
IEEE Std 1076.4-1 995

IEEE Standard for VITAL Application-
Specific Integrated Circuit (ASIC)
Modeling Specification

m j i i

Sponsor

Design Automation Standards Committee
of the
IEEE Computer Society

Approved December 12,1995

IEEE Standards Board 'x

Abstract: The VITAL (VHDL Initiative Towards ASIC Libraries) ASIC Modeling Specification is
defined. It creates a methodology that promotes the development of highly accurate, efficient sim-
ulation models for ASIC (Application-Specific Integrated Circuit) components in VHDL.
Keywords: ASIC, computer, computer languages, constraints, delay calculation, HDL, modeling,
SDF, timing, Verilog@, VHDL

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright 0 1996 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1996. Printed in the United States of America.

ISBN 1-55937-691-0

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Standards documents are developed within the Technical Committees of the IEEE Societies
and the Standards Coordinating Committees of the IEEE Standards Board. Members of the com-
mittees serve voluntarily and without compensation. They are not necessarily members of the Insti-
tute. The standards developed within IEEE represent a consensus of the broad expertise on the
subject within the Institute as well as those activities outside of LEEE that have expressed an inter-
est in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply
that there are no other ways to produce, test, measure, purchase, market, or provide other goods and
services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the
time a standard is approved and issued is subject to change brought about through developments in
the state of the art and comments received from users of the standard. Every IEEE Standard is sub-
jected to review at least every five years for revision or reafiirmation. When a document is more
than five years old and has not been reaffirmed, it is reasonable to conclude that its contents,
although still of some value, do not wholly reflect the present state of the art. Users are cautioned to
check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of
membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporiing comments.

Interpretations: Occasionally questions Inay arise regarding the meaning of portions of standards as
they relate to spe;ilii LipliLxiioiis. \Yiic:i ike need for interpretations is brought to the attention of
IEEE, the Institut; \ \ i l l i i i i l ia!? .idlion IO pr-;pare appropriate responses. Since IEEE Standards rep-
resent a consensus 01' :ill L*oii<criicJ iii:xcsts:. it is important io ensurc that any interpretation has
also received the LYIIIL~LII I'C'IIL'L* o l ' i i I ~ ~ i I i i i i ~ ' ~ of Jnterests. For this reason IEEE and the members of its
technical commitii*l:- :ire iiii! :11dc io prwide an instant response to interpretation requests except in
those cases where 11w ~i i ac !c r 1:::s p.r\ ioti\l? received formal consideration.

Comments on staiihril~ i i i i t i i c q ~ i c ~ i > lor in!erpretations should bc addressed to:

Secretary, IEEE StSln&rds Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

Note: Attention is called to the possibility that implementation of this standard may
require use of subject matter covered by patent rights. By publication of this standard,
no position is taken with respect to the existence or validity of any patent rights in
connection therewith. The IEEE shall not be responsible for identifying all patents
for which a license may be required by an IEEE standard or for conducting inquiries
into the legal validity or scope of those patents that are brought to its attention.

Authorization to photocopy portions of any individual standard for internal or personal use is
granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate
fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact
Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA;
(508) 750-8400. Permission to photocopy portions of any individual standard for educational class-
room use can also be obtained through the Copyright Clearance Center.

Introduction

[This introduction is not a part of IEEE Std 1076.4-1995, IEEE Standard for VITAL Application-Specific Integrated Circuit
(ASIC) Modeling Specification.]

The objective of VITAL (VHDL Initiative Towards ASIC Libraries) was to accelerate the development of sign-
off quality ASIC macrocell simulation libraries written in the VHSIC Hardware Description Language (VHDL)
by leveraging existing methodologies of model development.

The VITAL effort germinated from ideas generated at the VHDL International Users’ Forum in May 1992.
Further discussions revealed that the biggest impediment to VHDL design was the lack of ASIC libraries, and that
the biggest impediment to ASIC library development was the lack of a uniform, efficient method for handling
timing in VHDL. Since this problem had already been solved for other languages, it was clear that a solution in
VHDL was possible and that an effective way to arrive at this solution was to leverage existing technology.
Leveraging existing tools and environments serves as a catalyst for the rapid deployment of ASIC libraries.

VITAL obtains its leverage from

a) The Standard Delay Format (SDF), in addition to jj

b) Certain contributed elements of the Std-Timing package provided by William Billowitch and
specialized timing and behavioral techniques provided by Ray Ryan, and

c) The existence of numerous ASIC libraries and tools developed using SDF timing implementations

VITAL used many ideas about % primitives and timing models described in theVerilog* language. In particular,
Verilog’s support for representing truthlstate tables and its mechanism for-prforming pin-to-pin delay selection
were found to be highly useful.

The VITAL organization was an informal consortium of interested companies in the electronics industry who
shared the goals of accelerating the availability of VHDL ASIC libraries. They represented the three components
of the ASIC design triangle: ASIC vendors, EDA vendors, and end users of ASIC components. More than 60 such
companies worldwide joined the consortium. This grbvp was led by a steering Committee, which was responsible
for the development of the VITAL technical specifications as well as the promotion and dissemination of
information about this work. The members of the steering committee were: Steven Schulz, William Billowitch,
Ray Ryan, Oz Levia, Victor Berman, Victor Martin, Ravi Kumar, Sanjay Nay&, Tom Senna, and Herman Van
Beek.

The VITAL steering committee transferred this work to the E E E P1076.4 Working Group for consideration as
the basis of a standard for ASIC modeling in VHDL. This standard is the result of the efforts of the working group
in refining that baseline document.

The E E E P1076.4 Working Group has a membership of over 300 interested people who have made significant
contributions to this work through their participation in technical meetings; their review of technical data both in
print and through electronic media; and their votes, which guided and finally approved the content of the draft
standard.

The technical direction of the working group as well as the day-to-day activities of issue analysis and drafting of
proposed wordings for the standard were the responsibility of the IEEE P1076.4 TAG (Technical Action Group).
This group consisted of Ravi Kumar, Sanjay Nayak, Dennis Brophy, Ray Ryan, John Busco, Tim Ayres, Bill
Paulsen, and Kathy McKinley, and the group was chaired by Oz Levia. Without the dedication and hard work of
this group, it would not have been possible to complete this work.

This standard is the result of numerous discussions with ASIC vendors, CAE tool vendors, and ASIC designers

iii

to determine the requirements for effective design and fabrication of ASICs using VHDL. The highest priority
issues identified by this group were

- Timing accuracy

- Model maintainability

- Simulation performance

Some basic guiding principles followed during the entire specification development process were

- To describe all functionality and timing semantics of the model entirely within the VHDL model and the
associated VITAL packages.

- To provide a set of modeling rules (Level 1) that constrain the use of VHDL to a point that is amenable
for simulator optimizations, and at the same time to provide enough flexibility to support most existing
modeling scenarios.

- To have all timing calculations (load dependent or environmentally dependent) performed outside of the
VITAL model. The VITAL model would get these timing values solely as actual values to the generic
parameter list of the model or via SDF direct import.

The following persons were members o EE P1076.4 Working Group:

Victor Berman, Chair

Suresh Agarwal
Dave Agnew
Dave Allenbaugh
Brien Anderson
Cliff Anderson
Jan Anderson
Robert E. Anderson
Ronen Arad
Libby Aston
Naveena N. Aswadhati
Jeffrey M. Aubert
Larry M. Augustin
Bulent Ay
Tim Ayres
Stephen A. Bailey
Mikhail A. Baklashov
Ekambaram Balaji
Bruce Bandali
Sudarshan Banerjee
Peter Barck
Daniel Barclay
Karen Bartleson
Mark Basten
Michael A. Beaver
David Belz
Leon Benders
Ad J. W. M. ten Berg
Jean-Michel Berge
Werner Bergmann
David Bemstein

Kathy McKinley, Technical Ediitor I_

iii

Christian Berthet
Jayaram Bhaskcr
Scott Bilk
William D. Billowitch
John Biro
r; -2.: .I

'U, ii::

Robert Bloor
Michael Bohm
Frcderique Boucfmd
Bruce Bourbon
Elaine Boyd
Jean Pierre Braunt
Christopher Brock
Dennis Brophy
John A. Busco
Jean-Paul Caisso
J. Scott Calhoun
Brian Caslis
Shir-Shen Chang
Thomas Chao
Clive Charlwood
Jean Marc Chateau
Glenn J. Childers
Nitin Chowdhary
Debashis Roy Chowdhury
Ron Christopher
Carl Cleaver
David Coelho
John Colley

Tedd Corman
Joe Costello
Terry Coston
Ronnie Craig
Ronan Cullen
Hal Daseking
Jose De Castro
Aart deGeus
Jean Desuche
Baruch Deutsch
Allen Dewey
Matt Dodd
Kevin Donnelly
Mike Duclos
Douglas D. Dunlop
Hisakazu Edamatsu
Steve Elliott
Stephan Eriksson
David Evans
Edward N. Evans
John A. Evans
William Fazakerly
Francine Ferguson
Len Finegold
Geoffrey Frank
Roberta E, Fulton
Sanjay Goswami
Ravender Goyal
Brian Griffin
Gary Griffin

iv

Bruce Grugett
Andrew Guyler
Werner Hack
Klaus ten Hagen
Stuart Hamilton
James P. Hanna
Alain Hanover
Susan Hardenbrook
David Hardman
Randolph E. Harr
Amirhooshang Hashemi
Greg Haynes
Carl E. Hein
Mitch Heins
Shankar Hemmady
Moises Hernandez
Elhanan Herzog
Kiyohiro Higashijima
John Hillawi
Fred Hinchcliffe
John Hines
Helmut Hissen
Will Hobbs
Andreas Hohl
Yu-I Hsieh
Jason Hsiung
Anling Hsu
Matt Hsu
Pong Hsu
May Huang
David Hubbard
Christophe Hui-Bon-Hoa
Erik Huyskens
Kazuhiko Iijima
Stephen A. Ives
Jacob Jacobson
Antonie C. S. de Jager
Mahendra Jain
Sunil K. Jain
Colin Jitlal
Don Johansen
Howard Johnson
Harvey Jones
Mark Jones
Masaru Kakimoto

Ken Kappeler
Jake Karrfalt
Eugene KO
Satoshi Kojima
Rama Kowsalya
Stanley J. Krolikoski
Paul Krueger
Krishna Kumar
Ravi Kumar
C. Lakshmikantam
Sylvie Lasserre
Marc Laurent
Manu Lauria
Oz Levia
Serge Maginot
Arthur Magnan
Sanjay Malpani
John Mancini
Maq Mannan
E Erich Marschncr
Vicior M. Marlin
LaeMelling
Paul J. Menchini
Alex Miczo
Dwight Miller
Nikhil Modi
Kent Moffat
Sidhartha Mohanty
Gabe Moretti
Rick Munden
Jayant L. Nagda
Zain Navabi
Sanjay Nayak
Gordon L. Newel1
John OBrien
William I<. Paulsen
Zamir Pas
Venu P&nmaraju
Gabriele Pulini
Viswanathan Ramakrishnan
Paul Ramondetta
Prakash Reddy
Praveen Reddy
Eugen Roehm
Adam Rosenberg

h o b Roy
Susan Runowicz-Smith
Ray Ryan
Yvonne Ryan
Hideki Sagayama
Kyohei Sakajiri
Manohar Sambandam
Johan Sandstrom
Marc-Alain Santerre
Souvanik Sarkar
Paul Sathya
Sharada Satrasala
Larry F. Saunders
Quentin Schmierer
Joel Schoen
Steven E. Schulz
David Sellers
Tom Senna
Moe Shahdad
Steve Sherman
Venk Shukla
Ken Simone
Peter Sinander
Rajvinder Singh
John Sissler
Joseph Skudlarek
Balachandran Sreekandath
John Stickley
Eugena Talvola
Tina Tran
Cary Ussery
Alain Vachoux
Vijay Vaidyanathan
Tom VandenBerge
Eugenio Villar
Walter Vines
Jefferry Vo
Russ Vreeland
Ron Werner
Paul Williams
John C. Willis
Jim Wilmore
Scott Winick
Alex Zamfirescu

V

The following persons were on the balloting committee:

William J. Abboud
Mostapha Aboulhamid
Robert E. Anderson
Stephen A. Bailey
Pete Bakowski
Jean-Michel Berge
Victor Berman
Jayaram Bhasker
William D. Billowitch
Dennis B. Brophy
John A. Busco
J. Scott Calhoun
Raul Camposano
Harold W. Carter
Shir-Shen Chang
Thomas Chao
Chin-Fu Chen
Mojy C. Chian
Pradeep Chilka
David Coelho
John Colley ’
Alan Coppola
Tedd Corman
W. Terry Coston
Joanne DeGroat
Antonie C. deJager
Allen Dewey
Michael A. Dukes
Douglas D. Dunlop
Ted Elkind
Edward N. Evans
William Fazakerly
Peter Flake
Jacques P. Flandrois
Rita A. Glover

Rich Goldman
Brian Griffin
Richard Grise1
Steve Grout
Andrew Guyler
William A. Hanna
James P. Hanna
Randolph E. Harr
John Hillawi
Robert G. Hillman
Yu-I Hsieh
Yee-Wing Hsieh
May Huang
Christophe Hui-Bon-Hoa
Sylvie Hurat
Masaharu Imai
Ann Irza
Mitsuaki Ishikawa
Stephen A. Ives
Nameet Kumar Jain
Choon B. Kim
Stanley J. Krolikoski
Jean Lebmn
Oz Levia
5 h irley Lu
Kajcev Madhavan
Serge Maginot
E Erich Marschrier
Victor M. Martin
Paul J. .Menchini
Gcrald T. Michacl
John T. Montague
Gabe Moi-ctti
Jayant L. Nagda

Sanjay Nayak
Kevin O’Brien
Curtis Parks
William R. Paulsen
Mauro Pipponzi
Gary S. Porter
Adam Postula
Jan Pukite
Rami Rahim
Hemant G. Rotithor
Larry E Saunders
Quentin Schmierer
Steven E. Schulz
Francesco Sforza
Ravi Shankar
Micahel D. Sharp
Raj Singh
Djahida Smati
Geoffrey John Smith
3. Dennis Soderberg
Alec G. Stanculescu
Balsha R. Stanisic
Michael F. Sullivan
Charles Swart
Peter Ting
Cary Ussery
E. Vandris
Ranganadha R. Vemuri
Venkat V. Venkataraman
Eugenio Villar
Ronald Waxman
Ron Werner
Alan Whittaker
John C. Willis
Mark Zwolinski

vi

When the IEEE Standards Board approved this standard on December 12., 1995, it had the following
membership:

E. G. “AP’ Kiener, Chair Donald C. Loughry, Vice Chair
Andrew G. Salem, Secretary

Gilles A. Baril
Clyde R. Camp
Joseph A. Cannatelli
Stephen L. Diamond
Harold E. Epstein
Donald C. Fleckenstein
Jay Forster*
Donald N. Heirman
Richard J. Holleman

Jim Isaak
Ben C. Johnson
Sonny Kasturi
Lorraine C. Kevra
Ivor N. Knight
Joseph L. Koepfinger”
D. N. “Jim” Logothetis
L. Bruce McClung

*Member Emeritus

Also included are the following nonvoting IEEE Standards Board liaisons:

Satish K. Aggarwal
Steve Sharkey
Robert E. Hebner
Chester C. Taylor

Mary I g n c Hielsen
IEEE Slariiliiril..t Project Editor

Marco W. Migliaro
Mary Lou Padgett
John W. Pope
Arthur K. Reilly
Gary S. Robinson
Ingo Rusch
Chee Kiow Tan
Leonard L. Tripp
Howard L. Wolfman

Verilog is a registered trademark of Cadence Design Systems, Inc.

vii

Contents

CLAUSE PAGE

1 .

2 .

3 .

4 .

5 .

6 .

Overview ... 1

1.1 Intent and scope of this standard .. 1
1.2 Structure and terminology of this standard ... 1
1.3 Syntactic description ... 1

1.5 Front matter, examples, figures, notes, and annexes ... 3
1.4 Semantic description ... 3

References .. 4

Basic elements of the VITAL ASIC modeling specification ... 5

. . 3.1 VITAL modeling levels and compliance .. 5
3.2 VITAL standard packages .. 6
3.3 VITAL specification for timing data inseition .. 6 *=

The VITAL Level 0 specification .. 8

4.1 The VITAL-Level0 attribute .. 8
4.2 General usage rules .. : .. 8

Organization of VJTAL-compliant descriptions ... 9

4.3.1 Ports ... 10
4.3.2 Generics ... 10

4.3.2.1 Timing rene4'c 10

Timing generic usage ... 18

4.2.1
4.2.2

Standard VHDL usage ... 8

4.3 The VITAL Level 0 entity interface ... 9

4.3.2.2 Control g.~.:. I,. 17
4.4 The VITAL Level 0 architecture body :: ... 17

4.4.1

Backannotation ... 19

5.1 Backannotation methods .. 19
5.1.1
5.1.2 The SDF annotator .. : .. 19

5.2 The VITAL SDF map ... 20

Direct SDF import ... 19

5.2.1 Delay file ... 20
5.2.2 Header section ... 20
5.2.3 CELL entry .. 21

INSTANCE and CELLTWE entries .. 21
5.2.5 Timing specifications .. 22

Mapping to timing generics ... 23
5.2.7.1 DELAY entry ... 23
5.2.7.2 TIMINGCHECK entry .. 26

Mapping of SDF constructs to general VHDL lexical dements 28

5.2.4

5.2.6 Data value mapping ... 23
5.2.7

5.2.7.3

The VITAL Level 1 specification .. 33

ix

CLAUSE PAGE

6.1 The VITAL-Level1 attribute .. 33
6.2 The VITAL Level 1 architecture body 33
6.3 The VITAL Level 1 architecture declarative part 34

VITAL, internal signals .. 34
6.4 The VITAL Level 1 architecture statement patt ... 34

Wire delay block statement ... 35
Negative constraint block statement .. 37

6.3.1

6.4.1
6.4.2
6.4.3 VITAL process statement .. 37

6.4.3.1 VITAL process declarative part ... 38
6.4.3.2 VITAL process statement part ... 39

........................ 41 6.4.4 VITAL primitive concurrent procedure call

7 . Predefined primitives and tables .. 43

7.1 VITAL logic primitives .. 43
7.1.1

7.1.3

Logic primitive functions .. 43

Establishing output strengths :
7.1.2 Logic primitive procedures ...

7.2 VihlResolve ...
7.3 VITAL table primitives ... 45

7.3. I VITAL table symbols .. 45
7.3.2 Table symbl .. !:!.‘. .: ... 46
7.3.3 TrutliTable ;’! i:. ; . .. 47

7.3.3.1 Truth table construction ... 48
7.3.3.2 Tru 11 iT;d!lL s~lgoritlim ... 49

7.3.4.1 State table construction .. 49
7.3.4.2 StnteTable algorithm .. 50

7.3.4 StateTable pr i i i i i L ! \ L : .. 49

8 . Timing constraints 51

8.1 Timing check procedures .. 51
8.1.1 Vi!:ilSc.i upTToltlC1i~~~~k .. 51
8.1.2 V j ~ i i l l ’ ~ ~ i ~ i ~ ~ ~ l l ’ t i I ~ ~ ~ ~ ~ i ~ ~ ~ ~ .. 52
8.1.3 Vi~;~llZ~~co\ cr! Rcii:o\ ; i l (h S L . k .. 52

8.2 Modeling i i r*gal i \c iiliiiiig coii\I::li:lis ... 53
8.2.1 Requirements on the VHDL description ... 54
8.2.2 Negative constraint calculation phase

8.2.2.1
8.2.2.2
8.2.2.3
8.2.2.4
8.2.2.5

Calculation of internal clock delays
Calculation of internal signal delays ...
Calculation of biased propagation delays ..
Adjustment of propagation delay values
Adjustment of timing check generics .. 57

9 . Delay selection 59

9.1 VITAL delay types and subtypes ..
9.2 Transition-dependent delay selection .. 60

9.4.1 VitalPathDelay andVitalPathDelayO1 62
9.4.2 VitalPathDelayOlZ . .. 62

.............. 59

9.3 Glitch handling .. 60
9.4 Path delay procedures ... 61

X

CLAUSE PAGE

9.5 Delay selection in VITAL primitives .. 63
9.6 VitalExtendToFillDelay .. 63

10 . The VITAL standard packages .. 65

ANNEX

Annex A

Annex B

Annex C

Syntax summary (informative) .. 66

Glossary (informative) ... 70

Bibliography (informative) .. 71

Index 72

xi

1

5

10

15

20

25

30

35

40

45

50

IEEE Standard for VITAL Application-Specific
Integrated Circuit (ASIC) Modeling Specif icat ion

1. Overview

This clause describes the purpose and organizationof this standard.

