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Introduction 

[This introduction is not a part of IEEE Std 1076.4-1995, IEEE Standard for VITAL Application-Specific Integrated Circuit 
(ASIC) Modeling Specification.] 

The objective of VITAL (VHDL Initiative Towards ASIC Libraries) was to accelerate the development of sign- 
off quality ASIC macrocell simulation libraries written in the VHSIC Hardware Description Language (VHDL) 
by leveraging existing methodologies of model development. 

The VITAL effort germinated from ideas generated at the VHDL International Users’ Forum in May 1992. 
Further discussions revealed that the biggest impediment to VHDL design was the lack of ASIC libraries, and that 
the biggest impediment to ASIC library development was the lack of a uniform, efficient method for handling 
timing in VHDL. Since this problem had already been solved for other languages, it was clear that a solution in 
VHDL was possible and that an effective way to arrive at this solution was to leverage existing technology. 
Leveraging existing tools and environments serves as a catalyst for the rapid deployment of ASIC libraries. 

VITAL obtains its leverage from 

a) The Standard Delay Format (SDF), in addition to jj 

b) Certain contributed elements of the Std-Timing package provided by William Billowitch and 
specialized timing and behavioral techniques provided by Ray Ryan, and 

c) The existence of numerous ASIC libraries and tools developed using SDF timing implementations 

VITAL used many ideas about % primitives and timing models described in theVerilog* language. In particular, 
Verilog’s support for representing truthlstate tables and its mechanism for-prforming pin-to-pin delay selection 
were found to be highly useful. 

The VITAL organization was an informal consortium of interested companies in the electronics industry who 
shared the goals of accelerating the availability of VHDL ASIC libraries. They represented the three components 
of the ASIC design triangle: ASIC vendors, EDA vendors, and end users of ASIC components. More than 60 such 
companies worldwide joined the consortium. This grbvp was led by a steering Committee, which was responsible 
for the development of the VITAL technical specifications as well as the promotion and dissemination of 
information about this work. The members of the steering committee were: Steven Schulz, William Billowitch, 
Ray Ryan, Oz Levia, Victor Berman, Victor Martin, Ravi Kumar, Sanjay Nay&, Tom Senna, and Herman Van 
Beek. 

The VITAL steering committee transferred this work to the E E E  P1076.4 Working Group for consideration as 
the basis of a standard for ASIC modeling in VHDL. This standard is the result of the efforts of the working group 
in refining that baseline document. 

The E E E  P1076.4 Working Group has a membership of over 300 interested people who have made significant 
contributions to this work through their participation in technical meetings; their review of technical data both in 
print and through electronic media; and their votes, which guided and finally approved the content of the draft 
standard. 

The technical direction of the working group as well as the day-to-day activities of issue analysis and drafting of 
proposed wordings for the standard were the responsibility of the IEEE P1076.4 TAG (Technical Action Group). 
This group consisted of Ravi Kumar, Sanjay Nayak, Dennis Brophy, Ray Ryan, John Busco, Tim Ayres, Bill 
Paulsen, and Kathy McKinley, and the group was chaired by Oz Levia. Without the dedication and hard work of 
this group, it would not have been possible to complete this work. 

This standard is the result of numerous discussions with ASIC vendors, CAE tool vendors, and ASIC designers 
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to determine the requirements for effective design and fabrication of ASICs using VHDL. The highest priority 
issues identified by this group were 

- Timing accuracy 

- Model maintainability 

- Simulation performance 

Some basic guiding principles followed during the entire specification development process were 

- To describe all functionality and timing semantics of the model entirely within the VHDL model and the 
associated VITAL packages. 

- To provide a set of modeling rules (Level 1) that constrain the use of VHDL to a point that is amenable 
for simulator optimizations, and at the same time to provide enough flexibility to support most existing 
modeling scenarios. 

- To have all timing calculations (load dependent or environmentally dependent) performed outside of the 
VITAL model. The VITAL model would get these timing values solely as actual values to the generic 
parameter list of the model or via SDF direct import. 

The following persons were members o EE P1076.4 Working Group: 

Victor Berman, Chair 

Suresh Agarwal 
Dave Agnew 
Dave Allenbaugh 
Brien Anderson 
Cliff Anderson 
Jan Anderson 
Robert E. Anderson 
Ronen Arad 
Libby Aston 
Naveena N. Aswadhati 
Jeffrey M. Aubert 
Larry M. Augustin 
Bulent Ay 
Tim Ayres 
Stephen A. Bailey 
Mikhail A. Baklashov 
Ekambaram Balaji 
Bruce Bandali 
Sudarshan Banerjee 
Peter Barck 
Daniel Barclay 
Karen Bartleson 
Mark Basten 
Michael A. Beaver 
David Belz 
Leon Benders 
Ad J. W. M. ten Berg 
Jean-Michel Berge 
Werner Bergmann 
David Bemstein 

Kathy McKinley, Technical Ediitor I_ 
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Christian Berthet 
Jayaram Bhaskcr 
Scott Bilk 
William D. Billowitch 
John Biro 
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Robert Bloor 
Michael Bohm 
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Elaine Boyd 
Jean Pierre Braunt 
Christopher Brock 
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J. Scott Calhoun 
Brian Caslis 
Shir-Shen Chang 
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IEEE Standard for VITAL Application-Specific 
Integrated Circuit (ASIC) Modeling Specif icat ion 

1. Overview 

This clause describes the purpose and organizationof this standard. 

1.1 Intent and scope of this standard 

The intent of this standard is to define accurately the standard VITAL ASIC modeling specification. The primary 
audience for this document are the implementors of tools supporting the standard and ASIC modelers. 

1.2 Structure and terminology of this standard 

This standard is organized into clauses, each of which focuses on some particular area,of the definition of the 
specification. Each page of the formal definition contains ruler-style line numbers in the left margin. Within each 
clause, individual constructs or concepts are discussed in each subclause. 

Each subclause describing a specific construct or concept begins with an introductory paragraph. If applicable, the 
syntax of the construct is then described using one or more grammatical productions. A set of paragraphs 
describing in narrative form the information and rules related to the construct or concept then follows. Finally, 
each subclause may end with examples, figures, and notes. 

1.3 Syntactic description 

The form of a VITAL-compliant VHDL description is described by means of a context-free syntax, using a simple 
variant of the Backus-Naur form; in particular: 

a) Lowercased words, some containing embedded underlines, are used to denote syntactic categories, for 
example: 

VITAL-process-statement 

Whenever the name of a syntactic category is used, apart from the syntax rules themselves, spaces take 
the place of underlines (thus, “VITAL process statement” would appear in the narrative description when 
refemng to the above syntactic category). 

Clause 1 1 
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Boldface words are used to denote reserved words, for example: 

process 

Reserved words shall be used only in those places indicated by the syntax. 

Aproduction consists of a left-hand side, the symbol “::=” (which is read as “can be replaced by”), and 
a right-hand side. The left-hand side of a production is always a syntactic category; the right-hand side 
is a replacement rule. 

The meaning of a production is a textual-replacement rule: any occurrence of the left-hand side may be 
replaced by an instance of the right-hand side. 

A vertical bar separates alternative items on the right-hand side of a production unless it occurs 
immediately after an opening brace, in which case it stands for itself. 

Square brackets enclose optional items on the right-hand side of a production 

Braces enclose a repeated item or items on the right-hand side of a production. The items may appear 
zero or more times; the repetitions occur f ~ o m  left LO right as with an equivalent left-recursive rule. 

If the name of any syntactic category starts with an italicized part, it is equivalent to the category name 
without the italicized part. The italicized part is intended to convey some semantic information. For 
example, unrestricted-variable-name is syntactically equivalent to aame alone. 

The term simple-name is used for any occurrence of an identifier that already denotes some declared 
entity. 

A syntactic category for which no replacement rule is specified is assumed to correspond to the VHDL 
syntactic category of the same name. In this case thc appropriate replacement rule can be found in IEEE 
Std 1076-1987.’ 

A syntactic category beginning 
syntactic category. 

the unitaljcized prefix ‘‘VITAL_” represents a subset of a VHDL 

A word shown in all uppercase letters can represent a reserved word in VHDL. 

SDF constructs are represented in the following manner: 

1) An italicized lowercase identifier represents an SDF syntax construct. 

2) The definition of a syntax construct is indicated by the symbol ::=, and alternative definitions are 
separated by the symbol ll=. 

3) Keywords appear in boldface capital letters. 

4) Uppercase identifiers represent variable symbols. 
50 

5) The form “item?’ represents an optional item. 

‘Information about references can be found in clause 2. 

2 Clause 1 



I 

5 

IO 

15 

20 

25 

30 

35 

40 

45 

50 

MODELING SPECIFICATION 

6) The form “item”” represents zero or more occurrences of the item. 

7) The form “item+” indicates one or more occurrences of the item. 

IEEE 
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1.4 Semantic description 

The meaning of a particular construct or concept and any related restrictions are described with a set of narrative 
rules immediately following any syntactic productions in the subclause. In these rules, an italicized term indicates 
the definition of that term, and an identifier appearing in Helvetica font refeis to a definition in one of the VHDL 
or VITAL standard packages or in a VHDL model description. An identifier beginning with the prefix “VITAL” 
corresponds to a definition in a VITAL standard package. 

Use of the words “is” or “shall” in such a narrative indicates mandatory weight. A noncompliant practice may be 
described as erroneous or as an error. These terms are used in these semantic descriptions with the following 
meaning: 

erroneous-the condition described represents a noncompliant modeling practice; however, implementations 
are not required to detect and report this condition. Conditions are deemed erroneous only when it is either 
very difficult or impossible in general to detect thc condition during the processing of a model. 

error-the condition described represents a noncompliant modeling practice; implementations are required 
to detect the condition and report an error to the user of the tool. 

1.5 Front matter, examples, figures, notes, and annexes 

Prior to this clause are several pieces of introductory material; following the final clause are some annexes and an 
index. The front matter, annexes, and index serve to orient and otherwise aid the user of this standard but are not 
part of the definition of this standard. 

Some subclauses of this standard contain examples, figures, and notes; with the exception of figures, these parts 
always appear at the end of a subclause. Examples are meant to illustrate the possible forms of the construct 
described. Figures are meant to illustrate the relationship between various constructs or concepts. Notes are meant 
to emphasize consequences of the rules described in the clause or elsewhere. In order to distinguish notes from 
the other narrative portions of the definition, notes are set as enumerated paragraphs in a font smaller than the rest 
of the text. Examples, figures, and notes are not part of the definition of the specification. 

Clause 1 3 



IEEE 
Std 1076.4-1 995 

I 

IEEE STANDARD FOR VITAL ASIC 

5 

2. References 

10 This standard shall be used in conjunction with the following publications. Bibliographic references may be found 
in annex C. Citations of the form ‘‘@ 11” refer to items listed in annex C ,  not to items listed in this clause. 

IEEE Std 1076-1987, IEEE Standard VHDL Language Reference Manual. 

20 

15 IEEE Std 1164-1993, IEEE Standard Multivalue Logic System for VHDL Model Interoperability 
(Std-logic-1 1 64).3 

Standard Delay Format Specification, Version 2.14 

25 

30 

35 

40 

45 

21EEE Std 1076-1987 has been superceded by JEEE Std 1076-1993 (see Annex C for bibliographic information on the latest 
version of this standard). IEEE Std 1076-1987 is no longer in print; however, it is available archivally from Global Engineer- 
ing, 15 Inverness Way East, Englewood, CO 80112-5704, USA. 
31EEE publications are available from the Institute of of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, 
Piscataway, NJ 08855-133 1 ,  USA. 
40VI publications are available from Open Verilog International (OVI), 15466 Los Gatos Blvd, Suite 109-071, Los Gatos, CA 
95032. 
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3. Basic elements of the VITAL ASIC modeling specification 

This standard defines a modeling style for the purpose of facilitating the development and acceleration of sign-off 
quality ASIC macrocell simulation libraries written in VHDL. 

This standard is an application of the VHSIC Hardware Description Language (VHDL), described in IEEE Std 
1076-1987 and IEEE Std 1076-1993 [Bl]. This standard uses the term VHDL to refer to the VHSIC Hardware 
Description Language. In no case shall the modeling rules introduced by this standard be in conflict with IEEE 
Std 1076-1987. 

This standard relies on the IEEE Standard Multivalui: Logic System for VHDL Model Interoperability 
(Std-Logic-1164), described in IEEE Std 1164-1993, for its basic logic representation. Throughout this standard, 
the term standard logic refers to the Std-Logic-1164 package or to an item declared in the Std-Logic-1164 
package. 

This standard relies on the Standard Delay Format (SDF), as defined by the OW Standard Delay Format 
Specification Version 2.1, as a standard external timing data representation. Throughout this standard, the term 
SDF refers to this particular version of the delay format. 

This standard consists of three basic elements: the formal definition of a VITAL-compliant VHDL model, a set 
of VHDL packages for providing standard timing support and standard functionality support, and a semantic 
specification describing a standard mechanism for insertion of timing data into a VHDL model. 

3.1 VITAL modeling levels and compliance 

A VITAL ASIC cell is represented by a VHDL design entity. This standard defines the characteristics of a VITAL 
design entity in terms of the VHDL descriptions of the entity and architecture, and in terms of the associated model 
which is the result of the elaboration of those VHDL descriptions. 

This standard defines two modeling levels; these levels are called VZTAL Level 0 and VZTAL Level I. Each 
modeling level is defined by a set of modeling rules. The VITAL Level 0 specification forms a proper subset of 
the VITAL Level 1 specification. 

A model is said to adhere to the rules in a particular specification only if both the model and its VHDL description 
satisfy all of the requirements of the specification. Furthermore, if such a model makes use of an item described 
in a configuration declaration or a package other than a VHDL or VITAL standard package, then the external item 
shall satisfy the requirements of the specification, as though the item appeared in the VHDL description of the 
design entity itself. 

The VITAL Level 0 specification defines a set of standard modeling rules that facilitate the portability and 
interoperability of ASIC models, including the specification of timing information. A model that adheres to the 
rules in the VITAL Level 0 specification is said to be a VZTAL Level 0 model. The VITAL Level 0 modeling 
specification is described in clause 4. 

The VITAL Level 1 specification defines a usage model for constructing complete cell models in a manner that 
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facilitates optimization of the execution of the models. A model that adheres to the rules in both the VITAL Level 
0 model interface specification and the VITAL Level 1 model architecture specification is said to be a VITAL 
Level I model. The VITAL Level 1 modeling rules are defined in clause 6. 

A model that is a VITAL Level 0 model or a VITAL Level 1 model is said to be VITAL compliant. A VITAL- 
compliant model description contains an attribute specification representing the highest level of compliance 
intended by the enclosing entity or architecture. Descriptions of these attribute specifications may be found in 4.1 
and 6.1. 

NOTES 

1-A VITAL Level 1 model is by definition a VITAL Level 0 model as well (but not vice versa). 

2-The rules outlined in the VITAL Level 0 and VITAL Level 1 specifications apply to model descriptions, not to the VITAL 
standard packages themselves. 

3-A VITAL-compliant tool is assumed to enforce the definition of all applicable rules in accordance with the definitions of 
the terms IS, SHALL, ERROR, and ERRONEOUS. In addition, a compliant tool is expected to accept and execute correctly 
a VITAL-compliant model, and to identify and reject models that are not compliant. A VITAL-compliant tool is also expected 
to support fully the processes described in the specification, including SDF backannotation and negative time sequential 
constraint transformation. 

3.2 VITAL standard packages 

This standard defines two standard packages for use in specifying the timing and functionality of a model: 
VITAL-Timing and VITAL-Primitives. The text of these packages may be found in clause 10. 

The VITAL-Timing package defines data types and subprograms to support development of macrocell timing 
models. Included in this package are routines for delay selection, output scheduling, and timing violation checking 
and reporting. 

The VITAL-Primitives package defines a set of commonly used combinatorial primitives and general-purpose 
truth and state tables. The primitives are provided in both function and concurrent procedure form to support both 
behavioral and structural modeling styles. 

3.3 VITAL specification for timing data insertion 

This standard defines certain semantics that are assumed by a VITAL-compliant model and shall be implemented 
by a tool processing or simulating VITAL-compliant models that rely on these semantics. These semantics 
concern the specification and processing of timing data in a VHDL model. They cover SDF mapping, 
backannotation, and negative constraint processing. 

The timing data for a VITAL-compliant model may be specified in Standard Delay Format (SDF). The VITAL 
SDF map is a mapping specification that defines the translation between SDF constructs and the corresponding 
generics in VITAL-compliant models. The mapping specification may be used by tools to insert timing 
information into a VHDL model, either by generating an appropriate configuration declaration or by performing 
backannotation through direct SDF import. The VITAL SDF map is defined in 5.2. 

This standard introduces two new simulation phases for designs using VITAL models: the backannotation phase 
and the negative constraint calculation phase. These phases occur after VHDL elaboration but before 
initialization. 

The backannotation specification defines a backannotation phase of simulation and a mechanism for directly 
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5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

Clause 3 7 



IEEE 
Std 1076.4-1 995 

I 

IEEE STANDARD FOR VITAL ASIC 

5 

4. The VITAL Level 0 specification 

10 The VITAL Level 0 specification is a set of modeling rules that promotes the portability and interoperability of 
model descriptions by outlining general standards for VHDL language usage, restricting the form and semantic 
content of VITAL. Level 0 design entity descriptions, and standardizing the specification and processing of timing 
information. General VITAL Level 0 modeling d e s  are defined in this clause, and those relating to the modeling 
of negative timing constraints are defined in 8.2.1. 

15 

4.1 The VITAL-Level0 attribute 

A VITAL Level 0 entity or architecture is identified by its decoration with the VITAL-Level0 attribute, which 
indicates an intention to adhere to the VITAL Level 0 specification. 20 

A VITAL Level 0 entity or : i r L * l i i i c ' i l i i r ~ :  4i:1Il i'oiitain a specification of the VIT4L-LevelO attribute corresponding 
to the declaration of that attribute in &e package VITAL-Timing. The enti@ specification of the decorating 
attribute specification shall be such that the enclosing entity or architecture inherits the VITAL-Level0 attribute. 
The expression in the VITAL-Level0 attribute specification shall be the Boolean literal True. 

