to induce errors in systems by operating them under
unexpected conditions, whether physical [such as change in temperature, power source characteristics, and
electromagnetic radiation; e.g., TEMPEST issues (Anderson and Kuhn [B2])], or computational (such as
illformed protocol messages or multiple requests overloading a server). Such errors may leak sensitive
information. (See e.g., the fault-analysis attack of Boneh, DeMillo, and Lipton [B26], or the story of the
“internet worm” in Hafner and Markoff [B69] and Kehoe [B90], or at http://www1.minn.net/~darbyt/worm/
worm.html.) Implementations, therefore, should make sure that they handle unexpected or erroneous inputs
and environments appropriately at all levels where an adversary may be present.

Implementations should also consider what information they may be giving to an adversary by indirect
means. For example, by measuring the time a computation takes, an adversary may be able recover some
information about a private key (see Dhem et al. [B45] and Kocher [B96]). By analyzing the error messages
sent by an implementation, an adversary may also be able to recover information (e.g., Bleichenbacher
[B23]). Therefore, an implementation of any operation that uses secrets (such as key agreement, signature
production, or decryption) should limit the information it provides in case of error. Even partial information
about a secret may lead to recovery of the entire secret (e.g., Boneh, Durfee, and Frankel [B28]).

Due consideration should also be given to protecting the secrets. They should be stored securely in such a
way that unauthorized copying of even a portion of a secret is prevented. All the copies of the secrets should
be accounted for. For example, care should be taken that, in a system with paging, a copy of a page
containing the secret is not made on disk by the operating system without the knowledge of the
implementation. Implementations should also be aware of the possibility of eavesdropping by, for example,
the use of electromagnetic radiation emanating from a video monitor (Anderson and Kuhn [B2]).

The authenticity and validity of the machinery (whether hardware or software) performing the cryptographic
operations need to be ensured. Otherwise, an adversary may be able to plant a so-called “Trojan horse”
within the implementation by substituting pieces of code, parameters, keys, or root certificates that are
imbedded in the implementation. Protecting the system itself from unauthorized modification is as important
as protecting cryptographic parameters and keys. Implementation validation is addressed in more detail in
FIPS PUB 140-1 [B54].
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Annex E

(informative) 

Formats

E.1 Overview

As outlined in Clause 4, the specifications presented in this standard are functional specifications, rather than
interface specifications. Therefore, this standard does not specify how the mathematical and cryptographic
objects (such as field elements, keys, or outputs of schemes) are to be represented for purposes of
communication or storage. This annex provides references to other relevant standards and defines some
recommended primitives for that purpose. While the use of this annex is optional, it is recommended for
interoperability.

As octet strings are arguably the most common way to represent data electronically for purposes of
communication, this annex focuses on representing objects as octet strings. One way to accomplish this is to
represent data structures in Abstract Syntax Notation 1 (ASN.1) (see ISO/IEC 8824-1:1998 [B72],
ISO/IEC 8824-2:1998 [B73], ISO/IEC 8824-3:1998 [B74], and ISO/IEC 8824-4:1998 [B75]), and then to
use encoding rules, such as Basic Encoding Rules (BER), Distinguished Encoding Rules (DER), or others
(see ISO/IEC 8825-1:1998 [B76] and ISO/IEC 8825-2:1998 [B77]) to represent them as octet strings. This
annex does not specify ASN.1 constructs for use in this standard, because the generality of this standard
would make such constructs very complex. It is likely that particular implementations utilize only a small
part of the options available in this standard, and would be better served by simpler ASN.1 constructs. When
the use of ASN.1 is desired, ASN.1 constructs defined in the following standards or draft standards may be
adapted for use:

— ANSI X9.42 [ANS98b] for DL key agreement

— ANSI X9.63 [ANS98f] for EC key agreement and EC encryption for key transport

— ANSI X9.57 [ANS97c] for DL DSA signatures

— ANSI X9.62 [ANS98e] for EC DSA signatures

— ANSI X9.31 [ANS98a] for IF signatures

— ANSI X9.44 [ANS98c] for IF encryption for key transport

E.2 gives recommendations on representing basic mathematical objects as octet strings, and E.3 gives
recommendations on representing the outputs of encryption and signature schemes as octet strings.