1.1 Intent and scope of this standard

The intent of this standard is to define accurately the standard VITAL ASIC modeling specification. The primary
audience for this document are the implementors of tools supporting the standard and ASIC modelers.

1.2 Structure and terminology of this standard

This standard is organized into clauses, each of which focuses on some particular area,of the definition of the
specification. Each page of the formal definition contains ruler-style line numbers in the left margin. Within each
clause, individual constructs or concepts are discussed in each subclause.

Each subclause describing a specific construct or concept begins with an introductory paragraph. If applicable, the
syntax of the construct is then described using one or more grammatical productions. A set of paragraphs
describing in narrative form the information and rules related to the construct or concept then follows. Finally,
each subclause may end with examples, figures, and notes.

1.3 Syntactic description

The form of a VITAL-compliant VHDL description is described by means of a context-free syntax, using a simple
variant of the Backus-Naur form; in particular:

a) Lowercased words, some containing embedded underlines, are used to denote syntactic categories, for
example:

VITAL-process-statement

Whenever the name of a syntactic category is used, apart from the syntax rules themselves, spaces take
the place of underlines (thus, “VITAL process statement” would appear in the narrative description when
refemng to the above syntactic category).

Clause 1 1

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

I

5

10

15

20

25

30

35

40

45

Boldface words are used to denote reserved words, for example:

process

Reserved words shall be used only in those places indicated by the syntax.

Aproduction consists of a left-hand side, the symbol “::=” (which is read as “can be replaced by”), and
a right-hand side. The left-hand side of a production is always a syntactic category; the right-hand side
is a replacement rule.

The meaning of a production is a textual-replacement rule: any occurrence of the left-hand side may be
replaced by an instance of the right-hand side.

A vertical bar separates alternative items on the right-hand side of a production unless it occurs
immediately after an opening brace, in which case it stands for itself.

Square brackets enclose optional items on the right-hand side of a production

Braces enclose a repeated item or items on the right-hand side of a production. The items may appear
zero or more times; the repetitions occur f ~ o m left LO right as with an equivalent left-recursive rule.

If the name of any syntactic category starts with an italicized part, it is equivalent to the category name
without the italicized part. The italicized part is intended to convey some semantic information. For
example, unrestricted-variable-name is syntactically equivalent to aame alone.

The term simple-name is used for any occurrence of an identifier that already denotes some declared
entity.

A syntactic category for which no replacement rule is specified is assumed to correspond to the VHDL
syntactic category of the same name. In this case thc appropriate replacement rule can be found in IEEE
Std 1076-1987.’

A syntactic category beginning
syntactic category.

the unitaljcized prefix ‘‘VITAL_” represents a subset of a VHDL

A word shown in all uppercase letters can represent a reserved word in VHDL.

SDF constructs are represented in the following manner:

1) An italicized lowercase identifier represents an SDF syntax construct.

2) The definition of a syntax construct is indicated by the symbol ::=, and alternative definitions are
separated by the symbol ll=.

3) Keywords appear in boldface capital letters.

4) Uppercase identifiers represent variable symbols.
50

5) The form “item?’ represents an optional item.

‘Information about references can be found in clause 2.

2 Clause 1

I

5

IO

15

20

25

30

35

40

45

50

MODELING SPECIFICATION

6) The form “item”” represents zero or more occurrences of the item.

7) The form “item+” indicates one or more occurrences of the item.

IEEE
Std 1076.4-1 995

1.4 Semantic description

The meaning of a particular construct or concept and any related restrictions are described with a set of narrative
rules immediately following any syntactic productions in the subclause. In these rules, an italicized term indicates
the definition of that term, and an identifier appearing in Helvetica font refeis to a definition in one of the VHDL
or VITAL standard packages or in a VHDL model description. An identifier beginning with the prefix “VITAL”
corresponds to a definition in a VITAL standard package.

Use of the words “is” or “shall” in such a narrative indicates mandatory weight. A noncompliant practice may be
described as erroneous or as an error. These terms are used in these semantic descriptions with the following
meaning:

erroneous-the condition described represents a noncompliant modeling practice; however, implementations
are not required to detect and report this condition. Conditions are deemed erroneous only when it is either
very difficult or impossible in general to detect thc condition during the processing of a model.

error-the condition described represents a noncompliant modeling practice; implementations are required
to detect the condition and report an error to the user of the tool.

1.5 Front matter, examples, figures, notes, and annexes

Prior to this clause are several pieces of introductory material; following the final clause are some annexes and an
index. The front matter, annexes, and index serve to orient and otherwise aid the user of this standard but are not
part of the definition of this standard.

Some subclauses of this standard contain examples, figures, and notes; with the exception of figures, these parts
always appear at the end of a subclause. Examples are meant to illustrate the possible forms of the construct
described. Figures are meant to illustrate the relationship between various constructs or concepts. Notes are meant
to emphasize consequences of the rules described in the clause or elsewhere. In order to distinguish notes from
the other narrative portions of the definition, notes are set as enumerated paragraphs in a font smaller than the rest
of the text. Examples, figures, and notes are not part of the definition of the specification.

Clause 1 3

IEEE
Std 1076.4-1 995

I

IEEE STANDARD FOR VITAL ASIC

5

2. References

10 This standard shall be used in conjunction with the following publications. Bibliographic references may be found
in annex C. Citations of the form ‘‘@ 11” refer to items listed in annex C , not to items listed in this clause.

IEEE Std 1076-1987, IEEE Standard VHDL Language Reference Manual.

20

15 IEEE Std 1164-1993, IEEE Standard Multivalue Logic System for VHDL Model Interoperability
(Std-logic-1 1 64).3

Standard Delay Format Specification, Version 2.14

25

30

35

40

45

21EEE Std 1076-1987 has been superceded by JEEE Std 1076-1993 (see Annex C for bibliographic information on the latest
version of this standard). IEEE Std 1076-1987 is no longer in print; however, it is available archivally from Global Engineer-
ing, 15 Inverness Way East, Englewood, CO 80112-5704, USA.
31EEE publications are available from the Institute of of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331,
Piscataway, NJ 08855-133 1 , USA.
40VI publications are available from Open Verilog International (OVI), 15466 Los Gatos Blvd, Suite 109-071, Los Gatos, CA
95032.

50

4 Clause 2

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

1

5

10

15

20

25

30

35

40

45

50

3. Basic elements of the VITAL ASIC modeling specification

This standard defines a modeling style for the purpose of facilitating the development and acceleration of sign-off
quality ASIC macrocell simulation libraries written in VHDL.

This standard is an application of the VHSIC Hardware Description Language (VHDL), described in IEEE Std
1076-1987 and IEEE Std 1076-1993 [Bl]. This standard uses the term VHDL to refer to the VHSIC Hardware
Description Language. In no case shall the modeling rules introduced by this standard be in conflict with IEEE
Std 1076-1987.

This standard relies on the IEEE Standard Multivalui: Logic System for VHDL Model Interoperability
(Std-Logic-1164), described in IEEE Std 1164-1993, for its basic logic representation. Throughout this standard,
the term standard logic refers to the Std-Logic-1164 package or to an item declared in the Std-Logic-1164
package.

This standard relies on the Standard Delay Format (SDF), as defined by the OW Standard Delay Format
Specification Version 2.1, as a standard external timing data representation. Throughout this standard, the term
SDF refers to this particular version of the delay format.

This standard consists of three basic elements: the formal definition of a VITAL-compliant VHDL model, a set
of VHDL packages for providing standard timing support and standard functionality support, and a semantic
specification describing a standard mechanism for insertion of timing data into a VHDL model.

3.1 VITAL modeling levels and compliance

A VITAL ASIC cell is represented by a VHDL design entity. This standard defines the characteristics of a VITAL
design entity in terms of the VHDL descriptions of the entity and architecture, and in terms of the associated model
which is the result of the elaboration of those VHDL descriptions.

This standard defines two modeling levels; these levels are called VZTAL Level 0 and VZTAL Level I. Each
modeling level is defined by a set of modeling rules. The VITAL Level 0 specification forms a proper subset of
the VITAL Level 1 specification.

A model is said to adhere to the rules in a particular specification only if both the model and its VHDL description
satisfy all of the requirements of the specification. Furthermore, if such a model makes use of an item described
in a configuration declaration or a package other than a VHDL or VITAL standard package, then the external item
shall satisfy the requirements of the specification, as though the item appeared in the VHDL description of the
design entity itself.

The VITAL Level 0 specification defines a set of standard modeling rules that facilitate the portability and
interoperability of ASIC models, including the specification of timing information. A model that adheres to the
rules in the VITAL Level 0 specification is said to be a VZTAL Level 0 model. The VITAL Level 0 modeling
specification is described in clause 4.

The VITAL Level 1 specification defines a usage model for constructing complete cell models in a manner that

Clause 3 5

-

1

5

10

15

20

25

30

35

40

45

50

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

facilitates optimization of the execution of the models. A model that adheres to the rules in both the VITAL Level
0 model interface specification and the VITAL Level 1 model architecture specification is said to be a VITAL
Level I model. The VITAL Level 1 modeling rules are defined in clause 6.

A model that is a VITAL Level 0 model or a VITAL Level 1 model is said to be VITAL compliant. A VITAL-
compliant model description contains an attribute specification representing the highest level of compliance
intended by the enclosing entity or architecture. Descriptions of these attribute specifications may be found in 4.1
and 6.1.

NOTES

1-A VITAL Level 1 model is by definition a VITAL Level 0 model as well (but not vice versa).

2-The rules outlined in the VITAL Level 0 and VITAL Level 1 specifications apply to model descriptions, not to the VITAL
standard packages themselves.

3-A VITAL-compliant tool is assumed to enforce the definition of all applicable rules in accordance with the definitions of
the terms IS, SHALL, ERROR, and ERRONEOUS. In addition, a compliant tool is expected to accept and execute correctly
a VITAL-compliant model, and to identify and reject models that are not compliant. A VITAL-compliant tool is also expected
to support fully the processes described in the specification, including SDF backannotation and negative time sequential
constraint transformation.

3.2 VITAL standard packages

This standard defines two standard packages for use in specifying the timing and functionality of a model:
VITAL-Timing and VITAL-Primitives. The text of these packages may be found in clause 10.

The VITAL-Timing package defines data types and subprograms to support development of macrocell timing
models. Included in this package are routines for delay selection, output scheduling, and timing violation checking
and reporting.

The VITAL-Primitives package defines a set of commonly used combinatorial primitives and general-purpose
truth and state tables. The primitives are provided in both function and concurrent procedure form to support both
behavioral and structural modeling styles.

3.3 VITAL specification for timing data insertion

This standard defines certain semantics that are assumed by a VITAL-compliant model and shall be implemented
by a tool processing or simulating VITAL-compliant models that rely on these semantics. These semantics
concern the specification and processing of timing data in a VHDL model. They cover SDF mapping,
backannotation, and negative constraint processing.

The timing data for a VITAL-compliant model may be specified in Standard Delay Format (SDF). The VITAL
SDF map is a mapping specification that defines the translation between SDF constructs and the corresponding
generics in VITAL-compliant models. The mapping specification may be used by tools to insert timing
information into a VHDL model, either by generating an appropriate configuration declaration or by performing
backannotation through direct SDF import. The VITAL SDF map is defined in 5.2.

This standard introduces two new simulation phases for designs using VITAL models: the backannotation phase
and the negative constraint calculation phase. These phases occur after VHDL elaboration but before
initialization.

The backannotation specification defines a backannotation phase of simulation and a mechanism for directly

6 Clause 3

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

1 annotating generics with appropriate timing values from SDF (see 5.1.1). The specification also defines the correct
state of the timing generics of a model at the end of the backannotation phase.

The negative constraint calculation specification describes a methodology for modeling negative timing
constraints in VHDL (see 8.2). It defines a negative constraint calculation phase of simulation and an algorithm
for computing and adjusting signal delays, which together transform the negative delays into nonnegatives for the
purpose of simulation.

5

10

15

20

25

30

35

40

45

50

Clause 3 7

IEEE
Std 1076.4-1 995

I

IEEE STANDARD FOR VITAL ASIC

5

4. The VITAL Level 0 specification

10 The VITAL Level 0 specification is a set of modeling rules that promotes the portability and interoperability of
model descriptions by outlining general standards for VHDL language usage, restricting the form and semantic
content of VITAL. Level 0 design entity descriptions, and standardizing the specification and processing of timing
information. General VITAL Level 0 modeling d e s are defined in this clause, and those relating to the modeling
of negative timing constraints are defined in 8.2.1.

15

4.1 The VITAL-Level0 attribute

A VITAL Level 0 entity or architecture is identified by its decoration with the VITAL-Level0 attribute, which
indicates an intention to adhere to the VITAL Level 0 specification. 20

A VITAL Level 0 entity or : i r L * l i i i c ' i l i i r ~ : 4i:1Il i'oiitain a specification of the VIT4L-LevelO attribute corresponding
to the declaration of that attribute in &e package VITAL-Timing. The enti@ specification of the decorating
attribute specification shall be such that the enclosing entity or architecture inherits the VITAL-Level0 attribute.
The expression in the VITAL-Level0 attribute specification shall be the Boolean literal True.

25

NOTE-Because the required attribute specification representing VITAL compliance indicates the highest level of
compliance (see 3.1), a VITAL Level 1 architecture, which is also by definition a VITAL Level 0 architecture, contains a
VITAL-Level1 attribute specification (see 6.1) rather than a VITA Vel0 attribute specification. The above rules apply
to architectures that are only VITAL Level 0.

Example:

30

35 attribute VITAL-Level0 of VitalCompliantEntity : entity is True;

4.2 General usage rules

40 A VITAL Level 0 model shall adhere to general usage d e s that address portability and interoperability.

Rules that reference an item declared in a VHDL standard package, a VITAL standard package, or the
Std-Logic-1164 package require the use of that particular item. A model description shall not use VHDL scope
or visibility rules to declare or use an alternative item with the same name in the place of the item declared in one

45 of these packages.

4.2.1 Standard VHDL usage

A VITAL Level 0 model is restricted to the use of IEEE Std 1076-1987 features that are portable, as defined by
IEEE Std 1076ANT-1991 [B2]. Use of foreign architecture bodies or package bodies is prohibited. In addition, a
VITAL-compliant model shall not use any features of IEEE 1076-1987 that have been removed or modified in the
language revision described in IEEE Std 1076-1993 p l] , nor shall it use any keywords or features introduced in

50

IEEE Std 1076-1993 [BI].

8 Clause 4

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

1 It is erroneous for a VITAL model to make use of vendor-supplied attributes or other informative VHDL
constructs, such as meta-comments or directives, in a manner that affects the function or timing characteristics of
the model.

4.2.2 Organization of VITAL-compliant descriptions

The VHDL design entity representing a VITAL ASIC cell is described by a pair of design units that reside in one
or more VHDL design files. This standard imposes no special requirements on the placement of VITAGcompliant
descriptions within design files, which may contain a mixture of compliant and noncompliant descriptions.

5

10

15

VITAL-design-file : :=
VITAL-design-unit { VITAL-design-unit }

VITAL-design-unit : :=
context-clause library-unit

I context-clause VITAL-library-unit

VITAL-library-unit : := s- hl

VITAL-Level-0-entity-declaration
I VITAL-Level-0-architecture-body

20 I VITAL-Lmel- 1-architecture-body

4.3 The VITAL Level 0 entity interface

25 A VITAL Level 0 entity declaration defines an interface between a VITAL-compliant model and its environment.

VITAL-Level-0-entity-declaration : :=

VITAL-entity-header
entity identifier is

30 VITAL-entity-declarative-part
end [entity-simple-name 3 ;

VITAL-entity-header ::=
[VITAL-entity-generic-clause]

35 [VITAL-entity-port-clause]

VITAL-entityseneric-clause : :=
generic (VITAL-entity-interface-list) ;

40 VITAL-entity-port-clause : :=
port (VITAL-entity-interface-list) ;

VITAL-entity-interface-list : :=
VITAL-entityjnterface-declaration { ; VITAL-entity-interface-declaration }

45

VITAL-entity -interface-declaration : : =
interface-constant-declaration

I VITAL-timingseneric-declaration
I VITAL-control-generic-declaration
I VITAL-entity-port-declaration 50

VITAL-entity-declarative-part : := VITAL-LevelO-attribute-specification

Clause 4 9

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

1

5

IO

I5

20

25

30

35

40

45

50

The form of this interface strictly limits the use of declarations and statements. The only form of declaration
allowed in the entity declarative part is the specification of the VITAL-Level0 attribute. No statements are
allowed in the entity statement part.

4.3.1 Ports

Certain restrictions apply to the declaration of ports in a VITLcompliant entity interface.

VITAL-entity-port-declaration : :=
[signal] identifier-list : [mode] type-mark [index-constraint] [:= static-expression] ;

The identifiers in an entity port declaration shall not contain underscore characters.

A port that is declared in an entity port declaration shall not be of mode LINKAGE.

The type mark in an entity port declaration shall denote a type or subtype that is declared in package
Std-Logic-I 164. The type mark in the declaration of a scalar port shall denote the subtype Std-Ulogic or a
subtype of Std-Ulogic. The type mark in the declaration of an array port shall denote the type
Std-Logic-Vector.

NOTE-The syntactic restrictions on the dh:; a VITAL Level 0 entity are such that the port cannot be a
guarded signal. Furthermore, the declaration C.!iiII\it i::;po\: .: nnge constraint on the port, nor can it alter the resolution of the
port from that defined in the standard logic packapc.

4.3.2 Generics

The generics declared in a V I T L Levc ntity geiicric clause may be timing generics. control generics, or other
generic objects. Timing generics and control generics serve a special purpose in a VITAL-compliant model;
specific rules govern their declaration and use. Other generics may be defined to control functionality; such
generics are not subject to the rcstrictions impored 011 timing or control generics.

4.3.2.1 Timing generics

This standard defines a number of timing generics, which represent specific kinds of timing information. Each
kind of timing generic is classified as either a backunnotutioiz riming generic or a negative constraint timing
generic, depending on whether the value of the generic is set during the backannotation phase of simulation or the
negative constraint calculation phase of simulation. Rules govcrning the declaration of these generics insure that
a mapping can be established between the timing generics of a modcl and the corresponding SDF timing
information or negative constraint delays.

VITA.L,-timing_generic-declaration : : =
[constant] identifier-list ::= [in] type-mark [index-constraint] [:= static-expression] ;

A timing generic is characterized by its name and its type. The naming conventions (see 4.3.2.1.1) communicate
the kind of timing information specified, as well as the port(s) or delay path(s) to which the timing information
applies. The type of a timing generic (see 4.3.2.1.2) indicates which of a variety of forms the associated timing
value takes.

A VITAL-compliant description may declare any number of timing generics. There are no required timing
generics.

Examples:

tperiod-Clk : VlTALDelayType := 5 ns;

10 Clause 4

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

I

5

IO

15

20

25

30

35

40

45

50

tpd-Clk-Q : ViTALDelayTypeOl := (trOl => 2 ns, t r l0 => 3 ns);
tipd-D : ViTALDelayTypeOlZ := (1 ns, 2 ns, 3 ns, 4 ns, 5 ns, 6 ns)

NOTE-The value of a backannotation timing generic is set during the backannotation phase; however, if negative timing
constraints are in effect, its value may be adjusted during the subsequent negative constraint calculation phase.

4.3.2.1.1 Timing generic names

The name of a timing generic shall adhere to the naming conventions for timing generics. If the name of a generic
does not adhere to these conventions, then the generic is not a timing generic.

The form of a timing generic name and its lexical constituents are described by lexical replacement rules similar
to the replacement rules for syntactic constructs. White space is included in these rules to enhance readability;
however, white space is not permitted within an identifier. Different elements used to construct names are
distinguished by enclosing angle brackets, which are not themselves part of the name. If a lexical element enclosed
by angle brackets does not have a replacement rule, then it corresponds to a VHDL identifier described by the text
inside the angle brackets. Boldface indicates literal text. Underscores serve as connectors between constituent
elements; they are also literal text.