25 

NOTE-Because the required attribute specification representing VITAL compliance indicates the highest level of 
compliance (see 3.1), a VITAL Level 1 architecture, which is also by definition a VITAL Level 0 architecture, contains a 
VITAL-Level1 attribute specification (see 6.1) rather than a VITA Vel0 attribute specification. The above rules apply 
to architectures that are only VITAL Level 0. 

Example: 

30 

35 attribute VITAL-Level0 of VitalCompliantEntity : entity is True; 

4.2 General usage rules 

40 A VITAL Level 0 model shall adhere to general usage d e s  that address portability and interoperability. 

Rules that reference an item declared in a VHDL standard package, a VITAL standard package, or the 
Std-Logic-1164 package require the use of that particular item. A model description shall not use VHDL scope 
or visibility rules to declare or use an alternative item with the same name in the place of the item declared in one 

45 of these packages. 

4.2.1 Standard VHDL usage 

A VITAL Level 0 model is restricted to the use of IEEE Std 1076-1987 features that are portable, as defined by 
IEEE Std 1076ANT-1991 [B2]. Use of foreign architecture bodies or package bodies is prohibited. In addition, a 
VITAL-compliant model shall not use any features of IEEE 1076-1987 that have been removed or modified in the 
language revision described in IEEE Std 1076-1993 p l ] ,  nor shall it use any keywords or features introduced in 

50 

IEEE Std 1076-1993 [BI]. 
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1 It is erroneous for a VITAL model to make use of vendor-supplied attributes or other informative VHDL 
constructs, such as meta-comments or directives, in a manner that affects the function or timing characteristics of 
the model. 

4.2.2 Organization of VITAL-compliant descriptions 

The VHDL design entity representing a VITAL ASIC cell is described by a pair of design units that reside in one 
or more VHDL design files. This standard imposes no special requirements on the placement of VITAGcompliant 
descriptions within design files, which may contain a mixture of compliant and noncompliant descriptions. 

5 

10 

15 

VITAL-design-file : := 
VITAL-design-unit { VITAL-design-unit } 

VITAL-design-unit : := 
context-clause library-unit 

I context-clause VITAL-library-unit 

VITAL-library-unit : := s- hl 

VITAL-Level-0-entity-declaration 
I VITAL-Level-0-architecture-body 

20 I VITAL-Lmel- 1-architecture-body 

4.3 The VITAL Level 0 entity interface 

25 A VITAL Level 0 entity declaration defines an interface between a VITAL-compliant model and its environment. 

VITAL-Level-0-entity-declaration : := 

VITAL-entity-header 
entity identifier is 

30 VITAL-entity-declarative-part 
end [ entity-simple-name 3 ; 

VITAL-entity-header ::= 
[ VITAL-entity-generic-clause ] 

35 [ VITAL-entity-port-clause ] 

VITAL-entityseneric-clause : := 
generic ( VITAL-entity-interface-list ) ; 

40 VITAL-entity-port-clause : := 
port ( VITAL-entity-interface-list ) ; 

VITAL-entity-interface-list : := 
VITAL-entityjnterface-declaration { ; VITAL-entity-interface-declaration } 

45 

VITAL-entity -interface-declaration : : = 
interface-constant-declaration 

I VITAL-timingseneric-declaration 
I VITAL-control-generic-declaration 
I VITAL-entity-port-declaration 50 

VITAL-entity-declarative-part : := VITAL-LevelO-attribute-specification 
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The form of this interface strictly limits the use of declarations and statements. The only form of declaration 
allowed in the entity declarative part is the specification of the VITAL-Level0 attribute. No statements are 
allowed in the entity statement part. 

4.3.1 Ports 

Certain restrictions apply to the declaration of ports in a VITLcompliant entity interface. 

VITAL-entity-port-declaration : := 
[ signal ] identifier-list : [ mode ] type-mark [ index-constraint ] [ := static-expression ] ; 

The identifiers in an entity port declaration shall not contain underscore characters. 

A port that is declared in an entity port declaration shall not be of mode LINKAGE. 

The type mark in an entity port declaration shall denote a type or subtype that is declared in package 
Std-Logic-I 164. The type mark in the declaration of a scalar port shall denote the subtype Std-Ulogic or a 
subtype of Std-Ulogic. The type mark in the declaration of an array port shall denote the type 
Std-Logic-Vector. 

NOTE-The syntactic restrictions on the dh:; a VITAL Level 0 entity are such that the port cannot be a 
guarded signal. Furthermore, the declaration C.!iiII\it i::;po\: .: nnge constraint on the port, nor can it alter the resolution of the 
port from that defined in the standard logic packapc. 

4.3.2 Generics 

The generics declared in a V I T L  Levc ntity geiicric clause may be timing generics. control generics, or other 
generic objects. Timing generics and control generics serve a special purpose in a VITAL-compliant model; 
specific rules govern their declaration and use. Other generics may be defined to control functionality; such 
generics are not subject to the rcstrictions impored 011 timing or control generics. 

4.3.2.1 Timing generics 

This standard defines a number of timing generics, which represent specific kinds of timing information. Each 
kind of timing generic is classified as either a backunnotutioiz riming generic or a negative constraint timing 
generic, depending on whether the value of the generic is set during the backannotation phase of simulation or the 
negative constraint calculation phase of simulation. Rules govcrning the declaration of these generics insure that 
a mapping can be established between the timing generics of a modcl and the corresponding SDF timing 
information or negative constraint delays. 

VITA.L,-timing_generic-declaration : : = 
[ constant ] identifier-list ::= [ in ] type-mark [ index-constraint ] [ := static-expression ] ; 

A timing generic is characterized by its name and its type. The naming conventions (see 4.3.2.1.1) communicate 
the kind of timing information specified, as well as the port(s) or delay path(s) to which the timing information 
applies. The type of a timing generic (see 4.3.2.1.2) indicates which of a variety of forms the associated timing 
value takes. 

A VITAL-compliant description may declare any number of timing generics. There are no required timing 
generics. 

Examples: 

tperiod-Clk : VlTALDelayType := 5 ns; 

10 Clause 4 



MODELING SPECIFICATION 
IEEE 

Std 1076.4-1 995 

I 

5 

IO 

15 

20 

25 

30 

35 

40 

45 

50 

tpd-Clk-Q : ViTALDelayTypeOl := (trOl => 2 ns, t r l0 => 3 ns); 
tipd-D : ViTALDelayTypeOlZ := ( 1 ns, 2 ns, 3 ns, 4 ns, 5 ns, 6 ns ) 

NOTE-The value of a backannotation timing generic is set during the backannotation phase; however, if negative timing 
constraints are in effect, its value may be adjusted during the subsequent negative constraint calculation phase. 

4.3.2.1.1 Timing generic names 

The name of a timing generic shall adhere to the naming conventions for timing generics. If the name of a generic 
does not adhere to these conventions, then the generic is not a timing generic. 

The form of a timing generic name and its lexical constituents are described by lexical replacement rules similar 
to the replacement rules for syntactic constructs. White space is included in these rules to enhance readability; 
however, white space is not permitted within an identifier. Different elements used to construct names are 
distinguished by enclosing angle brackets, which are not themselves part of the name. If a lexical element enclosed 
by angle brackets does not have a replacement rule, then it corresponds to a VHDL identifier described by the text 
inside the angle brackets. Boldface indicates literal text. Underscores serve as connectors between constituent 
elements; they are also literal text. 

<VITALTimingGenericName> : := 
<VITALBac kannotationGenericName> 

I <VITALNegativeConstraintGenericName> 

<VITALBackannotationGenericName> : := 

I <VITALInputSetupTimeName> 
I <VITALInputHoldTimeName> 
I <VITALInputRecoveryTimeName> 
I <VITALInputRemovalTimeName> 
I <VITALInputPeriodName> 
I <VITALPulseWidthName> 
I <VITALInputSkewTimeName> 
I <VITALNoChangeHoldTimeName> 
I <VITALNoChangeSetupTimeName> 
I <VITALInterconnectPathDelayName> 
I <VITALDeviceDelayName> 

<VITALPropagationDelayName> 

<VITALNegativeConstraintGenericName> : := 
<VITALInternalClockDelayName> 

I <VITALInternalSignalDelayName> 
I <VITALBiasedFYopagationDelayName> 

The name of a timing generic is constructed from a timing generic prefix and a number of other elements 
representing device labels, ports or signals, edges, and conditions. These various elements are combined in a fixed 
manner, creating three distinct sections of the name: the timing generic prefix, the timing generic port 
specification, and the timing generic suffix. 

A timing generic pre& is a lexical element that serves as the beginning of the VHDL simple name of a timing 
generic. It identifies the kind of timing information that the generic represents, which in turn determines whether 
the generic is a backannotation timing generic or a negative constraint timing generic. The timing generic prefix 
consists of the sequence of characters preceding the first underscore in the generic name. It is an error for a model 
to use a timing generic prefix to begin the simple name of an entity generic that is not a timing generic. 

Clause 4 11 



I 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

IEEE 
Std 1076.4-1995 IEEE STANDARD FOR VITAL ASIC 

This standard defines the following set of timing generic prefixes: 

tPd tsetup thold trecovery tremoval 
tperiod tPW tskew tncsetup tnchold 
tipd tdevice tiCd tisd tbpd 

The timing generic port speciJication identifies the port(s) with which the timing data is associated. It may contain 
both port and instance names. A port that is referenced in a timing generic port specification is said to be 
associated with that timing generic. 

The discussion of timing generic names associates timing generics with entity ports; however, a model may use a 
signal or some other item in place of an entity port. If the port name extracted from a timing generic port 
specification does not denote a port on the entity, then no assumptions are made about the item denoted by the 
port name, and no consistency checks are performed between the timing generic and the named item. 

Backannotation and negative constraint calculation require the determination of the name(s) of the port(s) 
associated with a particular timing generic. A port name is extracted from the port specification portion of a timing 
generic name by taking the lexical element corresponding to that port (a sequence of characters that constitute a 
VHDL identifier, delimited by underscores), as defined by the naming conventions for that sort of a timing 
generic. 

The name of a timing generic may contain a timing generic s u f f i  that corresponds to a combination of SDF 
constructs representing conditions and edges. The fonns of these SDF-related suffixes are described by the 
following rules: 

i- 

<SDFSimpl eConditionAndOrEclge> : : = 
<ConditionName> 

I <Edge> 
I <ConditionName>-&dge> 

<SDF'FullConditionAndOrEdge> : := 
<ConditionNameEXge> [ -<SDFSimpleConditio Edge> ] 

<ConditionName> ::= 
simple-name 

<Edge> ::= 
posedge 

I negedge 
I O 1  
I10 
I oz 
I zl 
I lz 
I zo 

<ConditionNameEdge> ::= 
[ <ConditionName>- ] cEdge> 

I [ <ConditionName>- ] noedge 

A condition name is a lexical element that identifies a condition associated with the timing information. The 
condition name may be mapped to a corresponding condition expression in an SDF file according to the mapping 
rules described in 5.2.7.3.2. 
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An edge identifies an edge associated with the timing information. The edge may be mapped to an edge name 
specified in an SDF file using the mapping rules described in 5.2.7.3.1. 

NOTE-It is assumed that the names in timing generic port specifications will generally denote entity ports; however, a model 
may instead name other items that may or may not be visible from the enclosing entity declaration (internal signals, for 
instance). If a port name in a timing generic port specification does not denote a port on the entity, then there are no 
requirements for consistency between the timing generic and the named item (in fact, the named item does not even have to 
exist); hence, no consistency checks are performed. A tool that processes VITAL-compliant models may choose to issue a 
warning in this case. 

4.3.2.1.2 Timing generic subtypes 

The type mark in the declaration of a timing generic shall denote a VITAL, delay type or subtype. These are 
discussed in 9.1. 

If each port name in the port specification of a timing generic name denotes an entity port, then the type and 
constraint of the timing generic shall be consistent with those of the associated port(s). This consistency is defined 
as follows: 

- If the timing generic is associated with a single port and that port is scalar, then the type of the timing 
generic shall be a scalar form of delay type. If the liming generic is associated with two scalar ports, 
then the type of the timing generic shall be a scalar form of delay type. 

- If a timing generic is declared to be of a vector form of delay type, then it represents delays associated 
with one or more vector ports. If such a timing generic is associated with a single port and that port is 
vector, then the type of the timing generic shall be a vector form of delay type, and the constraint on the 
generic shall match that on the associated port. If the timing generic is associated with two ports, one or 
more of which is vector, then the type of the timing generic shall be a vector form of delay type, and the 
length of the index range of the generic shall be equal to the product of the number of scalar 
subelements in the first port and the number of scalar subelements in the second port. 

NOTE-These consistency requirements between timing genetic and port(s) do not apply if the port specification in the timing 
generic identifies an item that is not an entity port. In this case the model assumes responsibility for the appropriate type and 
constraint for the timing generic. 

4.3.2.1.3 Timing generic specifications 

Each form of timing generic represents a particular kind of timing information. Additional restrictions on the name 
and type or subtype may be imposed on generics representing a particular kind of timing information. A 
description of the acceptable forms for a particular kind of timing generic is provided in the subclause describing 
that kind of timing generic. 

In the following discussion, an inputporf is a VHDL port of mode IN or INOUT. An outputport is a VHDL port 
of mode OUT, INOUT, or BUFFER. 

4.3.2.1.3.1 Propagation delay 

A timing generic beginning with the prefix tpd is a backannotation timing generic representing propagation delay 
associated with the specified input-to-output delay path. Its name is of the form 

<VITALPropagationDelayName> : := 
tpd-<InputPort>_<OutpuPoro [ -<SDFSimpleConditionAndOrEdge> 3 

The type of a propagation delay generic shall be a VITAL delay type (see 9.1). 
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A timing generic beginning with the prefix tsetup is a backannotation timing generic representing the setup time 
between an input reference port and an input test port. Its name is of the form 

<VITALInputSetupTimeName> : := 
tsetup-<TestPort>_iReferencePort> [ _<SD~~~ConditionAndOrEdge> ] 

The type of an input setup time generic shall be a simple VITAL delay type (see 9.1). 

4.3.2.1.3.3 Input hold time 

A timing generic beginning with the prefix thold is a backannotation timing generic representing the hold time 
between an input reference signal and an input test signal. Its name is of the form 

<VITALInputHoldTimeName> : := 
thold-<TestPort>-<ReferencePort> [ -<SDFFullConditionAndOrEdge> ] 

The type of an input hold time generic shall be a simple WAL delay type (see 9.1). 

4.3.2.1.3.4 Input recovery time 

A timing generic beginning with the prefix trecovery is a backannotation timing gcncric representing the input 
recovery time between an input test signal and an input reference signal (similar to a sctup constraint). Its name 
is of the form 

<VITALInputRecoveryTi I I iC?;iiI i i ~ . >  : : = 
trecovery-<TestPorb- . i lL> I’c~cIIL~c‘I’I~I-;;.’ ! -<Sl)FFullConditionAndOrEdge> ] 

The type of an input recovery ti ti12 gciiLbik h l I  i: :: simple VITAL delay type (see 9.1). 

4.3.2.1.3.5 Input removal time 

A timing generic beginning with the prefix tremoval i s  a backannotation timing generic representing input 
removal time between an input test signal and an input reference signal (similar to a hold constraint). Its name is 
of the form 

<VITALInputRemovalTimeName> : := 
tremoval_<TestPo*-43eferencePorb [ -<SDFFullConditionAndOrEdge> ] 

The type of an input removal time generic shall be a simple VITAL delay type (see 9.1). 

4.3.2.1.3.6 Period 

A timing generic beginning with the prefix tperiod is a backannotation timing generic representing the minimum 
period time. Its name is of the form 

<VITALInputPeriodName> : := 
tperiod-<InputPort> [ -<SDFSimpleConditionAndOrEdge> ] 

50 

If present, the edge specifier indicates the edge from which the period is measured. 

The type of a period generic shall be a simple VITAL delay type (see 9.1). 
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4.3.2.1.3.7 Pulse width 

A timing generic beginning with the prefix tpw is a backannotation timing generic representing the minimum 
pulse width. Its name is of the form 

cVITALPulseWidthName> ::= 
tpw-cInputPorb [ -<SDFSimpleConditionAndOrEdge> 3 

The edge specifier, if present, indicates the edge from which the pulse width is measured. A posedge 
specification indicates a high pulse, and a negedge specification indicates a low pulse. 

The type of a pulse width generic shall be a simple VITAL delay type (see 9.1). 

4.3.2.1.3.8 Input skew time 

A timing generic beginning with the prefix tskew is a backannotation timing generic representing skew time 
between a pair of signals. Its name is of the form 

<VITALInputSkewTimeName> ::= 
tskew-cFirstPorb-cSecondPorb [ -<SbFull&onditionAndOrEdge> ] 

The type of an input skew generic shall be a simple VITAL delay type (see 9.1). 

4.3.2.1.3.9 No-change setup time 

A timing generic beginning with the prefix tncsetup is a backannotation timing generic representing the setup 
time associated with a no-change timing constraint. Its name is of the form 

<VITALNoChangeSetupTimeName> ::= 
tncsetup-cTestPorb-cReferencePorb [ -cSDFFullConditionAndOrEdge> ] 

A no-change setup time generic shall appear in conjunction with a corresponding no-change hold time generic. 

The type of a no-change setup time generic shall be a simple VITAL delay type (see 9.1). 

4.3.2.1.3.10 No-change hold time 

A timing generic beginning with the prefix tnchold is a backannotation timing generic representing a hold time 
associated with a no-change time constraint. Its name is of the form 

$ 8  

cVITALNoChangeHoldTimeName> : := 
tnchold-cTestPort>_<ReferencePort> [ -cSDFFullCondi tionAndOrEdge> ] 

A no-change hold time generic shall appear in conjunction with a corresponding no-change setup time generic. 

The type of a no-change hold time generic shall be a simple VITAL delay type (see 9.1). 

