
Exam for “Systèmes Digitaux” course

Tuesday January 14, 2020

Abstract

This exam is made up of two problems. It is better to answer to some of
them in depth than all of them superficially.

The exam duration is 4 hours. The maximum number of pages is 6. You
cannot use class material.

1 CMOS logic gates

We recall that a Negative MOS (NMOS:
S

D

G ) transistor is:

• closed if the gate G input is equal to one (that is, drain D and source S are
connected), and

• open otherwise (that is, drain D and source S are not electrically con-
nected).

A Positive (PMOS:
D

S

G ) transistor behaves the opposite way.

Q1

Comment on the gate depicted in Fig. 1.
Is it Complementary MOS (CMOS) logic?
If so, what is the Boolean function of y1 and y2 as a function of inputs a and

b?

2 Arithmetic: Fast Addition in the Integers

Let a = (an−1, . . . , a0)2 and b = (bn−1, . . . , b0)2 two n-bit integers, represented
as a string of bits.

The bitwise operations for arithmetic addition are as follows:

1



a

a

b

a b

y2

y1

Figure 1: Gate whose functionality is to be assessed

b ia i
d i

ci+1
ci

FA

Figure 2: Netlist for the (one-bit) Full Adder

• di = ai ⊕ bi ⊕ ci,

• ci+1 = MAJ(ai, bi, ci),

where ⊕ represents the “exclusive-or” (or XOR) operation and where MAJ is
the majority function, namely

MAJ(ai, bi, ci) = (ai ∧ bi) ∨ (bi ∧ ci) ∨ (ci ∧ ai)

= (ai ∧ bi)⊕ (bi ∧ ci)⊕ (ci ∧ ai).

The FA (Full Adder) is the one-bit slice of an adder, depicted in Fig. 2.

Q2.1

Explain how to use n FAs to add up two n-bit integers a = (an−1, . . . , a0)2 and
b = (bn−1, . . . , b0)2.

2



Q2.2

Explain how the same structure can be leveraged to subtract two integers. Il-
lustrate on the computation of a− b or a+ b by the same netlist.

Q2.3

What is the critical path of the structures you proposed in Q2.1 and Q2.2.

Q2.4

In this section, we imagine a structure to reduce the critical path, in average. In
this respect, notice that the existence of a carry anywhere in the adder can be
predicted under some condition. Explicit this condition, and present a struc-
ture to accelerate the addition resorting to speculative execution.

3 Special operators: Butterfly Fourier transform in
Fn
2

Let n a positive integer. This problem consists in studying the butterfly algo-
rithm for fast Fourier transform on Fn

2 . We start by a mathematical problem
statement.

Let Fn
2 be an n-dimensional vector space over the field F2, that we equip

with the canonical scalar product u · x =
⊕n−1

i=0 uixi. A given x ∈ Fn
2 is also

written as xn−1,...,0 to highlight its coordinates (xi)0≤i≤n−1. Slices are sets of
coordinates, selected as per their indices. For example, the slice xn−1,...,i ∈ Fn−i

2

(for 0 ≤ i ≤ n − 1) is the slice of the first (or leftmost) n − i bits of x, and the
slice xi−1,...,0 ∈ Fi

2 (for 1 ≤ i ≤ n) is the slice of the last (or rightmost) i bits
of x. One coordinate is also denoted as xi,...,i = xi (for 0 ≤ i ≤ n − 1), and
we extend these notations with the empty slice, when upper and lower indices
cross, that is xi,...,i+1 is considered empty. In the sequel, we shall also use the
comma operator for the concatenation; for instance x ∈ Fn

2 = (xn−1, . . . , x0).
Let f : Fn

2 → F2 a Boolean function. The Fourier transform f̂ of f for all
values x ∈ Fn

2 is defined as:

f̂(x) =
∑
u∈Fn

2

(−1)u·xf(u). (1)

The Fourier transform takes its values in Z.
Notice that the truth table of the Fourier transform f̂ is a linear transforma-

tion of that of f , the transformation matrix being the Hadamard matrix. An

3



illustration for n = 4 is provided hereafter:

f̂(0000)

f̂(0001)

f̂(0010)

f̂(0011)

f̂(0100)

f̂(0101)

f̂(0110)

f̂(0111)

f̂(1000)

f̂(1001)

f̂(1010)

f̂(1011)

f̂(1100)

f̂(1101)

f̂(1110)

f̂(1111)



=



+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
+1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1
+1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1
+1 +1 +1 +1 −1 −1 −1 −1 +1 +1 +1 +1 −1 −1 −1 −1
+1 −1 +1 −1 −1 +1 −1 +1 +1 −1 +1 −1 −1 +1 −1 +1
+1 +1 −1 −1 −1 −1 +1 +1 +1 +1 −1 −1 −1 −1 +1 +1
+1 −1 −1 +1 −1 +1 +1 −1 +1 −1 −1 +1 −1 +1 +1 −1
+1 +1 +1 +1 +1 +1 +1 +1 −1 −1 −1 −1 −1 −1 −1 −1
+1 −1 +1 −1 +1 −1 +1 −1 −1 +1 −1 +1 −1 +1 −1 +1
+1 +1 −1 −1 +1 +1 −1 −1 −1 −1 +1 +1 −1 −1 +1 +1
+1 −1 −1 +1 +1 −1 −1 +1 −1 +1 +1 −1 −1 +1 +1 −1
+1 +1 +1 +1 −1 −1 −1 −1 −1 −1 −1 −1 +1 +1 +1 +1
+1 −1 +1 −1 −1 +1 −1 +1 −1 +1 −1 +1 +1 −1 +1 −1
+1 +1 −1 −1 −1 −1 +1 +1 −1 −1 +1 +1 +1 +1 −1 −1
+1 −1 −1 +1 −1 +1 +1 −1 −1 +1 +1 −1 +1 −1 −1 +1





f(0000)
f(0001)
f(0010)
f(0011)
f(0100)
f(0101)
f(0110)
f(0111)
f(1000)
f(1001)
f(1010)
f(1011)
f(1100)
f(1101)
f(1110)
f(1111)


(2)

Proposition 1 (Butterfly Fourier transform). Let f : Fn
2 → F2. Let us define recur-

sively the functions fi : Fn
2 → F2, (for 0 ≤ i ≤ n), as follows: f0 = f , and fi+1 in y ∈

Fn
2 is equal to fi+1(y) = fi(yn−1,...,i+1, 0, yi−1,...,0)+(−1)yifi(yn−1,...,i+1, 1, yi−1,...,0),

(for 0 ≤ i ≤ n− 1), or equivalently:

fi+1(y) =

{
fi(yn−1,...,i+1, 0, yi−1,...,0) + fi(yn−1,...,i+1, 1, yi−1,...,0) if yi = 1,
fi(yn−1,...,i+1, 0, yi−1,...,0)− fi(yn−1,...,i+1, 1, yi−1,...,0) if yi = 0.

The i-th coordinate in the argument of fi is called the pivot. Then f̂ = fn.

Q3.1

Prove Proposition 1.

Q3.2

What is the complexity of the Butterfly algorithm from Prop. 1.

Q3.3

Explain how to compute the Fourier transform using a combinatorial circuit.

Q3.4

Explain how to compute the Fourier transform using a sequential circuit, in n
steps.

4


	CMOS logic gates
	Arithmetic: Fast Addition in the Integers
	Special operators: Butterfly Fourier transform in F2n