<VITALTimingGenericName> : :=
<VITALBac kannotationGenericName>

I <VITALNegativeConstraintGenericName>

<VITALBackannotationGenericName> : :=

I <VITALInputSetupTimeName>
I <VITALInputHoldTimeName>
I <VITALInputRecoveryTimeName>
I <VITALInputRemovalTimeName>
I <VITALInputPeriodName>
I <VITALPulseWidthName>
I <VITALInputSkewTimeName>
I <VITALNoChangeHoldTimeName>
I <VITALNoChangeSetupTimeName>
I <VITALInterconnectPathDelayName>
I <VITALDeviceDelayName>

<VITALPropagationDelayName>

<VITALNegativeConstraintGenericName> : :=
<VITALInternalClockDelayName>

I <VITALInternalSignalDelayName>
I <VITALBiasedFYopagationDelayName>

The name of a timing generic is constructed from a timing generic prefix and a number of other elements
representing device labels, ports or signals, edges, and conditions. These various elements are combined in a fixed
manner, creating three distinct sections of the name: the timing generic prefix, the timing generic port
specification, and the timing generic suffix.

A timing generic pre& is a lexical element that serves as the beginning of the VHDL simple name of a timing
generic. It identifies the kind of timing information that the generic represents, which in turn determines whether
the generic is a backannotation timing generic or a negative constraint timing generic. The timing generic prefix
consists of the sequence of characters preceding the first underscore in the generic name. It is an error for a model
to use a timing generic prefix to begin the simple name of an entity generic that is not a timing generic.

Clause 4 11

I

5

10

15

20

25

30

35

40

45

50

IEEE
Std 1076.4-1995 IEEE STANDARD FOR VITAL ASIC

This standard defines the following set of timing generic prefixes:

tPd tsetup thold trecovery tremoval
tperiod tPW tskew tncsetup tnchold
tipd tdevice tiCd tisd tbpd

The timing generic port speciJication identifies the port(s) with which the timing data is associated. It may contain
both port and instance names. A port that is referenced in a timing generic port specification is said to be
associated with that timing generic.

The discussion of timing generic names associates timing generics with entity ports; however, a model may use a
signal or some other item in place of an entity port. If the port name extracted from a timing generic port
specification does not denote a port on the entity, then no assumptions are made about the item denoted by the
port name, and no consistency checks are performed between the timing generic and the named item.

Backannotation and negative constraint calculation require the determination of the name(s) of the port(s)
associated with a particular timing generic. A port name is extracted from the port specification portion of a timing
generic name by taking the lexical element corresponding to that port (a sequence of characters that constitute a
VHDL identifier, delimited by underscores), as defined by the naming conventions for that sort of a timing
generic.

The name of a timing generic may contain a timing generic s u f f i that corresponds to a combination of SDF
constructs representing conditions and edges. The fonns of these SDF-related suffixes are described by the
following rules:

i-

<SDFSimpl eConditionAndOrEclge> : : =
<ConditionName>

I <Edge>
I <ConditionName>-&dge>

<SDF'FullConditionAndOrEdge> : :=
<ConditionNameEXge> [-<SDFSimpleConditio Edge>]

<ConditionName> ::=
simple-name

<Edge> ::=
posedge

I negedge
I O 1
I10
I oz
I zl
I lz
I zo

<ConditionNameEdge> ::=
[<ConditionName>-] cEdge>

I [<ConditionName>-] noedge

A condition name is a lexical element that identifies a condition associated with the timing information. The
condition name may be mapped to a corresponding condition expression in an SDF file according to the mapping
rules described in 5.2.7.3.2.

12 Clause 4

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

I

5

IO

15

20

25

30

35

40

45

50

An edge identifies an edge associated with the timing information. The edge may be mapped to an edge name
specified in an SDF file using the mapping rules described in 5.2.7.3.1.

NOTE-It is assumed that the names in timing generic port specifications will generally denote entity ports; however, a model
may instead name other items that may or may not be visible from the enclosing entity declaration (internal signals, for
instance). If a port name in a timing generic port specification does not denote a port on the entity, then there are no
requirements for consistency between the timing generic and the named item (in fact, the named item does not even have to
exist); hence, no consistency checks are performed. A tool that processes VITAL-compliant models may choose to issue a
warning in this case.

4.3.2.1.2 Timing generic subtypes

The type mark in the declaration of a timing generic shall denote a VITAL, delay type or subtype. These are
discussed in 9.1.

If each port name in the port specification of a timing generic name denotes an entity port, then the type and
constraint of the timing generic shall be consistent with those of the associated port(s). This consistency is defined
as follows:

- If the timing generic is associated with a single port and that port is scalar, then the type of the timing
generic shall be a scalar form of delay type. If the liming generic is associated with two scalar ports,
then the type of the timing generic shall be a scalar form of delay type.

- If a timing generic is declared to be of a vector form of delay type, then it represents delays associated
with one or more vector ports. If such a timing generic is associated with a single port and that port is
vector, then the type of the timing generic shall be a vector form of delay type, and the constraint on the
generic shall match that on the associated port. If the timing generic is associated with two ports, one or
more of which is vector, then the type of the timing generic shall be a vector form of delay type, and the
length of the index range of the generic shall be equal to the product of the number of scalar
subelements in the first port and the number of scalar subelements in the second port.

NOTE-These consistency requirements between timing genetic and port(s) do not apply if the port specification in the timing
generic identifies an item that is not an entity port. In this case the model assumes responsibility for the appropriate type and
constraint for the timing generic.

4.3.2.1.3 Timing generic specifications

Each form of timing generic represents a particular kind of timing information. Additional restrictions on the name
and type or subtype may be imposed on generics representing a particular kind of timing information. A
description of the acceptable forms for a particular kind of timing generic is provided in the subclause describing
that kind of timing generic.

In the following discussion, an inputporf is a VHDL port of mode IN or INOUT. An outputport is a VHDL port
of mode OUT, INOUT, or BUFFER.

4.3.2.1.3.1 Propagation delay

A timing generic beginning with the prefix tpd is a backannotation timing generic representing propagation delay
associated with the specified input-to-output delay path. Its name is of the form

<VITALPropagationDelayName> : :=
tpd-<InputPort>_<OutpuPoro [-<SDFSimpleConditionAndOrEdge> 3

The type of a propagation delay generic shall be a VITAL delay type (see 9.1).

Clause 4 13

1

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

4.3.2.1.3.2 Input setup time

5

10

15

20

25

30

35

40

45

A timing generic beginning with the prefix tsetup is a backannotation timing generic representing the setup time
between an input reference port and an input test port. Its name is of the form

<VITALInputSetupTimeName> : :=
tsetup-<TestPort>_iReferencePort> [_<SD~~~ConditionAndOrEdge>]

The type of an input setup time generic shall be a simple VITAL delay type (see 9.1).

4.3.2.1.3.3 Input hold time

A timing generic beginning with the prefix thold is a backannotation timing generic representing the hold time
between an input reference signal and an input test signal. Its name is of the form

<VITALInputHoldTimeName> : :=
thold-<TestPort>-<ReferencePort> [-<SDFFullConditionAndOrEdge>]

The type of an input hold time generic shall be a simple WAL delay type (see 9.1).

4.3.2.1.3.4 Input recovery time

A timing generic beginning with the prefix trecovery is a backannotation timing gcncric representing the input
recovery time between an input test signal and an input reference signal (similar to a sctup constraint). Its name
is of the form

<VITALInputRecoveryTi I I iC?;iiI i i ~ . > : : =
trecovery-<TestPorb- . i lL> I’c~cIIL~c‘I’I~I-;;.’ ! -<Sl)FFullConditionAndOrEdge>]

The type of an input recovery ti ti12 gciiLbik h l I i: :: simple VITAL delay type (see 9.1).

4.3.2.1.3.5 Input removal time

A timing generic beginning with the prefix tremoval i s a backannotation timing generic representing input
removal time between an input test signal and an input reference signal (similar to a hold constraint). Its name is
of the form

<VITALInputRemovalTimeName> : :=
tremoval_<TestPo*-43eferencePorb [-<SDFFullConditionAndOrEdge>]

The type of an input removal time generic shall be a simple VITAL delay type (see 9.1).

4.3.2.1.3.6 Period

A timing generic beginning with the prefix tperiod is a backannotation timing generic representing the minimum
period time. Its name is of the form

<VITALInputPeriodName> : :=
tperiod-<InputPort> [-<SDFSimpleConditionAndOrEdge>]

50

If present, the edge specifier indicates the edge from which the period is measured.

The type of a period generic shall be a simple VITAL delay type (see 9.1).

14 Clause 4

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

1

5

10

15

20

25

30

35

40

45

50

4.3.2.1.3.7 Pulse width

A timing generic beginning with the prefix tpw is a backannotation timing generic representing the minimum
pulse width. Its name is of the form

cVITALPulseWidthName> ::=
tpw-cInputPorb [-<SDFSimpleConditionAndOrEdge> 3

The edge specifier, if present, indicates the edge from which the pulse width is measured. A posedge
specification indicates a high pulse, and a negedge specification indicates a low pulse.

The type of a pulse width generic shall be a simple VITAL delay type (see 9.1).

4.3.2.1.3.8 Input skew time

A timing generic beginning with the prefix tskew is a backannotation timing generic representing skew time
between a pair of signals. Its name is of the form

<VITALInputSkewTimeName> ::=
tskew-cFirstPorb-cSecondPorb [-<SbFull&onditionAndOrEdge>]

The type of an input skew generic shall be a simple VITAL delay type (see 9.1).

4.3.2.1.3.9 No-change setup time

A timing generic beginning with the prefix tncsetup is a backannotation timing generic representing the setup
time associated with a no-change timing constraint. Its name is of the form

<VITALNoChangeSetupTimeName> ::=
tncsetup-cTestPorb-cReferencePorb [-cSDFFullConditionAndOrEdge>]

A no-change setup time generic shall appear in conjunction with a corresponding no-change hold time generic.

The type of a no-change setup time generic shall be a simple VITAL delay type (see 9.1).

4.3.2.1.3.10 No-change hold time

A timing generic beginning with the prefix tnchold is a backannotation timing generic representing a hold time
associated with a no-change time constraint. Its name is of the form

$ 8

cVITALNoChangeHoldTimeName> : :=
tnchold-cTestPort>_<ReferencePort> [-cSDFFullCondi tionAndOrEdge>]

A no-change hold time generic shall appear in conjunction with a corresponding no-change setup time generic.

The type of a no-change hold time generic shall be a simple VITAL delay type (see 9.1).

4.3.2.1.3.1 1 Interconnect path delay

A timing generic beginning with the prefix tipd is a backannotation timing generic representing the external wire
delay to a port, or an interconnect delay that is abstracted as a simple wire delay on the port. Its name is of the form

<VITALInterconnectPathDelayName> : :=
tipd-cInputPort>

Clause 4 15

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

1

5

10

15

20

25

30

35

40

45

50

The type of an interconnect path delay generic shall be a VI"& delay type (see 9.1).

4.3.2.1.3.1 2 Device delay

A timing generic beginning with the prefix tdevice is a backannotation generic representing the delay associated
with a device (primitive instance) within the cell model. Its name is of the form

<VITALDeviceDelayName> : :=
tdevice-dnstanceName> [-<Outputport>]

The type of a device delay generic shall be a WTAL delay type (see 9.1).

4.3.2.1.3.1 3 Internal signal delay

A timing generic beginning with the prefur tisd represents the internal delay for a data or control port and is used
to model negative timing constraints (see 8.2). Its name is of the form

<VITALInternalSignalDelayName> ::=
tisd-&putF'ort>-<ClockPorb

The type of an internal signal delay generic shall bc a scalar form of a simple VITAL delay type (see 9.1).

4.3.2.1.3.14 Biased propagation delay

A timing generic beginning with the prefix tbpd represents a propagation delay that is adjusted to accommodate
negative timing constraints (see 8.2j. Its name is of tlic form

<VITALBiasedPropagation Delay Name> :=
tbpd-<InputF'ort>-<Ou tpuPorb-<Clockl'ort> [-<SDFSimpleConditionAnclOrEdge>]

The type of a biased propagation dclay generic shall be a VJTAL delay type (see 9.1).

There shall exist, in the same entity generic clause, a eorresponding propagation delay generic denoting the same
ports, condition name, and edge. Furthermore, the type ofthe biased propagation generic shall be the same as the
type of the corresponding propagation delay generic.

4.3.2.1.3.15 Internal clock delay

A timing generic beginning with the prefix ticd represents the internal delay for a dock and is used to model
negative timing constraints (see 8.2). Its name is of the form

<VITALInternalClockDelayGenericName> : :=
ticd-<ClockF'orb

The type of an internal clock delay generic shall be a scalar form of a simple VITAL delay type (see 9.1).

The name given for the clock port in an internal clock delay generic name is considered to be a clock signal name.
It is an error for a clock signal name to appear as one of the following elements in the name of a timing generic:

- As either the input port or output port in the name of a biased propagation delay generic

- As the input signal name in an internal signal delay timing generic

- As the test port in a timing check or recovery removal timing generic

16 Clause 4

IEEE
Std 1076.4-1 995 MODELING SPECIFICATION

1 4.3.2.2 Control generics

5

This standard defines a number of control generics that provide special support for certain operations.

VITAL-control_generic-declaration : :=
[constant] identifier-list ::= [in] type-mark [index-constraint] [:= static-expression] ;

A control generic is characterized by a name, a type, and an assumed meaning. Definition and use of these generics
is not required; however, if a generic in an entity has a control generic name, then that generic is a control generic,
and its declaration shall conform to the rules in effect for that kind of control generic. It is erroneous for a model
to use a control generic for other than its stated purpose. lo

A generic with the name Instancepath shall be of the predefined type String. It is the string representation of the
full path name of the current instance.

l5 A generic with the name TimingChecksOn shall be of the predefined type Boolean. It may be used to enable
timing checks. The value True indicates that timing checks should be enabled.

The XOn and MsgOn generics are switches thatamay be used as standard mechanisms for control of ‘X’
generation and assertion message generation relating to timing and glitch violations.

A generic with the name XOn shall be of the predefined type Boolean. It may be used to control ‘X’ generation
for timing checks and path delays. The value True indicates that timing or other violations should cause certain
output ports to be assigned the value ‘X’.

20

25 A generic with the name MsgOn shall be of the predefined type Boolean. It may be used to control the generation
of assertion messages for timing constraint violations. The value True indicates that assertion messages should be
issued when violations are encountered; the value False means that assertion messages should not be issued.

30 NOTES

1-The declaration of a control generic by itself has no effect; the generic has to be associated with an appropriate formal
parameter of a VITAL standard package subprogram or named in a timing check condition to have the intended effect. Use of
a control generic is not limited to these contexts.

2-The XOn and MsgOn generics are similar, but not identical, to the EIA 5670000-91 [B3] XGeneration and MGeneration
features. In particular, declaration of an XOn or MsgOn generic does not automatically enable timing checks.

35

40 4.4 The VITAL Level 0 architecture body

A VITAL Level 0 architecture body defines the body of a VITAL Level 0 design entity.

45

50

VITAI-hvel-0-architecture-body : :=
architecture identifier of entity-name is

VITAL-Lmel-0- architecture-declarative-part
begin

architecture-statement-part
end [architecture-simple-n~e] ;

VITAL-Level-0-architecture-declarative-part : :=
VITAL-LvelO-attribute-specification { block-declarative-item }

Clause 4 17

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

I The entity associated with a VITAL Level 0 architecture shall be a VITAL Level 0 entity.

4.4.1 Timing generic usage

It is an error if the value of a timing generic is read inside a VrrAL Level 0 model prior to the initialization phase
5 of simulation.

NOmThere is no requirement that the usage of a timing generic be consistent with the kind of timing information implied
by the generic name.

10

15

20

25

30

35

40

45

50

18 Clause 4

MODELING SPECIFICATION

1

IEEE
Std 1076.4-1 995

5

5. Backannotation

10

15

20

25

30

35

40

45

50

The sole point of entry of timing information into a VITAL-compliant model is through the timing generics. With
the exception of the use of VITAL-Timing routines, all timing calculations are performed outside of the VHDL
model, and external timing information is passed to the model through the backannotation timing generics.
Backannotation is the process of updating the backannotation timing generics with the external timing
information. Signal delays that are used to model negative timing constraints are computed in the negative
constraint calculation stage of simulation; their calculation is not part of the backannotation process.

The rules governing the backannotation of timing values into a VITAL-compliant model and the mapping of SDF
constructs to backannotation timing generics definc the scmantics assumed by models that adhere to the VITAL
Level 0 specification.

5.1 Backannotation methods

There are two methods for annotating model instances with timing data: through the use of an appropriate VHDL
configuration declaration and through the direct import of timing data from one or more SDF files. An appropriate
VHDL configuration declaration can be generated from SDF data or by some other means. If a VITAL-compliant
model derives its timing information from SDF data, then the state of that model at the beginning of simulation
shall be the same, regardless of the annotation path employed.

NOTE-It is assumed that an SDF file will be created (possibly by a tool such as a delay calculator) using information that is
consistent with the library data (e.g., a VHDL model). This implies that, in general, the data in the SDF file will be consistent
with that in a corresponding VITAL-compliant model.

5.1.1 Direct SDF import

Direct SDF import is accomplished by reading delay data from one or more SDF files and using this information
to modify the backannotation timing generics in a VITAL-compliant model directly. The modification of the
backannotation timing generics occurs in the backannotation phase of simulation, which directly follows
elaboration and directly precedes negative constraint delay calculation. Once the values of the backannotation
timing generics have been established and set by the backannotation process, no further modification is permitted
except during the negative constraint calculation stage.

The SDF mapping rules are such that an SDF annotator that performs direct SDF import is responsible for insuring
the semantic correctness of the association of delay values with backannotation timing generics. As a
consequence, a delay value or a set of delay values shall be appropriate for the type class of the corresponding
VHDL timing generic, and all applicable VHDL constraints on the value or set of values shall be satisfied.

5.1.2 The SDF annotator

The term SDF annotator refers to any tool in the class- of tools capable of performing backannotation from SDF
data in a VITAL-compliant manner. This class includes tools that generate appropriate configuration declarations
from SDF data.

An SDF annotator shall annotate the backannotation timing generics. Furthermore, it shall report an error upon

Clause 5 19

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

I

5

10

15

20

25

30

35

40

45

50

encountering any form of noncompliance with a requirement in this standard related to the SDF mapping or
backannotation process. Its behavior after reporting an error is implementation defined.

Certain SDF constructs are not supported by this standard; these constructs are said to be unsupported.
Unsupported constructs do not result in the modification of backannotation timing generics, nor do they have any
other effect on the backannotation process.

If the SDF data fails to provide a value for a backannotation timing generic in a VITAL-compliant model, then
the value of that timing generic shall not be modified during the backannotation process, and the value that was
set during standard VHDL elaboration shall remain in effect.

NOTELA VITAL SDF annotator can also annotate generics other than backannotation timing generics (for example, the
Instancepath generic). A VITAL SDF annotator is neither required to annotate nor prohibited from annotating generics on
models that are not VITAL compliant.

5.2 The VITAL SDF map

The VITAL SDF map specifies the mapping between specific SDF constructs and the corresponding VHDL
timing generics and their values. Some SDF constructs are mapped directly to specific kinds of timing generics or
their timing values, others map to lzxical elements that can be used to construct any timing generic name, and
others identify items in the VHDL design hierarchy (such as instances or ports) to which timing data is applied.

The name of the corresponding VHDL timing generic is deternilled according to the rules of the VITAL, SDF
map. It is an error if there is no translation of a supported SDI; construct to a legal VHDL identifier. It is an error
if the generic name that the SDF annotator cotistructs froin the SDI; file is not present in the VHDL model.

The following discussion uses portions of the BIuT from the Srandard Delay Format Specification to describe SDF
constructs. An italicized lowercasc i&n;ificr represents a SDI? syntax construct. The definition of a syntax
construct is indicated by the symbol ::=. ; n I ;ilicrnative definitions are separatcd by the symbol H=. Keywords
appear in boldface capital letters. Uppercase identifiers represent variable symbols. The form “item?’ represents
an optional item. The form “item*’‘ represcnts zcro or more occurrences of the item. The form “item+” indicates
one or more occurrences of the item.