4.3.2.1.3.1 1 Interconnect path delay 

A timing generic beginning with the prefix tipd is a backannotation timing generic representing the external wire 
delay to a port, or an interconnect delay that is abstracted as a simple wire delay on the port. Its name is of the form 

<VITALInterconnectPathDelayName> : := 
tipd-cInputPort> 
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The type of an interconnect path delay generic shall be a VI"& delay type (see 9.1). 

4.3.2.1.3.1 2 Device delay 

A timing generic beginning with the prefix tdevice is a backannotation generic representing the delay associated 
with a device (primitive instance) within the cell model. Its name is of the form 

<VITALDeviceDelayName> : := 
tdevice-dnstanceName> [ -<Outputport> ] 

The type of a device delay generic shall be a WTAL delay type (see 9.1). 

4.3.2.1.3.1 3 Internal signal delay 

A timing generic beginning with the prefur tisd represents the internal delay for a data or control port and is used 
to model negative timing constraints (see 8.2). Its name is of the form 

<VITALInternalSignalDelayName> ::= 
tisd-&putF'ort>-<ClockPorb 

The type of an internal signal delay generic shall bc a scalar form of a simple VITAL delay type (see 9.1). 

4.3.2.1.3.14 Biased propagation delay 

A timing generic beginning with the prefix tbpd represents a propagation delay that is adjusted to accommodate 
negative timing constraints (see 8.2j. Its name is of tlic form 

<VITALBiasedPropagation Delay Name> := 
tbpd-<InputF'ort>-<Ou tpuPorb-<Clockl'ort> [ -<SDFSimpleConditionAnclOrEdge> ] 

The type of a biased propagation dclay generic shall be a VJTAL delay type (see 9.1). 

There shall exist, in the same entity generic clause, a eorresponding propagation delay generic denoting the same 
ports, condition name, and edge. Furthermore, the type ofthe biased propagation generic shall be the same as the 
type of the corresponding propagation delay generic. 

4.3.2.1.3.15 Internal clock delay 

A timing generic beginning with the prefix ticd represents the internal delay for a dock and is used to model 
negative timing constraints (see 8.2). Its name is of the form 

<VITALInternalClockDelayGenericName> : := 
ticd-<ClockF'orb 

The type of an internal clock delay generic shall be a scalar form of a simple VITAL delay type (see 9.1). 

The name given for the clock port in an internal clock delay generic name is considered to be a clock signal name. 
It is an error for a clock signal name to appear as one of the following elements in the name of a timing generic: 

- As either the input port or output port in the name of a biased propagation delay generic 

- As the input signal name in an internal signal delay timing generic 

- As the test port in a timing check or recovery removal timing generic 
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This standard defines a number of control generics that provide special support for certain operations. 

VITAL-control_generic-declaration : := 
[ constant ] identifier-list ::= [ in ] type-mark [ index-constraint ] [ := static-expression ] ; 

A control generic is characterized by a name, a type, and an assumed meaning. Definition and use of these generics 
is not required; however, if a generic in an entity has a control generic name, then that generic is a control generic, 
and its declaration shall conform to the rules in effect for that kind of control generic. It is erroneous for a model 
to use a control generic for other than its stated purpose. lo 

A generic with the name Instancepath shall be of the predefined type String. It is the string representation of the 
full path name of the current instance. 

l5 A generic with the name TimingChecksOn shall be of the predefined type Boolean. It may be used to enable 
timing checks. The value True indicates that timing checks should be enabled. 

The XOn and MsgOn generics are switches thatamay be used as standard mechanisms for control of ‘X’ 
generation and assertion message generation relating to timing and glitch violations. 

A generic with the name XOn shall be of the predefined type Boolean. It may be used to control ‘X’ generation 
for timing checks and path delays. The value True indicates that timing or other violations should cause certain 
output ports to be assigned the value ‘X’. 

20 

25 A generic with the name MsgOn shall be of the predefined type Boolean. It may be used to control the generation 
of assertion messages for timing constraint violations. The value True indicates that assertion messages should be 
issued when violations are encountered; the value False means that assertion messages should not be issued. 

30 NOTES 

1-The declaration of a control generic by itself has no effect; the generic has to be associated with an appropriate formal 
parameter of a VITAL standard package subprogram or named in a timing check condition to have the intended effect. Use of 
a control generic is not limited to these contexts. 

2-The XOn and MsgOn generics are similar, but not identical, to the EIA 5670000-91 [B3] XGeneration and MGeneration 
features. In particular, declaration of an XOn or MsgOn generic does not automatically enable timing checks. 

35 

40 4.4 The VITAL Level 0 architecture body 

A VITAL Level 0 architecture body defines the body of a VITAL Level 0 design entity. 

45 

50 

VITAI-hvel-0-architecture-body : := 
architecture identifier of entity-name is 

VITAL-Lmel-0- architecture-declarative-part 
begin 

architecture-statement-part 
end [ architecture-simple-n~e ] ; 

VITAL-Level-0-architecture-declarative-part : := 
VITAL-LvelO-attribute-specification { block-declarative-item } 
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The sole point of entry of timing information into a VITAL-compliant model is through the timing generics. With 
the exception of the use of VITAL-Timing routines, all timing calculations are performed outside of the VHDL 
model, and external timing information is passed to the model through the backannotation timing generics. 
Backannotation is the process of updating the backannotation timing generics with the external timing 
information. Signal delays that are used to model negative timing constraints are computed in the negative 
constraint calculation stage of simulation; their calculation is not part of the backannotation process. 

The rules governing the backannotation of timing values into a VITAL-compliant model and the mapping of SDF 
constructs to backannotation timing generics definc the scmantics assumed by models that adhere to the VITAL 
Level 0 specification. 

5.1 Backannotation methods 

There are two methods for annotating model instances with timing data: through the use of an appropriate VHDL 
configuration declaration and through the direct import of timing data from one or more SDF files. An appropriate 
VHDL configuration declaration can be generated from SDF data or by some other means. If a VITAL-compliant 
model derives its timing information from SDF data, then the state of that model at the beginning of simulation 
shall be the same, regardless of the annotation path employed. 

NOTE-It is assumed that an SDF file will be created (possibly by a tool such as a delay calculator) using information that is 
consistent with the library data (e.g., a VHDL model). This implies that, in general, the data in the SDF file will be consistent 
with that in a corresponding VITAL-compliant model. 

5.1.1 Direct SDF import 

Direct SDF import is accomplished by reading delay data from one or more SDF files and using this information 
to modify the backannotation timing generics in a VITAL-compliant model directly. The modification of the 
backannotation timing generics occurs in the backannotation phase of simulation, which directly follows 
elaboration and directly precedes negative constraint delay calculation. Once the values of the backannotation 
timing generics have been established and set by the backannotation process, no further modification is permitted 
except during the negative constraint calculation stage. 

The SDF mapping rules are such that an SDF annotator that performs direct SDF import is responsible for insuring 
the semantic correctness of the association of delay values with backannotation timing generics. As a 
consequence, a delay value or a set of delay values shall be appropriate for the type class of the corresponding 
VHDL timing generic, and all applicable VHDL constraints on the value or set of values shall be satisfied. 

5.1.2 The SDF annotator 

The term SDF annotator refers to any tool in the class- of tools capable of performing backannotation from SDF 
data in a VITAL-compliant manner. This class includes tools that generate appropriate configuration declarations 
from SDF data. 

An SDF annotator shall annotate the backannotation timing generics. Furthermore, it shall report an error upon 
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encountering any form of noncompliance with a requirement in this standard related to the SDF mapping or 
backannotation process. Its behavior after reporting an error is implementation defined. 

Certain SDF constructs are not supported by this standard; these constructs are said to be unsupported. 
Unsupported constructs do not result in the modification of backannotation timing generics, nor do they have any 
other effect on the backannotation process. 

If the SDF data fails to provide a value for a backannotation timing generic in a VITAL-compliant model, then 
the value of that timing generic shall not be modified during the backannotation process, and the value that was 
set during standard VHDL elaboration shall remain in effect. 

NOTELA VITAL SDF annotator can also annotate generics other than backannotation timing generics (for example, the 
Instancepath generic). A VITAL SDF annotator is neither required to annotate nor prohibited from annotating generics on 
models that are not VITAL compliant. 

5.2 The VITAL SDF map 

The VITAL SDF map specifies the mapping between specific SDF constructs and the corresponding VHDL 
timing generics and their values. Some SDF constructs are mapped directly to specific kinds of timing generics or 
their timing values, others map to lzxical elements that can be used to construct any timing generic name, and 
others identify items in the VHDL design hierarchy (such as instances or ports) to which timing data is applied. 

The name of the corresponding VHDL timing generic is deternilled according to the rules of the VITAL, SDF 
map. It is an error if there is no translation of a supported SDI; construct to a legal VHDL identifier. It is an error 
if the generic name that the SDF annotator cotistructs froin the SDI; file is not present in the VHDL model. 

The following discussion uses portions of the BIuT from the Srandard Delay Format Specification to describe SDF 
constructs. An italicized lowercasc i&n;ificr represents a SDI? syntax construct. The definition of a syntax 
construct is indicated by the symbol ::=. ; n I  ;ilicrnative definitions are separatcd by the symbol H=. Keywords 
appear in boldface capital letters. Uppercase identifiers represent variable symbols. The form “item?’ represents 
an optional item. The form “item*’‘ represcnts zcro or more occurrences of the item. The form “item+” indicates 
one or more occurrences of the item. 

5.2.1 Delay file 

An SDF delay file consists of a header and a sequcnce of one or more cells containing timing data. 

delay3le ::= ( DELAYFILE sdf-header cell+ 1 

The information in each SDF cell of each SDF file is mapped to the corresponding VHDL constructs using general 
information, such as the time scale, found in the corresponding SDF header. 

5.2.2 Header section 

The SDF annotator uses the information in the SDF header to read and interpret the SDF file correctly. In general, 
the entries in the header section have no direct effect on the backannotation process itself. Some header entries are 
purely informational, and others (those detailed below) provide information needed by the SDF annotator to 
interpret the SDF file correctly. 

sdf-header ; := sdf-version design-name? date? vendor? program-name? 
program-version? hierarchy-divider? voltage? process? 
temperature? time-scale? 

20 

sdf-version ::= ( SDFVERSION QSTRING ) 
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hierarchy-divider ::= ( DIVIDER HCHAR ) 

time-scale ::= ( TIMESCALE TSVALUE ) 

The sdf-version shall refer to the Standard Delay Format Specification, Version 2.1. 

The hierarchy-divider identifies which lexical character (a period or a slash) separates elements of a hierarchical 
SDF path name. 

The time-scale determines the time units associated with delay values in the file. 

5.2.3 CELL entry 

The SDF CELL entry associates a set of timing data with one or more instances in a design hierarchy. 

cell : := ( CELL celltype cell-instance correlation? timing-spec* ) 

The timing data in the CELL entry is mapped to a V@L inodel as follows: 

The cell-instance and celltype constructs are used to locate a path or a set of paths in the VHDL design 
hierarchy that correspond to the instance@) to which the data applies. 

Each supported timing specification in the sequence of timing-spec constructs is mapped to the 
backannotation timing generic(s) of the specified instance(s) in the VHDL design hierarchy, and the 
corresponding timing data is transformed into value(s) appropriate for the generic(s). 

The CORRELATION entry is not supported by this standard. 

5.2.4 INSTANCE and CELLTYPE entries 

The SDF cell instance, in conjunction with the SDF cell type, 
which the timing data in a CELL entry applies. This set is c 
instances (specified by the SDF cell instance) that match the component type (specified by the SDF cell type). 

es a set of VHDL component instances to 
ted by identifying the VHDL component 

The CELLTYPE entry 

celltype ::= ( CELLTYPE QSTRING ) 

indicates that the timing data is applicable only to those component instances that correspond to a VHDL 
component having the name that is specified by the QSTRING variable. Such instances are said to match the cell 
type. 

An SDF cell instance is a sequence of one or more INSTANCE entries that name apath or set of paths in the design 
hierarchy. 

cell-instance ::= instance+ 
II= ( INSTANCE WILDCARD ) 

instance ::= ( INSTANCE PATH? ) 
50 

The first form of cell instance names the path of a particular instance or set of instances. The second form of SDF 
cell instance is a wildcard that identifies all component instances, in or below the current level of the design 
hierarchy, that match the cell type. 
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A VHDL instance described by one or more SDF instance paths is located by mapping each successive path 
element of the PATH variable of each successive INSTANCE entry to a VHDL block, generate, or component 
instantiation statement label of the same name at the next level of the design hierarchy, beginning at the level at 
which the SDF file is applied. Path elements within an SDF PATH IDENTIFIER are separated by hierarchy 
divider characters. It is an error if, at any level, an appropriate VHDL concurrent statement label does not exist 
for the corresponding SDF path element. The last path element shall denote a component instance (i.e., it cannot 
denote a block or generate statement). The VHDL component associated with the instance shall match the cell 
type. 

An SDF path element may contain a bit spec of the form [integer] or [integer:integer]. Such a path element 
corresponds to one or more expansions of a FOR generate statement. A bit spec containing a single integer 
corresponds to a single expansion of the generate statement, and a bit spec containing a pair of integers 
corresponds to a set of expansions described by a range. It is an error if the alphanumeric portion of a path element 
containing a bit spec does not correspond to the label of a FOR generate statement. 

The set of generate statement expansions corresponding to an SDF path element containing a bit spec shall be 
determined by mapping the SDF integer or pair of integers to the appropriate VHDL index or range. The VHDL 
value corresponding to a bit spec integer is obtainecl 1 y  l\i::l?pil:g ilie bit spec integer to the VNDL value whose 
position number is that bit spec integer - base_tyge'VAL(;r!ic;~~ .r), where base-type is the base type of the 
generate parameter. It is an error if the corresponding VHDL value does not belong to the discrete range specified 
in the generate statement. The VHDL range corresponding to a pair of integers is constructed by mapping the left 
and right SDF integers to the corresponding VHDL values representing the left and right bounds, respectively, 
and then selecting a direction that results in a range that is not a null range. 

Example: 

The SDF entry 

(CELL 
(CELLTYPE "DFF") 
(INSTANCE a1 .bl .cl) 
(DELAY 

(ABSOLUTE (IOPATH il 01 (1 0) (20))) 

requires the SDF annotator to look for the concurrent statement with label a i  at the current level and b l  
and cl at the successive levels below a i  . Level C l  shall be the label of a component instantiation statement, 
and backannotation is performed on the timing generics of CI. 

5.2.5 Timing specifications 

An SDF timing specification contains delay or timing constraint data that is mapped directly to one or more 
backannotation timing generics. 

timing-spec ::= del-spec 
II= tc-spec 

An SDF timing specification consists of a data value (or a set of data values) and a number of constructs describing 
the nature of the data value(s). The constituents of the timing specification are mapped to different, but related, 
VHDL items. The data value or set of data values is mapped to an appropriate VHDL delay value. The remainder 
of the timing specification is mapped to a specific timing generic name or pair of names. 
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5.2.6 Data value mapping 

The timing information in an SDF timing specification is specified in terms of value, walue, and rvalue-list 
constructs. A value or walue can consist of one, two, or three data values corresponding to the minimum, typical, 
and maximum value. However, for annotation to VITAL designs, only one of these values is used. An SDF 
annotator shall provide a mechanism for selecting one value from the triple of values. 

The type of the timing generic determines the type of the VHDL delay value to which the corresponding SDF 
timing information is mapped. It is an error if a backannotation timing generic holds fewer delay values than the 
number specified in the corresponding SDF entry. If a backannotation timing generic is of a transition-dependent 
delay type that contains more values than are specified by the corresponding SDF entry, then the SDF annotator 
supplies the remaining delays in the transition-dependent delay value according to a predefined mapping. 

A simple SDF value or walue is mapped to an equivalent VHDL value of type Time. 

An rvalue-list can contain one, two, three, six, or twelve walues after SDF extension (in which lists of an 
intermediate length are interpreted as though they had trailing empty parentheses). If the timing generic is of a 
scalar form of simple delay type, then the corresponding wulue-list shall contain a single walue, and the resulting 
VHDL delay value is a single value of type Time. Otherwise, the timing generic shall be of a scalar form of 
transition-dependent delay type, and the VHDL delay value is constructed by filling each element of the m a y  with 
the appropriate SDF value, according to the mapping described in 5.2.7. In table 1, each row represents a form of 
SDF rvalue-list, and each column represents the corresponding delay value for a particular transition. 

Table I-Mapping of SDF delay values to VITAL transition-dependent delay values 

I I VITAL transition-dependent delay value 1 

v8v9v1Ovllv12 

NOTE-An SDF annotor follows the SDF annotation rules regarding null delay values and extension of lists of rvalues. 

5.2.7 Mapping to timing generics 
40 

The form of the VHDL timing generic name corresponding to an SDF timing specification is determined by the 
nature of the timing information and by other items, such as ports, that the timing specification references. 

The fact that SDF is case sensitive and VHDL is not case sensitive may cause SDF names that differ only in case 
to map to the same VHDL generic name. Such cases are treated as multiple SDF entries for the same generic. 

45 

5.2.7.1 DELAY entry 

Different kinds of SDF DELAY entries are mapped to different kinds of backannotation timing generics. 
50 

del-spec : := ( DELAY deltype+ ) 
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The delay types PATHPULSE and GLOBALPATHPULSE are not supported by this standard, nor is the 
NETDELAY delay definition. 

5.2.7.1.1 ABSOLUTE and INCREMENT delay 

SDF delay data is designated as incremental or absolute through the form of the delay type construct, deltype. The 
delay type determines how the timing data is applied to the corresponding timing genenc(s). 

deltype ::= ( ABSOLUTE del-def4- 
I t =  (INCREMENT del-def+ ) 

During backannotation, delay values are applied sequentially, in the order that they appear in the SDF file. An 
absolute delay replaces an existing generic value. An incremental delay value is added to the existing value of the 
generic. 

NOTGIf  more than one SDF delay or liming constraint entry maps to the. same generic name, the SDF annotator updates 
their values using their existing values when appropriate. For zxnrnnk, if the first entry results in updating the value of a certain 
generic, and a subsequent SDF entry with INCREMENT , i c k ~ s  : - , i i p  to the same generic name, then the new value of the 
generic is determined by incremeriling the prcviously updatcd generic value. 