E.2 Representing basic data types as octet strings

When integers, finite field elements, elliptic curve points, or binary polynomials need to be represented as
octet strings, it should be done as described in this annex. Other primitives for converting between different
data types (including bit strings) are defined in Clause 5.

E.2.1 Integers (I2OSP and OS2IP)

Integers should be converted to/from octet strings using primitives I2OSP and OS2IP, as defined in 5.5.3.
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E.2.2 Finite field elements (FE2OSP and OS2FEP)

Finite field elements should be converted to/from octet strings using primitives FE2OSP and OS2FEP, as
defined in 5.5.4.

E.2.3 Elliptic curve points (EC2OSP and OS2ECP)

Elliptic curve points should be converted to/from octet strings using primitives EC2OSP and OS2ECP, as
defined below.

An elliptic curve point P (which is not the point at infinity O) can be represented in either compressed or
uncompressed form. (For internal calculations, it may be advantageous to use other representations; e.g., the
projective coordinates of A.9.6. Also see A.9.6 for more information on point compression.) The
uncompressed form of P is given simply by its two coordinates. The compressed form is presented below.
The octet string format is defined to support both compressed and uncompressed points.

E.2.3.1 Compressed elliptic curve points

The compressed form of an elliptic curve point P ≠ O is the pair (xP , ), where xP is the x-coordinate of P,
and  is a bit that is computed as follows:

a) If the field size q is an odd prime, then  = yP mod 2 (where yP is taken as an integer in [0, q – 1]
and not as a field element). Put another way,  is the rightmost bit of yP .

b) If the field size q is a power of 2 and xP = 0, then  = 0.

c) If the field size q is a power of 2 and xP ≠ 0, then  is the rightmost bit of the field element yPxP
–1.

Rules b) and c) apply for any of the basis representations given in 5.3.2.

Procedures for point decompression (i.e., recovering yP given xP and ) are given in A.12.8 (for q, which is
an odd prime) and A.12.9 (for q, which is a power of two).

E.2.3.2 Elliptic curve points as octet strings—EC2OSP and OS2ECP

The point O should be represented by an octet string containing a single 0 octet. The rest of this subclause
discusses octet string representation of a point P ≠ O. Let the x-coordinate of P be xP and the y-coordinate of
P be yP . Let (xp, ) be the compressed representation of P. (See E.2.3.1 for information on point
compression.)

An octet string PO representing P should have one of the following three formats: compressed,
uncompressed, or hybrid. (The hybrid format contains information of both compressed and uncompressed
form.) PO should have the following general form

PO = PC || X || Y

where

PC is a single octet of the form 00000UC  defined as follows: 

— Bit U is 1 if the format is uncompressed or hybrid; 0 otherwise.

— Bit C is 1 if the format is compressed or hybrid; 0 otherwise.

— Bit  is equal to the bit  if the format is compressed or hybrid; 0 otherwise.

ỹP
ỹP

ỹP
ỹP

ỹP

ỹP

ỹP

ỹP

Ỹ

Ỹ ỹP



IEEE
PUBLIC-KEY CRYPTOGRAPHY Std 1363-2000

Copyright © 2000 IEEE. All rights reserved. 215

X is the octet string of length log256 q representing xP according to FE2OSP (see 5.5.4).

Y is the octet string of length log256 q representing yP of P according to FE2OSP (see 5.5.4) if the
format is uncompressed or hybrid; Y is an empty string if the format is compressed.

The primitive that converts elliptic curve points to octet strings is called the Elliptic Curve Point to Octet
String Conversion Primitive, or EC2OSP. It takes an elliptic curve point P, the size q of the underlying field,
and the desired format (compressed, uncompressed, or hybrid) as input and outputs the corresponding octet
string.