5.2.1 Delay file

An SDF delay file consists of a header and a sequcnce of one or more cells containing timing data.

delay3le ::= (DELAYFILE sdf-header cell+ 1

The information in each SDF cell of each SDF file is mapped to the corresponding VHDL constructs using general
information, such as the time scale, found in the corresponding SDF header.

5.2.2 Header section

The SDF annotator uses the information in the SDF header to read and interpret the SDF file correctly. In general,
the entries in the header section have no direct effect on the backannotation process itself. Some header entries are
purely informational, and others (those detailed below) provide information needed by the SDF annotator to
interpret the SDF file correctly.

sdf-header ; := sdf-version design-name? date? vendor? program-name?
program-version? hierarchy-divider? voltage? process?
temperature? time-scale?

20

sdf-version ::= (SDFVERSION QSTRING)

Clause 5

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

5

10

15

20

25

30

35

40

45

hierarchy-divider ::= (DIVIDER HCHAR)

time-scale ::= (TIMESCALE TSVALUE)

The sdf-version shall refer to the Standard Delay Format Specification, Version 2.1.

The hierarchy-divider identifies which lexical character (a period or a slash) separates elements of a hierarchical
SDF path name.

The time-scale determines the time units associated with delay values in the file.

5.2.3 CELL entry

The SDF CELL entry associates a set of timing data with one or more instances in a design hierarchy.

cell : := (CELL celltype cell-instance correlation? timing-spec*)

The timing data in the CELL entry is mapped to a V@L inodel as follows:

The cell-instance and celltype constructs are used to locate a path or a set of paths in the VHDL design
hierarchy that correspond to the instance@) to which the data applies.

Each supported timing specification in the sequence of timing-spec constructs is mapped to the
backannotation timing generic(s) of the specified instance(s) in the VHDL design hierarchy, and the
corresponding timing data is transformed into value(s) appropriate for the generic(s).

The CORRELATION entry is not supported by this standard.

5.2.4 INSTANCE and CELLTYPE entries

The SDF cell instance, in conjunction with the SDF cell type,
which the timing data in a CELL entry applies. This set is c
instances (specified by the SDF cell instance) that match the component type (specified by the SDF cell type).

es a set of VHDL component instances to
ted by identifying the VHDL component

The CELLTYPE entry

celltype ::= (CELLTYPE QSTRING)

indicates that the timing data is applicable only to those component instances that correspond to a VHDL
component having the name that is specified by the QSTRING variable. Such instances are said to match the cell
type.

An SDF cell instance is a sequence of one or more INSTANCE entries that name apath or set of paths in the design
hierarchy.

cell-instance ::= instance+
II= (INSTANCE WILDCARD)

instance ::= (INSTANCE PATH?)
50

The first form of cell instance names the path of a particular instance or set of instances. The second form of SDF
cell instance is a wildcard that identifies all component instances, in or below the current level of the design
hierarchy, that match the cell type.

Clause 5 21

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

1

5

10

15

20

25

30

35

40

45

50

A VHDL instance described by one or more SDF instance paths is located by mapping each successive path
element of the PATH variable of each successive INSTANCE entry to a VHDL block, generate, or component
instantiation statement label of the same name at the next level of the design hierarchy, beginning at the level at
which the SDF file is applied. Path elements within an SDF PATH IDENTIFIER are separated by hierarchy
divider characters. It is an error if, at any level, an appropriate VHDL concurrent statement label does not exist
for the corresponding SDF path element. The last path element shall denote a component instance (i.e., it cannot
denote a block or generate statement). The VHDL component associated with the instance shall match the cell
type.

An SDF path element may contain a bit spec of the form [integer] or [integer:integer]. Such a path element
corresponds to one or more expansions of a FOR generate statement. A bit spec containing a single integer
corresponds to a single expansion of the generate statement, and a bit spec containing a pair of integers
corresponds to a set of expansions described by a range. It is an error if the alphanumeric portion of a path element
containing a bit spec does not correspond to the label of a FOR generate statement.

The set of generate statement expansions corresponding to an SDF path element containing a bit spec shall be
determined by mapping the SDF integer or pair of integers to the appropriate VHDL index or range. The VHDL
value corresponding to a bit spec integer is obtainecl 1 y l\i::l?pil:g ilie bit spec integer to the VNDL value whose
position number is that bit spec integer - base_tyge'VAL(;r!ic;~~ .r), where base-type is the base type of the
generate parameter. It is an error if the corresponding VHDL value does not belong to the discrete range specified
in the generate statement. The VHDL range corresponding to a pair of integers is constructed by mapping the left
and right SDF integers to the corresponding VHDL values representing the left and right bounds, respectively,
and then selecting a direction that results in a range that is not a null range.

Example:

The SDF entry

(CELL
(CELLTYPE "DFF")
(INSTANCE a1 .bl .cl)
(DELAY

(ABSOLUTE (IOPATH il 01 (1 0) (20)))

requires the SDF annotator to look for the concurrent statement with label a i at the current level and b l
and cl at the successive levels below a i . Level C l shall be the label of a component instantiation statement,
and backannotation is performed on the timing generics of CI.

5.2.5 Timing specifications

An SDF timing specification contains delay or timing constraint data that is mapped directly to one or more
backannotation timing generics.

timing-spec ::= del-spec
II= tc-spec

An SDF timing specification consists of a data value (or a set of data values) and a number of constructs describing
the nature of the data value(s). The constituents of the timing specification are mapped to different, but related,
VHDL items. The data value or set of data values is mapped to an appropriate VHDL delay value. The remainder
of the timing specification is mapped to a specific timing generic name or pair of names.

22 Clause 5

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

I

5

10

15

20

25

30

35

5.2.6 Data value mapping

The timing information in an SDF timing specification is specified in terms of value, walue, and rvalue-list
constructs. A value or walue can consist of one, two, or three data values corresponding to the minimum, typical,
and maximum value. However, for annotation to VITAL designs, only one of these values is used. An SDF
annotator shall provide a mechanism for selecting one value from the triple of values.

The type of the timing generic determines the type of the VHDL delay value to which the corresponding SDF
timing information is mapped. It is an error if a backannotation timing generic holds fewer delay values than the
number specified in the corresponding SDF entry. If a backannotation timing generic is of a transition-dependent
delay type that contains more values than are specified by the corresponding SDF entry, then the SDF annotator
supplies the remaining delays in the transition-dependent delay value according to a predefined mapping.

A simple SDF value or walue is mapped to an equivalent VHDL value of type Time.

An rvalue-list can contain one, two, three, six, or twelve walues after SDF extension (in which lists of an
intermediate length are interpreted as though they had trailing empty parentheses). If the timing generic is of a
scalar form of simple delay type, then the corresponding wulue-list shall contain a single walue, and the resulting
VHDL delay value is a single value of type Time. Otherwise, the timing generic shall be of a scalar form of
transition-dependent delay type, and the VHDL delay value is constructed by filling each element of the m a y with
the appropriate SDF value, according to the mapping described in 5.2.7. In table 1, each row represents a form of
SDF rvalue-list, and each column represents the corresponding delay value for a particular transition.

Table I-Mapping of SDF delay values to VITAL transition-dependent delay values

I I VITAL transition-dependent delay value 1

v8v9v1Ovllv12

NOTE-An SDF annotor follows the SDF annotation rules regarding null delay values and extension of lists of rvalues.

5.2.7 Mapping to timing generics
40

The form of the VHDL timing generic name corresponding to an SDF timing specification is determined by the
nature of the timing information and by other items, such as ports, that the timing specification references.

The fact that SDF is case sensitive and VHDL is not case sensitive may cause SDF names that differ only in case
to map to the same VHDL generic name. Such cases are treated as multiple SDF entries for the same generic.

45

5.2.7.1 DELAY entry

Different kinds of SDF DELAY entries are mapped to different kinds of backannotation timing generics.
50

del-spec : := (DELAY deltype+)

Clause 5 23

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

I0

15

20

25

30

35

40

45

50

The delay types PATHPULSE and GLOBALPATHPULSE are not supported by this standard, nor is the
NETDELAY delay definition.

5.2.7.1.1 ABSOLUTE and INCREMENT delay

SDF delay data is designated as incremental or absolute through the form of the delay type construct, deltype. The
delay type determines how the timing data is applied to the corresponding timing genenc(s).

deltype ::= (ABSOLUTE del-def4-
I t = (INCREMENT del-def+)

During backannotation, delay values are applied sequentially, in the order that they appear in the SDF file. An
absolute delay replaces an existing generic value. An incremental delay value is added to the existing value of the
generic.

NOTGIf more than one SDF delay or liming constraint entry maps to the. same generic name, the SDF annotator updates
their values using their existing values when appropriate. For zxnrnnk, if the first entry results in updating the value of a certain
generic, and a subsequent SDF entry with INCREMENT , i c k ~ s : - , i i p to the same generic name, then the new value of the
generic is determined by incremeriling the prcviously updatcd generic value.

5.2.7.1.2 IOPATH delay

The SDF path delay entry can take a simple form or a conditional forin.

del-def ::= (IOPATH port-sprc poriyath rvulue-list ,J
II= (COND conditional jmrt-expr f IOPATH IJO c p k p a t h walue-list))

Each maps to a propagation delay generic (see 1.3.2.1.3.1) of the form

tpd-~nputport>_<OutputPort> [-<SDFSi~~iplzConnditionAndOrEdge>]

The <Inputport> corresponds to the port name specified in the port_spec, and the <OutputPort> corresponds to
the port specifed in the port jath. The <SDFSimpleConditionAndOrEdge> is derived from the
conditionalgort-expr, if present, and the port-edge of the port-spec, if present.

Example:

The SDF entry

(IOPATH Input Output (IO) (20))

maps to the generic

tpd-Input-Output

5.2.7.1.3 PORT delay

The SDF port entry

del-def ::= (PORTpor t ja th rvalue-list)

maps to an interconnect path delay generic (see 4.3.2.1.3.1 1) of the form

24 Clause 5

I

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

tipd-<InputPorD

5

10

The <Inputport> corresponds to the port specified in the por t ja th .

Example:

The SDF entry

(PORT Input (IO) (20))

maps to the generic

tipd-Input

5.2.7.1.4 INTERCONNECT delay
15

The SDF interconnect delay entry

del-def ::= (INTERCONNECT poitinstance port-instance rvalue-list)

20

25

30

35

40

45

50

port-instance : := por t ja th
: := instance por t ja th

maps to an interconnect path delay generic (see 4.3.2.1.3.1 1) of the form

tipd-dnputporb

The dnputPorb corresponds to the p
do not contribute to the corresponding VHDL timing generic name.

If more than one SDF entry maps to the same interconnect path delay generic, then it is assumed that more than
one port drives the specified input port. For such cases, the annotator shall provide an option to select
between the last, the maximum, and the minimum delay vdues.

Example:

ified in the secondport-instance. The instance constructs in this case

The SDF entry

(INTERCONNECT Output Input (IO) (20))

maps to the generic

tipd-Input

5.2.7.1.5 DEVICE delay

The SDF device entry can represent the delay on the output of a modeling primitive (used inside an ASIC cell) or
the delay on the output of an entire ASIC cell. This standard supports only those device entries that specify the
delays across primitives used inside a VITAL model. See clause 7 for a description of the available primitives.

del-def ::= (DEVICE port-instance? rvalue-list)

port-instance : := por t ja th
: := instance por t ja th

Clause 5 25

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

I

The device entry maps to a device delay generic (see 4.3.2.1.3.12) of the form

tdevice-<InstanceName> [-<Outputport>]

5 The <InstanceName> is derived from the name of the SDF instance to which the DEVICE entry applies (it is not
derived from the port-instance construct). If the SDF instance has a hierarchical name, the lowest level instance
name is the <InstanceName>. The optional <Outpufforb is present if port-instance is specified.

NOTE-It is expected that the specified <InstanceNarne> wilI be the label for a VITAL. primitive concurrent procedure call.

Examp le:
10

The SDF entry

15 (CELL (CELLTYPE "AN2")
(INSTANCE Top.ll.PI)
(DELAY (ABSOLUTE (DEVICE Z (IO) (263))))

)

20

30

maps to the generic

tdevice-PIZ

5.2.7.2 TIMINGCHECK entry
25

The SDF timing check entry J L \ G t t L , ? :i i

tc-spec ::= (TIMINGCHEC

tc-def ::= tchk-def
II= cns-def

3s

40

tchk-def ::=
II=
II=
I I =
II=
II=
II=
I I =

(SETUP port-tchk port-tchk rvalue)
(HOLD port-tchk purt-tchk rvafue)
(SETUPHOLD port-fchk port-lchk rvalue rvalue)
(RECOWRY porf-tchk pori-tchk walue)
(SKEW port-tchkport-tchk walue)
(WIDTH port-tchk value)
(PEFUOD port-tchk value)
(NOCHANGE port-tchk port-tchk rvalue rvalue)

SDF timing constraint entries for forward annotation-cas-def entries PATHCONSTRAINT, SUM, DUFF, and
SKEWCONSTRAINT-are not supported by this standard.

Each true timing check definition (i.e., each tc-def that is a tchk-deJ is mapped to one or more VHDL
backannotation timing generics. In general, there is a one-to-one correspondence between SDF timing check
definitions and VHDL backannotation timing generics. The SDF SETUPHOLD and NOCHANGE constructs are
exceptions. Each is processed as though it were replaced by the collectively equivalent setup and hold entries.
Hence, the SDF timing check is mapped to two separate VHDL backannotation timing generics-one each for
setup and hold times.

45

50

An SDF timing check definition can contain one or two timing check port specifications (port-tchks), which may

26 Clause 5

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

I be further modified with condition and edge constructs. The corresponding VHDL generic name for an SDF
timing check is constructed from the timing check type and the timing check port specifications in the manner
shown in the following list.

5

10

15

20

a) The appropriate generic timing prefix is selected using the following mapping:

SETUP
HOLD
SETUPHOLD

RECOVERY
SKEW
WIDTH
PERIOD
NOCHANGE

tsetup
thold
tsetup
thold
trecovery
tskew
tPW
tperiod
tncsetup
tnchold

(see 4.3.2.1.3.2)
(see 4.3.2.1.3.3)

(see 4.3.2.1.3.4)
(see 4.3.2.1.3.8)
(see 4.3.2.1.3.7)
(see 4.3.2.1.3.6)
(see 4.3.2.1.3.9)
(see 4.3.2.1.3.10)

b) The appropriate timing generic port specification is added to the generic name as follows: In the order in
which they appear in the SDF entry, the port in each port-tchk is mapped to the corresponding VHDL
timing generic port specification and the result appended lo the timing generic name with a preceding
underscore.

c) If aport-tchk in the timing check definition contains an edge or a condition, then the appropriate timing
generic suffix is constructed according to the rules in 5.2.7.2.1 and appended to the timing generic name
with a preceding underscore.

25

5.2.7.2.1 Condition and edge combinations

A port-tchk construct in an SDF timing check definition can contain a condition (the timing-check-condition) or
an edge (in the form of the EDGEIDENTIFIER in a pori-.spec ilia1 is a port-edge). A timing check definition
can contain one or two port-tchk specifications. The conditions and edges associated with these ports are mapped
to a timing generic suffix that is appended to the timing generic

30

e with a preceding underscore.

port-tchk ::= port-spec
II= (COND timing-check-co~ditio~ port-spec)

35

The conditions and edges in a timing check definition that is associated with a single port (i.e., a PERIOD or
WIDTH entry) map to the <SDFSimpleConditionAndOrEdge> lexical suffix that is derived from the
timing-check-condition, if present, and the EDGE-IDENTIFIER of the port-spec, if present.

40 Each of the remaining timing check definitions is associated with a pair of ports, and the conditions and edges map
to the <SDFFullConditionAndOrEdge> lexical suffix

<ConditionNameEdge> [-<SDFSimpleConditionAndOrEdge>]

45 The <ConditionNameEdge> portion is derived from the first port-tchk construct. If the first port-tchk does not
have an edge, then the <ConditionNameEdge> is of the form

[<ConditionName>-] noedge

50 Otherwise, the <ConditionNameEdge> is derived from the timing-check-condition, if present, and the
EDGE-IDENTIFIER of the port-spec, if present.

The <SDFSimpleConditionAndOrEdge> is derived from the second port-tchk construct, using the

Clause 5 27

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

I timing-check-condition, if present, and the EDGE-IDENTIFIER of the port-spec, if present.

Examples:

The SDF entry
5

(COND RESET == l’bl && CLK == I’bl (IOPATH posedge A Y (IO) (20)))

10

15

maps to the VHDL identifier

The SDF entry

(SETUP (COND Reset == l’bl DATA) (posedge CLK) (5))

maps to the VHDL identifier

tsetup-DATA-CLK-RESET-EQ-1 -noedgegosedge

5.2.7.3 Mapping of SDF constructs to general VtiDL lexical elements

Certain SDF constructs are not themselves &tppcd to a specific kind of timing generic; instead, they are mapped
to lexical elements that may be usd” strucl any bxkannotation timing generic name. These general SDF

20

25 constructs include edges, conditions, rl specifications.

5.2.7.3.1 Edges

The SDF edge construct maps to a VKDL lexical su f f i that is textually cquivalent to the EDGE-IDENTIFIER.
30

EDGE-IDENTIFIER ::= posedgc ~

It= negedge
II= 01
II= 10
I I = oz
Il= 21
II= 12
I I = 20

35

40 This lexical suffix is attached to the VHDL generic identifier with an underscore. The location of the lexical suffix
within the generic identifier is determined by the context of the edge.

5.2.7.3.2 Conditions

45 The SDF conditional construct-identified by the keyword COND-can appear in two different contexts: in a
conditional path delay of the form

(COND conditionaljo-expr (IOPATH port-spec por t ja th walue-list))

50 and as a port-tchk specification in a timing check definition

(COND timing-check-condition port-spec)

28 Clause 5

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

1 In either case, the condition is mapped to a a legal VHDL lexical representation of the conditional expression that
is then used to construct a suffix for a timing generic name.

The VHDL lexical suffix is constructed from the conditional expression (the conditional_port-expr or
timing-check-condition) using the following algorithm:

5

a) Separate each part of the condition with an underscore, removing any white space.

b) Replace each SCALAR-CONSTANT symbol as follows:

IO

15

20

25

30

35

40

45

50

l'bO, l'BO, 'bo, 'BO, 0 by 0

l 'bl, l'B1, 'bl, 'Bl, 1 by 1

c) Replace each operator symbol as follows:

(by OP
1 by CP
I by OB
1 by CB
[by OSB
1 by CSB
1 by CM
? by QM

in expr ? expr : expr statements)
+

bYMI
by

I by DI
% by MOD

!= byNE

!== by NE3
&& by AN
II by OR
< by LT
<= by LE
> by GT
>= by GE
8 2 by ANB
I by ORB
A by XOB

*

by EQ

by EQ3

-- --

--- ---

by XNB
by XNB

A-

-A

>> by RS
<< by LS
! by NT

by NTB -
-& by NA
-I by NO

Clause 5 29

IEEE
Std 1076.4-1995

I d) Replace each range as follows:

5

10

15

[x:y] by xTOy

where x and y represent indices
[XI by x

Example:

The SDF entry

IEEE STANDARD FOR VITAL ASIC

(COND RESET == l ' b l && CLK == l ' b l (IOPATH A Y (IO) (20)))

is mapped to the VHDL generic

tpd-A-Y-RESET-EQ-1 -AN-CLK-EQ-1

5.2.7.3.3 Ports

The SDF port-spec constmct names a port, and possibly an edge, associated with a timing value. An edge, if
present, is processed separately and is not necessarily adjacent to the corresponding port name in the resulting
VHDL identifier. Processing of edges is discussed in the appropriate contexts.

20

25

30

35

port-spec ::= portgath
II= port-edgg

portgath : :=port
II= PATH HCKAR port

port-edge

port ::= scalargort

::= (EDGE-LDENTWRR por t ju th j

II= busgort

scalargort ::= IDENTIFIER
II= IDENTIFIER [D N b T E R 3

busgort ::= IDENTIFIER [DNUMBER : DNUMBER]

40 The form of the SDF port name may impose certain requirements on the subtype of the corresponding VHDL
generic. For backannotation purposes, the hierarchical form of aportgath is equivalent to its simple form, port.