5.2.7.1.2 IOPATH delay 

The SDF path delay entry can take a simple form or a conditional forin. 

del-def ::= ( IOPATH port-sprc poriyath rvulue-list ,J 
II= ( COND conditional jmrt-expr f IOPATH IJO c p k p a t h  walue-list ) ) 

Each maps to a propagation delay generic (see 1.3.2.1.3.1) of the form 

tpd-~nputport>_<OutputPort> [ -<SDFSi~~iplzConnditionAndOrEdge> ] 

The <Inputport> corresponds to the port name specified in the port_spec, and the <OutputPort> corresponds to 
the port specifed in the port jath.  The <SDFSimpleConditionAndOrEdge> is derived from the 
conditionalgort-expr, if present, and the port-edge of the port-spec, if present. 

Example: 

The SDF entry 

(IOPATH Input Output (IO) (20)) 

maps to the generic 

tpd-Input-Output 

5.2.7.1.3 PORT delay 

The SDF port entry 

del-def ::= ( PORTpor t ja th  rvalue-list ) 

maps to an interconnect path delay generic (see 4.3.2.1.3.1 1) of the form 
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The <Inputport> corresponds to the port specified in the por t ja th .  

Example: 

The SDF entry 

(PORT Input (IO) (20)) 

maps to the generic 

tipd-Input 

5.2.7.1.4 INTERCONNECT delay 
15 

The SDF interconnect delay entry 

del-def ::= ( INTERCONNECT poitinstance port-instance rvalue-list ) 
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port-instance : := por t ja th  
: := instance por t ja th  

maps to an interconnect path delay generic (see 4.3.2.1.3.1 1) of the form 

tipd-dnputporb 

The dnputPorb corresponds to the p 
do not contribute to the corresponding VHDL timing generic name. 

If more than one SDF entry maps to the same interconnect path delay generic, then it is assumed that more than 
one port drives the specified input port. For such cases, the annotator shall provide an option to select 
between the last, the maximum, and the minimum delay vdues. 

Example: 

ified in the secondport-instance. The instance constructs in this case 

The SDF entry 

(INTERCONNECT Output Input (IO) (20)) 

maps to the generic 

tipd-Input 

5.2.7.1.5 DEVICE delay 

The SDF device entry can represent the delay on the output of a modeling primitive (used inside an ASIC cell) or 
the delay on the output of an entire ASIC cell. This standard supports only those device entries that specify the 
delays across primitives used inside a VITAL model. See clause 7 for a description of the available primitives. 

del-def ::= ( DEVICE port-instance? rvalue-list ) 

port-instance : := por t ja th  
: := instance por t ja th  
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The device entry maps to a device delay generic (see 4.3.2.1.3.12) of the form 

tdevice-<InstanceName> [ -<Outputport> ] 

5 The <InstanceName> is derived from the name of the SDF instance to which the DEVICE entry applies (it is not 
derived from the port-instance construct). If the SDF instance has a hierarchical name, the lowest level instance 
name is the <InstanceName>. The optional <Outpufforb is present if port-instance is specified. 

NOTE-It is expected that the specified <InstanceNarne> wilI be the label for a VITAL. primitive concurrent procedure call. 

Examp le: 
10 

The SDF entry 

15 (CELL (CELLTYPE "AN2") 
(INSTANCE Top.ll.PI) 
(DELAY (ABSOLUTE (DEVICE Z (IO) (263)))) 

) 

20 

30 

maps to the generic 

tdevice-PIZ 

5.2.7.2 TIMINGCHECK entry 
25 

The SDF timing check entry J L \ G t t L , ?  :i i 

tc-spec ::= (TIMINGCHEC 

tc-def ::= tchk-def 
II= cns-def 

3s 

40 

tchk-def ::= 
II= 
II= 
I I =  
II= 
II= 
II= 
I I =  

( SETUP port-tchk port-tchk rvalue ) 
( HOLD port-tchk purt-tchk rvafue ) 
( SETUPHOLD port-fchk port-lchk rvalue rvalue ) 
( RECOWRY porf-tchk pori-tchk walue ) 
( SKEW port-tchkport-tchk walue ) 
( WIDTH port-tchk value ) 
( PEFUOD port-tchk value ) 
( NOCHANGE port-tchk port-tchk rvalue rvalue ) 

SDF timing constraint entries for forward annotation-cas-def entries PATHCONSTRAINT, SUM, DUFF, and 
SKEWCONSTRAINT-are not supported by this standard. 

Each true timing check definition (i.e., each tc-def that is a tchk-deJ is mapped to one or more VHDL 
backannotation timing generics. In general, there is a one-to-one correspondence between SDF timing check 
definitions and VHDL backannotation timing generics. The SDF SETUPHOLD and NOCHANGE constructs are 
exceptions. Each is processed as though it were replaced by the collectively equivalent setup and hold entries. 
Hence, the SDF timing check is mapped to two separate VHDL backannotation timing generics-one each for 
setup and hold times. 

45 

50 

An SDF timing check definition can contain one or two timing check port specifications (port-tchks), which may 
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a) The appropriate generic timing prefix is selected using the following mapping: 

SETUP 
HOLD 
SETUPHOLD 

RECOVERY 
SKEW 
WIDTH 
PERIOD 
NOCHANGE 

tsetup 
thold 
tsetup 
thold 
trecovery 
tskew 
tPW 
tperiod 
tncsetup 
tnchold 

(see 4.3.2.1.3.2) 
(see 4.3.2.1.3.3) 

(see 4.3.2.1.3.4) 
(see 4.3.2.1.3.8) 
(see 4.3.2.1.3.7) 
(see 4.3.2.1.3.6) 
(see 4.3.2.1.3.9) 
(see 4.3.2.1.3.10) 

b) The appropriate timing generic port specification is added to the generic name as follows: In the order in 
which they appear in the SDF entry, the port in each port-tchk is mapped to the corresponding VHDL 
timing generic port specification and the result appended lo the timing generic name with a preceding 
underscore. 

c) If aport-tchk in the timing check definition contains an edge or a condition, then the appropriate timing 
generic suffix is constructed according to the rules in 5.2.7.2.1 and appended to the timing generic name 
with a preceding underscore. 

25 

5.2.7.2.1 Condition and edge combinations 

A port-tchk construct in an SDF timing check definition can contain a condition (the timing-check-condition) or 
an edge (in the form of the EDGEIDENTIFIER in a pori-.spec ilia1 is a port-edge). A timing check definition 
can contain one or two port-tchk specifications. The conditions and edges associated with these ports are mapped 
to a timing generic suffix that is appended to the timing generic 

30 

e with a preceding underscore. 

port-tchk ::= port-spec 
II= ( COND timing-check-co~ditio~ port-spec ) 

35 

The conditions and edges in a timing check definition that is associated with a single port (i.e., a PERIOD or 
WIDTH entry) map to the <SDFSimpleConditionAndOrEdge> lexical suffix that is derived from the 
timing-check-condition, if present, and the EDGE-IDENTIFIER of the port-spec, if present. 

40 Each of the remaining timing check definitions is associated with a pair of ports, and the conditions and edges map 
to the <SDFFullConditionAndOrEdge> lexical suffix 

<ConditionNameEdge> [ -<SDFSimpleConditionAndOrEdge> ] 

45 The <ConditionNameEdge> portion is derived from the first port-tchk construct. If the first port-tchk does not 
have an edge, then the <ConditionNameEdge> is of the form 

[ <ConditionName>- ] noedge 

50 Otherwise, the <ConditionNameEdge> is derived from the timing-check-condition, if present, and the 
EDGE-IDENTIFIER of the port-spec, if present. 

The <SDFSimpleConditionAndOrEdge> is derived from the second port-tchk construct, using the 
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I timing-check-condition, if present, and the EDGE-IDENTIFIER of the port-spec, if present. 

Examples: 

The SDF entry 
5 

(COND RESET == l’bl && CLK == I’bl (IOPATH posedge A Y (IO) (20) ) ) 

10 

15 

maps to the VHDL identifier 

The SDF entry 

(SETUP (COND Reset == l’bl DATA) (posedge CLK) (5)) 

maps to the VHDL identifier 

tsetup-DATA-CLK-RESET-EQ-1 -noedgegosedge 

5.2.7.3 Mapping of SDF constructs to general VtiDL lexical elements 

Certain SDF constructs are not themselves &tppcd to a specific kind of timing generic; instead, they are mapped 
to lexical elements that may be usd” strucl any bxkannotation timing generic name. These general SDF 

20 

25 constructs include edges, conditions, rl specifications. 

5.2.7.3.1 Edges 

The SDF edge construct maps to a VKDL lexical su f f i  that is textually cquivalent to the EDGE-IDENTIFIER. 
30 

EDGE-IDENTIFIER ::= posedgc ~ 

It= negedge 
II= 01 
II= 10 
I I =  oz 
Il= 21 
II= 12 
I I =  20 

35 

40 This lexical suffix is attached to the VHDL generic identifier with an underscore. The location of the lexical suffix 
within the generic identifier is determined by the context of the edge. 

5.2.7.3.2 Conditions 

45 The SDF conditional construct-identified by the keyword COND-can appear in two different contexts: in a 
conditional path delay of the form 

( COND conditionaljo-expr ( IOPATH port-spec por t ja th  walue-list ) ) 

50 and as a port-tchk specification in a timing check definition 

( COND timing-check-condition port-spec ) 
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1 In either case, the condition is mapped to a a legal VHDL lexical representation of the conditional expression that 
is then used to construct a suffix for a timing generic name. 

The VHDL lexical suffix is constructed from the conditional expression (the conditional_port-expr or 
timing-check-condition) using the following algorithm: 

5 

a) Separate each part of the condition with an underscore, removing any white space. 

b) Replace each SCALAR-CONSTANT symbol as follows: 

IO 

15 

20 

25 

30 

35 

40 

45 

50 

l'bO, l'BO, 'bo, 'BO, 0 by 0 

l 'bl, l'B1, 'bl, 'Bl, 1 by 1 

c) Replace each operator symbol as follows: 

( by OP 
1 by CP 
I by OB 
1 by CB 
[ by OSB 
1 by CSB 
1 by CM 
? by QM 

in expr ? expr : expr statements) 
+ 

bYMI 
by 

I by DI 
% by MOD 

!= byNE 

!== by NE3 
&& by AN 
II by OR 
< by LT 
<= by LE 
> by GT 
>= by GE 
8 2  by ANB 
I by ORB 
A by XOB 

* 

by EQ 

by EQ3 

-- -- 

--- --- 

by XNB 
by XNB 

A- 

-A 

>> by RS 
<< by LS 
! by NT 

by NTB - 
-& by NA 
-I by NO 
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5 

10 

15 

[x:y] by xTOy 

where x and y represent indices 
[XI by x 

Example: 

The SDF entry 

IEEE STANDARD FOR VITAL ASIC 

(COND RESET == l ' b l  && CLK == l ' b l  (IOPATH A Y  (IO) (20) ) ) 

is mapped to the VHDL generic 

tpd-A-Y-RESET-EQ-1 -AN-CLK-EQ-1 

5.2.7.3.3 Ports 

The SDF port-spec constmct names a port, and possibly an edge, associated with a timing value. An edge, if 
present, is processed separately and is not necessarily adjacent to the corresponding port name in the resulting 
VHDL identifier. Processing of edges is discussed in the appropriate contexts. 

20 

25 

30 

35 

port-spec ::= portgath 
II= port-edgg 

portgath : :=port 
II= PATH HCKAR port 

port-edge 

port ::= scalargort 

::= ( EDGE-LDENTWRR por t ju th  j 

II= busgort 

scalargort ::= IDENTIFIER 
II= IDENTIFIER [ D N b T E R  3 

busgort ::= IDENTIFIER [ DNUMBER : DNUMBER ] 

40 The form of the SDF port name may impose certain requirements on the subtype of the corresponding VHDL 
generic. For backannotation purposes, the hierarchical form of aportgath is equivalent to its simple form, port. 

The IDENTIFIER in a port maps to a VHDL name that is textually equivalent to the IDENTIFIER. The result 
shall be a legal VHDL identifier. 

If the port is of one of the forms 
45 

IDENTIFIER [DNUMBER] 
IDENTIFIER [DNUMBER : DNUMBER] 

50 

then it is assumed that the corresponding VHDL port is a vector, and the associated timing generic shall be of a 
vector form of VITAL delay type. It is an error if a backannotation timing generic is of a vector form of delay type 
and none of the corresponding ports in the SDF file have an index or range specification. 
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Each port entry with an index or range specification maps to an element or set of elements in the corresponding 
timing generic array value. Each such element is denoted by an index, which is derived from the SDF index or 
range specification according to the rules in the following subclauses. It is an error if the array index of the generic 
element corresponding to a particular SDF entry is out of range for that generic. 

NOTE-An escape character in an SDF IDENTIFIER is an error because it cannot be mapped to a legal VHDL identifier. 

5.2.7.3.3.1 Mapping of a single bus port 

The scheme outlined in this subclause applies to an SDF entry that has a single port specification that has an index 
or range specification. This scheme also applies to an SDF entry that has two port specifications, only one of which 
has an index or range specification. For any port having an index specification, let 

C 

j l  , j2  
g l  , g2 

denote the index of the SDF port 
denote the left and right indices of the corresponding port in the VHDL model 
denote the left and right indices of the corresponding generic in the VHDL model 

For the SDF port index c, the SDF annotator computes the corresponding index x in the generic array by using the 
following row-dominant scheme: 

x = g2 + abs(c - j2) x (81 - g2)/abs(gZ - 82) 

If the SDF port has a range specification rather than an index specification, then this computation is performed for 
each delay value in the range of the SDF port. 

NOTE-For a generic with a descending range constraint of (g1 downto g2), the indexcomputation reduces to 

and for a generic with an ascending range constraint of (81 to g2), the index computation rcduces to 
x = g2 + abs(c - j2) 

x = g2 - abs(c - j2) 

5.2.7.3.3.2 Mapping of two bus ports 

The scheme outlined in this subclause applies to an SDF entry that has two port specifications, both of which have 
an index or range specification. Let 

r, c 
il , i2 
j l  , j 2  
gl , g2 

denote the index of the respective ports in the SDF entry 
denote the left and right indices of the VHDL port corresponding to the first SDF port 
denote the left and right indices of the VHDL port corresponding to the second SDF port 
denote the left and right indices of the corresponding generic in the VHDL model 

For the SDF entry having index r and c as the indices for the first and second ports, the SDF annotator computes 
the corresponding index x in the generic array by using the following row-dominant scheme: 

x = g2 + (abs(c -J2) + abs(r - i2) x (abs(jl -J2) + 1)) x (gl - g%)/abs(gl - g2) 
45 

If one or more of the SDF ports has a range specification rather than an index specification, then this computation 
is performed for each delay value in the range of the SDF ports. 

50 
NOTE-For a generic with a descending range constraint of (81 downto g2), the index computation reduces to 

and for a generic with an ascending range constraint of (81 to gZ), the index computation reduces to 
x = g2 + abs(c - j2) + abs(r - i2) x (abs(i1 - j2) + 1) 

x = g2 - abs(c - j2) - abs(r - i2) x (abs(i 1 - j2) + 1) 

Clause 5 31 



IEEE 
Std 1076.4-1995 IEEE STANDARD FOR VITAL ASIC 

1 Example: 

Assuming the following VHDL declarations 

5 

10 

I5 

20 
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35 

40 

45 

50 

generic (tpd-A-Y : VitalDelayArrayTypeOl (0 to 3) := (others => (0 ns, 0 ns))); 
port (A : IN std-logic-vector (0 to 1); 

Y : OUT std-logic-vector (I to'2)); 

the SDF entry 

(IOPATH A[O] Y[1] (10) (20)) 

will cause the SDF annotator to annotate the delay value (10,201 onto the generic subelement tpd-A-Y(O), 
and the SDF entry 

(IOPATH A[O:l] Y[1:4 (10) (20)) 

will cause the SDF annotator to annotate the delay value (10,20) onto the generic subelements tpd-A-Y(O), 
tpd-A-Y(l), tpdA-Y(2), and tpd-A-Y(3). 

1 
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50 

6. The VITAL Level 1 specification 

The VITAL Level 1 specification is a set of modeling rules that constrains the descriptions of cell models in order 
to facilitate the optimization of the set-up and execution of the models, leading to higher levels of performance 
than could be expected through the acceleration of the basic capabilities provided by the VITAL standard 
packages alone. 

A VITAL Level 1 model description defines an ASIC cell in terms of functionality, wire delay propagation, timing 
constraints, and output delay selection and scheduling. 

6.1 The VITAL-Level1 attribute 

A VITAL Level 1 architecture is identified by its decoration with the VITAL-Level1 attribute, which indicates 
an intention to adhere to the VITAL Level 1 specification. 

VITAI-Levell-attribute-specification ::= attribute-specification 

A VITAL Level 1 architecture shall contain a specification of the VITAL-Levell attribute corresponding to the 
declaration of that attribute in package VITALLTiming. The entity specification of the decorating attribute 
specification shall be such that the enclosing architecture inherits the VITAL-Level1 attribute. The expression in 
the VITAL-Level1 attribute specification shall be the Boolean literal True. 

Example: 

attribute VITAL-Level1 of VitalCompliantArchitedure : architecture is True; 

6.2 The VITAL Level 1 architecture body 

A VITAL Level 1 architecture body defines the body of a VITAL Level 1 design entity. 

VITAL-Level-1-architecture-body : := 
architecture identifier of entity-name is 

begin 

end [ architecture-simple-n~e ] ; 

VITAL-Level-1-architecture-declarative-part 

VITAL-Level-1-architecture-statement-part 

A VITAL Level 1 architecture shall adhere to the VITAL Level 0 specification, except for the declaration of the 
VITAL-Level0 attribute. 

The entity associated with a VITAL Level 1 architecture shall be a VITAL Level 0 entity. Together, these design 
units comprise a VZTL Level 1 design entity. 