The primitive that converts octet strings to elliptic curve points is called the Octet String to Elliptic Curve
Point Conversion Primitive, or OS2ECP. It takes the octet string and the field size q as inputs and outputs the
corresponding elliptic curve point, or “error.” It should use OS2FEP to get xP. It should use OS2FEP to get
yP if the format is uncompressed. It should use point decompression (see E.2.3.1) to get yP if the format is
compressed. It can get yP by either of these two means if the format is hybrid. It should output “error” in the
following cases:

— If the first octet is 00000000 and the octet string length is not 1

— If the first octet is 00000100, 00000110, or 00000111 and the octet string length is not
1+ 2 log256 q

— If the first octet is 00000010, 00000011 and the octet string length is not 1 + log256 q

— If the first octet is any value other than the six values listed above

— If an invocation of OS2FEP outputs “error”

— If an invocation of the point decompression algorithm outputs “error”

NOTE—The first five bits of the first octet PC are reserved and may be used in future formats defined in an amendment
to, or in future version of, this standard. It is essential that they be set to zero and checked for zero in order to distinguish
this format from other formats.

E.2.4 Polynomials over GF (2) (PN2OSP and OS2PNP)

Polynomials over GF (2) should be converted to/from octet string using primitives PN2OSP and OS2PNP, as
defined below.

The coefficients of a polynomial p(t) over GF (2) are elements of GF (2) and are, therefore, represented as
bits: the element zero of GF (2) is represented by the bit 0, and the element 1 of GF (2) is represented by the
bit 1 (see 5.5.4). Let e be the degree of p(t) and

p(t) = ae t
e + ae–1 te–1 + … + a1 t + a0

where ae = 1. To represent p(t) as an octet string, the bits representing its coefficients should be concatenated
into a single bit string: a = ae || ae–1 || … || a1 || a0. The bit string a should then be converted into an octet
string using BS2OSP (see 5.5.2).

The primitive that converts polynomials over GF (2) to octet strings is called the Polynomial to Octet String
Conversion Primitive, or PN2OSP. It takes a polynomial p(t) as input and outputs the octet string.

The primitive that converts octet strings to polynomials over GF (2) is called Octet String to Polynomial
Conversion Primitive or OS2PNP. It takes the octet string as input and outputs the corresponding polynomial
over GF (2). Let l be the length of the input octet string. OS2PNP should use OS2BSP (see 5.5.2) with the
octet string and the length 8l as inputs. It should output “error” if OS2BSP outputs “error.” The output of
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OS2BSP should be parsed into 8l coefficients, one bit each. Note that at most, seven leftmost coefficients
may be zero. The leftmost zero coefficients should be discarded.

E.3 Representing outputs of schemes as octet strings

The signature and encryption schemes in this standard do not produce octet strings as their outputs. When a
scheme output (e.g., a signature) needs to be represented as an octet string, it may be done as defined in this
subclause.

E.3.1 Output data format for DL/ECSSA

For DL/ECSSA, the output of the signature generation function (see 10.2.2) is a pair of integers (c, d). Let r
denote the order of the generator (g or G) in the DL or EC settings (see 6.1 and 7.1), and let l = log256 r
(i.e., l is the length of r in octets). The output (c, d) may be formatted as an octet string as follows: convert
the integers c and d to octet strings C and D, respectively, of length l octets each, using the primitive I2OSP,
and output the concatenation C || D. To parse the signature, split the octet string into two components C and
D, of length l each, and convert them to integers c and d, respectively, using OS2IP. Note that it is essential
that both C and D be of length l, even if it means that they have leading zero octets.

NOTE—The output of DL/ECSSA may also be formatted according to the following method, described in more detail in
ANSI X9.57-1997 [B6] and ANSI X9.62-1998 [B11]: combine c and d into an ASN.1 structure (ISO/IEC 8824-1:1998
[B72]), and encode the structure using some encoding rules, such as BER or DER (ISO/IEC 8825-1:1998 [B76]).

E.3.2 Output data format for IFSSA

For IFSSA, the output of the signature generation function (see 10.3.2) is an integer s. Let k = log256 n
denote the length of the modulus n in octets in the IF setting (see 8.1). The output s may be formatted as an
octet string by simply converting it to an octet string of length k octets using the primitive I2OSP.

E.3.3 Output data format for IFES

For IFES, the output of the encryption function (see 11.2.2) is an integer g. Let k = log256 n denote the
length of the modulus n in octets in the IF setting (see 8.1). The output g may be formatted as an octet string
by simply converting it to an octet string of length k octets using the primitive I2OSP.
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