The IDENTIFIER in a port maps to a VHDL name that is textually equivalent to the IDENTIFIER. The result
shall be a legal VHDL identifier.

If the port is of one of the forms
45

IDENTIFIER [DNUMBER]
IDENTIFIER [DNUMBER : DNUMBER]

50

then it is assumed that the corresponding VHDL port is a vector, and the associated timing generic shall be of a
vector form of VITAL delay type. It is an error if a backannotation timing generic is of a vector form of delay type
and none of the corresponding ports in the SDF file have an index or range specification.

30 Clause 5

MODELING SPECIFICATION
IEEE

Std 1076.4-1 905

I

5

10

15

20

25

30

35

40

Each port entry with an index or range specification maps to an element or set of elements in the corresponding
timing generic array value. Each such element is denoted by an index, which is derived from the SDF index or
range specification according to the rules in the following subclauses. It is an error if the array index of the generic
element corresponding to a particular SDF entry is out of range for that generic.

NOTE-An escape character in an SDF IDENTIFIER is an error because it cannot be mapped to a legal VHDL identifier.

5.2.7.3.3.1 Mapping of a single bus port

The scheme outlined in this subclause applies to an SDF entry that has a single port specification that has an index
or range specification. This scheme also applies to an SDF entry that has two port specifications, only one of which
has an index or range specification. For any port having an index specification, let

C

j l , j2
g l , g2

denote the index of the SDF port
denote the left and right indices of the corresponding port in the VHDL model
denote the left and right indices of the corresponding generic in the VHDL model

For the SDF port index c, the SDF annotator computes the corresponding index x in the generic array by using the
following row-dominant scheme:

x = g2 + abs(c - j2) x (81 - g2)/abs(gZ - 82)

If the SDF port has a range specification rather than an index specification, then this computation is performed for
each delay value in the range of the SDF port.

NOTE-For a generic with a descending range constraint of (g1 downto g2), the indexcomputation reduces to

and for a generic with an ascending range constraint of (81 to g2), the index computation rcduces to
x = g2 + abs(c - j2)

x = g2 - abs(c - j2)

5.2.7.3.3.2 Mapping of two bus ports

The scheme outlined in this subclause applies to an SDF entry that has two port specifications, both of which have
an index or range specification. Let

r, c
il , i2
j l , j 2
gl , g2

denote the index of the respective ports in the SDF entry
denote the left and right indices of the VHDL port corresponding to the first SDF port
denote the left and right indices of the VHDL port corresponding to the second SDF port
denote the left and right indices of the corresponding generic in the VHDL model

For the SDF entry having index r and c as the indices for the first and second ports, the SDF annotator computes
the corresponding index x in the generic array by using the following row-dominant scheme:

x = g2 + (abs(c -J2) + abs(r - i2) x (abs(jl -J2) + 1)) x (gl - g%)/abs(gl - g2)
45

If one or more of the SDF ports has a range specification rather than an index specification, then this computation
is performed for each delay value in the range of the SDF ports.

50
NOTE-For a generic with a descending range constraint of (81 downto g2), the index computation reduces to

and for a generic with an ascending range constraint of (81 to gZ), the index computation reduces to
x = g2 + abs(c - j2) + abs(r - i2) x (abs(i1 - j2) + 1)

x = g2 - abs(c - j2) - abs(r - i2) x (abs(i 1 - j2) + 1)

Clause 5 31

IEEE
Std 1076.4-1995 IEEE STANDARD FOR VITAL ASIC

1 Example:

Assuming the following VHDL declarations

5

10

I5

20

25

30

35

40

45

50

generic (tpd-A-Y : VitalDelayArrayTypeOl (0 to 3) := (others => (0 ns, 0 ns)));
port (A : IN std-logic-vector (0 to 1);

Y : OUT std-logic-vector (I to'2));

the SDF entry

(IOPATH A[O] Y[1] (10) (20))

will cause the SDF annotator to annotate the delay value (10,201 onto the generic subelement tpd-A-Y(O),
and the SDF entry

(IOPATH A[O:l] Y[1:4 (10) (20))

will cause the SDF annotator to annotate the delay value (10,20) onto the generic subelements tpd-A-Y(O),
tpd-A-Y(l), tpdA-Y(2), and tpd-A-Y(3).

1

32 Clause 5

MODELING SPECIFICATION

1

IEEE
Std 1076.4-1995

5

10

15

20

25

30

35

40

4.5

50

6. The VITAL Level 1 specification

The VITAL Level 1 specification is a set of modeling rules that constrains the descriptions of cell models in order
to facilitate the optimization of the set-up and execution of the models, leading to higher levels of performance
than could be expected through the acceleration of the basic capabilities provided by the VITAL standard
packages alone.

A VITAL Level 1 model description defines an ASIC cell in terms of functionality, wire delay propagation, timing
constraints, and output delay selection and scheduling.

6.1 The VITAL-Level1 attribute

A VITAL Level 1 architecture is identified by its decoration with the VITAL-Level1 attribute, which indicates
an intention to adhere to the VITAL Level 1 specification.

VITAI-Levell-attribute-specification ::= attribute-specification

A VITAL Level 1 architecture shall contain a specification of the VITAL-Levell attribute corresponding to the
declaration of that attribute in package VITALLTiming. The entity specification of the decorating attribute
specification shall be such that the enclosing architecture inherits the VITAL-Level1 attribute. The expression in
the VITAL-Level1 attribute specification shall be the Boolean literal True.

Example:

attribute VITAL-Level1 of VitalCompliantArchitedure : architecture is True;

6.2 The VITAL Level 1 architecture body

A VITAL Level 1 architecture body defines the body of a VITAL Level 1 design entity.

VITAL-Level-1-architecture-body : :=
architecture identifier of entity-name is

begin

end [architecture-simple-n~e] ;

VITAL-Level-1-architecture-declarative-part

VITAL-Level-1-architecture-statement-part

A VITAL Level 1 architecture shall adhere to the VITAL Level 0 specification, except for the declaration of the
VITAL-Level0 attribute.

The entity associated with a VITAL Level 1 architecture shall be a VITAL Level 0 entity. Together, these design
units comprise a VZTL Level 1 design entity.

The only signals that shall be referenced in a VITAL Level 1 design entity are entity ports and internal signals.
References to global signals and signal-valued attributes are not allowed. Each signal declared in a VITAL Level
1 design entity shall have at most one driver.

Clause 6 33

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

1 The use of subprogram calls and operators in a VITAL Level 1 architecture is limited. The only operators or
subprograms that shall be invoked are those declared in package Standard, package Std-Logic-I 164, or the
VITAL standard packages. Formal subelement associations and type conversions are prohibited in the
associations of a subprogram call.

5
6.3 The VITAL Level 1 architecture declarative part

The VITAL Level 1 architecture declarative part contains declarations of items that are available for use within
the VITAL Level 1 architecture.

10
VITAL-Level-1-architecture-declarative-part ::=

VITAL-Level 1-attribute-specification
{ VITAL-Level-1-block-declarative-item }

15

20

VITAL-Level-1-block-declarative-item : :=
constantdeclaration

I alias-declaration
I attribute-declaration
I attribute-specification
I VITAL-internal-signal-declaration

6.3.1 VITAL internal signals

25 A signal that is declared in the declarative part of an architecture is an internalsignal.

VITAL-internal-signal-declxat i on : :=
signal identifier-list : type-mark 1 index-constraint 1 [:= expresqion] ;

30 The type mark in the declaration of an internal signal shall denote the standard logic type Std-Ulogic or
Std-Logic-Vector.

6.4 The VITAL Level 1 architecture sta%men%-pa
35

The statement part of a VITAL Level 1 architecture is a set of me or more concurrent statements that perform
specific VITAL activities.

VITAL-Level-1-architecture-statement-part : :=
VITAL-Level-1-concurrent-statement { VITAL-Level-1-concurrent-statement } 40

VITAL-Level-l- concurrent-statement ::=
VITAL-wire-delay-block-statement

45 I VITAL-negative-constraint-block-statement
I VITAL-process-statement
I VITAL-primitive-concurrent-procedure_call

A VITAL Level 1 architecture shall contain at most one wire delay block statement.

If the entity associated with a VITAL Level 1 architecture declares one or more timing generics repr
internal clock or internal signal delay, then negative constraints are in effect, and the VITAL Level 1 arch
shall contain exactly one negative constraint block to compute the associated signal delays.

50

34 Clause 6

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

I

5

IO

15

20

25

30

35

40

A VITAL Level 1 architecture shall contain at least one VITAL process statement or VITAL primitive concurrent
procedure call.

I

cell I&t ports Cell Output Ports
I VITAL Level 0 Entity

VITAL Level 1 Architecture . Wire Delay Block

Negative Constraint Block _I e ” “

VITAL Process

... I

1! ‘3ensitivitp List : ...
....... ._ ...

Timing Check Section

Functionality Section

Path Delay Section

..

....... . _-.
-.

. . i
I --

Figure 1-Structure of a VITAL Level 1 model

45
6.4.1 Wire delay block statement

Interconnect delay between ASIC cells is modeled as an approximation of wire delays at input ports. Wire delays
external to a model are propagated inside the model through a VITAL wire delay block.

50
VITAL-wire-delay-block-statement : :=

block-label :
block

Clause 6 35

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

1

5

10

15

begin

end block [block-label] ;
VITAL-wire-delay-block-statement-part

VITAL-wire-delay-block-statement-part : :=
{ VITAL-wire-delay-concurrent-procedure-call
I VITAL-wire-delayxenerate-statement }

VITAL-wire-delay-generate-statement ::=
generatelabel :
for VITAL_wire-delay_generate-parameter-spification generate

end generate [generate-label] ;
{ VITAL-wire-..delay-concurrent-procedure_cal]

VITAL-wire-delay_generate-parameter_specification : :=
identifier in range-attribute-name

VITAL-wire-delay-concurrent-procedure-call : := concurrent-procedure-call

20
The label of a VITAL wire delay block shall be tlie name WireDelay.

A wire delay is modeled by a concurrent procedure call, which invokes one of the VitalWireDelay procedures
that are declared in the packagc VITAL Timing. A VitalWireDelay proqedure delays an input signal by a
specified delay value using a ir;iti\port ilelay. A wire delay block is the oMy context in which a call to a
Vi talW i re Del ay procedure is allowed.

A port that is associated with a wire dcl;i> ioiict
wire delay block shall contain at inosi o ! ~ v. ii.2 t l

25

1 y-oc.edurc call is said to have an associated wire delay. A
de IN or INOUT declared in the VITAL

30 Level 1 design entity.

Associated with each external wire delay is an intern g the delayed port; this internal signal is
called the wire delayed signal. The subtype of the wire delayed signal shall be the same as that of the
corresponding port.

The value of a port with an associated wire delay shall be read only in those contexts that are directly related to
the modeling of the wire delay itself; that is, the value OS the port shall be read only in the context of the actual
parameter part of the wire delay concurrent procedure call. The value of the corresponding wire delayed signal is
read elsewhere in the model.

A wire delay is applied at the scalar level. Wire delay for a scalar port is modeled with a simple concurrent
procedure call.

35

40

Wire delay for an array port is modeled with a generate statement of a specific form. The generate statement shall
have a generate parameter specification in which the discrete range is a predefined Range attribute, and the prefix
of that attribute shall denote the port with the associated wire delay. The only statement within the generate
statement shall be a wire delay concurrent procedure call for an element of the port named in the generate
parameter specification. The index selecting the element shall be a name denoting the generate parameter.

The actual parameter part of a wire delay concurrent procedure call shall satisfy the following requirements:

45

50

- The actual part associated with the input parameter InSig shall be a name denoting a port of mode IN or
INOUT.

36 Clause 6

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

I

5

I O

15

20

25

30

35

40

45

50

- The actual part associated with the output parameter OutSig shall be a name denoting an internal signal
that satisfies the requirements for a wire delayed signal.

- The actual part associated with the delay value parameter W i r e shall be either a locally static value or
a name denoting an interconnect path delay timing generic. The delay value shall be nonnegative.

NOTELThe restrictions on reading the value of a port with an associated wire delay do not preclude the use of the name of
the port as a prefix to certain predefined attributes. Use of attributes such as the RANGE attribute may be necessary to declare
an appropriate wire delayed signal or to specify an appropriate range in a generate parameter specification.

6.4.2 Negative constraint block statement

A negative constraint block is a special form of a VHDL block statement that is required to model negative timing
constraint values (see 8.2 for details on modeling negative timing constraints).

VITAL-negative-constraint-block-statement : :=
block-label :
block
begin

end block [block-label] ;
{ VZ~AL_negativ~-const~utraint_concurrent_pr~ed~e-call }

The label of a VITAL, negative constraint block shall be the name SignalDelay.

A negative constraint block shall contain exactly one negative constraint concurrent procedure call for each timing
generic representing an internal clock delay or an internal signal delay.

A negative constraint concurrent procedure call invokes the procedure VlTALSignalDelay that is declared in the
package VITAL-Timing. The effect of this call is to delay the associated input port by creating a corresponding
internal signal that is delayed by the appropriate amount. A negative constraint block is the only context in which
a call to VlTALSignalDelay is allowed.

The formal parameters of the VlTALSignalDelay procedure are associated as follows:

The actual part associated with the delay value parameter Dly shall be a timing generic representing an
internal signal delay or an internal clock delay.

The actual part associated with the input signal parameter InSig shall be a static name denoting either
an input port or the corresponding wire delayed signal (if it exists).

The actual part associated with the output signal parameter OutSig shall be an internal signal. The
internal signal shall have the same subtype as the signal associated with the input signal parameter.

6.4.3 VITAL process statement

A VITAL process is a key building block of a VITAL Level 1 architecture. It is a mechanism for modeling timing
constraints, functionality, and path delays.

VITAL-process-statement : :=
[process-label : 3
process (sensitivity-list)

begin

end process [process-label] ;

VITALprocess-declarative-part

VITAL-process-statement-part

Clause 6 37

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

10

15

20

25

30

35

40

45

50

A VITAL process statement shall have a sensitivity list. The sensitivity list shall contain the longest static prefix
of every signal name that appears as a primary in a context in which the value of the signal is read. These are the
only signal names that the sensitivity list may contain.

6.4.3.1 VITAL process declarative part

A VITAL process declarative part is restricted to a few kinds of declarations.

VITAL-process-declarative-part ::=
{ VITAL-processdeclarative-item f

VITAL-process-declarative-item : :=
cons tan-declaration

I alias-declaration
1 attribute-declaration
I attribute-specification
I VITAL-variable-declaration

6.4.3.1.1 VITAL variables

Certain formal parameters of some procedures in the VITAL standard packages are designated as restricted
formal parameters. They are:

GlitchData on procedure VitalPathDelay

Timing Data

PeriodPulseData on procedure VitalPeriodPulseCheck

on procedures VitalSetupHoldCheck, VitalRecovery RemovalCheck

PreviousDataln on procedure VitalStateTable

The actual part in the association of a restricted formal parameter shall be the simple name of a restricted variable.

Certain restrictions are placed on the declaration of a restricted variable. The type mark in the restricted variable
declaration shall denote the type or subtype denoted by the type mark in the corresponding restricted formal
parameter declaration. If the declaration of the restricted variable contains an initial value expression, then that

38 Clause 6

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

1 expression shall take one of the following forms:

- It can be the name of a constant that is declared in one of the VITAL standard packages.

- It can be a function call invoking a function that is declared in one of the VITAL standard packages.
Each actual parameter part in such a function call shall be a locally static expression. 5

6.4.3.2 VITAL process statement part

The VITAL process statement part consists of statements that describe timing constraint checks, cell function, and
10 path delay selection.

15

VITAL-process-statement-part : :=
[VITAL-timing-check-section]
[VITAL-functionality-section]
[VITAL-path-delay-section]

These statements are grouped into three distinct sections, each of which is devoted to a particular sort of
specification. A VITAL process shall include at least one of these sections.

20 6.4.3.2.1 Timing check section

The timing check section performs timing constraint checks through the invocation of predefined timing check
procedures. Timing checks that can be performed in this section include setuphold checks, recovery/removal
checks, and periodpulsewidth checks.

25

VITAL-timing-check-sec tion : : =
if VITAL-timingcheck-condition then

{ VITAL-timing-check-statement }
end if ;

30

VITAL-timing-check-condition : := generic-simple-name

VITAL-timing-check-statement : := procedure-call-statement

35 The timing check condition shall be a simple name denoting a TimingChecksOn control generic that shall be
declared in the entity.

A timing check statement is a procedure call statement that invokes one of the VITAL timing check procedures
declared in the package VITAL-Timing: VITALSetupHoldCheck, VlTALRecoveryRemovalCheck, or
VlTALPeriodPulseCheck. Each of these procedures performs the specified check and returns a parameter value
indicating whether or not a constraint violation occurred (see 8.1 for more details). These values are considered
to be the output of the timing section. A timing check section is the only context in which a call to a timing check
procedure is allowed.

40

45 The actual parameter part of a timing check procedure call shall satisfy the following requirements:

- The actual part associated with a formal parameter representing a signal name shall be a locally static
name.

50 - The actual part associated with the formal parameter HeaderMsg shall be a globally static expression.

- The actual part associated with a formal parameter of the standard type Time shall be a globally static
expression.

Clause 6 39

~

1

5

IO

15

20

25

30

35

40

45

50

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

The actual part associated with a formal parameter XOn or MsgOn shall be a locally static expression
or a simple name denoting the control generic of the same name.

A function call or operator in an actual part shall invoke a function or operator that is defined in package
Standard, package Std-Logic-1164, or package VITAL-Timing.

An actual part associated with the formal parameter TestSignalName, RefSignalName, or
RefTransition shall be a locally static expression.

Timing checks shall be independent of one another. It is an error for a variable that is associated with a timing
check violation parameter to appear in another timing check statement.

NOTEGAlthough the variable associated with the violation parameter in a timing check cannot be used in another timing
check, it may be used in other sections of the VITAL processduring functionality computation, for instance.

6.4.3.2.2 Functionality section

The functionality section describes the behavior of the cell.

VITAL-functionality-section : :=
{ VITAL-variable-assig~iient-sta~~iiie~~ I p~ocediu-e_call_stut~~ii~nt }

VITAL-variable-assignment-statement ::=
VITAL-target := expression ;

VITAL-target ::= unrestn

The function of a model is specified in terms 01 variable assignment statements and procedure call statements.

A procedure call statement in the hnctionaljty section shall invoke thc prcdcfined procedure VlTALStateTable
that is defined in package VITAL-Primitives (see 7.3.4). The al parameter part of the procedure call shall
satisfy the following requirements:

- The actual part associated with the StateTable pxanictcr shalI adhere to the restrictions relating to the
StateTable parameter as described in 6.4.4.

- The constraint on the variable associated with the PreviousDataln parameter shall match that on the
actual associated with the Dataln parameter.

Certain restrictions are placed on a VITAL variable assignment statement. The target shall be an unrestricted
variable that is denoted by a locally static name, and the right-hand side expression shall be such that every
primary in the right-hand side expression is one of the following:

a) A globally static expression

b)

c) A function call invoking a standard logic function, a VITAL primitive, or the function

A name denoting a variable, a port, or an internal signal

VlTALTruthTable

d)

e) A parenthesized expression

An aggregate, or a qualified expression whose operand is an aggregate

40 Clause 6

MODELING SPECIFICATION
IEEE

Std 1076.4-1995

I

5

10

15

20

25

30

35

40

45

50

The functionality section is the only context in which a call to the function VlTALTruthTable (see 7.3.3) is
allowed. The actual part associated with the formal parameter TruthTable in such a call shall adhere to the
restrictions relating to the TruthTable parameter as described in 6.4.4.

NOTELThe function form of VlTALTruthTable can be invoked only from the functionality section; however, the procedure
form of VlTALTruthTable can be invoked as a VITAL, primitive concurrent procedure call.

6.4.3.2.3 Path delay section

The path delay section drives ports or internal signals using appropriate delay values, with provisions for glitch
handling, message reporting control, and output strength mapping.

Path delay selection is modeled with a procedure call statement that invokes one of the path delay procedures-
VITALPathDelay, VITALPathDelayOl , or VITALPathDelayOl Z-defined in the package VITAL-Timing. A
path delay procedure selects the appropriate propagation delay path and schedules a new output value for the
specified signal (see 9.4 for more detail). A path delay section is the only context in which a call to a path delay
procedure is allowed.