The only signals that shall be referenced in a VITAL Level 1 design entity are entity ports and internal signals. 
References to global signals and signal-valued attributes are not allowed. Each signal declared in a VITAL Level 
1 design entity shall have at most one driver. 

Clause 6 33 



IEEE 
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC 

1 The use of subprogram calls and operators in a VITAL Level 1 architecture is limited. The only operators or 
subprograms that shall be invoked are those declared in package Standard, package Std-Logic-I 164, or the 
VITAL standard packages. Formal subelement associations and type conversions are prohibited in the 
associations of a subprogram call. 

5 
6.3 The VITAL Level 1 architecture declarative part 

The VITAL Level 1 architecture declarative part contains declarations of items that are available for use within 
the VITAL Level 1 architecture. 

10 
VITAL-Level-1-architecture-declarative-part ::= 

VITAL-Level 1-attribute-specification 
{ VITAL-Level-1-block-declarative-item } 

15 

20 

VITAL-Level-1-block-declarative-item : := 
constantdeclaration 

I alias-declaration 
I attribute-declaration 
I attribute-specification 
I VITAL-internal-signal-declaration 

6.3.1 VITAL internal signals 

25 A signal that is declared in the declarative part of an architecture is an internalsignal. 

VITAL-internal-signal-declxat i on : := 
signal identifier-list : type-mark 1 index-constraint 1 [ := expresqion ] ; 

30 The type mark in the declaration of an internal signal shall denote the standard logic type Std-Ulogic or 
Std-Logic-Vector. 

6.4 The VITAL Level 1 architecture sta%men%-pa 
35 

The statement part of a VITAL Level 1 architecture is a set of me or more concurrent statements that perform 
specific VITAL activities. 

VITAL-Level-1-architecture-statement-part : := 
VITAL-Level-1-concurrent-statement { VITAL-Level-1-concurrent-statement } 40 

VITAL-Level-l- concurrent-statement ::= 
VITAL-wire-delay-block-statement 

45 I VITAL-negative-constraint-block-statement 
I VITAL-process-statement 
I VITAL-primitive-concurrent-procedure_call 

A VITAL Level 1 architecture shall contain at most one wire delay block statement. 

If the entity associated with a VITAL Level 1 architecture declares one or more timing generics repr 
internal clock or internal signal delay, then negative constraints are in effect, and the VITAL Level 1 arch 
shall contain exactly one negative constraint block to compute the associated signal delays. 

50 
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A VITAL Level 1 architecture shall contain at least one VITAL process statement or VITAL primitive concurrent 
procedure call. 

I 

cell I&t ports Cell Output Ports 
I VITAL Level 0 Entity 

VITAL Level 1 Architecture . Wire Delay Block 

Negative Constraint Block _I e ” “  

VITAL Process 

......................................................................... I 

1 .......! ‘3ensitivitp List ........ : ........................................... 
....... ._ ....................................................... 

Timing Check Section 

Functionality Section 

Path Delay Section 

.. ....................................... 

....... . _-. 
-. 

. . i 
I ........ -- 

Figure 1-Structure of a VITAL Level 1 model 

45 
6.4.1 Wire delay block statement 

Interconnect delay between ASIC cells is modeled as an approximation of wire delays at input ports. Wire delays 
external to a model are propagated inside the model through a VITAL wire delay block. 

50 
VITAL-wire-delay-block-statement : := 

block-label : 
block 
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begin 

end block [ block-label ] ; 
VITAL-wire-delay-block-statement-part 

VITAL-wire-delay-block-statement-part : := 
{ VITAL-wire-delay-concurrent-procedure-call 
I VITAL-wire-delayxenerate-statement } 

VITAL-wire-delay-generate-statement ::= 
generatelabel : 
for VITAL_wire-delay_generate-parameter-spification generate 

end generate [ generate-label ] ; 
{ VITAL-wire-..delay-concurrent-procedure_cal ] 

VITAL-wire-delay_generate-parameter_specification : := 
identifier in range-attribute-name 

VITAL-wire-delay-concurrent-procedure-call : := concurrent-procedure-call 

20 
The label of a VITAL wire delay block shall be tlie name WireDelay. 

A wire delay is modeled by a concurrent procedure call, which invokes one of the VitalWireDelay procedures 
that are declared in the packagc VITAL Timing. A VitalWireDelay proqedure delays an input signal by a 
specified delay value using a ir;iti\port ilelay. A wire delay block is the oMy context in which a call to a 
Vi talW i re Del ay procedure is allowed. 

A port that is associated with a wire dcl;i> ioiict 
wire delay block shall contain at inosi o ! ~  v. ii.2 t l  

25 

1 y-oc.edurc call is said to have an associated wire delay. A 
de IN or INOUT declared in the VITAL 

30 Level 1 design entity. 

Associated with each external wire delay is an intern g the delayed port; this internal signal is 
called the wire delayed signal. The subtype of the wire delayed signal shall be the same as that of the 
corresponding port. 

The value of a port with an associated wire delay shall be read only in  those contexts that are directly related to 
the modeling of the wire delay itself; that is, the value OS the port shall be read only in the context of the actual 
parameter part of the wire delay concurrent procedure call. The value of the corresponding wire delayed signal is 
read elsewhere in the model. 

A wire delay is applied at the scalar level. Wire delay for a scalar port is modeled with a simple concurrent 
procedure call. 

35 

40 

Wire delay for an array port is modeled with a generate statement of a specific form. The generate statement shall 
have a generate parameter specification in which the discrete range is a predefined Range attribute, and the prefix 
of that attribute shall denote the port with the associated wire delay. The only statement within the generate 
statement shall be a wire delay concurrent procedure call for an element of the port named in the generate 
parameter specification. The index selecting the element shall be a name denoting the generate parameter. 

The actual parameter part of a wire delay concurrent procedure call shall satisfy the following requirements: 

45 

50 

- The actual part associated with the input parameter InSig shall be a name denoting a port of mode IN or 
INOUT. 
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- The actual part associated with the output parameter OutSig shall be a name denoting an internal signal 
that satisfies the requirements for a wire delayed signal. 

- The actual part associated with the delay value parameter W i r e  shall be either a locally static value or 
a name denoting an interconnect path delay timing generic. The delay value shall be nonnegative. 

NOTELThe restrictions on reading the value of a port with an associated wire delay do not preclude the use of the name of 
the port as a prefix to certain predefined attributes. Use of attributes such as the RANGE attribute may be necessary to declare 
an appropriate wire delayed signal or to specify an appropriate range in a generate parameter specification. 

6.4.2 Negative constraint block statement 

A negative constraint block is a special form of a VHDL block statement that is required to model negative timing 
constraint values (see 8.2 for details on modeling negative timing constraints). 

VITAL-negative-constraint-block-statement : := 
block-label : 
block 
begin 

end block [ block-label ] ; 
{ VZ~AL_negativ~-const~utraint_concurrent_pr~ed~e-call } 

The label of a VITAL, negative constraint block shall be the name SignalDelay. 

A negative constraint block shall contain exactly one negative constraint concurrent procedure call for each timing 
generic representing an internal clock delay or an internal signal delay. 

A negative constraint concurrent procedure call invokes the procedure VlTALSignalDelay that is declared in the 
package VITAL-Timing. The effect of this call is to delay the associated input port by creating a corresponding 
internal signal that is delayed by the appropriate amount. A negative constraint block is the only context in which 
a call to VlTALSignalDelay is allowed. 

The formal parameters of the VlTALSignalDelay procedure are associated as follows: 

The actual part associated with the delay value parameter Dly shall be a timing generic representing an 
internal signal delay or an internal clock delay. 

The actual part associated with the input signal parameter InSig shall be a static name denoting either 
an input port or the corresponding wire delayed signal (if it exists). 

The actual part associated with the output signal parameter OutSig shall be an internal signal. The 
internal signal shall have the same subtype as the signal associated with the input signal parameter. 

6.4.3 VITAL process statement 

A VITAL process is a key building block of a VITAL Level 1 architecture. It is a mechanism for modeling timing 
constraints, functionality, and path delays. 

VITAL-process-statement : := 
[ process-label : 3 
process ( sensitivity-list ) 

begin 

end process [ process-label ] ; 

VITALprocess-declarative-part 

VITAL-process-statement-part 
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A VITAL process statement shall have a sensitivity list. The sensitivity list shall contain the longest static prefix 
of every signal name that appears as a primary in a context in which the value of the signal is read. These are the 
only signal names that the sensitivity list may contain. 

6.4.3.1 VITAL process declarative part 

A VITAL process declarative part is restricted to a few kinds of declarations. 

VITAL-process-declarative-part ::= 
{ VITAL-processdeclarative-item f 

VITAL-process-declarative-item : := 
cons tan-declaration 

I alias-declaration 
1 attribute-declaration 
I attribute-specification 
I VITAL-variable-declaration 

6.4.3.1.1 VITAL variables 

Certain formal parameters of some procedures in the VITAL standard packages are designated as restricted 
formal parameters. They are: 

GlitchData on procedure VitalPathDelay 

Timing Data 

PeriodPulseData on procedure VitalPeriodPulseCheck 

on procedures VitalSetupHoldCheck, VitalRecovery RemovalCheck 

PreviousDataln on procedure VitalStateTable 

The actual part in the association of a restricted formal parameter shall be the simple name of a restricted variable. 

Certain restrictions are placed on the declaration of a restricted variable. The type mark in the restricted variable 
declaration shall denote the type or subtype denoted by the type mark in the corresponding restricted formal 
parameter declaration. If the declaration of the restricted variable contains an initial value expression, then that 
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1 expression shall take one of the following forms: 

- It can be the name of a constant that is declared in one of the VITAL standard packages. 

- It can be a function call invoking a function that is declared in one of the VITAL standard packages. 
Each actual parameter part in such a function call shall be a locally static expression. 5 

6.4.3.2 VITAL process statement part 

The VITAL process statement part consists of statements that describe timing constraint checks, cell function, and 
10 path delay selection. 

15 

VITAL-process-statement-part : := 
[ VITAL-timing-check-section ] 
[ VITAL-functionality-section ] 
[ VITAL-path-delay-section ] 

These statements are grouped into three distinct sections, each of which is devoted to a particular sort of 
specification. A VITAL process shall include at least one of these sections. 

20 6.4.3.2.1 Timing check section 

The timing check section performs timing constraint checks through the invocation of predefined timing check 
procedures. Timing checks that can be performed in this section include setuphold checks, recovery/removal 
checks, and periodpulsewidth checks. 

25 

VITAL-timing-check-sec tion : : = 
if VITAL-timingcheck-condition then 

{ VITAL-timing-check-statement } 
end if ; 

30 

VITAL-timing-check-condition : := generic-simple-name 

VITAL-timing-check-statement : := procedure-call-statement 

35 The timing check condition shall be a simple name denoting a TimingChecksOn control generic that shall be 
declared in the entity. 

A timing check statement is a procedure call statement that invokes one of the VITAL timing check procedures 
declared in the package VITAL-Timing: VITALSetupHoldCheck, VlTALRecoveryRemovalCheck, or 
VlTALPeriodPulseCheck. Each of these procedures performs the specified check and returns a parameter value 
indicating whether or not a constraint violation occurred (see 8.1 for more details). These values are considered 
to be the output of the timing section. A timing check section is the only context in which a call to a timing check 
procedure is allowed. 

40 

45 The actual parameter part of a timing check procedure call shall satisfy the following requirements: 

- The actual part associated with a formal parameter representing a signal name shall be a locally static 
name. 

50 - The actual part associated with the formal parameter HeaderMsg shall be a globally static expression. 

- The actual part associated with a formal parameter of the standard type Time shall be a globally static 
expression. 

Clause 6 39 



~ 

1 

5 

IO 

15 

20 

25 

30 

35 

40 

45 

50 

IEEE 
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC 

The actual part associated with a formal parameter XOn or MsgOn shall be a locally static expression 
or a simple name denoting the control generic of the same name. 

A function call or operator in an actual part shall invoke a function or operator that is defined in package 
Standard, package Std-Logic-1164, or package VITAL-Timing. 

An actual part associated with the formal parameter TestSignalName, RefSignalName, or 
RefTransition shall be a locally static expression. 

Timing checks shall be independent of one another. It is an error for a variable that is associated with a timing 
check violation parameter to appear in another timing check statement. 

NOTEGAlthough the variable associated with the violation parameter in a timing check cannot be used in another timing 
check, it may be used in other sections of the VITAL processduring functionality computation, for instance. 

6.4.3.2.2 Functionality section 

The functionality section describes the behavior of the cell. 

VITAL-functionality-section : := 
{ VITAL-variable-assig~iient-sta~~iiie~~ I p~ocediu-e_call_stut~~ii~nt } 

VITAL-variable-assignment-statement ::= 
VITAL-target := expression ; 

VITAL-target ::= unrestn 

The function of a model is specified in terms 01 variable assignment statements and procedure call statements. 

A procedure call statement in the hnctionaljty section shall invoke thc prcdcfined procedure VlTALStateTable 
that is defined in package VITAL-Primitives (see 7.3.4). The al parameter part of the procedure call shall 
satisfy the following requirements: 

- The actual part associated with the StateTable pxanictcr shalI adhere to the restrictions relating to the 
StateTable parameter as described in 6.4.4. 

- The constraint on the variable associated with the PreviousDataln parameter shall match that on the 
actual associated with the Dataln parameter. 

Certain restrictions are placed on a VITAL variable assignment statement. The target shall be an unrestricted 
variable that is denoted by a locally static name, and the right-hand side expression shall be such that every 
primary in the right-hand side expression is one of the following: 

a) A globally static expression 

b) 

c) A function call invoking a standard logic function, a VITAL primitive, or the function 

A name denoting a variable, a port, or an internal signal 

VlTALTruthTable 

d) 

e) A parenthesized expression 

An aggregate, or a qualified expression whose operand is an aggregate 
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The functionality section is the only context in which a call to the function VlTALTruthTable (see 7.3.3) is 
allowed. The actual part associated with the formal parameter TruthTable in such a call shall adhere to the 
restrictions relating to the TruthTable parameter as described in 6.4.4. 

NOTELThe function form of VlTALTruthTable can be invoked only from the functionality section; however, the procedure 
form of VlTALTruthTable can be invoked as a VITAL, primitive concurrent procedure call. 

6.4.3.2.3 Path delay section 

The path delay section drives ports or internal signals using appropriate delay values, with provisions for glitch 
handling, message reporting control, and output strength mapping. 

Path delay selection is modeled with a procedure call statement that invokes one of the path delay procedures- 
VITALPathDelay, VITALPathDelayOl , or VITALPathDelayOl Z-defined in the package VITAL-Timing. A 
path delay procedure selects the appropriate propagation delay path and schedules a new output value for the 
specified signal (see 9.4 for more detail). A path delay section is the only context in which a call to a path delay 
procedure is allowed. 

The actual parameter part of a path delay procedure call shall satisfy the following requirements: 

The actual part associated with the formal parameter Outsignal shall be a locally static name. 

The actual part associated with the formal parameter Paths shall be an aggregate. Each element 
expression of the array aggregate shall be a record apgregatc. The cxpression associated with a 
PathDelay subelement shall be globally static. The expression associared with an InputChangeTime 
subelement shall be either a Last-Event attribute or a locally static expression. 

The actual part associated with the formal parameter GlitchMode shall be a locally static expression. 

The actual part associated with the formal parameter GlitchData shall be a locally static name. 

The actual part associated with a formal paramctcr XOn or MsgOn shall be a locally static expression 
or a simple name denoting the control generic of the same name. 

An actual part associated with the formal parameter OutSignalName, DefaultDelay, or OutputMap 
shall be a locally static expression. 

NOTE-Each port of mode OUT, INOUT, or BUFFER that has a driver is driven by a call to a VITAL primitive procedure 
or a call to a path delay procedure. 

6.4.4 VITAL primitive concurrent procedure call 

VITAL-primitive-concument-procedure-call : := 
VZTALpWtive-concurrent-procedure-call 

A VITAL primitive concurrent procedure call provides a distributed delay modeling capability. It invokes any one 
of the primitives defined in the package VlTALLPrimitives to compute functionality and schedule signal values 
using delay values selected within the procedure. A complete list of the available primitives is given in clause 7. 

The actual parameter part of a primitive subprogram call shall satisfy the following requirements: 

- An actual part associated with a formal parameter of class VARIABLE or SIGNAL shall be a static 
name. 
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- An actual part associated with a formal parameter of class CONSTANT shall be a globally static 
expression. 

- An actual past associated with the formal parameter ResultMap shall be a locally static expression. 

- An actual past associated with a TruthTable or StateTable formal paramet 
primitive shall be a constant that is not a defend  constant. Furthemore, the v 
constant shall be a positional aggregate f o m d  using only locally static 
aggregates of this form. 
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Vi talDecoder 

7. Predefined primitives and tables 

VitalMux2 VitalMux3 VitalMux4 

VitalDecoder2 VitalDecoder4 VitalDecoder8 

The VITAL-Primitives standard package defines a number of primitive functions and procedures that provide 
basic functional support for VITAL Level 1 models. 

The set of VITAL primitives consists of logic primitives and utility primitives. Logic primitives perform basic 
logic operations. Utility primitives support multiple driver resolution and table operations. 

7.1 VITAL logic primitives 

Each logic primitive is defined in both function and procedure form for use in the functionality section of a VITAL 
process or in a VITAL primitive concurrent procedure call, respectively. 

I VitalOR I VitalOR2 I VitalOR3 I VitalOR4 I 
30 I VitalXOR I VitalXOR2 I VitalXOR3 I VitalXOR4 I 

35 

40 

45 

50 

I VitalBUF I VitalBufIfO 1 VitalBufIfl 1 VitalIDENT I 
I I VitalINV I VitalInvIfO I VitalInvIfl I - 

7.1.1 Logic primitive functions 

VITAL logic primitive functions compute the defined function and return a value of type Std-Ulogic or 
Std-Logic-Vector. All parameters of the logic primitive functions are constants of mode IN. 