The actual parameter part of a path delay procedure call shall satisfy the following requirements:

The actual part associated with the formal parameter Outsignal shall be a locally static name.

The actual part associated with the formal parameter Paths shall be an aggregate. Each element
expression of the array aggregate shall be a record apgregatc. The cxpression associated with a
PathDelay subelement shall be globally static. The expression associared with an InputChangeTime
subelement shall be either a Last-Event attribute or a locally static expression.

The actual part associated with the formal parameter GlitchMode shall be a locally static expression.

The actual part associated with the formal parameter GlitchData shall be a locally static name.

The actual part associated with a formal paramctcr XOn or MsgOn shall be a locally static expression
or a simple name denoting the control generic of the same name.

An actual part associated with the formal parameter OutSignalName, DefaultDelay, or OutputMap
shall be a locally static expression.

NOTE-Each port of mode OUT, INOUT, or BUFFER that has a driver is driven by a call to a VITAL primitive procedure
or a call to a path delay procedure.

6.4.4 VITAL primitive concurrent procedure call

VITAL-primitive-concument-procedure-call : :=
VZTALpWtive-concurrent-procedure-call

A VITAL primitive concurrent procedure call provides a distributed delay modeling capability. It invokes any one
of the primitives defined in the package VlTALLPrimitives to compute functionality and schedule signal values
using delay values selected within the procedure. A complete list of the available primitives is given in clause 7.

The actual parameter part of a primitive subprogram call shall satisfy the following requirements:

- An actual part associated with a formal parameter of class VARIABLE or SIGNAL shall be a static
name.

Clause 6 41

1

5

10

15

20

25

30

35

40

45

50

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

- An actual part associated with a formal parameter of class CONSTANT shall be a globally static
expression.

- An actual past associated with the formal parameter ResultMap shall be a locally static expression.

- An actual past associated with a TruthTable or StateTable formal paramet
primitive shall be a constant that is not a defend constant. Furthemore, the v
constant shall be a positional aggregate f o m d using only locally static
aggregates of this form.

42 Clause 6

MODELING SPECIFICATION

VitalNAND

VitalNOR

Vi talXNOR

IEEE
Std 1076.4-1 995

VitalNOR4

VitalXNOR4

VitalNAND2 ~ VitalNAND3

VitalNOR2 * / VitalNOR3

VitalXNOR2 VitalXNOR3

I

5

IO

15

20

25

VitalMux

Vi talDecoder

7. Predefined primitives and tables

VitalMux2 VitalMux3 VitalMux4

VitalDecoder2 VitalDecoder4 VitalDecoder8

The VITAL-Primitives standard package defines a number of primitive functions and procedures that provide
basic functional support for VITAL Level 1 models.

The set of VITAL primitives consists of logic primitives and utility primitives. Logic primitives perform basic
logic operations. Utility primitives support multiple driver resolution and table operations.

7.1 VITAL logic primitives

Each logic primitive is defined in both function and procedure form for use in the functionality section of a VITAL
process or in a VITAL primitive concurrent procedure call, respectively.

I VitalOR I VitalOR2 I VitalOR3 I VitalOR4 I
30 I VitalXOR I VitalXOR2 I VitalXOR3 I VitalXOR4 I

35

40

45

50

I VitalBUF I VitalBufIfO 1 VitalBufIfl 1 VitalIDENT I
I I VitalINV I VitalInvIfO I VitalInvIfl I -

7.1.1 Logic primitive functions

VITAL logic primitive functions compute the defined function and return a value of type Std-Ulogic or
Std-Logic-Vector. All parameters of the logic primitive functions are constants of mode IN.

Example:

ARCHITECTURE PinToPinDelay of AndOr IS

BEGIN
attribute VITAL-LEVEL1 of PinToPinDelay: architecture is TRUE;

VitalBehavior: PROCESS (A, B, C, D)

Clause 7 43

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

5

10

1 VARIABLE ANDl-Out, ANDZ-Out, Q-Zd: std-ulogic;
VARIABLE GlitchData-Q : VitalGlitchDataType;

-- Functionality section
ANDl-Out := VitalAND2 (A, B);
AND2-Out := VitalAND2 (C, D);
Q-zd
-- Path delay section
VitalPathDelayOl (

Outsignal => Q,
OutSignalName => "Q",
OutTemp => Q-zd,
Paths => (

BEGIN

:= VitalOR2 (ANDl-Out, AND2-Out, ResultMap => DefaultECLMap)

0 => (InputChangeTime => A'fast-event,
PathDelay => tpd-A-Q,

15 Pathcondition => TRUE),
1 => (InputChangeTime => B'last-event,

PathDelay => tpd-B-Q,
Pathcondition => TRUE),

2 => (InputChangeTirne => C'lasi-event.
20 PathDelay --=. tpd-C. Q.

Pathcondition => TRUE).

PathDelay => tpd--D-Q,
3 => (InputChangeTime ==. D'last-event.

Pathcondition => TRUE) ".,
1, "a4

s 25

GlitchData => GlitchData--Q. 4

DefaultDelay => VitalZeroDelayOl ,
Mode => OnDetect.

a*

XON => TRUE.
30 MsgOn => TRUE.

MsgSeverity => WARNING); .
END PROCESS;

END;

35 7.1.2 Logic primitive procedures

VITAL logic primitive procedures execute in a manner similar to that of a separate process. The procedures wait
internally for an event on an input signal, compute the new result, perform glitch handling, schedule transactions
on the output signals, and wait for further input events. All of the functional (logic) input or output parameters of
the primitive procedures are signals. All other parameters are constants. 40

The procedure primitives are parameterized for separate path delays from each input signal. All path delays
default to 0 ns.

45 Example:

ARCHITECTURE DistributedDelay OF AndOr IS
ATTRIBUTE VITAL-LEVEL1 of DistribuZedDelay: architecture IS TRUE;
SIGNAL ANDl-Out, AND2-Out: std-ulogic;

I1 : VitalAND2 (ANDl-Out, A, B, tdevice-ll-Q, tdevice-11-Q);
12: VitalAND2 (AND2_0ut, C, D, tdevice-l2-Q, tdevice-12-Q);
13: VitalOR2 (Q, ANDl-Out, AND2_0ut, tdevice-l3-Q, tdevice-13-Q);

50 BEGIN

44 Clause 7

MODELING SPECIFICATION
IEEE

Std 1076.4-1995

IO

15

20

25

30

35

40

45

50

END;

7.1.3 Establishing output strengths

Each logic primitive function or procedure by default produces an output value from the set of values {‘U’, ‘X’,
‘O’7 ‘1 ’, ‘Z’}. This set of logic strengths may be expanded through use of the optional ResultMap parameter (of
type ResultMapType), which provides rapid conversion of any of the standard five output values to any other
output value through the use of a simple table lookup.

type ResultMapType is array (UXO1) of Std-ulogic;
type ResultZMapType is array (UXOlZ) of Std-ulogic;

constant VitalDefaultResultMap : VitalResultMapType := (‘U, ’X, IO7 ‘1’);
constant VitalDefaultResultZMap : VitalResultZMapType := (‘U, ‘X, ‘0, ‘l‘, ‘Z);

Example:

ARCHITECTURE Structural OF Pullup IS
ATTRIBUTE VITAL-LEVEL1 of Structural: architecture IS TRUE;
CONSTANT DefaultECLMap : VitalRe<MapType := (‘U’, ’X, ‘L‘, ’1 ’);

I1 : VitalBUF (Q, A, tpd-A-Q, ResultMap => DefaultECLMap);
BEGIN

END:

In this example, the constant DefaultECLMap that is supplied as the ResultMap actual parameter causes a ‘0’
to be mapped to ‘L’ on the output of the primitive.

7.2 VitalResolve

The procedure VitalResolve supports the resolution of multiple signal drivers, allowing a model to drive these
multiple signals on a single signal. It invokes the standard logic function Resolved on the input vector and assigns
it to the outputs with zero delay.

Example:

ARCHITECTURE Structural OF ResolvedLogic IS
ATTRIBUTE VITAL-LEVEL1 of Structural: architecture IS TRUE;
SIGNAL Q-Temp1 , Q-Temp2 : std-ulogic;

I1 : VitalAND2 (Q-Templ, A, B, tdevice-11-Q, tdevice-11-Q);
12: VitalAND2 (Q-Tempe, C, D, tdevice-l2-Q, tdevice-12-Q);
R l : VitalResolve (Q, (Q-Temp1 , Q-Temp2));

BEGIN

END;

7.3 VITAL table primitives

The VlTACPrimitives package supports the standard specification and use of truth tables and symbol tables
through the use of the table primitives VitalTruthTable and VitalStateTable. VitalTruthTable is provided for
modeling combinational cells. VitalStateTable is provided for modeling sequential cells.

7.3.1 VITAL table symbols

A transition set or a steady-state condition is represented by a special table symbol. The symbol set defined by the

Clause 7 45

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

I type VitalTableSymbolType is used to specify high-accuracy state tables.

5

10

15

20

25

type VitalTableSymbolType is (
' r , -- 0-> 1
'Y, -- 1 -> 0
'PI,
'N ,
'r', -- 0 -> X
'f, -- 1 ->x
'p',
In',
'R,
'F,

'VI, -- x -> 0
'E',
'A,
ID',
' * I ,

'X, -- Unknown level
' 0 , -- low level
'l', -- high level
- , -- don't care
'B', -- Oor 1
'Z, -- High Impedance
'S' -- steady value

-- Union of '1 and 'A' (any edge to 1)
-- Union of 'Y and 'VI (any edge to 0)

-- Union of 'Y and 'r' (any edge from 0)
-- Union of 7' and 'f (any edge from 1)
-- Union of 'A' and 'p' (any possible rising edge)
-- Union of 'v' and 'n' (any possible falling edge)

'A', _ _ X -> 1

-- Union of 'VI and 'A' (any edge from 'X')
-- Union of 'r' and In' (rising edge to or from 'X)
-- Union of 'f and 'VI (falling edge to or from 'X)
-- Union of 'R and 'F' (any edge)

I f

>;

The acceptable range of table symbols
state table can be constructed from an

scalar subtype definition. A truth or
by the corresponding table symbol

30 subtype.

subtype VitalTruthS ymbolType is VitalTabIeSymbo
subtype VitalStateSymbolType is VitalTableSymbolType range 'Ip to IS';

35 Table 3 shows the VitalTableSymbolType elements and the levels and cdge transitions that they represent.

A truth or state table is partitioned into different sections, each of which represents a specific kind of information.
These sections include an input pattern and a response. For a state table, an additional state section is included.
The input pattern section shall not contain the symbol 'Z'. The response section shall contain only the symbols
y, '07, ' I , , ' 7 - and 'Z', and for a state table, the symbol 'S as well. The state section of a state table can only
contain the symbols 'X', 'O', 'l', '-' and 'B'. It is an error if any symbols other than those allowed are encountered
in a section.

40

NOTES

1-The table symbols are enumeration literals, therefore they are case-sensitive.

2-A limited set of table symbol values can be used to develop truth tables. Any table symbol can be used in a state table.

45

50 7.3.2 Table symbol matching

During truth or state table processing, the input to the table primitive (Dataln) i s matched to the stimulus portion
of the table. The matching process begins by converting the input data to the equivalent 'X', '0, or '1 ' values by

46 Clause 7

I

MODELING SPECIFICATION

Table 3-Truth Table and State Table symbol semantics

IEEE
Std 1076.4-1 995

5

10

15

20

25

30

35

40

45

applying the standard logic TO-XO1 function. The resulting values are then compared to the stimulus portion of
the table according to the matching rules in table 4.

For a state table, the current and previous values of Dataln are used to determine if an edge has occurred. These
edges are matched with the edge entries that are specified in the input pattern of the table using the semantics of
the edge symbols shown in table 3.

50
7.3.3 TruthTable primitive

A function version of VitalTruthTable is defined for use inside a VITAL process. The procedure version of

Clause 7 47

I

‘X’

‘0’

5 ‘X’

‘0’

‘X’ only matches with ‘X’

‘0’ only matches with ‘0’

IO
‘ >

‘B’

15

20

25

30

35

‘X’, ‘O’ , ‘1’

‘O’, ‘1’

‘-’ matches with any value of DataInXOl

‘B’ only matches with ‘0’ or ‘1’

IEEE
Std 1076.4-1995 IEEE STANDARD FOR VITAL ASIC

Table 4-Matching of table symbols to input stimulus

DataInXOl :=
stimulus portion 1 To-XOl(DataIn) Result of comparison

~

‘1 ’ I ‘1’ I ‘ 1 ’ onlv matches with ‘ 1 ’ I

VitalTruthTable is defined for use in a concurrent procedure call. In addition to performing the same result
computation as the function version, the procedure version schedules the resulting value on the output signal with
a delay of 0 ns. Overloaded forms are provided to support both scalar and vector output.

7.3.3.1 Truth table construction

A VITAL truth table is an object of type VitalTruthTableType.

type VitalTruthTableType is array (Natural range <>, Natural range <>) of VitalTruthSymbolType;

The length of the first dimension of a truth table is the number of input combinations that have a specified output
value. The length of the second dimension shall be the sum of the size of the input pattern section and the size of
response section.

The number of inputs to the truth table shall be equal to the length of the Dataln parameter. It is an error if the
length of Dataln is greater than or equal to the size of the second dimension of the TruthTable parameter.

A row in a truth table consists of two sections: an input pattern and a response. A row i of the truth table is
interpreted as follows:

InputPatternG downto 0), Response(k downto 0)
where

j = Dataln’Length - 1
k = TruthTable’Length(2) - Dataln’Length - 1

40
Example:

Truth table for a 2 to 4 decoder:

45

50

Constant DecoderTable: VitalTruthTableType(0 to 3, 0 to 5) :=
-- Input Pattern Response
-- D1 DO Q3 Q2 Q1 QO

((‘O’, ‘O’, ‘U, ‘U, ‘U, ‘l’),
(‘O’, ‘l’l ‘U, ‘U, ‘l’, ‘O’),
(‘l’, ‘O’, IO1, ‘l’, ‘O’, ‘O’),
(‘l’, ‘l’, ‘l’, ‘O’, ‘O’, ‘0’));

48 Clause 7

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

1

5

10

15

20

25

30

35

40

45

50

7.3.3.2 TruthTable algorithm

The VitalTruthTable primitive compares the stimulus, Dataln, with the input pattern section of each row (starting
from the top) in TruthTable to find the first matching entry. If all of the subelements of Dataln match with
corresponding subelements of the input pattern of a particular row in TruthTable, the outputs are determined from
the response section of the corresponding row. The outputs are then converted to the standard logic XO1Z subtype.
If all rows in TruthTable are searched and no match is found, then VitalTruthTable returns either an ‘X’ or a
vector of ‘X’s, as appropriate.

The vector form of the procedure places the outputs in the actual associated with the parameter Result, starting
from the right side of both the truth table and the actual associated with Result, until the actual is filled or there
are no more outputs left in the truth table. It is an error if Result is too small or too large to hold all of the values.
The vector function behaves in a manner similar to the vector procedure; however, it always returns a vector with
the range TruthTable’Length(2) - Dataln’Length - 1 downto 0.

7.3.4 Statelable primitive

There are two versions of the VitalStateTable proccdure-one that is intended for use as a sequential statement
and one that is intended for use as a concurrent nntemcnt. The concurrent statement version of this procedure
performs the same result computation as the function version, but in addition it schedules the resulting value on
the output signal with a delay of 0 ns. Overloaded forms are provided to support both scalar and vector output.

7.3.4.1 State table construction

A VITAL state table is an object of type VitalStateTableType.

type VitalStateTableType is array (Natural range <>, Natural ange e>) of VitalStateSymbolType;

The length of the f i s t dimension of a state table is the number of input and state combinations that have a specified
output value. The length of the second dimension is the sum of the length of the input patterns section, the length
of the state section, and the length of the response section.

The number of inputs to the state table shall equal the length of the Dataln parameter. It is an error if the length
of Dataln is greater than or equal to the size of the second dimension of the StateTable parameter.

A row in a state table consists of the following sections: an inputpattern, a state, and a response. Each row in the
table shall have at most one element from the subtype VitalEdgeSymbolType. Each row i of the StateTable is
interpreted as follows:

InputPattern(j downto 0), State(k downto 0), Response(Z downto 0)
where

j = Dataln’Length - 1
k = NumState - 1
1 = StateTable’Length(2) - Dataln’Length - NumState -1

NOTE A state table should include at least one entry with an ‘S’ for the clock so that VitalStateTable can handle the case in
which the procedure is activated but the clock did not change. If this entry is not included, then the result defaults to ‘X’s.

Example:

State table for a positive-edge triggered D Flip flop:

Constant DFFTable: VitalStateTableType :=
-- RESET D CLK State Q

Clause 7 49

IEEE
Std 1076.4-1995 IEEE STANDARD FOR VITAL ASIC

I

5

7.3.4.2 StateTable algorithm

The procedure VitalStateTable computes the value of the output of a synchronous sequential circuit (a Moore
machine) based on the inputs, the present state, and a state table. These procedures compare the stimulus, Dataln
(and edges on it), with the input pattern section of each row (starting from the top) in StateTable to find the first
matching entry. If all input entries are found to match, the comparison moves to the states. Here the comparison
moves from the leftmost index of Result [comparing it to State(NumStates - 1) in the state table] and proceeds
to the right. The comparison of the entry continues until all of the inputs have been compared or a mismatch is
encountered. The search terminates with the f i s t level or edge match or when the table entries are exhausted. If
all rows in StateTable are searched and no match is found, then the actual associated with the formal parameter
Result is assigned an ‘X’ or a vector of ‘X’s, as appropriate.

Once a match is found, or it is determined that no match can be made, the new values of the state variables and
the outputs are determined from the response section of the stare table. The states and outputs are placed into the
parameter Result, starting from the right side of both the state table and Result, until Result is filled or there are
no more outputs or states left in the state table. It is an error i l Result i s too small or too large to hold all of the
values.

10

15

20

25

30

35

40

45

50

Clause 7

MODELING SPECIFICATION

1

IEEE
Std 1076.4-1995

5

8. Timing constraints

10
This standard provides support for standard timing constraint checking and for the modeling of negative timing
constraints.

15 8.1 Timing check procedures

The package VITAL-Timing defines three kinds of timing check procedures: VitalSetupHoldCheck,
VlTALRecoveryRemovalCheck, and VlTALPeriodPulseCheck. Each is overloaded for use with test signals
of type Std-Ulogic or Std-Logic-Vector, Each defines a CheckEnabled parameter that supports the modeling

2o of conditional timing checks.

A VITAL timing check procedure performs the following functions:

25 - It detects a timing conshaint violation if the timing check is enabled.

- It reports a timing constraint violation using a VHDL assertion statement. The report message and
severity level of the assertion are controlled by the model.

- It sets the value of a corresponding violation flag. If a timing violation is detected, the value of this flag
is set to ‘X’; otherwise, it is set to ‘0’. ‘X’ generation for this flag can be controlled by the model.

30

35 The same timing check procedures are used for both positive and negative timing constraint values. Two delay
parameters-Test Delay and Ref Delay-are defined for modeling the delays associated with the test or reference
signals when negative setup or hold constraints are in effect. The delay parameters shall have the value zero when
negative constraints do not apply.

40 8.1.1 VitalSetupHoldCheck

The procedure VitalSetupHoldCheck detects the presence of a setup or hold violation on the input test signal
with respect to the corresponding input reference signal. The timing constraints are specified through parameters
representing the high and low values for the setup and hold times. This procedure assumes nonnegative values for
setuphold timing constraints.

45

Setuphold constraint checks are performed by this procedure only if the CheckEnabled condition evaluates to
True; however, event times required for constraint checking are always updated, regardless of the value of
CheckEnabled. Setup constraints are checked in the simulation cycle in which the reference edge occurs. A setup
violation is detected if the time since the last Testsignal change is less than the expected setup constraint time.
Hold constraints are checked in the simulation cycle in which an event on Testsignal occurs. A hold violation is
detected if the time since the last reference edge is less than the expected hold constraint time.

50

Clause 8 51

I

IEEE
Std 1076.4-1 995

*** StableRegion ***

IEEE STANDARD FOR VITAL ASIC

5

Test Signal

Reference Signal 4
tsetup m!

10
Figure 24etup/Hold check for positive constraints

8.1.2 VitalPeriodPulseCheck

15 The procedure VitalPeriodPulseCheck checks for minimum and maximum periodicity and pulse width for ‘1 ’
and ‘0’ values of the input test signal. The timing constraint is specified through parameters representing the
minimal period between successive rising or falling edges of the input test signal, and the minimum pulse widths
associated with lllgh and low values.

20

25

30

Testsignal

4 tpw-lo F!

Figure 3-Per

8.1.3 VitalRecoveryRemovalCheck

The procedure VitalRecoveryRemovalCheck detests the presence of a recovery or removal violation on the
input test signal with respect to the corresponding input reference signal. It assumes nonnegative values of
recovery/removal timing constraints. The timing constraint is specified through parameters representing the
recovery and removal times associated with a reference edge of the reference signal. A flag indicates whether a
test signal is asserted when it is high or when it is low.

Recovery/removal constraint checks are performed by this procedure only if the CheckEnabled condition
evaluates to True; however, event times required for constraint checking are always updated, regardless of the
value of CheckEnabled. Recovery constraints are checked in the simulation cycle in which the reference edge
occurs. A recovery violation i s detected if the time since the last Testsignal change is less than the expected
recovery constraint time. Removal constraints are checked in the simulation cycle in which an event on
Testsignal occurs. A removal violation is detected if the time since the last reference edge is less than the
expected removal constraint time.

35

40

45

Example:
50

VITALBehavior: PROCESS (D, CLK, RESET)
VARIABLE SetupHoldlnfo : VitalTimingDataType := VitalTimingDatalnit ; --Restricted variable
VARIABLE PeriodDatalnfo : VitalPeriodDataType := VitalPeriodDatalnit ; --Restricted variable

52 Clause 8

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

1

5

10

15

20

25

30

VARIABLE RecoRemolnfo : VitalTimingDataType := VitalTimingDatalnit ; --Restricted variable
VARIABLE Violation-flag, Violl, Viol2, Viol3 : XO1;
...

BEGIN
-- Timing Check Section
IF (Timingcheckson) THEN

-- Setup/hold check between D and rising CLK
VitalSetupHoldCheck (

Testsignal => D, TestSignalName => “D,
Refsignal => CLK, RefSignalName => “CLK,
SetupHigh => tsetup-D-CLK, SetupLow => tsetup-D-CLK,
HoldHigh => thold-D-CLK, HoldLOW => thold-D-CLK,
CheckEnabled => RESET = ‘l’, RefTransition => TI’,
MsgOn => TRUE, XOn => TRUE,

Violation => Violl, MsgSeverity => ERROR);
HeaderMsg => “lnstancel”, TimingData => SetupHoldlnfo,

-- Pulsewidth and period check for CLK
VitalPeriodPulseCheck (

Testsignal => CLK, TestSignalName => “CLK,
Period => tperiod-CLK,
PulseWidthHigh=> tpw-CLK-posedge,
PulseWidthLow => tpw-CLK-negedge,
PeriodData => PeriodDatalnfo, Violation => ViolP,

HeaderMsg => “lnstancel”,
CheckEnabled => RESET = ‘l ’ , MsgSeverity => ERROR);

MsgOn => TRUE, XOn => TRUE,

-- Recovery/removal check between RESET and rising CLK
VitalRecoveryRemovalCheck (

Testsignal => RESET, TestSignalName => ‘RESET”,
Refsignal => CLK, RefSignalName => “CLK,
Recovery => trecovery-RESET-CLK,
Removal => tremoval-RESET-C
ActiveLow => FALSE, CheckEnabled => RESET = ‘l’,
RefT ransition => ‘R’,
MsgOn => TRUE, XOn => TRUE,
HeaderMsg => “lnstancel”, TimingData => RecoRemolnfo,
Violation => Viol3, MsgSeverity => ERROR);

35

END IF;
Violationflag := Violl or Viol2 or Viol3;
... 40

END PROCESS;

8.2 Modeling negative timing constraints

45 Some devices may be characterized with negative setup or hold times, or negative recovery or removal times. If
any of these values is negative, then the data constraint interval does not overlap the reference clock edge, and a
negative timing constraint is said to be in effect.

A negative hold or removal time corresponds to an internal delay on the test (or data) signal. A negative setup or
recovery time corresponds to an internal delay on the reference (or clock) signal. These internal delays determine
when a data signal is sampled on the edge of the clock signal. Special adjustments are required in the case of
negative timing constraints because the data value at the time that the clock edge is detected may be different from
the data value during the constraint interval. Furthermore, the setup time may be difficult to check because a

50

Clause 8 53

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

I violating data edge may not be the most recent data edge preceding the clock.

Negative timing constraints in a VITAL Level 1 model are handled by internally delaying the test or reference
signals. Negative setup or recovery times result in a delayed reference signal. Negative hold or removal times
result in a delayed test signal. Furthermore, the delays associated with other signals may need to be appropriately
adjusted so that all constraint intervals overlap the delayed reference signals. After these delay adjustments are
performed, the timing constraint values on the timing check procedures are always nonnegative.

5

10

I5

Test Signal

Reference Signal ** StableRegion **

20

25

30

35

40
Figure 5-The data constraint interval for a negative setup constraint

8.2.1 Requirements on the VHDL description

45 This standard defines a delay adjustment algorithm that transforms negative delay values to nonnegative values.
This algorithm relies on certain model characteristics in order to calculate the delays correctly; therefore, a
negative timing constraint has to be anticipated and the model structured to accommodate it.

To model negative constraints in a VITAL-compliant model, the corresponding VHDL description shall contain
5o the following:

- The declaration of an internal clock delay generic for each clock (reference) signal that is associated
with a negative setup (or recovery) constraint

54 Clause 8

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

1

5,

10

15

20

25

30

35

40

45

50

- The declaration of an internal signal delay generic for every data (test) signal that is associated with a
negative hold (or removal) constraint

- The declaration of biased propagation delay generics for paths that are dependent on multiple clocks

- A signal delay block in the architecture that contains calls to the VitalSignalDelay procedure to delay
the appropriate testlreference signal

These rules are part of the VITAL Level 0 modeling specification (see clause 4).

NOlT-In general, a model should read the value of the internally delayed signal rather than that of the corresponding signal
that is not delayed; however, the model is not prohibited from reading the value of the signal that is not delayed.

8.2.2 Negative constraint calculation phase

The negative constraint delay adjustments are computed outside of the actual VHDL model in a special phase of
simulation called the negative constraint calculation phase, which occurs directly after the VITAL
backannotation phase and directly before normal VHDL initialization.

Negative constraint calculation is performed for each VITAL Level 0 instance that defines a negative constraint
timing generic. The values of certain timing generics are computed and set, and the values of others are adjusted
in an iterative algorithm that uses the generic values set during previous steps.

Negative constraint calculation is performed in the following sequence:

a) Calculate internal clock delays

b) Calculate internal signal delays

c) Calculate biased propagation delays

d) Adjust propagation delays

e) Adjust timing constraint values corresponding to setup, hold, recovery, and removal times

It is an error if at the end of the negative constraint calculation stage, a timing generic that is adjusted by this
algorithm still has a negative value.

N O T S A calculation or adjustment that is performed as a part of the negative constraint calculation phase may result in a
reduction in the value of a generic (or one of its subelements) that causes the value to become negative, in which case the
negative constraint algorithm replaces the negative value with a zero value. This situation may or may not indicate an error;
hence, a tool that processes VITAL-compliant models may choose to issue a warning when it replaces the negative value.

8.2.2.1 Calculation of internal clock delays

The value of each internal clock delay generic is computed as follows:

a) The name of the associated clock signal is extracted from the <Clockport> portion of the internal clock
delay generic name.

b) All setup and recovery timing generics on the same instance are examined. Those generics for which the
<ReferencePo* part of the generic name is the same as the cClocWortr name are marked.

c) The minimum value of all the subelements of all the marked timing generics is determined. If that value
is negative, the internal clock delay generic receives the absolute value; otherwise, it is set to 0 ns.

Clause 8 55

I

5

10

15

20

25

30

35

40

45

50

IEEE
Std 1076.4-1 995

8.2.2.2 Calculation of internal signal delays

The value of each internal signal delay generic is computed as follows:

IEEE STANDARD FOR VITAL ASIC

a) The names of the associated clock and input signals are extracted from ,,e <Clockport> and
clnputPort> portions of the internal signal delay generic name.

b) If there is an internal clock delay generic containing the same clock signal name, then its value is the
associated clock delay. Otherwise, the associated clock delay is 0 ns.

c) All hold and removal timing generics on the same instance are examined. Those generics for which the
<ReferencePo* part of the generic name is the same as the <Clockport> name and the <TestF'ort> part
of the generic name is the same as the i z n p u t P o ~ name are marked.

d) The minimum value of all subelements of all the marked timing generics is determined. This value is
reduced by the associated clock delay. If the resulting value is negative, it is replaced by its absolute
value; otherwise, it is replaced by 0 ns.

8.2.2.3 Calculation of biased propagation delays

The value of each biased propagation d

a) The corresponding propagation e input and output ports, condition
biased propagation delay generic is name, and edge) is identified

initialized to the value of the corresponding propagation delay generic.

The names of the associated clock and input signals are zxtracted from the <ClockPort> and
<InputPort> portions of the biascd propagation dclay generic namc.

c) If there is an internal signal delay gcneric (see 4.3.2
the same <Inputport> and <ClocWort> parts, th
propagation delay generic is reduced by the value o
value of any subelement is negative, then the value of that subelement is set to zero.

b)

3) on the same instance whose name denotes
e value of each subelement of the biased
internal signal delay generic. If the resulting

NOTF!-Due to the name construction of the intcrm! signal dc1a.y gcneric, there can be only one internal signal delay generic
that matches both the InputPost and Clockport names (in step c),

8.2.2.4 Adjustment of propagation delay values

Propagation delay generics are adjusted in two separate steps:

a) All propagation delay timing generics from a clock signal are adjusted

b) Propagation delays that do not correspond to a biased propagation delay generic are adjusted

It is an error if a propagation delay generic is adjusted by more than one internal signal delay.

8.2.2.4.1 Adjustment of clock to output propagation delay values

Each internal clock delay generic is adjusted as follows:

a) The name of the associated clock signal is extracted from the <Clockport> portion of the internal clock
delay generic name.

56 Clause 8

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

1

5

10

15

20

25

30

35

40

45

50

b) All propagation delay generics on the same instance are examined. Those generics for which the
<Inputport> part of the generic name is the same as the <Clockport> name are marked.

c) The value of each subelement of each marked generic is reduced by the value of the internal clock delay
generic. If the resulting value of any subelement is negative, then the value of the subelement is set to
0 ns.

8.2.2.4.2 Adjustment of other propagation delay values

Each internal signal delay timing generic is adjusted as follows:

The names of the associated clock and input signals are extracted from the <Clockport> and
<InputPort> portions of the internal signal delay generic name.

All propagation delay generics on the instance are examined. If the generic was identified as
corresponding to a biased propagation delay generic during the calculation of biased propagation
delays, then it is not marked. Otherwise, those generics for which the dnputPort> part of the generic
name is the same as the <Inputport> name are marked.

The value of each subelement of each marked generic is reduced by the value of the internal signal
delay generic. If the resulting value of any subelement is negative, then the value of the element is set to
0 ns.

8.2.2.5 Adjustment of timing check generics

The timing check generics-setup hold, recovery, and removal generics-are adjusted in two separate steps.

8.2.2.5.1 Internal clock delay generic

For each internal clock delay generic:

a) The name of the associated clock port is extracted from the <Clockport> portion of the internal clock
delay generic name.

b) All setup and recovery generics on the same instance are examined. Those generics for which the
<ReferencePo* part of the generic name is the same as the <Clockport> name are marked. The value
of each subelement of each marked generic is increased by the value of the internal clock delay generic.

c) All hold and removal generics on the same instance are examined. Those generics for which the
<ReferencePo* part of the generic name is the same as the <Clockport> name are marked. The value
of each subelement of each marked generic is reduced by the value of the internal clock delay generic. If
the resulting value of any subelement is negative, then the value of the subelement is set to 0 ns.

8.2.2.5.2 Internal signal delay generic

For each internal signal delay generic:

a) The names of the associated clock and input ports are extracted from the <Clockport> and dnputPort>
portions of the internal signal delay generic name.

b) All setup and recovery generics on the same instance are examined. Those generics for which the
<ReferencePo* part of the generic name is the same as the <Clockport> name and the <TestPort> part
of the generic name is the same as the dnputPort> name are marked. The value of each subelement of

Clause 8 57

1

5

IO

15

20

25

30

35

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

each marked generic is reduced by the value of the internal signal delay generic. If the resulting value of
any subelement is negative, then the value of the subelement is set to 0 ns.

c) All hold and removal generics on the same instance are examined. Those generics for which the
<Referenceport> part of the generic name is the same as the <Clockport> name and the <Testport> part
of the generic name is the same as the cTnputPorb name are marked. The value of each subelement of
each marked generic is increased by the value of the internal signal delay generic.

40

45

50

58 Clause 8

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

1

5

10

15

20

25

30

35

40

45

50

9. Delay selection

This standard supports propagation delay path selection and signal output scheduling in both sequential and
concurrent contexts. These activities are performed by a number of predefined procedures provided for use by
VITAL Level 1 models. The predefined procedures are as follows:

- The VITAL path delay procedures, for use in the path delay section of a VITAL process.

- The VITAL concurrent primitives, for use in concurrent procedure calls.

i -

9.1 VITAL delay types and subtypes

The package VITAL-Timing defines a number of delay types and subtypes that support the specification and
selection of simple delay values as well as delay values corresponding to the transitions between any of the states
‘O’, ‘l’, ‘X’, and ‘Z. A delay whose value may vary according to the nature of a transition is called a transition-
dependent delay. A delay with no swh dependence is a simple delay.

type VitalTransitionType is(trOl, trl0, Uoz, trzl, trlz, trz0, trO trxl, trlx, trxo, trxz, trzx);

subtype VitalDelayType is Time;
type VitalDelayTypeOl is array (VitalTransitionType range trOl to trl0) of Time;
type VitalDelayTypeOlZ is array (VitalTransitionType range trol to trz0) of Time;
type VitalDelayTypeOlZX is array (

type VitalDelayArrayType is array (
type VitalDelayArrayTypeOl is array (
type VitalDelayArrayTypeOlZ is array (NATURAL range <>) of VitalDelayTypeOlZ;
type VitalDelayArrayTypeOlZX is array (NATURAL range o) of VitalDelayTypeOlZX;

A transition-dependent delay is represented by a value of a transition-dependent delay type. Similarly, a simple
delay is represented by a value of a simple delay type. There are a number of different transition-dependent delay
types representing different subsets of transitions. Each kind of simple or transition-dependent delay type has both
scalar and vector forms. The vector forms represent delay values corresponding to one or more vector ports for
which the delay(s) associated with each bit may be different.

A value of a transition-dependent delay type associates a (possibly) different delay value with each transition in a
set of transitions. The value takes the form of an array of delay times, indexed by transition values. Each element
delay value is associated with the transition corresponding to its index position. The transition-dependent delay
types are VitalDelayTypeOl , VitalDelayTypeOl 2, VitalDelayTypeOl ZX, VitalDelayArrayTypeOl ,
VitalDelayArrayTypeOlZ, and VitalDelayArrayTypeOlZX. The first three are scalar forms, and the last three
are vector forms.

A value of a simple delay type is a single delay value or a vector of single delay values corresponding to one or
more vector ports. Although the vector form of a simple delay is an array, the delays that it represents are not
associated with transitions. The simple delay types and subtypes include Time, VitalDelayType, and

Clause 9 59

IEEE
Std 1076.4-1 995

’ Max(Delay(trO1). Dclay(trZ1)) ‘X’ 1 ‘1’ I Dday Delay(tsO1)

‘X’ ‘Z’ Delay h l a x (D e G l n) , h G)) - VM ax(Dclag(tr I Z), Delay(tr0Z))
__ -.

I

IEEE STANDARD FOR VITAL ASIC

1

5

10

15

20

25

30

35

VitalDelayArrayType. The first two are scalar forms, and the latter is the vector form.

The simple delay types and subtypes and the transition-dependent delay types comprise the set of VITAL delay
types and subtypes. No other type or subtype is considered to be a VITAL delay type or subtype.

9.2 Transition-dependent delay selection

Delay selection for a particular signal may be based upon the new and previous values of the signal; this selection
mechanism is called transition-dependent delay selection. Transitions between the previous and new values are
described by enumeration values of the predefined type VitalTransitionType. Table 5 describes the delay
selection for a set of previous and current values.

Table 5-Transition-dependent delay selection

I Previous 1 New I Delay selected 1 Delay selected for I Delay selected for I
~ ~~

I I I VitalDe1ayTypeo1
VitalDelayTypeOlZ for I value 1 i VitalDelayType

1 ~ ~~~~

Delay lyitro1) ! Delay(trO1)

Delay(trO1) I Delay(tr0Z) I

I Dclay I Min(Dclay(trlO), Delay(trO1)) ’ Min(Dcluy(trZ1). Delaiy(trZ0))

Delay 1 Delay(trl0) 1 Max(Delay(trlO), Delay(trZ0))

9.3 Glitch handling
40

A glitch occurs when a new transaction is scheduled to occur at an absolute time that is greater than the absolute
time of a previously scheduled pending event. Glitch handling in a VITAL Level 1 model is incorporated into the
signal scheduling mechanism.

45 This standard supports four modes of signal scheduling. These modes are represented by the enumeration values
of the predefined VITAL, type VitalGlitchKindType:

type VitalGlitchKindType is (OnEvent, OnDetect, VitalInertial, VitalTransport);

50 The Vitallnertial and VitalTransport modes are identical to the inertial and transport modes of VHDL. The
OnEvent and OnDetect modes are special modes for glitch handling. In the OnEvent mode, a glitch causes an
‘X’ value to be scheduled on the output at the time when the scheduled event was to occur. In the OnDetect mode,
a glitch causes an ‘X’ value to be scheduled on the output at the time of glitch detection.

60 Clause 9

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

1 Example:

Consider a simple buffer experiencing a delay. The outputs across the buffer corresponding to various
glitch modes are shown in figure 6.

5

Input
10

15

20

Vit alInertial ~

VitalTransport

OnEvent

OnDetect

" Figure &VITAL delay modes
25

9.4 Path delay procedures

Signal scheduling inside a VITAL Level 1 process can be performed by one of the predefined path delay
procedures VitalPathDelay, VitalPathDelayOl , and VitalPathDelayOl Z. Each of these procedures provides the
following capabilities:

30

- Transition-dependent path delay selection *

35 - User-controlled glitch detection, 'X' generation, and violation reporting

- Scheduling of the computed values on the specified signal

The information about all the relevant paths to a particular output is specified by using the Paths parameter. The
following record structure is used to convey information about an input to output path: 40

type VitalPathO 1 Type is record
InputChangeTime : TIME; -- Time stamp for path input signal

Pathcondition : BOOLEAN; -- Path sensitize condition
45 PathDelay : VitalDelayTypeOl ; -- Delay for this path

end record;

Selection of the appropriate path delay begins with the selection of candidate paths. The candidate paths are
selected by identifying the paths for which the Pathcondition is true. If there is a single candidate path, then its
delay is the one selected. If there is more than one candidate path, then the shortest delay (accounting for the
InputChangeTime) is selected using transition-dependent delay selection. If there are no candidate paths, then
the delay specified by the DefaultDelay parameter to the path delay procedure is used.