Example: 

ARCHITECTURE PinToPinDelay of AndOr IS 

BEGIN 
attribute VITAL-LEVEL1 of PinToPinDelay: architecture is TRUE; 

VitalBehavior: PROCESS (A, B, C, D) 
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1 VARIABLE ANDl-Out, ANDZ-Out, Q-Zd: std-ulogic; 
VARIABLE GlitchData-Q : VitalGlitchDataType; 

-- Functionality section 
ANDl-Out := VitalAND2 ( A, B ); 
AND2-Out := VitalAND2 ( C, D ); 
Q-zd 
-- Path delay section 
VitalPathDelayOl ( 

Outsignal => Q, 
OutSignalName => "Q", 
OutTemp => Q-zd, 
Paths => ( 

BEGIN 

:= VitalOR2 (ANDl-Out, AND2-Out, ResultMap => DefaultECLMap) 

0 => (InputChangeTime => A'fast-event, 
PathDelay => tpd-A-Q, 

15 Pathcondition => TRUE), 
1 => (InputChangeTime => B'last-event, 

PathDelay => tpd-B-Q, 
Pathcondition => TRUE), 

2 => (InputChangeTirne => C'lasi-event. 
20 PathDelay --=. tpd-C. Q. 

Pathcondition => TRUE). 

PathDelay => tpd--D-Q, 
3 => (InputChangeTime ==. D'last-event. 

Pathcondition => TRUE) "., 
1, "a4 

s 25 

GlitchData => GlitchData--Q. 4 

DefaultDelay => VitalZeroDelayOl , 
Mode => OnDetect. 

a* 

XON => TRUE. 
30 MsgOn => TRUE. 

MsgSeverity => WARNING); . 
END PROCESS; 

END; 

35 7.1.2 Logic primitive procedures 

VITAL logic primitive procedures execute in a manner similar to that of a separate process. The procedures wait 
internally for an event on an input signal, compute the new result, perform glitch handling, schedule transactions 
on the output signals, and wait for further input events. All of the functional (logic) input or output parameters of 
the primitive procedures are signals. All other parameters are constants. 40 

The procedure primitives are parameterized for separate path delays from each input signal. All path delays 
default to 0 ns. 

45 Example: 

ARCHITECTURE DistributedDelay OF AndOr IS 
ATTRIBUTE VITAL-LEVEL1 of DistribuZedDelay: architecture IS TRUE; 
SIGNAL ANDl-Out, AND2-Out: std-ulogic; 

I1 : VitalAND2 (ANDl-Out, A, B, tdevice-ll-Q, tdevice-11-Q); 
12: VitalAND2 (AND2_0ut, C, D, tdevice-l2-Q, tdevice-12-Q); 
13: VitalOR2 (Q, ANDl-Out, AND2_0ut, tdevice-l3-Q, tdevice-13-Q); 

50 BEGIN 
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END; 

7.1.3 Establishing output strengths 

Each logic primitive function or procedure by default produces an output value from the set of values {‘U’, ‘X’, 
‘O’7 ‘1 ’, ‘Z’}. This set of logic strengths may be expanded through use of the optional ResultMap parameter (of 
type ResultMapType), which provides rapid conversion of any of the standard five output values to any other 
output value through the use of a simple table lookup. 

type ResultMapType is array (UXO1) of Std-ulogic; 
type ResultZMapType is array (UXOlZ) of Std-ulogic; 

constant VitalDefaultResultMap : VitalResultMapType := ( ‘U, ’X, IO7 ‘1’ ); 
constant VitalDefaultResultZMap : VitalResultZMapType := ( ‘U, ‘X, ‘0, ‘l‘, ‘Z ); 

Example: 

ARCHITECTURE Structural OF Pullup IS 
ATTRIBUTE VITAL-LEVEL1 of Structural: architecture IS TRUE; 
CONSTANT DefaultECLMap : VitalRe&ltMapType := (‘U’, ’X, ‘L‘, ’1 ’); 

I1 : VitalBUF (Q, A, tpd-A-Q, ResultMap => DefaultECLMap); 
BEGIN 

END: 

In this example, the constant DefaultECLMap that is supplied as the ResultMap actual parameter causes a ‘0’ 
to be mapped to ‘L’ on the output of the primitive. 

7.2 VitalResolve 

The procedure VitalResolve supports the resolution of multiple signal drivers, allowing a model to drive these 
multiple signals on a single signal. It invokes the standard logic function Resolved on the input vector and assigns 
it to the outputs with zero delay. 

Example: 

ARCHITECTURE Structural OF ResolvedLogic IS 
ATTRIBUTE VITAL-LEVEL1 of Structural: architecture IS TRUE; 
SIGNAL Q-Temp1 , Q-Temp2 : std-ulogic; 

I1 : VitalAND2 (Q-Templ, A, B, tdevice-11-Q, tdevice-11-Q); 
12: VitalAND2 (Q-Tempe, C, D, tdevice-l2-Q, tdevice-12-Q); 
R l  : VitalResolve (Q, (Q-Temp1 , Q-Temp2)); 

BEGIN 

END; 

7.3 VITAL table primitives 

The VlTACPrimitives package supports the standard specification and use of truth tables and symbol tables 
through the use of the table primitives VitalTruthTable and VitalStateTable. VitalTruthTable is provided for 
modeling combinational cells. VitalStateTable is provided for modeling sequential cells. 

7.3.1 VITAL table symbols 

A transition set or a steady-state condition is represented by a special table symbol. The symbol set defined by the 
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type VitalTableSymbolType is ( 
' r ,  -- 0-> 1 
'Y, -- 1 -> 0 
'PI, 
'N ,  
'r', -- 0 -> X 
'f, -- 1 ->x 
'p', 
In', 
'R, 
'F, 

'VI, -- x -> 0 
'E', 
'A, 
ID', 
' * I ,  

'X, -- Unknown level 
' 0 ,  -- low level 
'l', -- high level 
- , -- don't care 
'B', -- Oor 1 
'Z, -- High Impedance 
'S' -- steady value 

-- Union of '1 and 'A' (any edge to 1) 
-- Union of 'Y and 'VI (any edge to 0) 

-- Union of 'Y and 'r' (any edge from 0) 
-- Union of 7' and 'f (any edge from 1) 
-- Union of 'A' and 'p' (any possible rising edge) 
-- Union of 'v' and 'n' (any possible falling edge) 

'A', _ _  X -> 1 

-- Union of 'VI and 'A' (any edge from 'X') 
-- Union of 'r' and In' (rising edge to or from 'X) 
-- Union of 'f and 'VI (falling edge to or from 'X) 
-- Union of 'R and 'F' (any edge) 

I f  

>; 

The acceptable range of table symbols 
state table can be constructed from an 

scalar subtype definition. A truth or 
by the corresponding table symbol 

30 subtype. 

subtype VitalTruthS ymbolType is VitalTabIeSymbo 
subtype VitalStateSymbolType is VitalTableSymbolType range 'Ip to IS'; 

35 Table 3 shows the VitalTableSymbolType elements and the levels and cdge transitions that they represent. 

A truth or state table is partitioned into different sections, each of which represents a specific kind of information. 
These sections include an input pattern and a response. For a state table, an additional state section is included. 
The input pattern section shall not contain the symbol 'Z'. The response section shall contain only the symbols 
y, '07, ' I , ,  ' 7 - and 'Z', and for a state table, the symbol 'S as well. The state section of a state table can only 
contain the symbols 'X', 'O', 'l', '-' and 'B'. It is an error if any symbols other than those allowed are encountered 
in a section. 

40 

NOTES 

1-The table symbols are enumeration literals, therefore they are case-sensitive. 

2-A limited set of table symbol values can be used to develop truth tables. Any table symbol can be used in a state table. 

45 

50 7.3.2 Table symbol matching 

During truth or state table processing, the input to the table primitive (Dataln) i s  matched to the stimulus portion 
of the table. The matching process begins by converting the input data to the equivalent 'X', '0, or '1 ' values by 
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applying the standard logic TO-XO1 function. The resulting values are then compared to the stimulus portion of 
the table according to the matching rules in table 4. 

For a state table, the current and previous values of Dataln are used to determine if an edge has occurred. These 
edges are matched with the edge entries that are specified in the input pattern of the table using the semantics of 
the edge symbols shown in table 3. 

50 
7.3.3 TruthTable primitive 

A function version of VitalTruthTable is defined for use inside a VITAL process. The procedure version of 
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Table 4-Matching of table symbols to input stimulus 

DataInXOl := 
stimulus portion 1 To-XOl(DataIn) Result of comparison 

~ 

‘1  ’ I ‘1’ I ‘ 1 ’ onlv matches with ‘ 1 ’ I 

VitalTruthTable is defined for use in a concurrent procedure call. In addition to performing the same result 
computation as the function version, the procedure version schedules the resulting value on the output signal with 
a delay of 0 ns. Overloaded forms are provided to support both scalar and vector output. 

7.3.3.1 Truth table construction 

A VITAL truth table is an object of type VitalTruthTableType. 

type VitalTruthTableType is array ( Natural range <>, Natural range <>) of VitalTruthSymbolType; 

The length of the first dimension of a truth table is the number of input combinations that have a specified output 
value. The length of the second dimension shall be the sum of the size of the input pattern section and the size of 
response section. 

The number of inputs to the truth table shall be equal to the length of the Dataln parameter. It is an error if the 
length of Dataln is greater than or equal to the size of the second dimension of the TruthTable parameter. 

A row in a truth table consists of two sections: an input pattern and a response. A row i of the truth table is 
interpreted as follows: 

InputPatternG downto 0),  Response(k downto 0) 
where 

j = Dataln’Length - 1 
k = TruthTable’Length(2) - Dataln’Length - 1 

40 
Example: 

Truth table for a 2 to 4 decoder: 

45 

50 

Constant DecoderTable: VitalTruthTableType(0 to 3, 0 to 5) := 
-- Input Pattern Response 
-- D1 DO Q3 Q2 Q1 QO 

(( ‘O’, ‘O’, ‘U, ‘U, ‘U, ‘l’), 
( ‘O’, ‘l’l ‘U, ‘U, ‘l’, ‘O’), 
( ‘l’, ‘O’, IO1, ‘l’, ‘O’, ‘O’), 
( ‘l’, ‘l’, ‘l’, ‘O’, ‘O’, ‘0’)); 
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7.3.3.2 TruthTable algorithm 

The VitalTruthTable primitive compares the stimulus, Dataln, with the input pattern section of each row (starting 
from the top) in TruthTable to find the first matching entry. If all of the subelements of Dataln match with 
corresponding subelements of the input pattern of a particular row in TruthTable, the outputs are determined from 
the response section of the corresponding row. The outputs are then converted to the standard logic XO1Z subtype. 
If all rows in TruthTable are searched and no match is found, then VitalTruthTable returns either an ‘X’ or a 
vector of ‘X’s, as appropriate. 

The vector form of the procedure places the outputs in the actual associated with the parameter Result, starting 
from the right side of both the truth table and the actual associated with Result, until the actual is filled or there 
are no more outputs left in the truth table. It is an error if Result is too small or too large to hold all of the values. 
The vector function behaves in a manner similar to the vector procedure; however, it always returns a vector with 
the range TruthTable’Length(2) - Dataln’Length - 1 downto 0. 

7.3.4 Statelable primitive 

There are two versions of the VitalStateTable proccdure-one that is intended for use as a sequential statement 
and one that is intended for use as a concurrent nntemcnt. The concurrent statement version of this procedure 
performs the same result computation as the function version, but in addition it schedules the resulting value on 
the output signal with a delay of 0 ns. Overloaded forms are provided to support both scalar and vector output. 

7.3.4.1 State table construction 

A VITAL state table is an object of type VitalStateTableType. 

type VitalStateTableType is array ( Natural range <>, Natural ange e> ) of VitalStateSymbolType; 

The length of the f i s t  dimension of a state table is the number of input and state combinations that have a specified 
output value. The length of the second dimension is the sum of the length of the input patterns section, the length 
of the state section, and the length of the response section. 

The number of inputs to the state table shall equal the length of the Dataln parameter. It is an error if the length 
of Dataln is greater than or equal to the size of the second dimension of the StateTable parameter. 

A row in a state table consists of the following sections: an inputpattern, a state, and a response. Each row in the 
table shall have at most one element from the subtype VitalEdgeSymbolType. Each row i of the StateTable is 
interpreted as follows: 

InputPattern(j downto 0), State(k downto 0), Response(Z downto 0) 
where 

j = Dataln’Length - 1 
k = NumState - 1 
1 = StateTable’Length(2) - Dataln’Length - NumState -1 

NOTE A state table should include at least one entry with an ‘S’ for the clock so that VitalStateTable can handle the case in 
which the procedure is activated but the clock did not change. If this entry is not included, then the result defaults to ‘X’s. 

Example: 

State table for a positive-edge triggered D Flip flop: 

Constant DFFTable: VitalStateTableType := 
-- RESET D CLK State Q 
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7.3.4.2 StateTable algorithm 

The procedure VitalStateTable computes the value of the output of a synchronous sequential circuit (a Moore 
machine) based on the inputs, the present state, and a state table. These procedures compare the stimulus, Dataln 
(and edges on it), with the input pattern section of each row (starting from the top) in StateTable to find the first 
matching entry. If all input entries are found to match, the comparison moves to the states. Here the comparison 
moves from the leftmost index of Result [comparing it to State(NumStates - 1) in the state table] and proceeds 
to the right. The comparison of the entry continues until all of the inputs have been compared or a mismatch is 
encountered. The search terminates with the f i s t  level or edge match or when the table entries are exhausted. If 
all rows in StateTable are searched and no match is found, then the actual associated with the formal parameter 
Result is assigned an ‘X’ or a vector of ‘X’s, as appropriate. 

Once a match is found, or it is determined that no match can be made, the new values of the state variables and 
the outputs are determined from the response section of the stare table. The states and outputs are placed into the 
parameter Result, starting from the right side of both the state table and Result, until Result is filled or there are 
no more outputs or states left in the state table. It is an error i l  Result i s  too small or too large to hold all of the 
values. 
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8. Timing constraints 

10 
This standard provides support for standard timing constraint checking and for the modeling of negative timing 
constraints. 

15 8.1 Timing check procedures 

The package VITAL-Timing defines three kinds of timing check procedures: VitalSetupHoldCheck, 
VlTALRecoveryRemovalCheck, and VlTALPeriodPulseCheck. Each is overloaded for use with test signals 
of type Std-Ulogic or Std-Logic-Vector, Each defines a CheckEnabled parameter that supports the modeling 

2o of conditional timing checks. 

A VITAL timing check procedure performs the following functions: 

25 - It detects a timing conshaint violation if the timing check is enabled. 

- It reports a timing constraint violation using a VHDL assertion statement. The report message and 
severity level of the assertion are controlled by the model. 

- It sets the value of a corresponding violation flag. If a timing violation is detected, the value of this flag 
is set to ‘X’; otherwise, it is set to ‘0’. ‘X’ generation for this flag can be controlled by the model. 

30 

35 The same timing check procedures are used for both positive and negative timing constraint values. Two delay 
parameters-Test Delay and Ref Delay-are defined for modeling the delays associated with the test or reference 
signals when negative setup or hold constraints are in effect. The delay parameters shall have the value zero when 
negative constraints do not apply. 

40 8.1.1 VitalSetupHoldCheck 

The procedure VitalSetupHoldCheck detects the presence of a setup or hold violation on the input test signal 
with respect to the corresponding input reference signal. The timing constraints are specified through parameters 
representing the high and low values for the setup and hold times. This procedure assumes nonnegative values for 
setuphold timing constraints. 

45 

Setuphold constraint checks are performed by this procedure only if the CheckEnabled condition evaluates to 
True; however, event times required for constraint checking are always updated, regardless of the value of 
CheckEnabled. Setup constraints are checked in the simulation cycle in which the reference edge occurs. A setup 
violation is detected if the time since the last Testsignal change is less than the expected setup constraint time. 
Hold constraints are checked in the simulation cycle in which an event on Testsignal occurs. A hold violation is 
detected if the time since the last reference edge is less than the expected hold constraint time. 

50 
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8.1.2 VitalPeriodPulseCheck 

15 The procedure VitalPeriodPulseCheck checks for minimum and maximum periodicity and pulse width for ‘1 ’ 
and ‘0’ values of the input test signal. The timing constraint is specified through parameters representing the 
minimal period between successive rising or falling edges of the input test signal, and the minimum pulse widths 
associated with lllgh and low values. 

20 
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30 

Testsignal 

4 tpw-lo F! 

Figure 3-Per 

8.1.3 VitalRecoveryRemovalCheck 

The procedure VitalRecoveryRemovalCheck detests the presence of a recovery or removal violation on the 
input test signal with respect to the corresponding input reference signal. It assumes nonnegative values of 
recovery/removal timing constraints. The timing constraint is specified through parameters representing the 
recovery and removal times associated with a reference edge of the reference signal. A flag indicates whether a 
test signal is asserted when it is high or when it is low. 

Recovery/removal constraint checks are performed by this procedure only if the CheckEnabled condition 
evaluates to True; however, event times required for constraint checking are always updated, regardless of the 
value of CheckEnabled. Recovery constraints are checked in the simulation cycle in which the reference edge 
occurs. A recovery violation i s  detected if the time since the last Testsignal change is less than the expected 
recovery constraint time. Removal constraints are checked in the simulation cycle in which an event on 
Testsignal occurs. A removal violation is detected if the time since the last reference edge is less than the 
expected removal constraint time. 

35 

40 

45 

Example: 
50 

VITALBehavior: PROCESS (D, CLK, RESET) 
VARIABLE SetupHoldlnfo : VitalTimingDataType := VitalTimingDatalnit ; --Restricted variable 
VARIABLE PeriodDatalnfo : VitalPeriodDataType := VitalPeriodDatalnit ; --Restricted variable 
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VARIABLE RecoRemolnfo : VitalTimingDataType := VitalTimingDatalnit ; --Restricted variable 
VARIABLE Violation-flag, Violl, Viol2, Viol3 : XO1; 
... 