50

Clause 9 61

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

I 9.4.1 VitalPathDelay andVitalPathDelayO1

The VitalPathDelay and VitalPathDelayOl procedures schedule path delays on signals for which the transition
to ‘Z’ is not important. These procedures are distinguished from one another by the type of delay values that they
accept. The procedure VitalPathDelay is defined for simple path delays of type VitalDelayType. Procedure
VitalPathDelayOl is defined for transition-dependent path delays of type VitalDelayTypeOl (rise/fall delays). 5

Example:

10

15

20

25

30

VitalPathDelayOl (
Outsignal => QN, -- Signal being scheduled
OutSignalName => “QN”,
OutTemp => QN-td, -- New signal value to be scheduled

Paths => (-- One path data for each input

-- Name of the signal

-- affecting the output
-- First input pin that affects the output

0 => (InputChangeTime => CLK-ipd’LAST-EVENT,
PathDelay => tpdCLK-QN,
Condition => (PN-ipd = ‘0’ and CN-ipd = ‘1’)),

-- Second input pin that affects the output
1 => (InputChangeTirne => PN-ipd’LAST-EVENT,

Condition

Def au It Delay
Mode => OnEvent. -- Mode fcr $itch processing
MsgOn => TRUE. -- Message ccntrol on glitch
XOn => TRUE,
MsgSeverity => ERROR);

=> Vita!Ze ro D if all path condition are FALSE

9.4.2 VitalPathDelayOlZ

Procedure VitalPathDelayOlZ schedules path delays on signals for which the transition to or from ‘ Z is
important (e.g., modeling of tri-state drivers). In addition to the basic capabilities provided by all path delay
procedures,VitalPathDelayOl Z performs result mapping of the output value (using the value specified by the
actual associated with the OutputMap parxineter) before scheduling this value on the signal. This result mapping
is performed after transition-dependent delay selection but before scheduling the final output.

35

4o

Exumple:

45

50

VitalPathDelayOl Z(
Outsignal => Q, -- Signal being scheduled
OutSignalName => “Q”,
OutTemp => Q-zd, -- New signal value
Paths => (-- One path data for each input

-- First input pin that affects the output
0 => (InputChangeTime => D-ipd’LAST-EVENT,

-- Name of the signal

-- affecting the output

PathDelay => tpd-D-Q,
Condition => (Enable = ‘O’)),

62 Clause 9

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

1

5

-- Second input pin that affects the output
1 => (InputChangeTime => Enable-ipd’LAST-EVENT,

PathDelay => tpd-Enable-Q,
Condition => (Enable = ‘l’))),

GlitchData => GlitchData-Q,
MsgOn => TRUE,
XOn => TRUE,
Mode => OnEvent,
MsgSeverity => ERROR,
OutputMap => “UXO1 WHLHX); -- Pullup behavior

10

9.5 Delay selection in VITAL primitives

In addition to functional computation, the VITAL primitive procedures perform delay selection, glitch handling,
and signal scheduling. The delay selection mechanism in the primitives is different from that used in the path delay
procedures.

15

The delay selection algorithm used by the VITAL primitive procedures is based on the following selection criteria:

- If the new output value is dependent on multiple input values, the delay selected is the maximum of the
delays from the dependent inputs.

20

- If the new output value is determined by either of the input values, the delay selected is the minimum of
the delays from these inputs.

25
Delay selection in VITAL primitive procedures is accomplished by maintaining separate output times from each
input signal and then selecting thc appropriate output delay based on the preceding selection criteria. The new
value is scheduled on the output using the selected delay.

3o Control of glitch handling is provided through a formal parameter.

35

Example:

Let
Ti0 be the time when the output will change based on a falling input
Til be the time when the output will change based on a rising input

For an AND primitive,
An output going to a ‘1’ value will be scheduled after the maximum of Til times for each input
An output going to a ‘0’ value will be scheduled after the minimum of Ti0 times for each input 40

, However, for a NAND primitive,
An output going to a ‘1’ value will be scheduled after the minimurn of Ti0 times for each input
An output going to a ‘0’ value will be scheduled after the maximum of Til times for each input

45
Similarly, for an OR primitive.

An output going to a ‘1’ value will be scheduled after the minimum of Til times for each input
An output going to a ‘0’ value will be scheduled after the maximum of Ti0 times for each input

50 9.6 VitalExtendToFillDelay

The function VitalExtendToFiIIDelay is a utility that provides a set of six transition-dependent delay values, even
though fewer delay values may have been explicitly provided.

Clause 9 63

IEEE
Std 1076.4-1 995

I Example:

5

I0

15

20

25

30

35

40

45

50

64

CONSTANT tpd-Input-Output : VitalDelayTypeOl ;
-- This variable holds two delay values
VARIABLE tpd-Control-Output: VitalDelayTypeOl Z;
-- This variable holds six delay values

tpd-Control-Output := VitalExtendToFiIIDelay(tpd-Input-Output);
...

IEEE STANDARD FOR VITAL ASIC

Clause 9

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

1

5

I O . The VITAL standard packages

10 This standard defines two standard packages-VITAL-Timing and VITAL-Primitives-that predefine a number
of items that are useful or required for designing VITAL,-compliant models. These packages shall reside in the
VHDL library IEEE.

The semantics of the VITAL, standard packages are defined by their VHDL description according to IEEE Std
1076-1987 and IEEE Std 1164-1993. Their interfaces are defined by their package declarations, and their behavior
is defined by the corresponding package bodies. An implementation may not add items, delete items, or otherwise
alter the contents of the VITAL, standard packages. An, implementation may choose to implement the package
bodies in a more efficient form; however, the resulting semantic shall not differ from the formal semantic provided
herein.

The standard packages (subclauses 10.1 through 10.4) are on the diskette that is included with this standard. These
standard packages are an official part of this standard. Please consult this diskette for the contents of these standard
packages.

15

20

25

30

35

40

45

50

Clause 10 65

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

Annex A

(informative)

Syntax summary

VITAL-controljeneric-declaration : : = [4.3.2.2]
[constant] identifier-list ::= [in 3 type-mark [index-constraint] [:= static-expression 3 ;

VITAL-design-file ::=
VITAL-design-unit { VITAL-design-unit }

VITAL-design-unit : :=
context-clause library-unit

I context-clause VITAL-library-unit

[4.2.2]

14.2.21

VITAL-entity-declarative-part : := VITAL-LevelO-attribute-specification i4.31

VITAL-entityjeneric-clause : :=
generic (VITAL-entity-interface-list) ;

VITAL-entity-header ::=
[VITAL-entityseneric-clause]
[VITAL-entity-port-clause]

VITAL-entityjnterface-declaration : :=
interface-constant-declaration

I VITAL-timingjeneric-declaration
I VITAL-controljeneric-declaration
I VITAL-entity-port-declaration

VITAL-entity-interface-list : := N.31
VITAL-entityjnterface-declaration { ; VITAL-entity-interface-declaration }

VITAL-entity-port-clause : :=
port (VITAL-entity-interface-list) ;

VITAL-entity-port-declaration ::= [4.3.1]
[signal] identifier-list : [mode] type-mark [index-constraint] [:= static-expression] ;

VITAL-functionality-section : := [6.4.3.2.2]
{ VITAL-variable-assignment-statement I procedure-call-statement }

VITAL-internal-signal-declaration : := [6.3.1]
signal identifier-list : type-mark [index-constraint] [:= expression] ;

VITAL-Level-0-architecture-body : := l4.41

66 Annex A

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

architecture identifier of entity-name is
VITAL-Level-0- architecture-declarative-part

begin
architecture-statement-part

end [architecture-simple-name 3 ;

VITAL-Level-0-architecture-declarative-part : :=
VITAL-LevelO-attribute-specification { block-declarative-item]

VITAL-Level-0-entity-declaration : :=
entity identifier is

VITAL-entity-header
VITAL-entity-declarative-part

end [entity-simple-name] ;

VITAL-Level-1-architecture-body : :=
architecture identifier of entity-name is

begin

end [archifecture_simple_name] ;

VITAL-Level- 1-architecture-declarative-part

VITAL-Level-1-architecture-statement-part

14.41

14.31

VITAL-Level- 1-architecture-declarative-part : : = w.31
VITAL-Level 1-attribute-specification
{ VITAL-Level-1-block-declarative-item]

VITAL,-Level- 1 -architecture-statemen t-part : : = L6.41
VITAL-Level-1-concurrent-statement { VITAL-Lev ncurrent-statement }

VITAL-Level-lblock-declarative-item : :=
constant-declaration

I alias-declaration
I attribute-declaration
I attribute-specification
I VITAL-internal-signal-declaration

VITAL-Level-l- concurrent-statement : :=
VITAL-wire-delay-block-statement

I VITAL-negative-constraint-block-statement
I VITAL-process-statement
I VITAL-primitive-concurrent-procedure-call

VITAL-LevelO-attribute-specification : := attribute-specification

VITAL-Level 1-attribute-specification : := attribute-specification

VITAL-library-unit : :=
VITAL-Level-0-en tity-declaration

I VITAL-Level-0-architecture-body
I VITAL-Level-1-architecture-body

VITAL-negative-constraint-block-statement : :=
block-label :
block

16.31

w.41

l4.11

[4.2.2]

[6.4.2]

Annex A 67

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

begin

end block [block-label] ;
{ VZTAL-negative-constraint-concurrent-procedwe-call }

VITAL-primitive-concurrent-procedure-call : :=
VITALgrimitive-concuent-procedure-call

VITAL-process-declarative-item : :=
constant-declaration

I alias-declaration
I atbibute-declaration
I attribute-specification
I VITAL-variable-declaration

VITAL-process-declarative-part : :=
{ VITAL-processdeclarative-item }

VITAL-process-statement : : =
[process-label :]
process (sensitivity-list)

begin

end process [process-label

VITAL-process-declarative-part

VITAL-process-statemen$

VITAL-process-statement-part
[VITAL-timing-c
[VITAL-functionality-section J
[VITAL-path-delay-section 1

[6.4.4]

[6.4.3.1]

[6.4.3.2]

[6.4.3]

[6.4.3.2]

VITAL-target ::= unrestricted-variable-name [6.4.3.2.2]

VITAL-timing-check-condition : := generic-simple-name

VITAL-timing-check-section : :=
if VITAL-timing-check-:. #:!.!' ':,-I then

end if ;
{ VITAL-timingcheck-statement

[6.4.3.2.1]

[6.4.3.2.1]

VITAL-timing-check-s tatement : := procedure-call-statement [6.4.3.2.1]

VITAL-timingjeneric-declaration : := [4.3.2.1]
[constant] identifier-list ::= [in] type-mark [index-constraint] [:= static-expression] ;

VITAL-variable-assignment-statement ::=
VITAL-target := expression ;

[6.4.3.2.2]

VITAL-variable-declaration ::= [6.4.3.1.1]
variable identifier-list : type-mark [index-constraint] [:= expression] ;

VITAL-wire-delay-block-statement : :=
block-label :
block
begin

[6.4.1]

68 Annex A

MODELING SPECIFICATION

VITAL-wire-delay-bloc k-s tatement-part
end block [block-label 3 ;

VITAL-wire-delay-block-statement-paxt : :=
{ VITAL-wire-delay-concurrent-procedure-call
I VITAL-wire-delay-generate-statement }

VITAL-wire-delay-concurrent-procedure-call : := concurrent-procedlure-call

VITAL-wire-delay-generate-parameter-specification : :=
identifier in range-attribute-name

VITAL-wire-delaysenerate-statement : :=
generate-label :
for VITAL-wire-delay_generate-parameter-specification generate

{ VIT~~wire~delay~concurrent~procedure~call
end generate [generate-label] ;

IEEE
Std 1076.4-1 995

r6.4.11

[6.4.1]

[6.4.1]

[6.4.1]

Annex A 69

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

Annex B

(informative)

Glossary

This glossary contains brief, informal definitions of a number of hardware-specific terms and phrases that are used
in this standard. The definitions in this annex are not a part of the formal definition of this standard.

ASIC cell: The building block of an Application-Specific Integrated Circuit (ASIC).

device delay: The intrinsic delay of a cell; it represents the delay associated from each input path to the given
output of the cell.

hold time: The time period following a clock edge during which <an input signal value may not change value.

interconnect path delay: Delays on the wires that connect various instantiations of ASIC cells in a design.

no change time: A stable interval associated with a setup or hold constraint. A signal checked against a control
signal has to remain stable cluring the setup period established before the start of the control pulse, the entire width
of the pulse, and the hold period established after the pulse. Each of these stable intervals is a no change time.

period: The time delay from the specified edge of a clock pulse to the corresponding edge of the following clock
pulse.

propagation delay: The time delay from the arrival -of an input signal value to the appearance of a corresponding
output signal value.

pulse width: The time duration for which the value of signal remains unchanged at a low or high state.

recovery time: The minimal time interval by which a change to an unasserted value on an asynchronous (set,
reset) input signal has to precede the clock edge.

removal time: The minimal time interval for which an asserted condition has to be present on an asynchronous
(set, reset) input signal following the clock edge.

setup time: The time period prior to a clock edge during which an input signal value may not change value.

skew time: The maximum allowable delay between two signals. A delay that exceeds the skew time causes
devices to behave unreliably.

70 Annex B

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

Annex C

(informative)

Bibliography

[Bl] IEEE Std 1076-1993, IEEE Standard VHDL Language Reference Manual (ANSI).'

[B2] IEEE Std 1076/INT-1991, IEEE Standards Interpretations: IEEE Std
Language Reference Manual.

[B3] EIA-5670000-9 1, EIA Commercial Component Madel Specification.2

1076-1987, IEEE Standard VHDL

'IEEE publications are available from the Institute of of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331,
Piscataway, NJ 08855-1331, USA.
2EIA publications are available from the Global Engineering Documents, 15 Inverness Way East, Englewood, CO 80112,
USA.

Annex C 71

IEEE
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC

Index negative constraint calculation phase 55-58
biased propagation delay calculation 56
internal clock delay adjustment 56-57
internal clock delay calculation 55
internal signal delay adjustment 57
internal signal delay calculation 56
propagation delay adjustment 56
timing check generic adjustment 57-58

negative constraint timing generic 10
negative timing constraints 53-58

modeling requirements 54-55

A
architecture

Level 0 17-18
Level 1 33-34

B
backannotation 19-20

methods 19
phase 19

P
path delay procedure 41, 61-63
port declaration, Level 0 10
primitive 43

backannotation timing generic 10, 19

C
clock signal name 16
configuration declaration, and backannotation 19
control generic 17

logic, See also logic primitive 43
table, See also table primitive 45
utility 43

D
delay selection 59-63

Eormal parameter 38 in path delay procedure 61-63
in primitive procedure 63 restrictcd variable 38-39

design entity, Level 1 33

E
entity, Level 0

declaration 9-10
in Level 1 design entity 33

ondition 27-28,28-30
G
generic, Level 0 10-17
glitch handling 60-61 DELAY entry 23-24

DELAYFIIJ! entry 20
I DEVICE entry 25-26
Instancepath generic 17 DWentry 26
internal signal 34 DIVIDER cntry 21

edge 27-28
L EDGE-IDENTIFIER variable 28
logic primitive 43-45 GLOBALPATHPULSE entry 24

function 43-44 header section 20-21
output strength 45 HOLD entry 26
procedure 4 4 4 5 INCREMENT entry 24

INSTANCE entry 21
M INTERCONNECT entry 25
MsgOn generic 17 IOPATH entry 24

NETDELAY entry 24
NOCHANGE entry 26
PATH variable 21
PATHCONSTRAINT entry 26
PATHPULSE entry 24
PERIOD entry 26
PORT entry 24-25

N
naming conventions

generic 11-13
port 10

negative constraint block 34, 37

72 Index

MODELING SPECIFICATION
IEEE

Std 1076.4-1 995

port specification 30-3 1
RECOVERY entry 26
SDFVERSION entry 20
SETUP entry 26
SETUPHOLD entry 26
SKEW entry 26
SKEWCONSTRAINT entry 26
S U M entry 26
TIMESCALE entry 21
timing specification 22
TIMINGCHECK entry 26-28
WIDTH entry 26

SDF annotator 19-20
SDF import 19
simple delay 59
state table 49-50

algorithm 50
construction 49-50

T
table primitive 42,45-50
table symbol 45-46

in table section 46
matching 46-47

timing check procedure 39, 51
timing generic 10-16

name 11-13
port specification 12
prefix 11
SDF mapping to 23-32
specifications 13-16
subtype 13
suffix 12
usage 18

tbpd 16
tdevice 16
thold 14
ticd 16
tipd 15
tisd 16
tnchold 15
tpd 13
tperiod 14
tpw 15
trecovery 14
tremoval 14
tsetup 14, 15
tskew 15

timing generic prefixes 12

timing generics
biased propagation delay 16, 55-58
device delay 16, 25-26
hold time 14, 27, 57-58

interconnect path delay 15-16, 24-25, 25
internal clock delay 16, 37, 55-58
internal signal delay 16, 37, 55-58
no change hold time 15,27
no change setup time 15,27
period 14,27
propagation delay 13,24
pulse width 15, 27
recovery time 14,27,57-58
removal time 14,57-58
setup time 14,27,57-58
skew time 15,27

TimingChecksOn generic 17,39
transition dependent delay 59
transition dependent delay selection 60
truth table 47-49

algorithm 49
construction 48

U
utility primttive, See also table primitive, VITALRe-

solve 43

V
variable 38--39
VHDL usage, general 8-9
violation reporting 17
VITAL compliance 5 - 6
VITAL delay type or subtype 59-60

in timirtg generic subtype 13
SDF data value mapping 23

WAL modeling levels 5-6
VITAL primitive concurrent procedure call 3 5 , 4 1 4 2
VITAL process 35, 37-41

declarative part 38-39
functionality section 40-41
path delay section 41
sensitivity list 38
timing check section 39-40

VITAL SDF Map 20-32
VITAL standard packages 6,65
VITAL-Level0 attribute 8
VITAL-Level1 attribute 33
VITAL-Primitives 65
VITAL-Timing 65
VlTALExtendToFillDelay 63
VlTALGlitchKindType type 60
VlTALPathDelay 41, 62
VITALPathDelayOl 41, 62
VlTALPathDelayOlZ 41, 62-63
VlTALPeriodPulseCheck 39, 52
VlTALRecoveryRemovalCheck 39,52-53
VlTALResolve 45

Index 73

	Overview
	1.1 Intent and scope of this standard
	1.2 Structure and terminology of this standard
	1.3 Syntactic description
	1.4 Semantic description
	1.5 Front matter examples figures notes and annexes

	References
	Basic elements of the VITAL ASIC modeling specification
	3.1 VITAL modeling levels and compliance
	3.2 VITAL standard packages
	3.3 VITAL specification for timing data inseition

	The VITAL Level 0 specification
	4.1 The VITAL-Level0 attribute
	4.2 General usage rules :
	Standard VHDL usage
	Organization of VJTAL-compliant descriptions

	4.3 The VITAL Level 0 entity interface
	4.3.1 Ports
	4.3.2 Generics
	4.3.2.1 Timing rene4'c
	4.3.2.2 Control g I l

	::
	Timing generic usage

	Backannotation
	5.1 Backannotation methods
	Direct SDF import
	The SDF annotator :

	5.2 The VITAL SDF map
	5.2.1 Delay file
	5.2.2 Header section
	5.2.3 CELL entry
	INSTANCE and CELLTWE entries
	5.2.5 Timing specifications
	Data value mapping
	Mapping to timing generics
	5.2.7.1 DELAY entry
	5.2.7.2 TIMINGCHECK entry
	Mapping of SDF constructs to general VHDL lexical dements

	The VITAL Level 1 specification
	The VITAL-Level1 attribute
	6.2 The VITAL Level 1 architecture body
	6.3 The VITAL Level 1 architecture declarative part
	VITAL internal signals

	6.4 The VITAL Level 1 architecture statement patt
	Wire delay block statement
	Negative constraint block statement
	VITAL process statement
	VITAL process declarative part
	VITAL process statement part

	6.4.4 VITAL primitive concurrent procedure call

	Predefined primitives and tables
	7.1 VITAL logic primitives
	Logic primitive functions

	7.3 VITAL table primitives
	VITAL table symbols
	Table symbl ! ‚.
	TrutliTable ;™!
	Truth table construction

	7.3.4 StateTable priiiiiL!\L:
	State table construction
	7.3.4.2 StnteTable algorithm

	8 Timing constraints
	8.1 Timing check procedures
	cr! Rcii:o\ il(hSL.k

	8.2 Modeling iir*gali\c iiliiiiig coii\I::li:lis
	Requirements on the VHDL description
	Adjustment of timing check generics

	9 Delay selection
	9.1 VITAL delay types and subtypes
	9.2 Transition-dependent delay selection
	9.3 Glitch handling
	9.4 Path delay procedures
	9.4.1 VitalPathDelay andVitalPathDelayO1
	9.4.2 VitalPathDelayOlZ

	9.5 Delay selection in VITAL primitives
	9.6 VitalExtendToFillDelay

	10 The VITAL standard packages
	Syntax summary (informative)
	Glossary (informative)
	Bibliography (informative)
	Index