BEGIN 
-- Timing Check Section 
IF (Timingcheckson) THEN 

-- Setup/hold check between D and rising CLK 
VitalSetupHoldCheck ( 

Testsignal => D, TestSignalName => “D,  
Refsignal => CLK, RefSignalName => “CLK, 
SetupHigh => tsetup-D-CLK, SetupLow => tsetup-D-CLK, 
HoldHigh => thold-D-CLK, HoldLOW => thold-D-CLK, 
CheckEnabled => RESET = ‘l’, RefTransition => TI’, 
MsgOn => TRUE, XOn => TRUE, 

Violation => Violl, MsgSeverity => ERROR); 
HeaderMsg => “lnstancel”, TimingData => SetupHoldlnfo, 

-- Pulsewidth and period check for CLK 
VitalPeriodPulseCheck ( 

Testsignal => CLK, TestSignalName => “CLK, 
Period => tperiod-CLK, 
PulseWidthHigh=> tpw-CLK-posedge, 
PulseWidthLow => tpw-CLK-negedge, 
PeriodData => PeriodDatalnfo, Violation => ViolP, 

HeaderMsg => “lnstancel”, 
CheckEnabled => RESET = ‘l ’ , MsgSeverity => ERROR); 

MsgOn => TRUE, XOn => TRUE, 

-- Recovery/removal check between RESET and rising CLK 
VitalRecoveryRemovalCheck ( 

Testsignal => RESET, TestSignalName => ‘RESET”, 
Refsignal => CLK, RefSignalName => “CLK, 
Recovery => trecovery-RESET-CLK, 
Removal => tremoval-RESET-C 
ActiveLow => FALSE, CheckEnabled => RESET = ‘l’, 
RefT ransition => ‘R’, 
MsgOn => TRUE, XOn => TRUE, 
HeaderMsg => “lnstancel”, TimingData => RecoRemolnfo, 
Violation => Viol3, MsgSeverity => ERROR); 

35 

END IF; 
Violationflag := Violl or Viol2 or Viol3; 
... 40 

END PROCESS; 

8.2 Modeling negative timing constraints 

45 Some devices may be characterized with negative setup or hold times, or negative recovery or removal times. If 
any of these values is negative, then the data constraint interval does not overlap the reference clock edge, and a 
negative timing constraint is said to be in effect. 

A negative hold or removal time corresponds to an internal delay on the test (or data) signal. A negative setup or 
recovery time corresponds to an internal delay on the reference (or clock) signal. These internal delays determine 
when a data signal is sampled on the edge of the clock signal. Special adjustments are required in the case of 
negative timing constraints because the data value at the time that the clock edge is detected may be different from 
the data value during the constraint interval. Furthermore, the setup time may be difficult to check because a 

50 
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I violating data edge may not be the most recent data edge preceding the clock. 

Negative timing constraints in a VITAL Level 1 model are handled by internally delaying the test or reference 
signals. Negative setup or recovery times result in a delayed reference signal. Negative hold or removal times 
result in a delayed test signal. Furthermore, the delays associated with other signals may need to be appropriately 
adjusted so that all constraint intervals overlap the delayed reference signals. After these delay adjustments are 
performed, the timing constraint values on the timing check procedures are always nonnegative. 
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Figure 5-The data constraint interval for a negative setup constraint 

8.2.1 Requirements on the VHDL description 

45 This standard defines a delay adjustment algorithm that transforms negative delay values to nonnegative values. 
This algorithm relies on certain model characteristics in order to calculate the delays correctly; therefore, a 
negative timing constraint has to be anticipated and the model structured to accommodate it. 

To model negative constraints in a VITAL-compliant model, the corresponding VHDL description shall contain 
5o the following: 

- The declaration of an internal clock delay generic for each clock (reference) signal that is associated 
with a negative setup (or recovery) constraint 
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- The declaration of an internal signal delay generic for every data (test) signal that is associated with a 
negative hold (or removal) constraint 

- The declaration of biased propagation delay generics for paths that are dependent on multiple clocks 

- A signal delay block in the architecture that contains calls to the VitalSignalDelay procedure to delay 
the appropriate testlreference signal 

These rules are part of the VITAL Level 0 modeling specification (see clause 4). 

NOlT-In general, a model should read the value of the internally delayed signal rather than that of the corresponding signal 
that is not delayed; however, the model is not prohibited from reading the value of the signal that is not delayed. 

8.2.2 Negative constraint calculation phase 

The negative constraint delay adjustments are computed outside of the actual VHDL model in a special phase of 
simulation called the negative constraint calculation phase, which occurs directly after the VITAL 
backannotation phase and directly before normal VHDL initialization. 

Negative constraint calculation is performed for each VITAL Level 0 instance that defines a negative constraint 
timing generic. The values of certain timing generics are computed and set, and the values of others are adjusted 
in an iterative algorithm that uses the generic values set during previous steps. 

Negative constraint calculation is performed in  the following sequence: 

a) Calculate internal clock delays 

b) Calculate internal signal delays 

c) Calculate biased propagation delays 

d) Adjust propagation delays 

e) Adjust timing constraint values corresponding to setup, hold, recovery, and removal times 

It is an error if at the end of the negative constraint calculation stage, a timing generic that is adjusted by this 
algorithm still has a negative value. 

N O T S A  calculation or adjustment that is performed as a part of the negative constraint calculation phase may result in a 
reduction in the value of a generic (or one of its subelements) that causes the value to become negative, in which case the 
negative constraint algorithm replaces the negative value with a zero value. This situation may or may not indicate an error; 
hence, a tool that processes VITAL-compliant models may choose to issue a warning when it replaces the negative value. 

8.2.2.1 Calculation of internal clock delays 

The value of each internal clock delay generic is computed as follows: 

a) The name of the associated clock signal is extracted from the <Clockport> portion of the internal clock 
delay generic name. 

b) All setup and recovery timing generics on the same instance are examined. Those generics for which the 
<ReferencePo* part of the generic name is the same as the cClocWortr name are marked. 

c) The minimum value of all the subelements of all the marked timing generics is determined. If that value 
is negative, the internal clock delay generic receives the absolute value; otherwise, it is set to 0 ns. 
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8.2.2.2 Calculation of internal signal delays 

The value of each internal signal delay generic is computed as follows: 

IEEE STANDARD FOR VITAL ASIC 

a) The names of the associated clock and input signals are extracted from ,,e <Clockport> and 
clnputPort> portions of the internal signal delay generic name. 

b) If there is an internal clock delay generic containing the same clock signal name, then its value is the 
associated clock delay. Otherwise, the associated clock delay is 0 ns. 

c) All hold and removal timing generics on the same instance are examined. Those generics for which the 
<ReferencePo* part of the generic name is the same as the <Clockport> name and the <TestF'ort> part 
of the generic name is the same as the i z n p u t P o ~  name are marked. 

d) The minimum value of all subelements of all the marked timing generics is determined. This value is 
reduced by the associated clock delay. If the resulting value is negative, it is replaced by its absolute 
value; otherwise, it is replaced by 0 ns. 

8.2.2.3 Calculation of biased propagation delays 

The value of each biased propagation d 

a) The corresponding propagation e input and output ports, condition 
biased propagation delay generic is name, and edge) is identified 

initialized to the value of the corresponding propagation delay generic. 

The names of the associated clock and input signals are zxtracted from the <ClockPort> and 
<InputPort> portions of the biascd propagation dclay generic namc. 

c) If there is an internal signal delay gcneric (see 4.3.2 
the same <Inputport> and <ClocWort> parts, th 
propagation delay generic is reduced by the value o 
value of any subelement is negative, then the value of that subelement is set to zero. 

b) 

3) on the same instance whose name denotes 
e value of each subelement of the biased 
internal signal delay generic. If the resulting 

NOTF!-Due to the name construction of the intcrm! signal dc1a.y gcneric, there can be only one internal signal delay generic 
that matches both the InputPost and Clockport names (in step c), 

8.2.2.4 Adjustment of propagation delay values 

Propagation delay generics are adjusted in two separate steps: 

a) All propagation delay timing generics from a clock signal are adjusted 

b) Propagation delays that do not correspond to a biased propagation delay generic are adjusted 

It is an error if a propagation delay generic is adjusted by more than one internal signal delay. 

8.2.2.4.1 Adjustment of clock to output propagation delay values 

Each internal clock delay generic is adjusted as follows: 

a) The name of the associated clock signal is extracted from the <Clockport> portion of the internal clock 
delay generic name. 
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b) All propagation delay generics on the same instance are examined. Those generics for which the 
<Inputport> part of the generic name is the same as the <Clockport> name are marked. 

c) The value of each subelement of each marked generic is reduced by the value of the internal clock delay 
generic. If the resulting value of any subelement is negative, then the value of the subelement is set to 
0 ns. 

8.2.2.4.2 Adjustment of other propagation delay values 

Each internal signal delay timing generic is adjusted as follows: 

The names of the associated clock and input signals are extracted from the <Clockport> and 
<InputPort> portions of the internal signal delay generic name. 

All propagation delay generics on the instance are examined. If the generic was identified as 
corresponding to a biased propagation delay generic during the calculation of biased propagation 
delays, then it is not marked. Otherwise, those generics for which the dnputPort> part of the generic 
name is the same as the <Inputport> name are marked. 

The value of each subelement of each marked generic is reduced by the value of the internal signal 
delay generic. If the resulting value of any subelement is negative, then the value of the element is set to 
0 ns. 

8.2.2.5 Adjustment of timing check generics 

The timing check generics-setup hold, recovery, and removal generics-are adjusted in two separate steps. 

8.2.2.5.1 Internal clock delay generic 

For each internal clock delay generic: 

a) The name of the associated clock port is extracted from the <Clockport> portion of the internal clock 
delay generic name. 

b) All setup and recovery generics on the same instance are examined. Those generics for which the 
<ReferencePo* part of the generic name is the same as the <Clockport> name are marked. The value 
of each subelement of each marked generic is increased by the value of the internal clock delay generic. 

c) All hold and removal generics on the same instance are examined. Those generics for which the 
<ReferencePo* part of the generic name is the same as the <Clockport> name are marked. The value 
of each subelement of each marked generic is reduced by the value of the internal clock delay generic. If 
the resulting value of any subelement is negative, then the value of the subelement is set to 0 ns. 

8.2.2.5.2 Internal signal delay generic 

For each internal signal delay generic: 

a) The names of the associated clock and input ports are extracted from the <Clockport> and dnputPort> 
portions of the internal signal delay generic name. 

b) All setup and recovery generics on the same instance are examined. Those generics for which the 
<ReferencePo* part of the generic name is the same as the <Clockport> name and the <TestPort> part 
of the generic name is the same as the dnputPort> name are marked. The value of each subelement of 
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each marked generic is reduced by the value of the internal signal delay generic. If the resulting value of 
any subelement is negative, then the value of the subelement is set to 0 ns. 

c) All hold and removal generics on the same instance are examined. Those generics for which the 
<Referenceport> part of the generic name is the same as the <Clockport> name and the <Testport> part 
of the generic name is the same as the cTnputPorb name are marked. The value of each subelement of 
each marked generic is increased by the value of the internal signal delay generic. 

40 

45 

50 
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9. Delay selection 

This standard supports propagation delay path selection and signal output scheduling in both sequential and 
concurrent contexts. These activities are performed by a number of predefined procedures provided for use by 
VITAL Level 1 models. The predefined procedures are as follows: 

- The VITAL path delay procedures, for use in the path delay section of a VITAL process. 

- The VITAL concurrent primitives, for use in concurrent procedure calls. 

i -  

9.1 VITAL delay types and subtypes 

The package VITAL-Timing defines a number of delay types and subtypes that support the specification and 
selection of simple delay values as well as delay values corresponding to the transitions between any of the states 
‘O’, ‘l’, ‘X’, and ‘Z. A delay whose value may vary according to the nature of a transition is called a transition- 
dependent delay. A delay with no swh dependence is a simple delay. 

type VitalTransitionType is( trOl, trl0, Uoz, trzl, trlz, trz0, trO trxl, trlx, trxo, trxz, trzx); 

subtype VitalDelayType is Time; 
type VitalDelayTypeOl is array (VitalTransitionType range trOl to trl0) of Time; 
type VitalDelayTypeOlZ is array (VitalTransitionType range trol to trz0) of Time; 
type VitalDelayTypeOlZX is array ( 

type VitalDelayArrayType is array ( 
type VitalDelayArrayTypeOl is array ( 
type VitalDelayArrayTypeOlZ is array (NATURAL range <>) of VitalDelayTypeOlZ; 
type VitalDelayArrayTypeOlZX is array (NATURAL range o) of VitalDelayTypeOlZX; 

A transition-dependent delay is represented by a value of a transition-dependent delay type. Similarly, a simple 
delay is represented by a value of a simple delay type. There are a number of different transition-dependent delay 
types representing different subsets of transitions. Each kind of simple or transition-dependent delay type has both 
scalar and vector forms. The vector forms represent delay values corresponding to one or more vector ports for 
which the delay(s) associated with each bit may be different. 

A value of a transition-dependent delay type associates a (possibly) different delay value with each transition in a 
set of transitions. The value takes the form of an array of delay times, indexed by transition values. Each element 
delay value is associated with the transition corresponding to its index position. The transition-dependent delay 
types are VitalDelayTypeOl , VitalDelayTypeOl 2, VitalDelayTypeOl ZX, VitalDelayArrayTypeOl , 
VitalDelayArrayTypeOlZ, and VitalDelayArrayTypeOlZX. The first three are scalar forms, and the last three 
are vector forms. 

A value of a simple delay type is a single delay value or a vector of single delay values corresponding to one or 
more vector ports. Although the vector form of a simple delay is an array, the delays that it represents are not 
associated with transitions. The simple delay types and subtypes include Time, VitalDelayType, and 
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VitalDelayArrayType. The first two are scalar forms, and the latter is the vector form. 

The simple delay types and subtypes and the transition-dependent delay types comprise the set of VITAL delay 
types and subtypes. No other type or subtype is considered to be a VITAL delay type or subtype. 

9.2 Transition-dependent delay selection 

Delay selection for a particular signal may be based upon the new and previous values of the signal; this selection 
mechanism is called transition-dependent delay selection. Transitions between the previous and new values are 
described by enumeration values of the predefined type VitalTransitionType. Table 5 describes the delay 
selection for a set of previous and current values. 

Table 5-Transition-dependent delay selection 

I Previous 1 New I Delay selected 1 Delay selected for I Delay selected for I 
~ ~~ 

I I I VitalDe1ayTypeo1 
VitalDelayTypeOlZ for I value 1 i VitalDelayType 

1 ~ ~~~~ 

Delay lyitro1 ) ! Delay(trO1) 

Delay(trO1) I Delay(tr0Z) I 

I Dclay I Min(Dclay(trlO), Delay(trO1)) ’ Min(Dcluy(trZ1). Delaiy(trZ0)) 

Delay 1 Delay(trl0) 1 Max(Delay(trlO), Delay(trZ0)) 

9.3 Glitch handling 
40 

A glitch occurs when a new transaction is scheduled to occur at an absolute time that is greater than the absolute 
time of a previously scheduled pending event. Glitch handling in a VITAL Level 1 model is incorporated into the 
signal scheduling mechanism. 

45 This standard supports four modes of signal scheduling. These modes are represented by the enumeration values 
of the predefined VITAL, type VitalGlitchKindType: 

type VitalGlitchKindType is (OnEvent, OnDetect, VitalInertial, VitalTransport); 

50 The Vitallnertial and VitalTransport modes are identical to the inertial and transport modes of VHDL. The 
OnEvent and OnDetect modes are special modes for glitch handling. In the OnEvent mode, a glitch causes an 
‘X’ value to be scheduled on the output at the time when the scheduled event was to occur. In the OnDetect mode, 
a glitch causes an ‘X’ value to be scheduled on the output at the time of glitch detection. 
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1 Example: 

Consider a simple buffer experiencing a delay. The outputs across the buffer corresponding to various 
glitch modes are shown in figure 6. 
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" Figure &VITAL delay modes 
25 

9.4 Path delay procedures 

Signal scheduling inside a VITAL Level 1 process can be performed by one of the predefined path delay 
procedures VitalPathDelay, VitalPathDelayOl , and VitalPathDelayOl Z. Each of these procedures provides the 
following capabilities: 

30 

- Transition-dependent path delay selection * 

35 - User-controlled glitch detection, 'X' generation, and violation reporting 

- Scheduling of the computed values on the specified signal 

The information about all the relevant paths to a particular output is specified by using the Paths parameter. The 
following record structure is used to convey information about an input to output path: 40 

type VitalPathO 1 Type is record 
InputChangeTime : TIME; -- Time stamp for path input signal 

Pathcondition : BOOLEAN; -- Path sensitize condition 
45 PathDelay : VitalDelayTypeOl ; -- Delay for this path 

end record; 

Selection of the appropriate path delay begins with the selection of candidate paths. The candidate paths are 
selected by identifying the paths for which the Pathcondition is true. If there is a single candidate path, then its 
delay is the one selected. If there is more than one candidate path, then the shortest delay (accounting for the 
InputChangeTime) is selected using transition-dependent delay selection. If there are no candidate paths, then 
the delay specified by the DefaultDelay parameter to the path delay procedure is used. 

50 
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I 9.4.1 VitalPathDelay andVitalPathDelayO1 

The VitalPathDelay and VitalPathDelayOl procedures schedule path delays on signals for which the transition 
to ‘Z’ is not important. These procedures are distinguished from one another by the type of delay values that they 
accept. The procedure VitalPathDelay is defined for simple path delays of type VitalDelayType. Procedure 
VitalPathDelayOl is defined for transition-dependent path delays of type VitalDelayTypeOl (rise/fall delays). 5 

Example: 

10 

15 

20 

25 

30 

VitalPathDelayOl ( 
Outsignal => QN, -- Signal being scheduled 
OutSignalName => “QN”, 
OutTemp => QN-td, -- New signal value to be scheduled 

Paths => ( -- One path data for each input 

-- Name of the signal 

-- affecting the output 
-- First input pin that affects the output 

0 => (InputChangeTime => CLK-ipd’LAST-EVENT, 
PathDelay => tpdCLK-QN, 
Condition => (PN-ipd = ‘0’ and CN-ipd = ‘1’ )), 

-- Second input pin that affects the output 
1 => (InputChangeTirne => PN-ipd’LAST-EVENT, 

Condition 

Def au It Delay 
Mode => OnEvent. -- Mode fcr $itch processing 
MsgOn => TRUE. -- Message ccntrol on glitch 
XOn => TRUE, 
MsgSeverity => ERROR); 

=> Vita!Ze ro D if all path condition are FALSE 

9.4.2 VitalPathDelayOlZ 

Procedure VitalPathDelayOlZ schedules path delays on signals for which the transition to or from ‘ Z  is 
important (e.g., modeling of tri-state drivers). In addition to the basic capabilities provided by all path delay 
procedures,VitalPathDelayOl Z performs result mapping of the output value (using the value specified by the 
actual associated with the OutputMap parxineter) before scheduling this value on the signal. This result mapping 
is performed after transition-dependent delay selection but before scheduling the final output. 

35 

4o 

Exumple: 

45 

50 

VitalPathDelayOl Z( 
Outsignal => Q, -- Signal being scheduled 
OutSignalName => “Q”, 
OutTemp => Q-zd, -- New signal value 
Paths => ( -- One path data for each input 

-- First input pin that affects the output 
0 => (InputChangeTime => D-ipd’LAST-EVENT, 

-- Name of the signal 

-- affecting the output 

PathDelay => tpd-D-Q, 
Condition => (Enable = ‘O’)), 
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-- Second input pin that affects the output 
1 => (InputChangeTime => Enable-ipd’LAST-EVENT, 

PathDelay => tpd-Enable-Q, 
Condition => (Enable = ‘l’))), 

GlitchData => GlitchData-Q, 
MsgOn => TRUE, 
XOn => TRUE, 
Mode => OnEvent, 
MsgSeverity => ERROR, 
OutputMap => “UXO1 WHLHX); -- Pullup behavior 

10 

9.5 Delay selection in VITAL primitives 

In addition to functional computation, the VITAL primitive procedures perform delay selection, glitch handling, 
and signal scheduling. The delay selection mechanism in the primitives is different from that used in the path delay 
procedures. 

15 

The delay selection algorithm used by the VITAL primitive procedures is based on the following selection criteria: 

- If the new output value is dependent on multiple input values, the delay selected is the maximum of the 
delays from the dependent inputs. 

20 

- If the new output value is determined by either of the input values, the delay selected is the minimum of 
the delays from these inputs. 

25 
Delay selection in VITAL primitive procedures is accomplished by maintaining separate output times from each 
input signal and then selecting thc appropriate output delay based on the preceding selection criteria. The new 
value is scheduled on the output using the selected delay. 

3o Control of glitch handling is provided through a formal parameter. 

35 

Example: 

Let 
Ti0 be the time when the output will change based on a falling input 
Til be the time when the output will change based on a rising input 

For an AND primitive, 
An output going to a ‘1’ value will be scheduled after the maximum of Til times for each input 
An output going to a ‘0’ value will be scheduled after the minimum of Ti0 times for each input 40 

, However, for a NAND primitive, 
An output going to a ‘1’ value will be scheduled after the minimurn of Ti0 times for each input 
An output going to a ‘0’ value will be scheduled after the maximum of Til times for each input 

45 
Similarly, for an OR primitive. 

An output going to a ‘1’ value will be scheduled after the minimum of Til times for each input 
An output going to a ‘0’ value will be scheduled after the maximum of Ti0 times for each input 

50 9.6 VitalExtendToFillDelay 

The function VitalExtendToFiIIDelay is a utility that provides a set of six transition-dependent delay values, even 
though fewer delay values may have been explicitly provided. 
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64 

CONSTANT tpd-Input-Output : VitalDelayTypeOl ; 
-- This variable holds two delay values 
VARIABLE tpd-Control-Output: VitalDelayTypeOl Z; 
-- This variable holds six delay values 

tpd-Control-Output := VitalExtendToFiIIDelay(tpd-Input-Output); 
... 

IEEE STANDARD FOR VITAL ASIC 
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I O .  The VITAL standard packages 

10 This standard defines two standard packages-VITAL-Timing and VITAL-Primitives-that predefine a number 
of items that are useful or required for designing VITAL,-compliant models. These packages shall reside in the 
VHDL library IEEE. 

The semantics of the VITAL, standard packages are defined by their VHDL description according to IEEE Std 
1076-1987 and IEEE Std 1164-1993. Their interfaces are defined by their package declarations, and their behavior 
is defined by the corresponding package bodies. An implementation may not add items, delete items, or otherwise 
alter the contents of the VITAL, standard packages. An, implementation may choose to implement the package 
bodies in a more efficient form; however, the resulting semantic shall not differ from the formal semantic provided 
herein. 

The standard packages (subclauses 10.1 through 10.4) are on the diskette that is included with this standard. These 
standard packages are an official part of this standard. Please consult this diskette for the contents of these standard 
packages. 
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Annex A 

(informative) 

Syntax summary 

VITAL-controljeneric-declaration : : = [4.3.2.2] 
[ constant ] identifier-list ::= [ in 3 type-mark [ index-constraint ] [ := static-expression 3 ; 

VITAL-design-file ::= 
VITAL-design-unit { VITAL-design-unit } 

VITAL-design-unit : := 
context-clause library-unit 

I context-clause VITAL-library-unit 

[4.2.2] 

14.2.21 

VITAL-entity-declarative-part : := VITAL-LevelO-attribute-specification i4.31 

VITAL-entityjeneric-clause : := 
generic ( VITAL-entity-interface-list ) ; 

VITAL-entity-header ::= 
[ VITAL-entityseneric-clause ] 
[ VITAL-entity-port-clause ] 

VITAL-entityjnterface-declaration : := 
interface-constant-declaration 

I VITAL-timingjeneric-declaration 
I VITAL-controljeneric-declaration 
I VITAL-entity-port-declaration 

VITAL-entity-interface-list : := N.31 
VITAL-entityjnterface-declaration { ; VITAL-entity-interface-declaration } 

VITAL-entity-port-clause : := 
port ( VITAL-entity-interface-list ) ; 

VITAL-entity-port-declaration ::= [4.3.1] 
[ signal ] identifier-list : [ mode ] type-mark [ index-constraint ] [ := static-expression ] ; 

VITAL-functionality-section : := [6.4.3.2.2] 
{ VITAL-variable-assignment-statement I procedure-call-statement } 

VITAL-internal-signal-declaration : := [6.3.1] 
signal identifier-list : type-mark [ index-constraint ] [ := expression ] ; 

VITAL-Level-0-architecture-body : := l4.41 
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architecture identifier of entity-name is 
VITAL-Level-0- architecture-declarative-part 

begin 
architecture-statement-part 

end [ architecture-simple-name 3 ; 

VITAL-Level-0-architecture-declarative-part : := 
VITAL-LevelO-attribute-specification { block-declarative-item ] 

VITAL-Level-0-entity-declaration : := 
entity identifier is 

VITAL-entity-header 
VITAL-entity-declarative-part 

end [ entity-simple-name ] ; 

VITAL-Level-1-architecture-body : := 
architecture identifier of entity-name is 

begin 

end [ archifecture_simple_name ] ; 

VITAL-Level- 1-architecture-declarative-part 

VITAL-Level-1-architecture-statement-part 

14.41 

14.31 

VITAL-Level- 1-architecture-declarative-part : : = w.31 
VITAL-Level 1-attribute-specification 
{ VITAL-Level-1-block-declarative-item ] 

VITAL,-Level- 1 -architecture-statemen t-part : : = L6.41 
VITAL-Level-1-concurrent-statement { VITAL-Lev ncurrent-statement } 

VITAL-Level-lblock-declarative-item : := 
constant-declaration 

I alias-declaration 
I attribute-declaration 
I attribute-specification 
I VITAL-internal-signal-declaration 

VITAL-Level-l- concurrent-statement : := 
VITAL-wire-delay-block-statement 

I VITAL-negative-constraint-block-statement 
I VITAL-process-statement 
I VITAL-primitive-concurrent-procedure-call 

VITAL-LevelO-attribute-specification : := attribute-specification 

VITAL-Level 1-attribute-specification : := attribute-specification 

VITAL-library-unit : := 
VITAL-Level-0-en tity-declaration 

I VITAL-Level-0-architecture-body 
I VITAL-Level-1-architecture-body 

VITAL-negative-constraint-block-statement : := 
block-label : 
block 

16.31 

w.41 

l4.11 

[4.2.2] 

[6.4.2] 
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begin 

end block [ block-label ] ; 
{ VZTAL-negative-constraint-concurrent-procedwe-call } 

VITAL-primitive-concurrent-procedure-call : := 
VITALgrimitive-concuent-procedure-call 

VITAL-process-declarative-item : := 
constant-declaration 

I alias-declaration 
I atbibute-declaration 
I attribute-specification 
I VITAL-variable-declaration 

VITAL-process-declarative-part : := 
{ VITAL-processdeclarative-item } 

VITAL-process-statement : : = 
[ process-label : ] 
process ( sensitivity-list ) 

begin 

end process [ process-label 

VITAL-process-declarative-part 

VITAL-process-statemen$ 

VITAL-process-statement-part 
[ VITAL-timing-c 
[ VITAL-functionality-section J 
[ VITAL-path-delay-section 1 

[6.4.4] 

[6.4.3.1] 

[6.4.3.2] 

[6.4.3] 

[6.4.3.2] 

VITAL-target ::= unrestricted-variable-name [6.4.3.2.2] 

VITAL-timing-check-condition : := generic-simple-name 

VITAL-timing-check-section : := 
if VITAL-timing-check-:. #:!.!' ':,-I then 

end if ; 
{ VITAL-timingcheck-statement 

[6.4.3.2.1] 

[6.4.3.2.1] 

VITAL-timing-check-s tatement : := procedure-call-statement [6.4.3.2.1] 

VITAL-timingjeneric-declaration : := [4.3.2.1] 
[ constant ] identifier-list ::= [ in ] type-mark [ index-constraint ] [ := static-expression ] ; 

VITAL-variable-assignment-statement ::= 
VITAL-target := expression ; 

[6.4.3.2.2 ] 

VITAL-variable-declaration ::= [6.4.3.1.1] 
variable identifier-list : type-mark [ index-constraint ] [ := expression ] ; 

VITAL-wire-delay-block-statement : := 
block-label : 
block 
begin 

[6.4.1] 
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VITAL-wire-delay-bloc k-s tatement-part 
end block [ block-label 3 ; 

VITAL-wire-delay-block-statement-paxt : := 
{ VITAL-wire-delay-concurrent-procedure-call 
I VITAL-wire-delay-generate-statement } 

VITAL-wire-delay-concurrent-procedure-call : := concurrent-procedlure-call 

VITAL-wire-delay-generate-parameter-specification : := 
identifier in range-attribute-name 

VITAL-wire-delaysenerate-statement : := 
generate-label : 
for VITAL-wire-delay_generate-parameter-specification generate 

{ VIT~~wire~delay~concurrent~procedure~call 
end generate [ generate-label ] ; 

IEEE 
Std 1076.4-1 995 

r6.4.11 

[6.4.1] 

[6.4.1] 

[6.4.1] 
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Annex B 

(informative) 

Glossary 

This glossary contains brief, informal definitions of a number of hardware-specific terms and phrases that are used 
in this standard. The definitions in this annex are not a part of the formal definition of this standard. 

ASIC cell: The building block of an Application-Specific Integrated Circuit (ASIC). 

device delay: The intrinsic delay of a cell; it represents the delay associated from each input path to the given 
output of the cell. 

hold time: The time period following a clock edge during which <an input signal value may not change value. 

interconnect path delay: Delays on the wires that connect various instantiations of ASIC cells in a design. 

no change time: A stable interval associated with a setup or hold constraint. A signal checked against a control 
signal has to remain stable cluring the setup period established before the start of the control pulse, the entire width 
of the pulse, and the hold period established after the pulse. Each of these stable intervals is a no change time. 

period: The time delay from the specified edge of a clock pulse to the corresponding edge of the following clock 
pulse. 

propagation delay: The time delay from the arrival -of an input signal value to the appearance of a corresponding 
output signal value. 

pulse width: The time duration for which the value of signal remains unchanged at a low or high state. 

recovery time: The minimal time interval by which a change to an unasserted value on an asynchronous (set, 
reset) input signal has to precede the clock edge. 

removal time: The minimal time interval for which an asserted condition has to be present on an asynchronous 
(set, reset) input signal following the clock edge. 

setup time: The time period prior to a clock edge during which an input signal value may not change value. 

skew time: The maximum allowable delay between two signals. A delay that exceeds the skew time causes 
devices to behave unreliably. 
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(informative) 

Bibliography 

[Bl] IEEE Std 1076-1993, IEEE Standard VHDL Language Reference Manual (ANSI).' 

[B2] IEEE Std 1076/INT-1991, IEEE Standards Interpretations: IEEE Std 
Language Reference Manual. 

[B3] EIA-5670000-9 1,  EIA Commercial Component Madel Specification.2 

1076-1987, IEEE Standard VHDL 

'IEEE publications are available from the Institute of of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, 
Piscataway, NJ 08855-1331, USA. 
2EIA publications are available from the Global Engineering Documents, 15 Inverness Way East, Englewood, CO 80112, 
USA. 

Annex C 71 



IEEE 
Std 1076.4-1 995 IEEE STANDARD FOR VITAL ASIC 

Index negative constraint calculation phase 55-58 
biased propagation delay calculation 56 
internal clock delay adjustment 56-57 
internal clock delay calculation 55 
internal signal delay adjustment 57 
internal signal delay calculation 56 
propagation delay adjustment 56 
timing check generic adjustment 57-58 

negative constraint timing generic 10 
negative timing constraints 53-58 

modeling requirements 54-55 

A 
architecture 

Level 0 17-18 
Level 1 33-34 

B 
backannotation 19-20 

methods 19 
phase 19 

P 
path delay procedure 41, 61-63 
port declaration, Level 0 10 
primitive 43 

backannotation timing generic 10, 19 

C 
clock signal name 16 
configuration declaration, and backannotation 19 
control generic 17 

logic, See also logic primitive 43 
table, See also table primitive 45 
utility 43 

D 
delay selection 59-63 

Eormal parameter 38 in path delay procedure 61-63 
in primitive procedure 63 restrictcd variable 38-39 

design entity, Level 1 33 

E 
entity, Level 0 

declaration 9-10 
in Level 1 design entity 33 

ondition 27-28,28-30 
G 
generic, Level 0 10-17 
glitch handling 60-61 DELAY entry 23-24 

DELAYFIIJ! entry 20 
I DEVICE entry 25-26 
Instancepath generic 17 DWentry 26 
internal signal 34 DIVIDER cntry 21 

edge 27-28 
L EDGE-IDENTIFIER variable 28 
logic primitive 43-45 GLOBALPATHPULSE entry 24 

function 43-44 header section 20-21 
output strength 45 HOLD entry 26 
procedure 4 4 4 5  INCREMENT entry 24 

INSTANCE entry 21 
M INTERCONNECT entry 25 
MsgOn generic 17 IOPATH entry 24 

NETDELAY entry 24 
NOCHANGE entry 26 
PATH variable 21 
PATHCONSTRAINT entry 26 
PATHPULSE entry 24 
PERIOD entry 26 
PORT entry 24-25 

N 
naming conventions 

generic 11-13 
port 10 

negative constraint block 34, 37 
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port specification 30-3 1 
RECOVERY entry 26 
SDFVERSION entry 20 
SETUP entry 26 
SETUPHOLD entry 26 
SKEW entry 26 
SKEWCONSTRAINT entry 26 
S U M  entry 26 
TIMESCALE entry 21 
timing specification 22 
TIMINGCHECK entry 26-28 
WIDTH entry 26 

SDF annotator 19-20 
SDF import 19 
simple delay 59 
state table 49-50 

algorithm 50 
construction 49-50 

T 
table primitive 42,45-50 
table symbol 45-46 

in table section 46 
matching 46-47 

timing check procedure 39, 51 
timing generic 10-16 

name 11-13 
port specification 12 
prefix 11 
SDF mapping to 23-32 
specifications 13-16 
subtype 13 
suffix 12 
usage 18 

tbpd 16 
tdevice 16 
thold 14 
ticd 16 
tipd 15 
tisd 16 
tnchold 15 
tpd 13 
tperiod 14 
tpw 15 
trecovery 14 
tremoval 14 
tsetup 14, 15 
tskew 15 

timing generic prefixes 12 

timing generics 
biased propagation delay 16, 55-58 
device delay 16, 25-26 
hold time 14, 27, 57-58 

interconnect path delay 15-16, 24-25, 25 
internal clock delay 16, 37, 55-58 
internal signal delay 16, 37, 55-58 
no change hold time 15,27 
no change setup time 15,27 
period 14,27 
propagation delay 13,24 
pulse width 15, 27 
recovery time 14,27,57-58 
removal time 14,57-58 
setup time 14,27,57-58 
skew time 15,27 

TimingChecksOn generic 17,39 
transition dependent delay 59 
transition dependent delay selection 60 
truth table 47-49 

algorithm 49 
construction 48 

U 
utility primttive, See also table primitive, VITALRe- 

solve 43 

V 
variable 38--39 
VHDL usage, general 8-9 
violation reporting 17 
VITAL compliance 5 - 6  
VITAL delay type or subtype 59-60 

in timirtg generic subtype 13 
SDF data value mapping 23 

WAL modeling levels 5-6 
VITAL primitive concurrent procedure call 3 5 , 4 1 4 2  
VITAL process 35, 37-41 

declarative part 38-39 
functionality section 40-41 
path delay section 41 
sensitivity list 38 
timing check section 39-40 

VITAL SDF Map 20-32 
VITAL standard packages 6,65 
VITAL-Level0 attribute 8 
VITAL-Level1 attribute 33 
VITAL-Primitives 65 
VITAL-Timing 65 
VlTALExtendToFillDelay 63 
VlTALGlitchKindType type 60 
VlTALPathDelay 41, 62 
VITALPathDelayOl 41, 62 
VlTALPathDelayOlZ 41, 62-63 
VlTALPeriodPulseCheck 39, 52 
VlTALRecoveryRemovalCheck 39,52-53 
VlTALResolve 45 
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